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Abstract

To understand the interplay of residual structures and conformational fluctuations in the interaction of intrinsically
disordered proteins (IDPs), we first combined implicit solvent and replica exchange sampling to calculate atomistic
disordered ensembles of the nuclear co-activator binding domain (NCBD) of transcription coactivator CBP and the activation
domain of the p160 steroid receptor coactivator ACTR. The calculated ensembles are in quantitative agreement with NMR-
derived residue helicity and recapitulate the experimental observation that, while free ACTR largely lacks residual secondary
structures, free NCBD is a molten globule with a helical content similar to that in the folded complex. Detailed
conformational analysis reveals that free NCBD has an inherent ability to substantially sample all the helix configurations
that have been previously observed either unbound or in complexes. Intriguingly, further high-temperature unbinding and
unfolding simulations in implicit and explicit solvents emphasize the importance of conformational fluctuations in
synergistic folding of NCBD with ACTR. A balance between preformed elements and conformational fluctuations appears
necessary to allow NCBD to interact with different targets and fold into alternative conformations. Together with previous
topology-based modeling and existing experimental data, the current simulations strongly support an ‘‘extended
conformational selection’’ synergistic folding mechanism that involves a key intermediate state stabilized by interaction
between the C-terminal helices of NCBD and ACTR. In addition, the atomistic simulations reveal the role of long-range as
well as short-range electrostatic interactions in cooperating with readily fluctuating residual structures, which might
enhance the encounter rate and promote efficient folding upon encounter for facile binding and folding interactions of
IDPs. Thus, the current study not only provides a consistent mechanistic understanding of the NCBD/ACTR interaction, but
also helps establish a multi-scale molecular modeling framework for understanding the structure, interaction, and
regulation of IDPs in general.
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Introduction

It is now widely recognized that many functional proteins lack

stable tertiary structures under physiological conditions [1–5].

Importantly, such intrinsically disordered proteins (IDPs) are

highly prevalent in proteomes [6], play crucial roles in cellular

areas such as signaling and regulation [7,8], and are often

associated with human diseases such as cancers [9–11]. The

concept that intrinsic disorder can confer functional advantages

has been discussed extensively [12–16]. For example, the

disordered nature of IDPs could offer several unique benefits for

signaling and regulation, including high specificity/low affinity

binding, inducibility by posttranslational modifications, and

structural plasticity for binding multiple partners. The last

property appears to be particularly advantageous, and could

support one-to-many and many-to-one signaling [16,17]. None-

theless, the physical basis of these proposed phenomena remains

largely elusive. Specifically, how IDP recognition and regulation

are supported by the interplay of residual structures, conforma-

tional fluctuations and other physical properties as encoded in the

peptide sequence is poorly understood.

The current limit in mechanistic understanding of how intrinsic

disorder supports function might be attributed to two key

challenges in characterizing IDPs. These challenges are broadly

shared by mechanistic studies of protein folding, misfolding, and

aggregation in general [18–21]. The first one is related to the

difficulty in deriving detailed structural information of the

disordered unbound states [22–25]. In general, only ensemble-

averaged properties can be measured for disordered proteins

except with single-molecule techniques (which have their own

limitations in spatial resolution, labeling need, and protein size

[26–28]). Recovering the underlying structural heterogeneity using

averaged properties is a severely underdetermined problem [29–

33]. It is generally not feasible to construct a unique disordered

structure ensemble that is consistent with the available data. This

fundamental limitation leads to significant ambiguity in the

current knowledge of the conformational nature of unbound

IDPs. The second challenge is to further clarify the functional roles
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of any putative conformational sub-states or other properties of an

IDP in its recognition and regulation (i.e., ‘‘function’’). In

particular, whereas some IDPs remain disordered in complexes

[34,35], many fold into stable structures upon binding to specific

targets [36]. The roles of intrinsic disorder vs. residual structures in

such coupled binding and folding interactions have been under

much debate [36]. On one hand, residual structures have been

observed frequently in unbound IDPs, and intriguingly, such

residual structures often resemble those in the folded complexes

[37–41]. These observations have led to an attractive hypothesis

that preformed structural elements might provide initial binding

sites to facilitate efficient recognition (i.e., conformational

selection-like mechanisms) [12,37]. On the other hand, evidence

has accumulated in recent years, from computation as well as

experimentation, to support a central role of nonspecific binding

and emphasize the importance of disordered nature itself in

promoting facile IDP recognition [41–51]. In fact, all published

studies that extend beyond examining the unbound states alone

have suggested induced folding-like mechanisms, at least at the

baseline level.

Precisely how the disordered nature contributes to binding,

however, is less clear. One proposal is that nonspecific binding of

unstructured and presumably more extended conformations can

increase the capture radii to enhance the binding kinetics [52,53];

however, such ‘‘fly-casting’’ effects is small with a theoretical

maximum of ,1.6-fold acceleration. Recent studies have shown

that unbound IDPs tend to be much more compact than

previously assumed [54–57], further reducing the proposed fly-

casting affects. In addition, the rate-enhancing affect due to

increased size is likely offset by slower diffusion [58]. Alternatively,

the unbound state of IDPs is presumed heterogeneous and strongly

fluctuating. More specifically, conformational sub-states in the

unbound IDPs should be marginally stable and separated by small

free energy barriers (e.g., a few kcal/mol or less). These

conformational fluctuations could contribute to efficient IDP

recognition by allowing the peptide to fold rapidly upon

(nonspecific) binding [50,58], which is required for achieving the

diffusion-controlled maximum binding rate (otherwise folding

becomes rate-limiting) [59]. It should be noted that cellular events

frequently modify the folding of IDPs to modulate their activities,

such as through phosphorylations or by binding of other proteins

[60]. Therefore, in contrast to globular proteins where folding

often serves only to achieve the native structures, folding and

unfolding appears to be direct and inherent aspects of IDP

function. This underpins the importance and biological relevance

of obtaining a mechanistic understanding of binding-induced

folding of IDPs beyond a subject of theoretical curiosity.

The challenge in detailed characterization of IDPs represents a

unique opportunity for molecular modeling to make critical

contributions [5]. In particular, atomistic simulations could

provide the ultimate level of detail necessary for understanding

the structure and interaction of IDPs. At the same time, the

dynamic and heterogeneous nature of IDPs also pushes the limits

of both the force field accuracy and conformational sampling

capability. So-called implicit solvent is arguably an optimal choice

for de novo simulations of IDPs because of its necessary balance of

accuracy and speed [61–64]. The basic idea of implicit solvent is to

capture the mean influence of water by direct estimation of the

solvation free energy, therefore reducing the system size about 10-

fold. Important advances have been made to greatly improve the

efficiency and achievable accuracy of implicit solvent, such as via

the popular generalized Born (GB) theory [64]. With reduced

system size, implicit solvent is also particularly suitable for replica

exchange (REX) simulations [65–67], an enhanced sampling

technique that has proven highly effective in sampling protein

conformational equilibria [68]. Importantly, improved efficiency

with implicit solvent also allows careful optimization to suppress

certain systematic biases that have plagued explicit solvent

approaches [69,70]. For example, we have previously optimized

the generalized Born with smooth switching (GBSW) model

[71,72] together with the underlying CHARMM22/CMAP

protein force field [73–76]. The resulting GBSW protein force

field not only recapitulates the structures and stabilities of helical

and b-hairpin model peptides with a wide range of stabilities

[77,78], but also allows calculation of the conformational

equilibria of small proteins under stabilizing and destabilizing

conditions [79–81]. Although inherent and methodological

limitations remain in implicit solvent [82], initial applications of

implicit solvent to modeling small IDPs have been reasonably

successful [41,46,55,83–86], substantiating the notion that it is a

viable approach for atomistic simulations of IDPs.

The current work focuses on the nuclear-receptor co-activator

binding domain (NCBD) of the transcription coactivator CREB-

binding protein (CBP) and its interaction with the p160 steroid

receptor co-activator ACTR. CBP and its paralogue p300 are

general transcriptional coactivators that play critical roles in

transcriptional regulation and participate in cell cycle control,

differentiation, transformation, and apoptosis [87,88]. The NCBD

domain (residues 2059–2117 in mouse CBP) is also known as

interferon regulatory factor (IRF) binding domain (iBID) or the

SRC1 interaction domain (SID). It mediates the interaction of

CBP with a number of important proteins, including steroid

receptor coactivators, p53 and IRFs [2,89]. The interaction of

CBP with p160 coactivators in particular is important for

recruitment of CBP/p300 to transmit the hormonal signal to the

transcription machinery [90]. Besides the biological and medical

significance, the NCBD/ACTR interaction also offers unique

opportunities for understanding the molecular principles of IDP

recognition. Both NCBD and the activation domain of ACTR that

it interacts with (residues 1018–1088 in human ACTR; hereafter

referred to as ACTR) are IDPs. Their interaction is an example of

the ‘‘synergistic folding’’ mechanism [91] (the other known

example also involves NCBD, but with the p53 transactivation

domain, TAD [92]). In addition, four folded structures of NCBD

Author Summary

Intrinsically disordered proteins (IDPs) are now widely
recognized to play fundamental roles in biology and to be
frequently associated with human diseases. Although the
potential advantages of intrinsic disorder in cellular
signaling and regulation have been widely discussed, the
physical basis for these proposed phenomena remains
sketchy at best. An integration of multi-scale molecular
modeling and experimental characterization is necessary
to uncover the molecular principles that govern the
structure, interaction, and regulation of IDPs. In this work,
we characterize the conformational properties of two IDPs
involved in transcription regulation at the atomistic level
and further examine the roles of these properties in their
coupled binding and folding interactions. Our simulations
suggest interplay among residual structures, conforma-
tional fluctuations, and electrostatic interactions that
allows efficient synergistic folding of these two IDPs. In
particular, we propose that electrostatic interactions might
play an important role in facilitating rapid folding and
binding recognition of IDPs, by enhancing the encounter
rate and promoting efficient folding upon encounter.

Synergistic Folding of Disordered Proteins
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have been solved in complex with various protein targets besides

ACTR [91–94]. In these complexes, NCBD adopts two distinct

tertiary folds that involve three similar helices, represented by the

NCBD/ACTR and NCBD/IRF3 complexes (see Figure 1).

Therefore, NCBD represents one of the few experimentally

validated examples of structural plasticity, which is believed to be a

key functional advantage of intrinsic disorder [16].

Interestingly, although free ACTR is largely devoid of residual

structures, free NCBD contains one the highest levels of residual

structures with folded-like helical content and molten globule

characteristics [95,96]. In addition, even though nuclear magnetic

resonance (NMR) relaxation analysis has established that free

NCBD is highly dynamic on picosecond (ps) to nanosecond (ns)

timescales [96], it appears to have a strong tendency to adopt

marginally stable tertiary folds, allowing two NMR structures of

the unbound state determined to date [40,89]. These structures

are presumably obtained by stabilizing various conformational

sub-states under specific solution conditions. Particularly intriguing

is that the latest NMR structure of free NCBD turns out to be

similar to the folded conformation observed when bound to

ACTR [40]. Although such pre-existence of folded-like confor-

mations should be considered only as a necessary but insufficient

condition for conformational selection-like mechanisms, the

unusually high level of residual structures of NCBD strongly

suggests a functional role of pre-folding in its coupled binding and

folding interactions. In this work, we first exploit implicit solvent-

based atomistic simulations and REX enhanced sampling to

characterize the conformational properties of free NCBD and

ACTR. The roles of preformed structures vs. conformational

fluctuation in the NCBD/ACTR interaction are then directly

probed using high-temperature unfolding and unbinding simula-

tions in both implicit and explicit solvents. Combined with our

recent coarse-grained simulations and existing experimental data,

we aim to obtain a detailed mechanistic picture of how residual

structures, conformational fluctuations, and electrostatic interac-

tions contribute to efficient synergistic folding of NCBD and ACTR.

Results

Convergence and validation of the disordered structure
ensembles

De novo calculation of the disordered ensembles for IDPs is

challenging [5], especially for NCBD that is both of moderate size

and apparently with a complex, solution condition-sensitive

conformational equilibrium. Our previous works have suggested

that implicit solvent coupled with REX enhanced sampling could

generate reasonably accurate disordered ensembles for small IDPs,

including a 28-residue segment of the kinase inducible domain

(KID) of transcription factor CREB [55]. In Figure S1, we first test

the convergence of the calculated disordered ensembles by

examining the dependence of residue helicity on REX simulation

time and by comparing results from independent simulations

initiated from dramatically different conformations (folding vs.

control; see Methods). The sequences of both domains are

provided in Methods. Free ACTR appears to be highly disordered

with marginal residual helicity. The calculated residual helicity

profiles from the control and folding runs converge to similar ones

(data not shown). For NCBD, while the time evolution of the

calculated residual helicity appears to stabilize over the course of

100 ns in either the control or folding REX simulation, the final

profiles from these two independent calculations differ substan-

tially, suggesting that the actual convergence is rather limited.

Nonetheless, both the folding and control simulations clearly

suggest significant residual helicity in all three helical segments that

become stably folded upon binding to various specific targets.

Detailed analysis of the conformational ensemble (see below)

demonstrates that free NCBD is compact and contains substantial

tertiary contacts. These conformational properties of NCBD,

coupled with the larger size, contribute to the difficulty of

achieving better convergence using the REX/GB protocol. In

addition, the current surface area-based treatment of nonpolar

solvation can over-stabilize non-specific collapsed states [82,97].

This problem further limits the ability to sufficiently sample

Figure 1. Two representative folded conformations of NCBD. A) NMR structure of the NCBD/ACTR complex (PDB: 1kbh [91], model 1). Both
NCBD and ACTR contain 3 helical structure segments, labeled as Ca1 (blue), Ca2 (red) and Ca3 (magenta) in NCBD and Aa1, Aa2 and Aa3 in ACTR. See
Methods for specific residue ranges of these helical segments. Several key structural features are also marked, including the poly-Q loop (yellow)
linking Ca1 and Ca2, a buried salt-bridge between NCBD R2105 and ACTR D1068, and several key charged residues adjacent to this buried salt-bridge.
B) X-ray crystal structure of the NCBD/IRF3 complex (PDB: 1zoq [94]). C) Overlay of the folded structures of NCBD in complex with IRF3 (yellow) and
ACTR (green). Only the structured segment (residues 2066–2112) is shown, and the two structures are aligned using the backbone atoms of Ca2.
doi:10.1371/journal.pcbi.1002353.g001

Synergistic Folding of Disordered Proteins
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accessible tertiary organizations of free NCBD and their inter-

conversions, which is required for achieving good convergence.

Given the limited convergence achieved in the REX simulations

of free NCBD and apparent difficulties in substantially improving

the level of convergence, we focus on semi-quantitative or

qualitative analysis of the conformational properties of NCBD.

That is, although significant conformational sub-states sampled by

REX may be genuine, the relative stability (population) is not

likely to be reliable. Considering that NCBD is experimentally

known to be highly helical, the folding simulations (initiated with a

fully extended conformation) should take longer to converge, and

the disordered ensemble calculated from the control simulation is

likely more realistic. Therefore, all the subsequent analysis is based

on the ensemble of conformations sampled during the last 60 ns of

the 100 ns control REX simulation. In Figure 2, we compare the

residue helicity of NCBD and ACTR in the free and bound states.

The results appear to be fully consistent with the previous NMR

secondary chemical shift analysis (Figure 2 of Ref. [96]), showing

that all three NCBD helices are largely formed in the unbound

state and ACTR is largely free of residual helices. Interestingly, the

poly-Q segment of NCBD (residues 2082–2086), although

disordered in the NCBD/ACTR complex, is largely helical in

the unbound state and extends Ca2. This is fully consistent in the

NMR chemical shift analysis [96]. Recent sequence correlation

analysis has revealed a link between sequence order and binding

promiscuity [98,99]. One might expect that the length of the poly-

Q stretch might affect conformational flexibility, and furthermore,

the ability to interact with diverse targets. We also have analyzed

the ensemble distribution of the radius of gyration of free NCBD.

The results, shown in Figure S2A, confirm that free NCBD is

highly compact. Despite a clear lack of convergence, the control

and folding simulations appear to sample a set of conformation

sub-states with similar characteristic sizes. Direct comparison of

the calculated size profiles to one derived from a recent small-

angle X-ray scattering (SAXS) study [40] is complicated by the

different constructs used and uncertainty in proper inclusion of the

solvation shell for a heterogeneous ensemble. Nonetheless, one can

estimate that including the disordered N- and C-terminal tails (13

residues total) truncated in the current simulations would increase

the radius by 2–3 Å, and that the solvation shell may add another

2–3 Å (estimated by comparing results from HydroPro [100] and

CHARMM). These corrections together bring the calculated

radius of the gyration profile close to the SAXS-derived profile

that centers around 15.2 Å under ‘‘native-like’’ conditions [40].

Apparent agreement between NMR and SAXS on these

ensemble-averaged properties is not sufficient to validate the

reliability of the simulations, but it suggests that the simulated

ensemble may offer a qualitative or even semi-quantitative

characterization of the conformational properties of free NCBD.

Folded-like conformations in the unbound state of NCBD
Because all three NCBD helices are largely formed in the

unbound state, the conformational fluctuation of free NCBD

mainly involves tertiary packing of these helices. For example, as

shown in Figure 1, when aligned using the central helix Ca2, the

two representative folded conformations of NCBD differ mainly in

the orientation of Ca1 and slightly less so in that of Ca3.

Therefore, all conformations of the calculated ensemble first re-

oriented by aligning Ca2 (to the 2z axis) before the orientations of

Ca1 and Ca3 were calculated. Note such analysis also provides an

effective description of the tertiary packing even when one or more

of the three NCBD segments are not in helical states. The results,

shown in Figure 3, illustrate that NCBD is strongly fluctuating and

samples a large number of helix configurations, as expected for a

molten globule. Intriguingly, free NCBD appears to substantially

sample all three distinct conformations that have been observed

experimentally so far, either in complexes or in isolation. These

folds are represented by PDB structures 1kbh, 1zoq, and 1jjs,

respectively. The Ca1 orientation of 1kbh and Ca3 orientation of

1jjs appear to be least sampled. Nonetheless, conformational sub-

states exist with similar orientations, as marked by arrows in panels

c) and d) of Figures 3. Specifically, for 1kbh-like Ca1 orientation,

the adjacent sub-state contains more parallel (with smaller helix

cross angles), and thus tighter, packing of Ca1 with Ca2, but with a

helix interface similar to that of 1kbh. Further structural analysis

(see the following paragraph) suggests that such tighter packing is

likely a result of helix formation in the poly-Q segment (e.g., see

Figure 2), which shortens the Ca1-Ca2 loop and promotes tighter

packing.

Clustering analysis was performed to further analyze the

structural properties of the major conformational sub-states of

free NCBD. The average structures of the six most populated

Figure 2. Calculated residue helicity of NCBD and ACTR in the free and bound states. Results for the bound state were calculated from a
100 ns control simulation of the complex (see Methods), and those for the free peptides were calculated based the conformationals sampled at 305 K
during the last 60 ns of the control REX simulations.
doi:10.1371/journal.pcbi.1002353.g002
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clusters identified using K-means clustering with a 3.0 Å radius are

shown in Figure 4. Helix configurations for all members of these

clusters are shown in Figure S3. Interestingly, even though one of

the clusters (Figure 4D) is similar to the fold observed in 1kbh,

most clusters are different from either 1zoq or 1kbh on the whole

domain level, as suggested by the large RMSD values. Therefore,

even though both individual Ca1-Ca2 and Ca2-Ca3 helix pairs

sample all three distinct PDB folds, these folded-like configurations

of individual helix pair generally do not occur at the same time.

Notably, the folded conformations of NCBD in 1kbh and 1zoq

have relatively similar Ca2-Ca3 helix packing (see Figure 1C). The

packing of Ca2 and Ca3 also appears to be more restricted in free

NCBD compared to that of Ca1 and Ca2 (e.g., as indicated by a

larger ‘‘inhibited’’ red area in Figure 3D compared to Figure 3C).

NCBD has a strong inherent propensity to adopt Ca2-Ca3

configurations analogous to those in 1kbh and 1zoq. Such

persistent folded-like conformations of free NCBD could contrib-

ute to recruitment of specific targets such as ACTR and IRF3,

allowing NCBD to adopt different final structures by docking the

more flexibly linked Ca1 into different positions. Another

interesting observation is that the poly-Q segment appears to be

capable of readily switching between helical and coil states. Such

conformational fluctuations could allow NCBD to adapt to

different substrates, extending the Ca2 helix when bound with

IRF3 but becoming more disordered when in complex with

ACTR (see Figure 1).

Induced folding-like mechanism on the baseline level
Although the REX simulations provide intriguing insights into

the possible residual structures of free NCBD, how these

Figure 3. Orientations of NCBD Ca1 and Ca3 with respect to Ca2 in the unbound state. All conformations sampled at 305 K during the last
60 ns of the control REX simulation were first aligned using the backbone atoms of Ca2, and then reoriented such that Ca2 was aligned with 2z axis.
The orientations as observed in three distinct folds of NCBD, represented by PDB 1kbh, 1zoq, and 1jj (also see Figure 1), are marked with ‘‘+’’, ‘‘6’’, and
‘‘w’’, respectively. Note that different colors for the same symbol may be used in different panels for clarity. In panels c) and d), Q and h are the
inclination and azimuth angles of the spherical coordinate system. Note that the PMFs were computed using sin(h) instead of h itself as an order
parameter to remove the Jacobian entropy contribution. The range shown corresponds to h= 0 (top) to p (bottom). Contours are drawn at every kT
up to 7 kT, with k being the Boltzmann factor.
doi:10.1371/journal.pcbi.1002353.g003

Synergistic Folding of Disordered Proteins
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conformational properties contribute to synergistic folding of

NCBD with ACTR is not obvious based on these equilibrium

simulations alone. For this, one could calculate the coupled

binding and folding free energy surfaces [41,51] or transition paths

[46] to more directly clarify the recognition mechanism and probe

the roles of residual structures vs. pre-folding in specific finding.

However, given the moderate size and relatively complex

topology, such calculations can be extremely demanding using

an atomistic physics-based force field for the NCBD/ACTR

complex. Instead, temperature-induced unfolding and unbinding

simulations may be used to effectively infer the molecular processes

of coupled binding and folding. A key assumption is that binding/

folding is largely a reverse of unbinding/unfolding. An important

concern is that the transition states or the most probable transition

paths might depend on temperature [101]. Nonetheless, high-

temperature unfolding simulations have so far proven quite

successful for studying folding and interaction of many proteins,

including IDPs [44,102–104].

A 100 ns equilibrium simulation of the complex was first

performed at 300 K, which confirms that the native fold (model 1

of PDB:1kbh) is very stable in the GBSW/MS2 implicit solvent

(see Figure S4). Subsequent pilot simulations suggest 475 K to be

optimal for simulating unbinding and unfolding of the NCBD/

ACTR complex in GBSW/MS2 (e.g., see Figure S5). In Figure 5,

we compare the time evolution of various fractions of native

contacts computed from 50 independent unfolding simulations at

475 K. The fraction of native intermolecular interactions (Qinter) is

used to describe binding, and the fraction of native tertiary

intramolecular interactions (QNCBD) is used for folding of NCBD.

As shown in Figure S6, ACTR is completely devoid of any inter-

helix tertiary contacts in the NCBD/ACTR complex. Because

ACTR is largely free of residual structures in the unbound state,

the overall helicity (aACTR) is used to effectively monitor (binding-

induced) folding of ACTR. On the baseline level, all unfolding and

unbinding kinetics appear to be reasonably well represented by

single exponential functions. The fitted kinetic data is summarized

in Table 1. The secondary (helix) unfolding of NCBD is predicted

to be the slowest process (aNCBD; green traces in Figure 5), which is

expected given the high level of residual structures in unbound

NCBD; however, both the ACTR (helix) and NCBD tertiary

unfolding appear to be significantly faster than unbinding. This

result suggests that binding occurs prior to the folding of both

ACTR and NCBD; that is, both ACTR and NCBD follow

induced-folding-like mechanisms on the baseline level in the

GBSW/MS2 implicit solvent. Considering the apparent tendency

of NCBD to pre-fold (see above), this result is somewhat surprising,

but it highlights the importance of conformational fluctuations and

nonspecific binding in specific recognition of IDPs, even for IDPs

with significant residual structures like NCBD. Significant

heterogeneity is apparent in the unfolding/unbinding pathways

of NCBD/ACTR and is partially reflected in substantial

ruggedness that remains in the curves shown in Figure 5 (e.g.,

Figure 4. Averaged structures of the six most populated clusters of free NCBD. These clusters are identified based on the conformations
sampled at 305 K during the last 60 ns of the 100 ns REX control simulation. All structures were aligned by minimizing the backbone RMSD of Ca2

(the red segments) and visualized in the same view. The numbers below each structure are the population of the cluster and backbone RMSD values
from the folded conformations in 1kbh and 1zoq (see Figure 1). The protein is colored in the same fashion as in Figure 1a–b.
doi:10.1371/journal.pcbi.1002353.g004

Synergistic Folding of Disordered Proteins
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compared with a previous explicit solvent unfolding simulation of

the p53-MDM2 complex, where 10 10-ns simulations at 498 K

were sufficient to yield much smoother curves [103]). The complex

fully disassociates within 10 ns in only 6 out of the 50 independent

runs. In examining the unbinding/unfolding characteristics at a

lower temperature of 450 K (see Figure S7), we found the

heterogeneity of unfolding/unbinding pathways to be even more

evident. In addition, the complex appears trapped in some

intermediate states and does not fully unfold/unbind even after

20 ns. Nonetheless, unfolding of either ACTR or NCBD appears

to lag behind unbinding, which is consistent with the induced-

folding baseline mechanisms predicted at 475 K.

Binding and folding intermediates involving the NCBD
and ACTR C-terminal segments

Indications are that binding-induced folding of NCBD and

ACTR is not simply 2-state-like. For example, decay of QNCBD

and aACTR appears to pause at ,2 ns (red and blue traces in

Figure 5), which could suggest a common intermediate state where

ACTR and NCBD are partially bound and folded. The decay

curves are too noisy (partially due to underlying heterogeneity) for

reliable kinetic fitting using double exponential functions.

Therefore, we constructed (pseudo) unbinding and unfolding free

energy surfaces based on statistics collected from the first 5 ns of

the unfolding simulations. Note that the system is not at

equilibrium during this time frame, so the resulting free energy

profiles are not equilibrated (and thus strongly dependent on initial

conditions). Nonetheless, the profiles provide qualitative approx-

imations of the true free energy surfaces [105]. As shown in

Figure 6A, an intermediate state is evident at Qinter,0.25 and

QNCBD,0.15. Interestingly, a similar key intermediate state also

has been predicted in our recent topology-based modeling of the

NCBD/ACTR complex [50]. A strong resemblance between the

free energy surface is shown in Figure 6A and the result derived

from topology-based modeling (Figure 5A of reference [50]). Both

the atomistic simulations (see further analysis detailed in the

following paragraph) and topology-based modeling predict that

the intermediate state mainly involves the C-terminal segments of

NCBD and ACTR. Such a prediction appears highly consistent

with a recent H/D exchange mass spectrometry (H/D-MS) study

[106], where peptide segments within the C-terminal regions of

both NCBD and ACTR were found to have much larger

protection factors compared with those mapped into other folded

regions of the complex.

In Figure 7, we further examined the binding kinetics of

individual NCBD and ACTR helices. The kinetic data derived

from fitting to single exponential functions is summarized in

Table 1. The analysis shows that Aa3 and Ca3 unbind with the

largest half times, t= 2.93 ns and 2.20 ns, respectively, which are

greater than that of the overall intermolecular interaction

formation (t= 1.61 ns). This result indicates that binding is mainly

initiated by the C-terminal helices. In contrast, the first helices of

NCBD and ACTR unbind much faster then the second and third

helices. In fact, unbinding of Aa1 and Ca1 occurs even faster than

folding of either NCBD or ACTR (as described by QNCBD and

aACTR, see Table 1). These kinetic rates are consistent with a

multi-stage synergistic folding process, where NCBD and ACTR

first bind rapidly through the C-terminal segments, forming

intermediates that are mainly stabilized by native-like interactions

between a2 and a3 helices. This first step appears to be highly

cooperative (e.g., see Figure 6A), although indications are that

both induced folding and conformational selection might contrib-

ute [50]. Interestingly, the transition between the intermediate and

bound states appears largely conformational selection-like where

NCBD and ACTR folding precedes Aa1 and Ca1 binding.

Formation of the partially folded core appears to facilitate the rest

of NCBD to fold into native-like conformations, allowing Ca1 and

Aa1 to rapidly form native intermolecular interactions en route to

the fully folded bound state. Taken together, even though the

synergistic folding of NCBD and ACTR follows an induced

folding-like baseline mechanism (where binding precedes folding

on the overall level), detailed analysis reveals multiple stages of

induced folding and conformational selection. Such a mechanism

closely resembles an ‘‘extended conformational selection’’ recently

proposed by Csermely et al. [107,108] and is remarkably

consistent with our recent topology-based modeling of the

NCBD/ACTR complex [50].

Table 1. Unfolding and unbinding kinetic constants at 475 K.

t (ns) A B R2

Qinter 1.61 0.23 0.17 0.94

Ca1 0.26 0.37 0.00 0.97

Ca2 1.52 0.25 0.034 0.84

Ca3 2.20 0.24 0.23 0.94

Aa1 0.80 0.34 0.037 0.94

Aa2 1.39 0.26 0.26 0.86

Aa3 2.93 0.32 0.30 0.86

QNCBD 0.94 0.27 0.055 0.90

aNCBD 1.76 0.31 0.15 0.96

aACTR 1.38 0.20 0.13 0.89

All curves were fitted by single exponentials A exp (2t/t)+B. R is the correlation
coefficient of fitting. See the captions of Figures 5 and 7 for the definitions of
various contact fractions.
doi:10.1371/journal.pcbi.1002353.t001

Figure 5. Evolutions of various contact fractions of the NCBD/
ACTR complex at 475 K. All contact factions and helicities were
computed by averaging results from 50 independent unfolding
simulations. Qinter and QNCBD denote the native fractions of intermo-
lecular and NCBD tertiary intramolecular contacts, and aACTR and aNCBD

denote the overall helicities of ACTR and NCBD. Significant fluctuation
remains in the raw averaged contact fraction traces (grey traces), and
thus 50-ps running averages (dotted traces) are plotted for clarity. The
solid traces correspond to the best single exponential fits (see Table 1
for the fitted kinetic constants). Note that both Qinter and QNCBD quickly
decrease from above 0.8 to ,0.4 during the first 10–20 ps. The initial
decay is out of the plotting range and not shown for clarity.
doi:10.1371/journal.pcbi.1002353.g005
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Native and non-native salt-bridges in encounter
complexes and intermediates

One of the most notable features of the NCBD/ACTR complex

is a buried salt-bridge between NCBD R2105 and ACTR D1068

[91] (see Figure 1A), which is also conserved in the interaction of

NCBD with p53 TAD [92]. Interestingly, this buried salt-bridge is

part of a local network of salt-bridges that could form between

multiple complementary charges, including R2105 and K2108 of

NCBD and D1060, E1065, and D1068 of ACTR (see Figure 1A).

This network of native and non-native salt-bridges appears to play

a significant role in stabilizing the putative intermediate state,

either thermodynamically or kinetically. Although most individual

salt-bridges frequently break and reform during individual

unfolding simulations (see Figure S8), on average they largely

persist throughout the 10 ns unfolding simulations at 475 K and

hinder the transition from the partially bound intermediates to

fully disassociated ones (see Figure 8). Out of the 50 unfolding

simulations at 475 K, the complexes fully dissociate only by the

end of 10 ns simulations in six cases. The native salt-bridges,

between NCBD R2105 and ACTR D1068 and D1060, are the

most protected. As shown in Figure 8, they are the most preserved

and remain formed over 80% of the time throughout the

simulations (blue and black traces in Figure 8A). NCBD K2108

is adjacent to R2015 and close enough to interact with ACTR

D1068 and D1060, but these salt-bridges are more solvent-

exposed and thus slightly less preserved during high-temperature

simulations. The side chain of ACTR E1065 is positioned away

from NCBD in the native structure. Partial unfolding of Aa2

allows E1065 to rotate and participate in the salt-bridge network

with 10–30% probability by the end of the 10 ns simulation at

475 K (purple and red traces in Figure 8A).

The conformational heterogeneity of the intermediate state does

not permit reliable free energy calculations to quantify the

contribution of salt-bridge interactions to stability. Nonetheless,

previous mutagenesis studies have suggested that the buried salt-

bridge between NCBD R2105 and ACTR D1068 contributes

minimally to binding affinity [95]. The salt-bridge network likely

could not significantly stabilize the intermediate state thermody-

namically, either, which raises a concern that the observed

persistence of the local salt-bridge network is artificial, such as due

Figure 6. Free energy surfaces of (un)binding and (un)folding of the wild-type and mutant NCBD/ACTR complex. A. Computed from
the first 5 ns of 50 independent simulations of the wild-type NCBD/ACTR complex (WT) at 475 K. B. Computed from the first 5 ns of 50 independent
simulations of the double-Leu mutant complex (NCBD:R2105L/ACTR:D1068L; DM) at 450 K. Contours are drawn at every kT.
doi:10.1371/journal.pcbi.1002353.g006

Figure 7. Evolutions of the fractions of native intermolecular interactions of individual helices of the NCBD/ACTR complex. The grey
traces were calculated from averaging 50 unfolding simulations at 475 K and the colored traces are 50-ps running averages.
doi:10.1371/journal.pcbi.1002353.g007
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to over-stabilization of charge-charge interactions in the GBSW/

MS2 implicit solvent. To address this concern, we first examine

the potential of mean forces (PMFs) between Arg and Asp side

chain analogs in TIP3P and GBSW/MS2. The results, summa-

rized in Figure 8, show that GBSW/MS2 actually slightly under-

stabilizes the Arg-Asp interaction compared with TIP3P, either in

a constrained head-to-head configuration (which was used in the

force field optimization [72]) or when fully unconstrained. In

particular, configurationally unconstrained Arg-Asp interaction is

unstable in GBSW/MS2 (Figure 9B). Therefore, the observed

stabilization effects of salt-bridges on the intermediates are likely of

a kinetic nature. Such kinetic stabilization arises from substantial

desolvation barriers in disassociation of salt-bridges, particularly in

partially folded protein environments where the side chain

configurations are restricted (e.g., see Figure 9A). With a

concentrated local network of salt-bridges, very large desovaltion

barriers can be expected for complete dissociation of NCBD and

ACTR, which explains why only a small fraction of the high-

Figure 8. Native and non-native salt-bridges in the NCBD/ACTR interaction. A. Evolutions of average probabilities of various salt-bridge
interactions during unfolding simulations at 475 K. Arg and Glu/Asp residues were considered in contact if the carbonyl carbon and Arg CZ distance
was no greater than 5 Å, and Lys and Glu/Asp residues were considered in contact if the side chain carbonyl carbon and amide nitrogen distance is
no greater than 4 Å. B. Two representative final conformations after 10 ns simulations at 475 K. NCBD and ACTR are colored orange and gray,
respectively. The side chains of key charged residues are also shown, including NCBD R2105 and K2108 and ACTR D1060, E1065, and D1068. The
snapshot on the top represents a case where all six possible salt-bridges are formed, and the one at the bottom represents a case where only the
native ones, between NCBD R2105 and ACTR D1068 and D1060, are formed.
doi:10.1371/journal.pcbi.1002353.g008

Figure 9. Potential of mean forces of the Arg-Asp interactions in implicit and explicit solvents. All profiles were calculated using umbrella
sampling and WHAM (see Methods). The center-of-mass (CM) separation is used as the order parameter in the unconstrained PMF.
doi:10.1371/journal.pcbi.1002353.g009
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temperature simulations (6 out of 50) successfully reached the fully

unbound state in 10 ns.

To further confirm that the observed salt-bridge network is not

an artifact of implicit solvent, a set of 10 unfolding simulations was

performed in TIP3P explicit solvent at 500 K. Most simulations

were terminated between 3 to 4 ns when the complex size

exceeded the periodic box dimensions. The lengths of these

simulations are insufficient to capture degrees of unfolding and

unbinding similar to implicit solvent simulations, and the number

of trials is insufficient to obtain smooth curves for kinetic fitting.

Nonetheless, visual inspection of simulation trajectories as well as

examination of the evolution of various contact fractions support

an unbinding and unfolding mechanism that is consistent with the

one derived from implicit solvent simulations (see Figure S9). The

same set of native and non-native interactions, particularly the

buried one between NCBD R2105 and ACTR D1068 (blue trace

in Figure S9B), persist and appear to stabilize the partially

unbound and unfolded intermediates. Note that the helical

secondary structures are substantially over-stabilized in these

explicit solvent simulations (e.g., see the blue trace in Figure S9A).

This is a known artifact of the current version CHARMM22/

CMAP explicit solvent force field [78,109,110].

A double-Leu mutant complex follows a similar
unfolding and unbinding mechanism

A control simulation of the double-Leu mutant complex,

NCBD:R2105L/ACTR: D1068L, at 300 K suggests that the

native fold remains stable in the GBSW/MS2 implicit solvent

(data not shown). A set of 50 unfolding simulations was carried out

at 450 K to further investigate the role of the buried salt-bridge in

synergistic folding. The heterogeneity of the unfolding/unbinding

pathway observed in the wild-type complex (e.g., see Figure 5) is

even more pronounced without the buried salt-bridge. All

averaged time traces of contact fractions remain very noisy (e.g.,

see Figure S10). Most traces cannot be satisfactorily fitted to either

single or double exponential functions, preventing quantitative

analysis of unfolding and unbinding kinetics. Nonetheless, the

pseudo binding and folding free energy surface computed from the

first 5 ns of the unfolding trajectories appears to resemble that

from simulations of the wild-type complex (see Figure 6). In

particular, a similar intermediate state exists at Qinter,0.2 and

QNCBD,0.15; however, the small free energy barrier separating

the intermediate and fully unbound states in Figure 6A is largely

absent in Figure 6B. Removal of NCBD:R2105L largely disrupts

the local salt-bridge network. The intermediate state appears to

have much shorter resident times, and can quickly fluctuate to the

fully unbound state. Importantly, examination of the evolution of

intermolecular contact factions of individual NCBD and ACTR

helices, shown in Figure S10, supports that the mutant complex

largely follows a similar, albeit more heterogeneous, unbinding

and unfolding mechanism, with the N-terminal a1 helices

disassociated first (black traces in Figure S10B–C). These results

suggest the local salt-bridge network does not appear to

fundamentally modulate the recognition mechanism. Instead, it

mainly augments a productive synergistic folding mechanism

inherent in (the topology of) the NCBD/ACTR complex, by

transiently stabilizing a key on-pathway intermediate state to

facilitate complete folding en route to the specific complex.

Discussion

With one of the highest levels of residual structures, NCBD is an

intriguing model system for understanding the roles of residual

structure vs. conformational fluctuations in coupled binding and

folding of IDPs. We have combined equilibrium and non-

equilibrium simulations using physics-based, atomistic protein

force fields to characterize the conformational properties of

unbound NCBD and ACTR and to understand how these

properties facilitate efficient synergistic folding of these two IDPs.

The calculation recapitulates that free NCBD has folded-like

helical content, is strongly fluctuating, and samples a wide range of

tertiary configurations, which is consistent with the previous

notion that free NCBD is a molten globule [96]. Intriguingly, the

calculated disordered ensemble of NCBD contains significant

populations with helical packings that are highly similar to all

those previously observed experimentally in isolation and in

complex with various targets. Observations of such pre-folded

conformations, especially for IDPs with significant residual

structures like NCBD, could be considered strong evidence for

conformational selection-like mechanisms, where such preformed

structural elements provide initial binding sites. Direct examina-

tion of the unfolding and unbinding pathways in high-temperature

simulations, however, shows that both ACTR and NCBD tend to

unfold first before unbinding, suggesting an induced folding-like

baseline mechanism for their synergistic folding. This seemingly

surprising result appears to be consistent with the observation that,

although individual Ca1/Ca2 and Ca2/Ca3 helical pair samples

folded-like packing with substantial probability, these configura-

tions rarely occur simultaneously. Therefore, population of folded-

like tertiary conformations on the whole domain level is

insufficient to support conformational selection-like mechanisms

on the baseline level. Further analysis reveals an on-pathway

intermediate state that mainly involves the C-terminal helices of

ACTR and NCBD, which also has been predicted by a recent

coarse-grained simulation study using topology-based models [50].

Importantly, existence of such a major intermediate state also

appears to be consistent with a recent H/D-MS experiments

showing that peptide segments within the C-terminal regions of

NCBD and ACTR have much larger protection factors compared

with those mapped into other regions of the complex [106]. Our

kinetic analysis suggests that, once the initial mini folding core is

formed, the N-terminal helix of NCBD folds rapidly (Table 1),

allowing subsequent facile binding and folding the ACTR N-

terminal helix en route to the final specific complex. Therefore,

although the baseline mechanism is induced folding-like, confor-

mational selection actually occurs at local levels. Together with

our recent topology-based modeling study [50], the atomistic

simulations strongly support the prediction that synergistic folding

of NCBD and ACTR follows the ‘‘extended conformational

selection’’ mechanism [107]. Our topology-based modeling of the

NCBD/ACTR interaction [50] has revealed a separate, albeit less

prevalent, pathway where binding is initiated by the N-terminal a1

helices. These mechanistic insights on synergistic folding of NCBD

and ACTR, derived from the atomistic and coarse-grained

simulations, are summarized in Figure 10.

An intriguing interplay appears to exist among residual

structures, conformational fluctuations, and electrostatic interac-

tions to facilitate the rate-limiting step of forming the partially

folded intermediates. The NCBD Ca2/Ca3 helix-turn-helix motif

appear to be conformationally more restricted (Figure 2D),

whereas the C-terminus of Ca3 retains the least amount of helical

content and is considerably more heterogeneous (Figure S2B).

Both features were also observed in the previous NMR chemical

shift and relaxation analysis [96]. Such a balance of residual

structures and conformational fluctuations is likely important for

the NCBD C-terminal to act as a key initiation point for coupled

folding and binding to ACTR and other proteins. Another novel

insight provided by the current atomistic simulations is the role of
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a local network of native and non-native salt-bridges in transiently

stabilizing the intermediates. These salt-bridge interactions likely

do not contribute substantially to the thermodynamic stability of

either the intermediates or the final specific complex [95], but

substantial desolvation barriers involved in breaking up these

interactions in a conformationally restricted protein environment

(e.g., Figure 9A) can extend the resident time of the intermediates

to allow the rest of the complex to fold with higher efficiency. As

demonstrated using a dual-transition state kinetic model [59],

efficient folding upon encounter is necessary for achieving facile

binding at or near the diffusion-limited basal binding rate, a highly

desirable property for signaling and regulatory IDPs that need to

constantly evade protein degradation machinery in cell. IDPs are

known to be enriched with charges [6]. NCBD and ACTR are no

exceptions, with +6 and 28 net charges, respectively (including the

flanking loops that remain disordered in the complex [91]). These

enriched charges hinder (independent) folding and can protest

against aggregation. In addition, long-range electrostatic interac-

tions between these large numbers of complementary charges on

NCBD and ACTR could dramatically enhance the encounter

rate, similar to electrostatic steering, which is known to be

important in interactions of globular protein [111]. Furthermore,

the complementary pattern of charge, especially within the

predicted mini folding core involving the C-termini (Figure 1),

suggests that long-range electrostatic interactions could further

promote folding-competent encounter complexes before transient-

ly stabilizing the on-pathway intermediates via formation of short-

range salt-bridge network. These effects can enhance the efficiency

of folding upon encounter to promote facile recognition.

The current study also reveals important limitations in both the

protein force field accuracy and sampling capability, especially for

modeling IDPs of moderate sizes and with complex residual

structures. These limitations underscore the importance of

continual development of the protein force field, with increased

focus on balancing various competing interactions to allow an

accurate description of not only a few (native) folds but also the

whole conformational equilibrium [82,112]. Sampling methodol-

ogies clearly need to improve. The standard temperature REX-

MD has failed to achieve convergence for the disordered ensemble

of NCBD within 100 ns. Besides limited simulation timescale,

certain limitations of the implicit solvent protein force field also

contributed. In particular, current empirical protein models have

been shown to contain a systematic bias to over-stabilize protein-

protein interactions [113,114]. Furthermore, simple surface area-

Figure 10. Overall mechanism of synergistic folding of NCBD and ACTR. The schematic view is based on the current atomistic simulations
as well as the previous coarse-grained modeling [50]. It illustrates that unbound ACTR is largely unstructured and NCBD has significant helical
structures. The nonspecific encounter complexes could evolve toward the bound state through two parallel pathways. The salt-bridge network that
plays a key role in stabilizing Intermediate I along the prevalent pathway is also illustrated.
doi:10.1371/journal.pcbi.1002353.g010
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based estimation of the nonpolar solvation free energy employed

in most current implicit solvent models also tends to over-stabilize

nonspecific compact protein states [82]. The standard temperature

REX-MD clearly has limited ability to sample alternative deeply

trapped low energy states with high efficiency. These limitations

together have also prevented us from more directly investigating

the proposed mechanistic roles of electrostatic interactions using

atomistic simulations. Despite these outstanding limitations, the

key mechanistic features derived from atomistic physics-based

simulations, coarse-grained topology-based modeling, and various

biophysical measurements are remarkably consistent, which

suggests that an integration of multi-scale modeling and

experimentation can provide a viable approach for understanding

the functional and control of IDPs.

Methods

REX/GBSW simulations of free NCBD and ACTR
Only segments of the NCBD and ACTR domains that are

structured in the complex are included in the current simulations,

which include residues 2066–2112 for NCBD (in mouse CBP

numbering; SALQD LLRTL KSPSS PQQQQ QVLNI LKSNP

QLMAA FIKQR2105 TAKYV AN) and residues 1040–1086 for

the ACTR domain (in human ACTR numbering; E GQSDE

RALLD QLHTL LSNTD ATGLE EID1068RA LGIPE LVNQG

QALEP K). The peptide termini are neutralized using with either

acetyl (Ace) or amine (NH2) groups. A previously optimized

GBSW/MS2 model was used in all implicit solvent simulations

unless otherwise noted [72]. This model adopts an effective

approximation of the molecular surface for defining the solute-

solvent boundary, which is believed to be more physical compared

to the van der Waals-like surface used in the original GBSW

model [115,116]. Importantly, the GBSW/MS2 model has also

been carefully optimized to balance solvation and intramolecular

interactions and can reasonably capture the competition between

a and b secondary structures. Specifically for NCBD/ACTR, the

structure of the complex (PDB: 1kbh [91]) remains stable in the

GBSW/MS2 force field for over 100 ns, but substantially deviates

from the native conformation in the original GBSW protein force

field (see Figure S4).

REX was used to enhance the sampling of the accessible

conformational space of free NCBD and ACTR. For this, the

Multiscale Modeling Tools for Structural Biology (MMTSB)

toolset [117] (http://www.mmtsb.org) was used in conjunction

with CHARMM [118,119]. The basic idea of REX is to simulate

multiple non-interacting replicas at different temperatures simul-

taneously. Periodically, one attempts to exchange the simulation

temperatures between pairs of replicas based on a Metropolis

criterion derived from the detail balance principle. As such, not

only the resulting random walk in the temperature space facilitates

the system to cross the energy barriers and exploit the

conformational space more efficiently, but proper canonical

ensembles are also generated at all temperatures, allowing direct

calculation of thermodynamic properties for comparison with

experiments. We performed two independent REX simulations for

each peptide, initiated from the folded structure extracted from the

complex (control) and a fully extended conformation (folding),

respectively. Comparison of the calculated structure ensembles

from these independent control and folding runs with dramatically

different initial conditions allows rigorous assessment of the

convergence. In each REX simulation, 16 replicas were simulated

at temperatures exponentially distributed from 270 to 500 K.

SHAKE [120] was applied to fix the lengths of all hydrogen-

related bonds, allowing a 2.0 fs molecular dynamics (MD) time

step. Temperature exchanges between neighboring replicas were

attempted every 2 ps, and the total length of each REX simulation

was 100 ns (50,000 REX cycles). Similar REX/GBSW protocols

have proven effective in calculating the disordered structural

ensembles for other IDPs (albeit of smaller sizes than NCBD and

ACTR studied in the current work) [41,55]. All analysis was

performed based on the conformations sampled during the last

60 ns of the control simulation at 305 K (where most existing

experimental data were acquired), unless otherwise noted. The

orientations of helical segments (1044–1058, 1063–1071, 1072–

1080 in ACTR; 2067–2076, 2086–2091, 2095–2110 in NCBD)

were calculated using the Chothia-Levitt-Richardson algorithm

[121] as implemented in CHARMM. The K-means clustering

algorithm as implemented in the MMTSB toolset was used to

cluster the calculated disordered ensembles based on mutual Ca
RMSD distances. Various clustering radii ranging from 1.5 to

4.5 Å were tested before an optimal radius of 3.0 Å was used for

the final clustering results presented. All molecular visualizations

were generated using the VMD software [122].

Room temperature and high-temperature simulations of
the wild-type and mutant NCBD/ACTR complexes

The same peptide segments defined above were included the

simulations of the complex. The model 1 from the NMR ensemble

(PDB: 1kbh) was first equilibrated in the GBSW/MS2 implicit

solvent using energy minimization and short MD with weak

harmonic positional restraints imposed on all backbone heavy

atoms. Subsequently, a 160 ns unrestrained simulation was

performed at 300 K to examine the structural stability and

dynamics of the complex near its native basin. The native

structure of the NCBD:R2105L/ACTR:D1068L double-Leu

mutant complex was prepared by computational mutagenesis

and then equilibrated using a similar protocol as described above.

To identify the optimal temperatures for unbinding/unfolding

simulations, a series of pilot simulations was performed at

temperatures ranging from 350 K to 500 K (e.g., see Figure S5).

At the optimal temperature, the complex should unfold/unbind

within tractable time scales (e.g., 10–20 ns) while retaining

important details of the unfolding/unbinding pathways. Once

such optimal temperatures were chosen (450–475 K for the wild-

type and 450 K for the mutant), 50 independent high-temperature

simulations of 10–20 ns in length were initiated from the

equilibrated native structures with different initial velocities. The

results presented in this work are averages computed from 50

unfolding simulations unless otherwise noted. For native fraction

analysis, a list of native tertiary contacts (shown in Figure S6) was

first identified using the equilibrated native structure based on side

chain minimal heavy atom distances with a 4.2 Å cutoff. The

native contacts were then divided into inter-molecular and intra-

molecular categories. In analysis of the high-temperature simula-

tion trajectories, a contact was considered formed when the

minimal heavy atom distance between two side chains was no

greater than 4.5 Å. Helicity of various helical segments was

calculated based on the hydrogen bonding patterns using the

COOR SECS module of CHARMM.

Explicit solvent high-temperature simulations
Additional high-temperature unfolding and unbinding simula-

tions of the wild-type complex were performed in TIP3P water to

examine the unfolding/unbinding pathway and in particular the

putative role of the buried salt-bridge between NCBD:R2105 and

ACTR:D1068 in (transiently) stabilizing the intermediate state(s).

For this, the equilibrated NCBD/ACTR complex was placed in a

cubic water box with periodic boundary conditions imposed. The
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final solvated system contains 9176 TIP3P water molecules and

the box size is ,65 Å. Two potassium ions were added to

neutralize the total charge. The proteins were described by the

CHARMM22/CMAP protein force field [73–76]. The particle

mesh Ewald method was used for long-range electrostatic

interactions [123], and the van de Waals interactions were

smoothly switched off from 12 to 13 Å. Lengths of all hydrogen-

related bonds were kept constant with SHAKE [120], and the MD

time step was 2 fs. After 10 ps of NPT equilibration at 300 K, a set

of 10 independent NVT productions was carried out at 500 K up

to 10 ns until the dimensions of the proteins exceed those of the

periodic box. The dynamic time step was reduced to 1 fs in the

NVT production simulations for numerical stability.

Free energy calculations
An umbrella sampling protocol [77] was used to compute the

PMFs between the side chains of Asp and Arg, either constrained

in a head-to-head configuration [77] (see Figure 9) or allowed to

freely rotate. In the constrained setup, the side chains were allowed

to move only in fixed orientations along the reaction coordinate

(indicated by a dashed line in Figure 9), enforced using the MMFP

module in CHARMM. For explicit solvent simulations, solutes

were solvated by either ,710 TIP3P waters in a rectangular box

(for the constrained PMF) or by ,1040 TIP3P waters in a

truncated octahedral box (for the unconstrained PMF). Periodic

boundary conditions were imposed. Non-bonded and other setups

are identical to those described above for explicit solvent high-

temperature simulations. Harmonic restraint potentials were

placed every 0.5 Å along the reaction coordinate with a force

constant of 5.0 kcal/mol/Å2. For each umbrella-sampling win-

dow, the system was first equilibrated for 60 ps, followed by 2 ns

(constrained PMF) or 4 ns (unconstrained PMF) NPT production

at 300 K and 1 atm. The final PMFs were calculated using the

weighted histogram analysis method (WHAM) [124]. The

constrained PMF in GBSW/MS2 was computed by direct

translation of the side chains along the reaction coordinate, and

the unconstrained PMF in GBSW/MS2 was computed in the

same umbrella sampling protocol except that implicit solvent was

used instead of TIP3P waters. Convergence of the PMFs was

examined by comparing results from the first and second halves of

the data and was shown to be on the order of 0.2 kcal/mol.

Supporting Information

Figure S1 Convergence of the calculated residue helicity
of free NCBD. Residue helicities calculated using different

segments of the folding (A) and control (B) REX simulations are

shown. Only conformations sampled at 305 K were included in

the analysis.

(TIF)

Figure S2 Additional conformational properties of free
NCBD. A) Distributions of the radius of gyration, and B) Ca
RMSF profiles at 305 K, calculated from the last 60 ns of control

(red traces) and folding (black traces) simulations.

(TIF)

Figure S3 Orientations of NCBD Ca1 and Ca3 with
respect to Ca2. Conformations that belong to the six most

populated clusters of free NCBD sampled at 305 K are color-

coded. See the caption of Figure 3 in the main text for additional

information.

(TIF)

Figure S4 Summary of control simulations of the NCBD/
ACTR complex in GBSW and GBSW/MS2. A) Backbone

RMSD as a function of time. B) Number of helical residues as a

function of time. C) The Ca RMSF profiles computed from the last

50 ns of the 100 ns control simulations. Helical segments of ACTR

and NCBD are marked. D–E) The final snapshots overlaid with the

PDB structure (shown in gray cartoon). The results suggest that the

NCBD/ACTR complex is unstable in GBSW both at the secondary

and tertiary levels. In contrast, the complex remains reasonably

stable in GBSW/MS2, with significant fluctuations mainly observed

in the C-terminal segment of ACTR, and to a lesser extent in the

NCBD C-terminus (see panel C).

(TIF)

Figure S5 Trial unfolding simulations in GBSW/MS2 at
different temperatures. The numbers of helical residues of

NCBD and ACTR are monitored to detect the unbinding/

unfolding of the complex.

(TIF)

Figure S6 Tertiary contacts of the NCBD/ACTR com-
plex. The contacts were derived based on the first model of

PDB:1kbh. Residues are considered in contact if the minimal

heavy atom distance is no more than 4.2 Å. The black bars

indicate the ranges of all helical segments in NCBD and ACTR.

Although there are a large number of intermolecular contacts (62;

black dots), there are only 11 (blue dots) and 19 (red dots) tertiary

intramolecular contacts for ACTR and NCBD, respectively.

(TIF)

Figure S7 Evolution of various contact fractions in
GBSW/MS2 simulations at 450 and 475 K. The grey traces

were calculated from averaging 50 independent simulations at

corresponding temperatures, and the colored traces are 50-ps

running averages.

(TIF)

Figure S8 Distances between key charged residues
during three representative unfolding simulations at
475 K. For Arg and Glu/Asp pairs, the distance between the side

chain carbonyl carbon and Arg CZ distance is shown. For Lys and

Glu/Asp pairs, the distance between the side chain carbonyl

carbon and amide nitrogen is shown.

(TIF)

Figure S9 Evolution of various contact fractions during
unfolding simulations in TIP3P at 500 K. All curves were

calculated from averaging 10 independent simulations of 3 to 4 ns

in length (only the first 3 ns are shown). The grey traces were

calculated from averaging 50 independent simulations, and the

colored traces are 50-ps running averages. The results are

consistent with key observations derived from GBSW/MS2

simulations. Specifically, 1) the baseline mechanism for coupled

binding and folding of NCBD is an induced folding-like one,

where binding precedes folding (Panel A); Specifically, fitting of

Qinter and QNCBD traces to single exponential functions yields half

times, t= 0.35 ns and 0.25 ns, respectively. 2) The C-terminal

segments initiate binding (thus the first helices unbind the first; see

black traces in Panels C–D); 3) the local native and non-native salt-

bridges persist in the partially unfolded and partially unbound

intermediate state (Panel B). Note that the helical secondary

structures appear to be over-stabilized (e.g., see the blue trace in

Panel A), which is a known artifact of the current version

CHARMM22/CMAP explicit solvent force field.

(TIF)

Figure S10 Evolution of various contact fractions during
unfolding simulations of the mutant NCBD/ACTR com-
plex at 450 K. The grey traces were calculated from averaging 50
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independent simulations, and the colored traces are 50-ps running

averages. The simulations were 15 ns in length. The complex

unfolds rapidly and thus only results from the first 5 ns are shown.

(TIF)
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