
CROSS-DOMAIN SENTIMENT CLASSIFICATION USING GRAMS DERIVED FROM
SYNTAX TREES AND AN ADAPTED NAIVE BAYES APPROACH

by

SRILAXMI CHEETI

B.Tech, Jawaharlal Nehru Technology University (JNTU), India, 2008

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Approved by:

Major Professor
Doina Caragea

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/5177355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

There is an increasing amount of user-generated information in online documents, includ-

ing user opinions on various topics and products such as movies, DVDs, kitchen appliances,

etc. To make use of such opinions, it is useful to identify the polarity of the opinion, in other

words, to perform sentiment classification. The goal of sentiment classification is to classify

a given text/document as either positive, negative or neutral based on the words present

in the document. Supervised learning approaches have been successfully used for sentiment

classification in domains that are rich in labeled data. Some of these approaches make use

of features such as unigrams, bigrams, sentiment words, adjective words, syntax trees (or

variations of trees obtained using pruning strategies), etc. However, for some domains the

amount of labeled data can be relatively small and we cannot train an accurate classifier

using the supervised learning approach. Therefore, it is useful to study domain adaptation

techniques that can transfer knowledge from a source domain that has labeled data to a

target domain that has little or no labeled data, but a large amount of unlabeled data. We

address this problem in the context of product reviews, specifically reviews of movies, DVDs

and kitchen appliances. Our approach uses an Adapted Näıve Bayes classifier (ANB) on top

of the Expectation Maximization (EM) algorithm to predict the sentiment of a sentence.

We use grams derived from complete syntax trees or from syntax subtrees as features, when

training the ANB classifier. More precisely, we extract grams from syntax trees correspond-

ing to sentences in either the source or target domains. To be able to transfer knowledge from

source to target, we identify generalized features (grams) using the frequently co-occurring

entropy (FCE) method, and represent the source instances using these generalized features.

The target instances are represented with all grams occurring in the target, or with a reduced

grams set obtained by removing infrequent grams. We experiment with different types of

grams in a supervised framework in order to identify the most predictive types of gram,

and further use those grams in the domain adaptation framework. Experimental results on

several cross-domains task show that domain adaptation approaches that combine source

and target data (small amount of labeled and some unlabeled data) can help learn classifiers

for the target that are better than those learned from the labeled target data alone.

Table of Contents

Table of Contents iv

List of Figures vi

List of Tables vii

Acknowledgements viii

1 Introduction 1
1.1 Motivation for Sentiment Classification . 1
1.2 Problem Addressed and Challenges . 2
1.3 High Level Overview of Proposed Approaches 4

2 Related Work 7

3 Problem Definition and Approaches 13
3.1 Basic Terminology . 13
3.2 Problem Definition . 14
3.3 Structured Syntax Trees . 15

3.3.1 MCT and PT Using Sentiment based Pruning Strategies 15
3.3.2 MCT and PT Using Adjective based Pruning Strategy 22

3.4 Gram Features based on Syntax Trees . 22
3.4.1 Grams based on Complete Syntax Trees 29
3.4.2 Grams based on Pruned Syntax Subtrees 31

3.5 Feature Construction for Domain Adaptation 32
3.5.1 Domain Specific Features . 33
3.5.2 Domain Independent Features . 33

3.6 Approaches Used . 34
3.6.1 Supervised Learning Algorithms . 34
3.6.2 Domain Adaptation Algorithms . 38

4 Experimental Setup 41
4.1 Research Questions . 41
4.2 Experiments . 43

4.2.1 Domain Specific Classifiers . 43
4.2.2 Domain Adaptation Classifiers . 45

4.3 Data Description . 49

iv

5 Results 53
5.1 Experiment 1 Results . 53
5.2 Experiment 2 Results . 54
5.3 Experiment 3 Results . 55

5.3.1 Unigrams with Leaf Nodes as Grams 57
5.4 Experiment 4 Results . 61

5.4.1 Results Using Unigrams with Leaf Nodes as Grams 61
5.4.2 Results Using All Grams with Leaf Nodes as Grams 61
5.4.3 Results Using Unigrams without Leaf Nodes as Grams 63
5.4.4 Results Using All Unigrams as Grams 63

5.5 Experiment 5 Results . 63
5.5.1 Results Using All Grams with Leaf Nodes from PT Trees as Grams . 63
5.5.2 Results Using Unigrams with Leaf Nodes from PT Trees as Grams . . 67

6 Discussion and Conclusions 70

7 Future Work 73

Bibliography 76

v

List of Figures

3.1 Syntax tree generated using Stanford parser 16
3.2 MCT for sentiment word “treasure” . 18
3.3 PT for sentiment word “treasure” . 18
3.4 MCT for sentiment word “brisk” . 19
3.5 PT for sentiment word “brisk” . 19
3.6 MCT or combined tree using sentiment based pruning strategy 20
3.7 PT or combined tree using sentiment based pruning strategy 21
3.8 E1 and E2 nodes for adjective word “brisk” 23
3.9 E1 and E2 nodes for adjective word “familiar” 24
3.10 MCT for sentiment word “brisk” using adjective based pruning strategy . . . 25
3.11 PT for sentiment word “brisk” using adjective based pruning strategy 25
3.12 MCT for sentiment word “familiar” using adjective based pruning strategy. . 26
3.13 PT for sentiment word “familiar” using adjective based pruning strategy. . . 26
3.14 Combined MCT using adjective based pruning strategy 27
3.15 Combined PT using adjective based pruning strategy 28
3.16 Syntax tree generated using the Stanford parser 29
3.17 PT subtree generated using sentiment based pruning strategy 29
3.18 PT subtree generated using adjective based pruning strategy 30
3.19 All grams with leaf nodes . 30
3.20 Unigrams with leaf nodes . 31
3.21 Unigrams without leaf nodes . 31
3.22 All unigrams . 32

vi

List of Tables

4.1 Customer review dataset . 50
4.2 Number of all grams with leaf nodes as grams in M , D, D′ and K, respectively 51
4.3 Number of unigrams with leaf nodes as grams in M and D′ 52
4.4 Number of unigrams with leaf nodes as grams in M , D and K 52
4.5 Number of unigrams without leaf nodes as grams in M , D, D′, K 52
4.6 Number of all unigrams as grams in M , D, D′, K 52
4.7 Number of all grams with leaf nodes as PT grams in M , D, K 52
4.8 Number of unigrams with leaf nodes as PT grams in M , D, K 52

5.1 Results for Experiment 1: domain specific classifiers using SVM and trees . . 53
5.2 Results for Experiment 2: domain specific classifiers using SVM and grams

from FT . 54
5.3 Results for Experiment 2: domain specific classifiers using SVM and grams

from PT-SPS . 55
5.4 Results for Experiment 2: domain specific classifiers using NBM and grams

from FT . 55
5.5 Results for Experiment 2: domain specific classifiers using NBM and grams

from PT-SPS . 55
5.6 Results using unigrams with leaf nodes as grams for Source D′ and Target M 58
5.7 Results using unigrams with leaf nodes as grams for Source M and Target D′ 59
5.8 Results using unigrams with leaf nodes as grams for Source M and Target D 60
5.9 Results using unigrams with leaf nodes as grams 62
5.10 Results using all grams with leaf nodes as grams 64
5.11 Results using unigrams without leaf nodes as grams 65
5.12 Results using all unigrams as grams . 66
5.13 Results using all grams with leaf nodes as grams from PT-SPS 68
5.14 Results using unigrams with leaf nodes as grams from PT-SPS 69

vii

Acknowledgments

While this thesis is my own work, it benefited from the insights and direction of several

people. I would like to thank them all for their help and support.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Doina Caragea, for her excellent guidance, caring, patience, and for providing me with

an excellent atmosphere for doing research. Without her guidance and persistent help this

thesis would not have been possible. I would like to thank her for all the valuable discussions

and inputs she provided during the last two years. Her patience and support helped me

overcome many crisis situations and finish this thesis. Throughout my studies at KSU,

she provided encouragement, sound advice, good teaching, good company, and lots of great

ideas. I would have been lost without her.

I would like to thank Dr. Amtoft Torben for being a member of my M.S. committee,

and for educating me about some of the important concepts in algorithms and about ways

to tackle some of the hardest problems.

I would also like to thank Dr. Mitchell L. Neilsen, for being a member of my M.S.

committee. His classes are a great source of information and motivate students to think of

simple solutions for some of the most challenging problems in real time operating systems.

I would like to thank my family members, Mr. Cheeti Hanmantha Rao, Mrs. Cheeti

Rama Devi and my brother Mr. Cheeti Srinivas for their love and support at every stage

of my life. It is because of their support and encouragement that I am able to complete

my Masters. I would also like thank my friends and colleagues especially Sandeep Solanki,

Karthik Tangirala, Ana Stanescu, Nic Herndon for helping me in the early days of my M.S.

studies and for valuable discussions.

Finally, I would like to thank my husband, Kalyana Koka. He was always there cheering

me up and stood by me through the good and bad times.

viii

Chapter 1

Introduction

In this chapter, we will first provide some motivation for the sentiment analysis problem in

Section 1.1. We state the problem addressed and emphasize challenges of this problem in

Section 1.2. Finally, we give an outline of the proposed approaches in Section 1.3.

1.1 Motivation for Sentiment Classification

The amount of information available on the web is increasing tremendously every day. Some

of this information is provided by internet users in the form of reviews, blogs, webpages, etc.,

and can be useful for other users or for companies targeting internet users. For example,

product reviews contain information that can be helpful in the decision making process

of new customers looking for various products. Assuming that several companies such as

Sony, Canon, Nikon make the same product (e.g., camera), a customer might be interested in

buying the best camera available, within a particular price range, regardless of the producing

company. In order to pick the best camera, that customer needs to know what are the pros

and cons of the cameras made by different companies. In other words, the customer needs

to classify the online information (i.e., the reviews) as positive, negative or neutral.

Similarly, customer reviews can be useful for the companies manufacturing products, as

they can learn about customer’s likes and dislikes and adjust the products accordingly, or

use that information to train recommender systems to recommend products to users. For

example, companies like Amazon, Motorola, ATT, Verizon can identify reviews and classify

1

them as positive, negative or neutral. This information will help companies to come up

with ideas for new features that the customers are looking for, which, in turn, can result

in an increase in the revenue for the company. Furthermore, companies can also use the

information that is available online to provide recommendations related to products, movies,

restaurants, maps, good community schools, etc. based on the likes and dislikes of a person.

Manually classifying customer reviews can be an intensive, time consuming process, as

it requires a lot of browsing and reading of reviews. Therefore, automated tools to do this

classification are greatly needed, as they could save both customers and companies a lot of

time and quickly provide the gist of the reviews about a product. Automated classification

of online data as positive, negative or neutral is known as sentiment classification, an area

at the intersection of Machine Learning (ML) and Natural Language Processing (NLP). In

this context, a sentiment classification problem is formulated as a machine learning problem,

where labeled training data is provided to a learning algorithm and a classifier is learned.

The resulting classifier can then predict the sentiment of new unlabeled data. Both training

and test instances are represented using automatically generated features, including NLP

features.

1.2 Problem Addressed and Challenges

Sentiment classification, in general, is a broad problem, which can be addressed at various

levels. For example, we can talk about sentiment classification at word level, sentence level

or document level. Much of the previous sentiment classification work has been done at the

document level using keyword based approaches, and there has not been a lot of work done

at sentence level. Sentence level classification is more difficult when compared to document

level classification because classification of a sentence as positive, negative or neutral has

to be performed in the absence of context. This problem can be alleviated, if two or more

consecutive sentences are combined together, or if the whole document is used. Another

challenge in sentiment classification is that a sentence (and for that matter a document) can

2

have more than one sentiment.

In this work, we focus on sentiment classification at sentence level, but consider sentences

that have only one sentiment. We aim to use machine learning approaches to address this

problem. Generally, with enough training data this approach is feasible and can result in

accurate domain specific classifiers. For example, we can use movie review data to learn a

movie sentiment classifier and use it to predict the sentiment of new movie reviews. However,

in real world applications, the amount of labeled data for a particular domain can be limited

and it is interesting to consider cross-domain classifiers, in other words, classifiers that can

be used on a target domain, but are learned from both target and another source domain.

For example, we can use books as the source domain, while the target domain can be either

music, DVDs, movies, electronics, clothing, toys, etc.

Generally, a classifier built on one domain (i.e., source domain) does not perform well

when used to classify the sentiment in another domain (i.e., target domain). One reason for

this is that there might be some specific words that express the overall polarity of a given

sentence in a given domain, and the same words can have different meaning or polarity

in another domain. Let us consider kitchen appliances and cameras as our domains, then

words such as good, excellent express positive sentiment in both kitchen appliance domain,

as well as camera domain. Words such as bad, worse express negative sentiment across both

kitchen appliance and camera domains. However, words such as tasteful, tasteless express

sentiments in kitchen appliance domain and may or may not express any sentiment in the

camera domain. Words such as lens, sleek, megapixel express sentiment in camera domain

and may or may not express any sentiment in the kitchen appliance domain. In cross-domain

classification problems, the general goal is to leverage labeled data in the source domain and,

possibly, some labeled data in the target domain, together with unlabeled data from the

target. Under this scenario, we aim to learn cross-domain classifiers (at sentence level) for

predicting the sentiment of target instances by using data available in both source and target

domains.

3

The cross-domain sentiment classification problem presents additional challenges com-

pared to the corresponding problem in a single domain. Using both source and target data

to construct the classifier requires a lot of insight and effort, specifically with respect to how

to choose source features that are predictive for target, and also how to combine data or clas-

sifiers from source and target. To address the first problem, most previous approaches [Pan

et al., 2010], [Blitzer et al., 2007], [Tan et al., 2009] identify domain independent features

(a.k.a., generalized or pivot features) to represent the source, and domain specific features

to represent the target. Domain independent features serve as a bridge between source and

target, thus reducing the gap between them. The performance of the final classifier will

heavily depend on the domain independent features, therefore, care must be used when

selecting these features.

In our work, we used NLP syntax structured trees to generate features. Domain inde-

pendent features are selected based on the frequently co-occurring entropy (FCE) method

proposed by Tan et al. [2009]. Features with high entropy values as assumed to be gener-

alized features and used to represent the source domain. Furthermore, to combine source

and target data, we use an EM based näıve Bayes classifier proposed also by Tan et al.

[2009]. In this approach, as the number of iterations increases, we reduce the weight for

the source domain instances while increasing the weight for the target domain instances, so

that the classifier can be used for predicting the target domain instances. Originally, the

approach in [Tan et al., 2009] assumes labeled source data and unlabeled target data. In

our implementation, we can also use labeled target domain data.

1.3 High Level Overview of Proposed Approaches

Our goal is to use features extracted from subtrees of a complete syntax tree or a structured

syntax tree to learn machine learning classifiers for predicting the sentiment of customer

product reviews in a cross-domain scenario. To learn classifiers, we use an adapted näıve

Bayes algorithm (ANB) built on top of the expectation maximization (EM) algorithm.

4

In the initial phase of the work, we experimented with complete syntax trees, subtrees

of complete syntax trees or path trees as features, in a domain specific scenario, to learn

about the predictiveness of such features with respect to the sentiment classification prob-

lem. Specifically, we ran several experiments with different kinds of trees as features using

supervised machine learning algorithms such as SVM and näıve Bayes. Given the promising

results of the syntax trees in a supervised learning framework, we decided to use them also

in the domain adaptation framework (i.e., with ANB classifier). As mentioned in the pre-

vious section, we used frequently co-occurring entropy method (FCE, as described in [Tan

et al., 2009]) to identify generalized features. This method calculates entropy values for

features extracted from syntax trees (by comparing their occurrence frequency in target

versus source), and ranks them in decreasing order of the entropy values. The top 50 or 100

FCE features are considered to be domain independent features, and are used to represent

instances in the source domain.

We used ANB under the following two scenarios:

1. Case 1: Assume that the source domain contains labeled data and the

target domain has only unlabeled data.

Here, we first train a classifier using the source domain labeled data and predict

the corresponding labels for the target domain unlabeled data. From the second

iteration onwards, we train a combined classifier based on the labels predicted in the

previous iteration for target domain unlabeled data and source domain labeled data.

We use the trained classifier to predict labels for the target domain unlabeled instances.

This process is repeated iteratively until we meet a convergence point where we have

the same labels for the target domain unlabeled instances for the two consecutive

iterations. During this iterative process, we use only the generalized features for the

source domain, whereas for the target domain we use the whole vocabulary as features.

We perform a 3 fold cross validation on target domain data. More precisely, from the

second iteration onwards, we consider 2 folds of the target domain (unlabeled data)

5

along with source domain (labeled data) as our training data and use the remaining

one fold of the target domain unlabeled data as test data. During the iterative process,

we reduce the weight for the source domain instances (thus, decreasing the influence

of the source on the final classifier), while increasing the weight for the new target

domain instances, in an effort to help predict the target domain instances accurately.

2. Case 2: Assume that the source domain contains labeled data and the

target domain has small amount of labeled data and unlabeled data.

This second case is similar to the first case, except that we used both source domain

labeled data along with target domain labeled data instead of using only source domain

labeled data as described in Case 1. In Case 2, we perform 3 fold cross validation

on target domain as well. Here, from the second iteration onwards, we consider 2

folds of the target domain (labeled and unlabeled data) along with source domain

(labeled data) as our training data and use the remaining one fold of the target domain

unlabeled data as test data.

The rest of the thesis is organized as follows: Chapter 2 describes the previous work on

cross-domain sentiment classification. In Chapter 3, we formulate the problem of sentiment

classification and then explain the various approaches that we used in our work, along with

some detailed examples. Chapter 4 explains the dataset, experimental setup discussing the

various experiments that we have performed and also the research questions that we have

addressed. In Chapter 5, we discuss the results of the experiments and explain the usefulness

of our proposed approaches for the cross-domain sentiment classification problem. Finally,

in Chapter 6 we conclude our work and present directions for future work in Chapter 7.

6

Chapter 2

Related Work

This chapter gives detailed information about the previous work on sentiment classification

across domains. The information available on the web is growing tremendously day by day.

Sentiment classification across domains is very challenging because generally, a classifier

trained on one domain cannot predict the instances from a different domain appropriately.

This is because domain specific features have different meanings in different domains. The

biggest challenge involved in performing sentiment classification experiments depends on

selecting features and Machine Learning algorithms to use for different datasets. In this

chapter, we will give an overview of various types of features, Machine Learning algorithms,

the datasets that were used by various authors with their corresponding results and also the

type of classification (either sentence level or document level) that they addressed.

Li and Zong [2008] proposed two approaches for cross-domain sentiment classification.

One is the feature level fusion and the other is the classifier level fusion approach. In

the feature level fusion approach first, the authors constructed feature sets (f1,f2,f3.....)

individually in different domains using the training data. Next, Li and Zong [2008] combined

all the individual feature sets from different domains into a single feature set (F) and used it

to train a classifier. Finally, the authors used this classifier in order to predict the instances

from different domains. The disadvantage using this method is that they cannot assign

different weights when trying to classify the instances from different domains. For example,

if we classify instances from the DVDs domain, then we cannot easily assign higher weights

7

to the movie domain and lower weights to the kitchen appliances domain.

In classifier level fusion method, first the authors divided the experimental data into

training data (70%), development data (20%) and testing (10%) data. Next, a base clas-

sifier is learned individually in different domains using the training data. This approach

combines the base classifiers and learns a meta-classifier by applying different methods such

as MetaLearning method. During this approach a meta-classifier is trained for each domain,

using the development data combined with the output attributes of the base classifiers as

input. For example, if we want to learn a meta-classifier for the ith domain, then we use the

development data from the ith domain along with all the output features from all the base

classifiers in different domains. Next, to test the data from a particular domain, we use the

meta-classifier available from the same domain. MetaLearning will automatically learn the

unbalanced information (i.e, assigning higher weights to closely related domains and lower

weights to more distinct domains) overcoming the disadvantage from the feature level fusion

method. In the experiments performed in this work [Li and Zong, 2008], the datasets cor-

respond to four domains: books, DVDs, electronics, and kitchen appliances. The features

used are 1gram (unigram), 2gram (bi-gram), 1+2gram (unigrams and bi-grams with high bi-

normal separation scores (BNS) [Forman, 2003]) and 1gram + 2gram (unigrams+bigrams).

BNS is a new metric defined as F−1(tpr)− F−1(fpr), where F−1 is the inverse cumulative

probability distribution of the standard Normal distribution, tpr is the true positive rate

and fpr is the false positive rate. The results show that the classifier level fusion performed

better than the feature level fusion because it was able to capture the unbalanced informa-

tion between different domains. Li and Zong [2008] have also suggested that 1gram + 2gram

features are better than other types of features that they have used in their experiments.

Harb et al. [2008] introduced the AMOD (Automatic Mining of Opinion Dictionaries)

approach consisting of the following three phases. The first phase, known as Corpora Acqui-

sition Learning Phase, solves a major challenge by automatically extracting the data from

the web using a predefined set of seed words (positive and negative terms). The second

8

phase, also known as Adjective Extraction Phase, extracts a list of adjective words with

positive and negative opinions. The third phase, known as Classification Phase is used to

classify the given documents using the adjective list of words extracted in the second phase.

The authors used unigrams as AMOD features and then used the list of adjective words

to classify the given documents. The training dataset was retrieved from (http://www.

google.com/blogsearch) using a list of seed words for the cinema domain and the test set

used was the movie review data from the Natural Language Processing (NLP) Group, Cor-

nell University (http://www.cs.cornell.edu/people/pabo/movie-reviewdata/). Harb

et al. [2008] have also experimented with data from the car domain. The result shows that

AMOD approach was able to classify the given documents by using a list of adjective words

in a single domain.

Blitzer et al. [2007] introduced another domain adaptation strategy, which is an ex-

tension of an approach previously proposed by the same authors, called structural corre-

spondence learning (SCL) [Blitzer et al., 2006]. This algorithm reduces the relative error

due to adaptation between domains and also identifies a measure of domain similarity when

compared to the original SCL. Here, the authors first choose a set of features that occur

frequently in both source and target domains, also known as pivot features. Next, linear

predictors are used to find the correlations between the pivot elements and all other fea-

tures in the unlabeled data from both source and target domains. The performance of this

algorithm depends on the selection of the pivot features. The pivot features should be good

predictors of source domain labeled data. It is very important which features to consider

as pivot features because they should be helpful to predict the target unlabeled instances

based on the classifier learned from both the source and target domains. The pivot features

are the target features that have the highest mutual information (MI) to the source domain

label. The dataset used is an Amazon product reviews dataset and consists of four differ-

ent products: books, DVDs, electronics and kitchen appliances. The authors assume that

source domain dataset contains labeled and unlabeled data, whereas target domain dataset

9

http://www.google.com/blogsearch
http://www.google.com/blogsearch
http://www.cs.cornell.edu/people/pabo/movie-reviewdata/

contains only unlabeled data. They observe that choosing the pivot features using MI has

reduced the relative error by 36%. Furthermore, when introducing 50 labeled instances from

the target domain, the observed average reduction in error is 46%. Overall, the algorithm

is found to be very useful for cross-domain sentiment classification especially due to the use

of the MI to select the pivot features.

Pan et al. [2010] proposed Spectral Feature Alignment (SFA) algorithm for cross-domain

sentiment classification. The process of selecting the pivot features is same as described

by Blitzer et al. [2007]. However, the gap between the domains is reduced by constructing

a bipartite graph and by adapting the spectral clustering techniques. The experimental

dataset consists of Blitzer, Amazon, Yelp and City-search. Blitzer dataset [Blitzer et al.,

2007] contains reviews for four product domains: books, DVDs, electronics and kitchen ap-

pliances. The dataset collected from Amazon, Yelp and City-search consists of three product

domains: video games, electronics and software. In [Pan et al., 2010], sentiment classifi-

cation is performed at the document level. The features used are the words from different

domains. Pan et al. [2010], compared SFA with NoTransf (where a classifier is learned using

source domain instances as training data), SCL [Blitzer et al., 2006], LSA [Deerwester et al.,

1990] and FALSA (a classifier is trained based on the features learned by applying LSA on

the co-occurrence matrix of domain-independent and domain-specific features and used as

one of the baselines). They found that SFA [Pan et al., 2010] results are better than those

of the other algorithms.

Glorot [2011] introduced a Deep Learning approach to extract the high level features

from reviews in the unlabeled data when performing sentiment classification across domains.

The Deep Learning algorithm aims to find out the intermediate concepts between the source

and target domains. The intermediate concepts might include concepts like product quality,

product price, customer service, etc. Here, the authors follow a two step process to perform

sentiment classification across different domains. In the first step, they extract the high

level features using a Stacked De-noising Auto-encoder (SDA) with rectifier units. The

10

SDA is learned in a greedy layer-wise fashion using stochastic gradient descent. In the

second step, Glorot [2011] proposes to learn a classifier on the transformed labeled data

from the source domain. The features used are unigrams and bigrams. The dataset used is

an Amazon dataset with 26 domains. Glorot [2011] found that the Deep Learning approach

results are better than the SCL [Blitzer et al., 2006] and SFA [Pan et al., 2010] results.

Zhang et al. [2010] proposed to use different kinds of syntax subtrees as features, where

the subtrees are obtained from complete syntax trees by using both adjective and sentiment

word pruning strategies. The syntax trees are derived using the Stanford parser. These

features were used for single domain sentiment classification and were found to be very

useful for the classification tasks considered.

Tan et al. [2009] proposed an adapted näıve Bayes (ANB) algorithm to perform cross-

domain sentiment classification. The first step is to find generalized features in order to build

a bridge between the source and the target domains. In order to retrieve the generalized

features they used a frequently co-occurring entropy (FCE) method and picked the features

with the highest entropy values as the generalized features. Next, two classifiers are learned,

one from the source domain using only the generalized features from the source domain and

the other from the target domain using all the features from the target domain. Then, the

classifiers are used to predict the target domain unlabeled instances. The process of learning

the classifiers and then using them to predict the target domain instances is repeated until

a convergence point is met. The study used Chinese domain-specific datasets: Education

Reviews (Edu, from http://blog.sohu.com/learning/), Stock Reviews (Sto, from http:

//blog.sohu.com/stock/) and Computer Reviews (Comp, from http://detail.zol.com.

cn/). The ANB algorithm is compared with Näıve Bayes (supervised baseline), EM-based

Näıve Bayes (semi-supervised baseline), Näıve Bayes Transfer Classifier (transfer-learning

baseline) and the results show that ANB performs much better than the other algorithms.

As explained earlier, our goal is to perform sentence level sentiment classification across

domains. From the above mentioned previous works, we came to know that features used

11

http://blog.sohu.com/learning/
http://blog.sohu.com/stock/
http://blog.sohu.com/stock/
http://detail.zol.com.cn/
http://detail.zol.com.cn/

with classifiers play a vital role in classification tasks. We can select either unigrams,

bigrams, 1+2Gram, 1Gram+2Gram, adjective words, sentiment words or structured syntax

trees as features for our classification tasks. In our work, we use different kinds of syntax

subtrees as features as discussed in detail in [Zhang et al., 2010].

We have seen that there are many different kinds of algorithms such as feature level

fusion, classifier level fusion [Li and Zong, 2008], SCL [Blitzer et al., 2006], AMOD [Harb

et al., 2008], SFA [Pan et al., 2010], Deep Learning [Glorot, 2011], ANB [Tan et al., 2009]

that can be applied to the cross-domain classification problem. Previous work (such as Pan

et al. [2010], Blitzer et al. [2006]) suggested that the generalized features can be selected

by using MI, FCE methods, among others. We have used FCE and ANB as discussed

in [Tan et al., 2009] to perform cross-domain sentiment classification in our work. We

have extended ANB by including some labeled data from the target domain. Another

contribution of this work is the use of different kinds of syntax subtrees as features. The

dataset that we use is manually extracted from BestBuy (https://bbyopen.com/) and

Amazon (http://www.amazon.com/). The manually extracted dataset contains reviews

for customer products such as DVDs, movies and kitchen appliances. In our work, we

have overcome the disadvantage of having a predefined set of domain specific and domain

independent words by using a FCE [Tan et al., 2009] method.

12

https://bbyopen.com/
http://www.amazon.com/

Chapter 3

Problem Definition and Approaches

This chapter describes the task of sentence level sentiment classification across domains.

The chapter is organized as follows: In Section 3.1, we begin by describing some of the

terms that we use in our classification problem. In Section 3.2, we give a problem definition

with the help of some examples. In Section 3.3, we describe the feature representations

and explain how we use them to train classifiers for the problem stated. In Section 3.6, we

describe the transfer learning approaches we use for our problem. We also give a detailed

description of the approaches, such as pruning strategies, Support Vector Machine (SVM)

and Adapted Näıve Bayes (ANB) algorithms, that we have use in this work.

3.1 Basic Terminology

Before we describe the problem addressed, we define the basic terminology used in this work:

Domain: A domain is a class consisting of different entities. For example, products such

as books, DVDs, electronics, movies, cameras are considered to be different domains.

Sentiment Classification: Customers write reviews for various products describing pros

and cons, also known as sentiments. These reviews can be in the form of a sentence, a

paragraph or a document. From a classifier point of view, the reviews are represented in the

form of a bag of words, such as w1, w2, w3, · · · , wn, where wi ∈ Vocabulary(V). In order to

recommend products to a new customer, we need to know whether the reviews written by

the old customers are recommending the product or not. We classify these reviews either

13

as positive or negative based on words that were used in these reviews. Thus, in this work

we deal with a binary classification problem where a given review can belong to either a

positive or a negative class. For any given domain, we denote the total set of sentences

in the given domain by S, where s1, s2, s3, · · · , sm ∈ S. For any given sentence sk, where

k ∈ {1, 2, 3, · · · ,m}, sk can belong to either a positive or negative class denoted by yk based

on the words present in it. In our work, yk = 1 if the polarity of a given sentence is positive

and yk = −1 if the polarity of a given sentence is negative.

Domain Adaptation: Domain adaptation, a.k.a. cross-domain learning or transfer learn-

ing, is used in many areas such as text classification, spam filtering and bioinformatics. The

aim of domain adaptation is to learn a model using labeled data from a source domain

combined with target domain unlabeled data and, in some cases, a small amount of target

labeled data, and to predict the labels for the unlabeled instances from the target domain.

In simple terms, we use the information from the source domain together with some informa-

tion from the target domain to predict the unlabeled instances in the target domain. Thus,

domain adaptation can leverage the knowledge learned from a source domain to the target

domain. If the source and the target domains are very close, then the transfer learning is

easier; otherwise transfer learning is harder and it may or may not be successful.

3.2 Problem Definition

We denote by Ds the instance distribution over the source domain, and by Dt the instance

distribution over the target domain. We assume that there are M labeled instances in Ds

and N instances in Dt. We explore two scenarios, one where the target domain contains

only unlabeled instances and the other when the target domain contains both labeled and

unlabeled instances. Our goal is to learn a classifier that has minimum error with respect

to the target domain. In simple words, we try to classify the unlabeled target domain

instances as either positive or negative using the combined model learned from both the

source domain and the target domain instances. Our instances are review sentences. We

14

consider several possible combinations of source and target domains including movie, DVDs

and kitchen appliances domains.

3.3 Structured Syntax Trees

As mentioned earlier, we focus on sentence level sentiment classification and build clas-

sifiers based on structured syntax trees. For a given sentence, we retrieve its complete

syntax tree using the Stanford parser described in [Klein and Manning, 2003]. A syntax

tree is an ordered tree consisting of a root node, branch nodes and leaf nodes. Branch or

interior nodes are labeled using non-terminals such as S, NP, JJ, as described at http:

//en.wikipedia.org/wiki/Parse_tree, whereas leaf nodes are labeled using terminals

such as alphabets, numbers, whitespace, special characters. After retrieving the syntax

tree, we apply several pruning strategies to extract subtrees from the complete syntax tree,

known as structured features. For pruning, we have used a list of sentiment words avail-

able at http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html and a list of ad-

jectives available at http://www.enchantedlearning.com/wordlist/adjectives.shtml

to extract the subtrees called Minimal Complete Tees (MCT) and Path Trees (PT). These

syntax subtrees are used to represent instances and provided to a supervised SVM classifier.

The SVM-Light-TK tool described in [Joachims, 2002] is used for this purpose, as it can

handle tree kernels (and thus avoids the need to generate linear tree features explicitly).

Given the following sentence: ”at about 95 minutes, treasure planet maintains a brisk

pace as it races through the familiar story.” - the syntax tree obtained using the Stanford

parser is shown in Figure 3.1.

3.3.1 MCT and PT Using Sentiment based Pruning Strategies

First, we will remove the occurrences of (, ,) or (. .) from the syntax tree generated using

the Stanford parser. Next, we check whether a sentence has any sentiment words from

the list used by Narayanan et al. [2009] available at http://www.cs.uic.edu/~liub/FBS/

15

http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Parse_tree
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.enchantedlearning.com/wordlist/adjectives.shtml
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

ROOT

S

PP

IN

at

NP

QP

RB

about
E1

CD

95

NNS

minutes

,

,

NP

NN

treasure

NN

planet

E1’

VP

VBZ

maintains

NP

NP

DT

a
E2

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2’

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

.

.

Figure 3.1: Syntax tree generated using Stanford parser

16

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

sentiment-analysis.html. The sentiment words for the above sentence are “treasure”

and “brisk”. For each sentiment word, we will define two nodes E1 and E2, using a window

size of 3, where E1 is marked to the left side and E2 is marked to the right side with respect

to the given sentiment word “treasure”. For the sentiment word “treasure”, the E1 node

is “about” and the E2 node is “a”, as shown in Figure 3.1, and for the sentiment word

“brisk”, the E1 node is “planet” and the E2 node is “it” (shown in Figure 3.1 as E1
′

and

E2
′
). Then, we look at a common parent of E1 and E2 and retrieve the subtree from that

common parent, also known as Minimum Complete Tree (MCT) for a given sentiment word.

This process is repeated for all the sentiment words in a given sentence. Then, we need to

combine the MCT of all the sentiment words by checking for a common node between all

the MCT in a given sentence and this resulting subtree is the final version of MCT that we

will be using in our work - this tree is also called a combined MCT and reduced some noise

present in the complete syntax tree.

But to eliminate further noise from MCT, we apply another pruning strategy to each

MCT. During this stage, we prune all the leaf nodes along with their parent nodes that are

present to the left side of the node E1, until we hit a common parent between the leaf node

and the node E1. Then, we prune all the extra leaf nodes along with their parent nodes that

are present to the right side of the node E2, until we hit a common parent between the leaf

node and the node E2. The resulting subtree is known as a Path Tree (PT). This process

of pruning is repeated for all the MCT trees present in a sentence and the final version of

the PT tree is retrieved by finding a common node between all the PT trees available in a

given sentence. The MCT for the sentiment word “treasure” is shown in Figure 3.2 and the

PT for the sentiment word “treasure” is shown in Figure 3.3. The MCT for the sentiment

word “brisk” is shown in Figure 3.4 and the PT for the sentiment word “brisk” is shown

in Figure 3.5. The combined MCT that we will use in our work for the above sentence is

shown in Figure 3.6 and the combined PT is shown in Figure 3.7:

17

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

S

PP

IN

at

NP

QP

RB

about
E1

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

VP

VBZ

maintains

NP

NP

DT

a
E2

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.2: MCT for sentiment word “treasure”

S

PP

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

Figure 3.3: PT for sentiment word “treasure”

18

S

PP

IN

at

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

E1
′

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2

′

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.4: MCT for sentiment word “brisk”

S

NP

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

Figure 3.5: PT for sentiment word “brisk”

19

ROOT

S

PP

IN

at

NP

QP

RB

about
E1

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

E1
′

VP

VBZ

maintains

NP

NP

DT

a
E2

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2

′

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.6: MCT or combined tree using sentiment based pruning strategy

20

ROOT

S

PP

NP

QP

RB

about
E1

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

E1
′

VP

VBZ

maintains

NP

NP

DT

a
E2

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2

′

Figure 3.7: PT or combined tree using sentiment based pruning strategy

21

3.3.2 MCT and PT Using Adjective based Pruning Strategy

The adjective based pruning strategy is similar to the sentiment word based pruning strategy

described in Section 3.3.1, except that in this approach we look for adjective words instead

of sentiment words. First, we will check whether a sentence has any adjective words from the

list at http://www.enchantedlearning.com/wordlist/adjectives.shtml. Let’s assume

the adjective words for the above sentence are “brisk” and “familiar”, then the complete

syntax tree is shown in Figure 3.8. For the adjective word “brisk”, the E1 node is “planet”

and the E2 node is “it” as shown in Figure 3.8. Next, for the adjective word “familiar”, the

E1 node is “races” and the E2 node is “story”, as shown in Figure 3.9. Next, the process

of extracting MCT, PT, combined MCT and combined PT is exactly same as described in

Section 3.3.1. MCT for adjective word “brisk” is shown in Figure 3.10 and PT for adjective

word “brisk” is shown in Figure 3.11. MCT for adjective word “familiar” is shown in

Figure 3.12 and PT for adjective word “familiar” is shown in Figure 3.13. The combined

MCT for the above sentence using adjective based pruning strategy is shown in Figure 3.14

and combined PT is shown in Figure 3.15:

3.4 Gram Features based on Syntax Trees

Generally, Machine Learning (ML) [Mitchell, 1997] algorithms use feature based repre-

sentations for instances, where each instance is represented using a collection of features

f1, f2, · · · , fn. In addition to using structured syntax trees with tree kernels in SVM, we

also use gram features extracted from syntax trees, described in what follows.

Grams are subtrees based on either the complete syntax trees or structured trees gener-

ated using pruning strategies. If the original sentence is: “too simple for its own good” - the

syntax tree for this sentence is represented in Figure 3.16. The sentiment word present in

our given sentence is “good”. The structured PT syntax tree using sentiment word based

pruning strategy is shown in Figure 3.17. The adjective words are identified as “simple” and

“good”. The structured PT syntax tree using adjective based pruning strategy is shown in

22

 http://www.enchantedlearning.com/ wordlist/adjectives.shtml

ROOT

S

PP

IN

at

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

E1

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.8: E1 and E2 nodes for adjective word “brisk”

23

ROOT

S

PP

IN

at

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

NNS

races
E1

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

E2

Figure 3.9: E1 and E2 nodes for adjective word “familiar”

24

S

PP

IN

at

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

E1
′

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it
E2

′

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.10: MCT for sentiment word “brisk” using adjective based pruning strategy

S

NP

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

Figure 3.11: PT for sentiment word “brisk” using adjective based pruning strategy

25

VP

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.12: MCT for sentiment word “familiar” using adjective based pruning strategy.

VP

NP

PP

NP

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.13: PT for sentiment word “familiar” using adjective based pruning strategy.

26

ROOT

S

PP

IN

at

NP

QP

RB

about

CD

95

NNS

minutes

NP

NN

treasure

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.14: Combined MCT using adjective based pruning strategy

27

ROOT

S

NP

NN

planet

VP

VBZ

maintains

NP

NP

DT

a

JJ

brisk

NN

pace

PP

IN

as

NP

PRP

it

NNS

races

PP

IN

through

NP

DT

the

JJ

familiar

NN

story

Figure 3.15: Combined PT using adjective based pruning strategy

28

ROOT

NP

ADJP

RB

too

JJ

simple

PP

IN

for

NP

PRP$

its

JJ

own

NN

good

Figure 3.16: Syntax tree generated using the Stanford parser

PP

IN

for

NP

PRP$

its

JJ

own

NN

good

Figure 3.17: PT subtree generated using sentiment based pruning strategy

Figure 3.18.

3.4.1 Grams based on Complete Syntax Trees

The following are various types of subtrees (grams) obtained from the complete syntax tree

and used as features in our problem.

• All grams with leaf nodes: This type of feature representation has all the possible

parent-child subtrees as features, as shown in Figure 3.19.

• Unigrams with leaf nodes: This type of feature representation contains unigram

subtrees as features, as shown in Figure 3.20. Unigram consists of one item for any

given sequence of words/input. An n-gram consists of n items for any given input.

Let’s assume that we have the following input: “too simple for its own good.” The

unigrams at word level for the above sentence are: too, simple, for, its, own, good.

29

ROOT

NP

ADJP

RB

too

JJ

simple

PP

IN

for

NP

PRP$

its

JJ

own

NN

good

Figure 3.18: PT subtree generated using adjective based pruning strategy

(a) RB

too

(b) JJ

simple

(c) IN

for

(d) PRP$

its

(e) JJ

own

(f) ADJP

RB

too

JJ

simple

(g) NP

ADJP

RB

too

JJ

simple

(h) NN

good

(i) NP

PRP$

its

JJ

own

NN

good

(j) PP

IN

for

NP

PRP$

its

JJ

own

NN

good

(k) ROOT

NP

ADJP

RB

too

JJ

simple

PP

IN

for

NP

PRP$

its

JJ

own

NN

good

Figure 3.19: All grams with leaf nodes

30

(a) RB

too

(b) JJ

simple

(c) IN

for

(d) PRP$

its

(e) JJ

own

(f) NN

good

Figure 3.20: Unigrams with leaf nodes

(a) ROOT

NP

(b) NP

ADJP

(c) ADJP

RB

(d) ADJP

JJ

(e) PP

IN

(f) PP

NP

(g) NP

PRP$

(h) NP

JJ

(i) ROOT

PP

(j) NP

NN

Figure 3.21: Unigrams without leaf nodes

The bigrams at word level for the above sentence are: too simple, simple for, for its, its

own, own good. The n-gram at the word level is: too simple for its own good. Here,

unigram subtrees are just a pair composed of a parent and their child node, where the

child node is a leaf node.

• Unigrams without leaf nodes: This type of feature representation contains all

possible unigram subtrees as features except the unigrams with leaf nodes, as shown

in Figure 3.21. Here, unigram subtrees are just a pair composed of a parent and their

child node, where the child node is not a leaf node.

• All unigrams: All possible unigrams present in the syntax tree are taken as features,

as shown in Figure 3.22. The combination of unigrams with leaf nodes and unigrams

without leaf nodes gives all possible unigrams.

3.4.2 Grams based on Pruned Syntax Subtrees

As we have seen earlier, the PT tree based on sentiment word based pruning strategy is

shown in Figure 3.17. Next, we retrieve the different types of grams exactly the same way

as described in Section 3.4.1 except that we have to use PT tree instead of complete (or full)

tree. The PT trees based on adjective word based pruning strategy is shown in Figure 3.18.

31

(a) ROOT

NP

(b) NP

ADJP

(c) ADJP

RB

(d) ADJP

JJ

(e) PP

IN

(f) PP

NP

(g) NP

PRP$

(h) NP

JJ

(i) ROOT

PP

(j) NP

NN

(k) RB

too

(l) JJ

simple

(m) IN

for

(n) PRP$

its

(o) JJ

own

(p) NN

good

Figure 3.22: All unigrams

We retrieve the different types of grams exactly the same way as described in Section 3.4.1

except that we use the PT tree instead of the complete tree. We can use the complete

syntax trees but we are identifying MCT and PT trees because we would like to reduce the

noise, a task that is not important for sentiment classification problems.

3.5 Feature Construction for Domain Adaptation

We can select any of these types of grams as features based on their predictive power

evaluated using a supervised algorithm in a single domain. Now, the main challenge for

performing domain adaptation is to select the features to build a bridge between the source

domain and target domain. These features are known as domain independent features. Let

us look at the following definitions before discussing about the approach that we used to

select the features for building a bridge between the two domains. In our problem we have

two domains, source domain and target domain. Each domain has two different kinds of

features: domain specific feature and non-domain specific or domain independent feature.

These two types of features may be either sentiment or non-sentiment words.

32

3.5.1 Domain Specific Features

Domain specific features are those features with specific meaning in either source or target

domain. For example: words like thrilling, powerfully acted express sentiment in the movie

domain and words such as exceptional control, sleek and distinctive, space-efficient express

sentiment in the kitchen appliances domain.

3.5.2 Domain Independent Features

Domain independent features are those features, which have the same meaning in both

source as well as target domain. For example: words like good, excellent, bad, worse, etc.

are domain independent features.

Why are we interested in domain independent features?

As mentioned earlier domain independent features have the same meaning in both domains

source and target domains. The domain independent features are important because these

features occur frequently in both domains and can be used in order to transfer knowledge

from source to target. Specifically, we learn a classifier based on source domain labeled

data along with target domain unlabeled data or on source domain labeled data along with

target domain labeled and unlabeled data and use the classifier to predict the labels for target

domain unlabeled instances. Source data should be represented using domain independent

features, while target data is represented using all features in the target domain (including

the specific features), as we want to learn to predict target well.

How do we extract domain independent features?

We used a Frequently Co-occurring Entropy(FCE) method as described by Tan et al. [2009]

to retrieve the domain independent features, also known as generalized features. This mea-

sure satisfies the following two criteria:

a) Independent features occur frequently in both source and target domains;

b) Independent features must have similar occurring probability.

To satisfy these requirements, we used the following formula proposed by Tan et al. [2009]:

33

fv = log

(
Ps(v) ∗ Pt(v)

Ps(v)− Pt(v)

)

where fv represents the entropy value for the feature v, Ps(v) is the probability of feature

v occurring in the source domain and Pt(v) is the probability of feature v occurring in the

target domain. Specifically, we have:

Ps(v) =
(N s

v + α)

(Ds + 2 ∗ α)
, Ps(v) =

(N t
v + α)

(Dt + 2 ∗ α)

where N s
v and N t

v denote the number of times feature v has occurred in the source domain

and target domain, respectively. Ds and Dt denotes the total number of instances in the

source domain and target domain, respectively. We have used a constant α to avoid any

overflow. In our work, α value is set as 0.0001. To avoid the divide by zero error when

both the source domain and the target domain probabilities are same, a constant factor β

is introduced. After introducing a constant β, the above formula is modified as follows:

fv = log

(
Ps(v) ∗ Pt(v)

(Ps(v)− Pt(v)) + β

)
In our work, β value is set to 0.0001.

3.6 Approaches Used

The following are the various types of machine learning algorithms that are most widely

used for classification tasks:

3.6.1 Supervised Learning Algorithms

Supervised algorithms require labeled data, and are very useful when we have a sufficient

amount of labeled data to learn a good classifier. In a supervised framework, for a binary

problem, we provide a set of training examples, where each example can belong to either a

positive class or a negative class. The set of training examples are used to train a model. This

34

model will be used to predict new test instances as positives or negatives. The performance

is evaluated by comparing the predicted values to the actual values on a hold out dataset.

Examples of supervised learning algorithms include: Support Vector Machine (SVM), Näıve

Bayes Multinomial (NBM).

Support Vector Machines (SVM)

SVM algorithm is a supervised machine learning algorithm that works very well, especially

for binary classification problems. SVM represents each input example as a point in a high

dimensional space. If the data is (almost) linearly separable, SVM uses these example points

to constructs a hyperplane that separates the positive points from negative points. We can

construct many hyperplanes for a given set of example points. The best hyperplane is the

one which has the largest separation gap between the positive examples and the negative

examples, and this is the hyperplane that SVM finds. New examples are classified to either

one of the classes based on which side of the separating hyperplane they fall in, as described

in [Cortes and Vapnik, 1995]. When data is not linearly separable in the original space,

kernels are used to map the data to a higher dimensional space where data becomes linearly

separable. In our work, we used SVM with a tree kernel and a linear kernel in the supervised

scenario.

The kernel-based algorithms automatically select the substructures that better describe

the subtrees. If the given set of instances are represented in a high dimensional space Z,

then the kernel function K is defined as R : Z × Z → [0,∞], a function which maps a pair

of instances x, y ∈ X to their similarity score K(p, q). In the following few lines we discuss

linear and tree kernels:

1. A linear kernel is the default kernel used by SVM and is very useful when we have

many attributes. It is defined as the inner product of the two variables as described

in [Cortes and Vapnik, 1995]: R (x, y) = 〈x, y〉 =
∑

i xi · yi

2. A tree kernel [Souza, 2010] is used in order to find the similarity between two syn-

tax trees by calculating the dot product of feature vectors in high (or even infinite)

35

dimensional feature spaces.

In our work, we use SVM and compare the performance of tree kernels with linear

kernels for sentence level sentiment classification in a single domain. Our initial aim is to

capture structured information in terms of sub-structures, which acts as an alternative to

flat features. To extract the syntactic structured features embedded in a complete parse

tree, we use pruning strategies like sentiment word based and adjective word based strategies

as described in Section 3.3. In our work we use a tool called SVM-light-tk [Moschitti, 2002]

which implements tree kernels.

SVM-light-tk has the tree kernel implementation inside SVM-light developed by Joachims

[2002]. SVM light is an implementation of Support Vector Machines in C language. It is

used for solving binary classification problems. SVM light consists of two modules: a learn-

ing module (SVM-learn) and a classification module (SVM-classify). SVM-learn builds a

model from the training data. SVM-classify reads this model file and makes predictions on

test data instances.

Näıve Bayes Multinomial (NBM)

Näıve Bayes Multinomial is a supervised learning algorithm and it is widely used for doc-

ument level classification tasks. It builds the model by using a set of labeled training

examples and uses this model to classify the new unlabeled instances. Näıve Bayes Classi-

fier is a probabilistic classifier and it is based on a strong independence assumption (words

in a document are independent given the class label of the document). Furthermore, posi-

tions in a sentence are also independent. The NBM algorithm is found to be very useful for

text classification, when simply words are used as features. For example, a movie can be

classified as a comedy movie if it contains words such as funny, joyful, or humor character

names such as Ben Stiller etc. Even though words in a sentence are not dependent, näıve

Bayes classifier considers all these words as independent features. In our experiments, we

assume that the probability of a gram occurring in a document is totally independent of the

gram’s position and its context in a sentence, given the class label of a sentence. In what

36

follows, we provide more details of the algorithm.

Let us assume that we are given a document D to classify as either positive or negative

class ck, where ck ∈ {+1,−1}. Using the independence assumption, a document can be

seen as a bag of words (w1, w2, · · · , wn) ∈ D and the word in a document is independent

of its corresponding position and context in a document. Näıve Bayes classifier is based on

the Bayes theorem and learning the classifier can be reduced to estimating class prior and

the data likelihood. Then, the probability of a class given a document P (ck|D) (posterior

probability) is proportional to multiplying the prior P (ck) and the probabilities
n∏

v=1

P (wv|D).

Finally, we check the probability distributions of P (ck|D) for all values of k and then classify

the given document in the class which has the highest probability distribution value. The

probability of a word given class can be estimated using the following formula as described

in [Tan et al., 2009]:

P (wv|ck) =
Nv ∗ P (ck|D) + 1

|V |∑
v=1

Nv ∗ P (ck|D) + |V |

where wv is a word from a given vocabulary (V) considered as features, ck is the class label

where ck ∈ {+1,−1}, Nv is the number of times word has occurred in a given document D

and |V | is the size of the vocabulary (that contains all the words (w1, w2, · · · , wn)).

We can easily calculate the prior probability in a given document by counting the num-

ber of documents with different class labels. The prior probability is calculated using the

following formula:

P (ck) =
Number of examples in ck
Total number of examples

Next, P (ck|D) is approximated by multiplying both the prior and the posterior probabilities

as follows:

P (ck|D) ≈ P (ck) ∗
n∏

v=1

P (wv|ck)Nv

37

In general, NBM works for a collection of documents. In our work, we used sentences instead

of whole documents.

3.6.2 Domain Adaptation Algorithms

Our goal is to reduce the gap between the source and target domains by learning a classifier

from source domain and target domain instances to predict the labels for the new target

domain unlabeled instances. We use domain adaptation algorithms when we have labeled

data in the source domain and little or no labeled data along with unlabeled data in the

target domain. We consider two domain adaptation scenarios, as described in what follows:

1. Case 1: Data available is source domain labeled data and only unlabeled data from

target domain. In this case, we build a classifier using the source domain labeled data

represented with generalized features only. We use the source domain classifier in order

to predict the corresponding labels for the target domain unlabeled instances. Next,

we build the target domain classifier by using the predicted labels for target domain

represented with the whole vocabulary from the target domain as its features. Finally,

we use both the source domain classifier and target domain classifier to predict new

labels for the unlabeled instances from the target domain and we repeat this process

until we meet a convergence point.

2. Case 2: Data available is source domain labeled data, and a small amount of labeled

data along with unlabeled data from target domain. In this case, first we build a com-

bined classifier using the source domain labeled data and target domain labeled data.

Next, we use this classifier in order to predict labels for the unlabeled target domain

instances. After predicting the labels for the target domain unlabeled instances, we

build another combined classifier using the source domain labeled data, target domain

labeled data and the predicted labels for the unlabeled target domain data to predict

the labels for the target domain unlabeled instances. This process is repeated until

we meet a convergence point.

38

The Adapted Näıve Bayes algorithm used to address these two cases is discussed below.

The original algorithm works for the first case, but we also adapted it for the second case.

Adapted Näıve Bayes (ANB)

ANB [Tan et al., 2009] is a domain adaptation algorithm, based on a weighted transfer

version of the näıve Bayes classifier. It builds a classifier using Expectation Maximization

(EM) on top of näıve Bayes classifier, to predict the target domain unlabeled instances.

One important part of the ANB algorithm is that it simultaneously allows us to reduce the

weight given to the source domain instances, while increasing the weight given to the target

domain instances at each iteration, by using a constant lambda (λ). This, in turn, allows

us to predict the labels for the target domain instances.The EM algorithm is used to find

the maximum likelihood. It consists of two steps: E-step (Expectation-step) and M-step

(Maximization-step). In the E-step, we estimate the missing data (in our case, the labels of

the unlabeled target data) and the model parameters given the observed or known data. In

the M-step, we try to maximize the likelihood function by assuming that the missing data

is known. The two steps are repeated until we reach a convergence point.

The EM approach used in ANB and described in [Tan et al., 2009] is different from

the traditional EM approach because we want to find the maximum likelihood only for the

target domain instances but not for the source domain. ANB algorithm achieves this by

increasing the weight for the target-domain data, while decreasing the weight for the source-

domain data at each iteration. Also, remember that we do not use all the features available

in the source domain. We use only a small amount of features also known as generalized

features from the source domain because our goal is to classify the target domain instances,

but not the source domain. So, in each iteration we use only generalized features for the

source domain, whereas we use the whole vocabulary for the target domain. This helps us to

improve the prediction ability of the classifier to classify the target domain instances because

the domain specific features from the source domain are not very useful for predicting the

target domain instances.

39

In the following lines, we give the detailed formulas under domain adaptation setting

using the ANB classifier on top of EM as described by Tan et al. [2009]:

E-step:

P (ck|si) ∝ P (ck)
∏
v∈V

(P (fv|ck))Nv,i

M-step:

P (ck) =

(1− λ) ∗
∑
i∈Ds

P (ck|si) + λ ∗
∑
i∈Dt

P (ck|si)

(1− λ) ∗ |Ds|+ λ ∗ |Dt|

P (fv|ck) =
(1− λ) ∗

(
ηsv ∗N s

v,k

)
+ λ ∗

(
N t

v,k

)
+ 1

(1− λ) ∗
|V |∑
v=1

(
ηsv ∗N s

v,k

)
+ λ ∗

|V |∑
v=1

(
N t

v,k

)
+ |V |

1. Case 1: During the first iteration Dt ∈ Dt lab in the above M-step. From the second

iteration onwards Dt ∈ Dt lab, Dt unlab until we reach a convergence point.

2. Case 2: During the first iteration Dt = φ in the above M-step. From the second

iteration onwards Dt ∈ Dt unlab until we reach a convergence point.

where N s
v,k and N t

v,k denote the number of appearances of feature fv in source domain and

target domain for its corresponding class ck. These are obtained as follows:

N s
v,k =

∑
i∈Ds

(
N s

v,i ∗ P (ck|si)
)
, N t

v,k =
∑
i∈Dt

(
N t

v,i ∗ P (ck|si)
)

where λ is a parameter for controlling the weights for the source domain versus target

domain. The value of λ changes with the number of iterations (τ), which is expressed as:

λ = min (δ ∗ τ, 1) and τ ∈ {1,2,3,...} until we reach the convergence point. Here, δ is a

constant and in our work we used δ = 0.2. ηsv is a constant and is given as:

ηsv =

{
0 if fv /∈ VFCE

1 if fv ∈ VFCE

The time complexity for ANB algorithm is O(nm), where n is the number of examples

and m is the number of attributes. However, the complexity of the EM step is O(nmk),

where k is the number of iterations.

40

Chapter 4

Experimental Setup

In this chapter, we explain the research questions that we have addressed in our work, the

dataset used and the experiments designed to evaluate our approach. We have conducted

experiments with various classifiers and with variable amount of data to investigate the

performance of the classifiers for domain classification within a single domain and across

domains. Specifically, this chapter is organized as follows: In Section 4.1, we describe various

research questions that we have addressed. In Section 4.2 we list the set of experiments that

have performed performed. In Section 4.3, we describe the dataset used.

4.1 Research Questions

The following are the research questions that we have addressed in this work:

• Are the grams extracted from syntax trees, when used as features in a domain specific

classifier, comparable in terms of prediction and accuracy to the structured syntax

subtrees? Overall, how useful are these features for the sentence-level sentiment clas-

sification problem?

According to Zhang et al. [2010], structured features give very good results in terms

of accuracy for sentence-level sentiment classification. However, for our domain adap-

tation algorithm, ANB, we need to provide features in terms of gram counts. That is

possible, when considering the gram based features described in Section 3.4. However,

41

we would like to know how good these grams are with respect to the sentiment classi-

fication problem we are addressing. To evaluate the prediction power of these grams,

we compare the results of SVM classifiers using grams extracted from trees, in a single

domain scenario, with the results obtain based on SVM with structured syntax tree

features.

• What is the effect of using various gram types described in Section 3.4 (i.e., all grams

with leaf nodes, unigrams with leaf nodes, unigrams without leaf nodes, all unigrams)

for training the domain adaptation classifiers? Is it better to use all the features or

a reduced set of features? Also, how many features do we need to use as generalized

features?

According to Pan et al. [2010], we need to identify a predefined set of words, known as

domain independent features, before performing cross-domain sentiment classification.

We extract domain independent gram features (extracted from syntax trees generated

from a Stanford parser) based on an entropy calculation method. We evaluate the

performance of sentiment classification across domains by considering the top 50 FCE

target grams or top 100 FCE target grams as generalized features. We also experiment

with different size gram vocabularies. First, we use all the grams present in a target

domain. We have also experiment with a reduced vocabulary obtained by removing

the grams that occur 1 time, 2 times or 3 times.

• How does the ANB approach perform when using some target domain labeled data

versus not using any target domain labeled data? Are the results better when using

some target labeled data?

We would like to compare the performance of domain adaptation classifiers learned

using source domain labeled data, target domain labeled data and target domain

unlabeled data, versus the performance of classifiers learned using only source domain

labeled data and target domain unlabeled data.

42

• How does the ANB approach perform when compared to supervised NBM classifiers?

We build a supervised näıve Bayes classifier with target domain labeled as training

data and tested it on target domain unlabeled. Next, we build another supervised

näıve Bayes classifier, where all the target domain data (labeled and unlabeled) is

used as labeled data. This can be seen as an upper bound for our approach. We have

also built another supervised näıve Bayes classifier, with source domain as training

data and target domain unlabeled as test data. This is considered as the lower bound

for our approach. All the above supervised approaches are tested on the same test

dataset that is used for the ANB approach. Therefore, we compare the results obtained

from ANB with the results obtained using the supervised näıve Bayes classifiers.

4.2 Experiments

There are two types of experiments that we have performed in our work. First, we learn

a domain specific classifier in a given domain and then test it on unlabeled instances from

the same domain. Second, we learn a domain adaptation classifier under the assumption

that there is little or no labeled data in a target domain, and labeled data from a source

domain might help. Thus, the domain adaptation classifier is trained on a combination of

labeled source and labeled/unlabeled target data, and is used to predict labels on target

domain unlabeled data. The following description gives amore details on the what type of

experiments we have performed for single and cross-domain classification tasks.

4.2.1 Domain Specific Classifiers

Experiment 1: The purpose of this experiment is to evaluate the performance of the SVM

algorithm on sentiment classification by using tree kernels along with structured features

obtained by pruning strategies. The models are built using the structured features as de-

scribed in Section 3.3. These experiments are conducted using tree kernels along with MCT

and PT trees. To have a baseline, we have also conducted experiments using the unigrams

43

as features. The unigrams are obtained by eliminating all the stop-words. SVM-light-TK is

used for model building and all the results are obtained via 3-fold cross validation. Experi-

ment 1 compares the performance of the results between unigrams and tree kernels methods.

Precision, Recall and F1 measure values averaged over 3 folds are used to evaluate the re-

sults. The dataset that we have used for this experiment is described in Section 4.3 and the

experiments are performed only in the movie domain with 10662 (5331 positive and 5331

negative) instances.

Experiment 2: The purpose of this experiment is to evaluate which types of gram repre-

sentations work the best in a domain specific task, with the goal of using such grams for

cross-domain classifiertion as well.

a) Here we used SVM classifier to classify the sentences in a single domain with different

kinds of grams as our features (see Section 3.4) and then compared the results with the

results that we have obtained using SVM with structured syntax subtrees as features.

These experiments were conducted on the movie domain with 1800 (900 positive and

900 negative) instances. The results allow us to understand which types of grams are

useful for the classification tasks considered in this work.

b) We have also used a näıve Bayes classifier to classify the sentences in a single domain

with different kinds of grams from PT trees (obtained using sentiment based pruning

strategy) as features. Next, we compared the results with the results obtained using

SVM with structured trees or different kinds of grams from complete syntax tree

as features. We have conducted these experiments on the movie domain with 1800

instances. We use näıve Bayes because we use an adapted näıve Bayes classifier in

cross-domain classification and we would like to compare our results using supervised

näıve Bayes classifier. As said earlier, these results will help us in deciding which types

of grams are useful for our classification tasks.

As we will see in the results chapter, classification results using “all grams with leaf

nodes” and “unigrams with leaf nodes” as features along with SVM are very similar to the

44

results obtained using “structured trees” as features using SVM classifier. This suggests,

that using “all grams with leaf nodes” and “unigrams with leaf nodes” as features might

give better results than using “unigrams without leaf nodes” and “all unigrams” as features

for sentiment classification across domains.

4.2.2 Domain Adaptation Classifiers

In the cross-domain scenario, we perform two sets of experiments using various types of

grams as features.

1) In the first set of experiments, we use different types of grams from the complete syntax

tree as features (as described in Section 3.4) for our domain adaptation classifiers.

2) In the second set of experiments, we first prune the complete syntax trees to obtain

PT trees using the sentiment word based pruning strategy. Then, we select various

types of gram representations from the PT trees as features in our domain adaptation

classifier.

Experiment 3: The purpose of this experiment is to study the necessity of using all the

grams as opposed to reducing the number of grams based on frequency. We also identify

the number of generalized features that we need to consider in the source domain. For this,

we select the grams that result in the highest precision and recall values in Experiment

2. Next, train models using different types of gram features on various customer review

datasets (movies, DVDs, kitchen appliances). Before training the classifiers, we perform a

filtering stage in order to remove some of the uninformative grams from source and target

domains. For this we perform various experiments using all the grams or grams that occur

more than 1 time or 2 times or 3 times as vocabulary for target domain, along with top

50 or 100 FCE grams as generalized features. Before going through the experiments in this

category, let us discuss the steps involved in these experiments.

Source and Target Domains: Our customer review dataset includes three different do-

mains: movie domain (M), DVDs domain (D) and kitchen appliances (K) domain. So,

45

the possible source and target combinations are D → M,M → D,M → K,K → M,D →

K,K → D. The left side of the arrow represents the source domain and the right side of

the arrow represents the target domain.

Steps Performed in Experiment 3: For all possible combinations, we first extract the

syntax trees for each sentence in both source as well as target domains. Next, we identify

the corresponding counts for each and every gram in source and target domains separately.

As explained above, we conduct various experiments by considering all the grams or by

eliminating those grams that occur only 1 time, 2 times and 3 times in either domain. Next,

we calculate the entropy values for all the grams present in the target domain using the

frequently co-occurring entropy (FCE) method described in [Tan et al., 2009]. After finding

the FCE values using the number of occurrences of grams in both the source and target

domains, we will consider the top 50 or the top 100 grams (with the highest FCE values) as

generalized features. We use all the grams present in the target domain as our vocabulary

for the target domain. We have performed 3 fold cross-validation on target domain data.

Preliminary results suggest that it is better to remove all the grams that are occurring 1

time and also to consider using top 100 FCE features as generalized features.

Classifiers Compared in Experiment 3: The following are the cases that we consider

for each experiment before coming to the above conclusion (i.e., remove all the grams that

occur 1 time and consider 100 features as generalized features):

• Case 1: First, we use ANB classifier to perform cross-domain sentiment classification

using source domain labeled data and target domain unlabeled data. As explained

earlier, we perform 3 fold cross-validation on target domain. We consider 2 folds of

the target domain (unlabeled data) along with source domain (labeled data) as our

training data and use the remaining one fold of the target domain unlabeled data as

test data. This is considered as the lower bound for our experiments.

• Case 2: Next, we use ANB classifier to perform cross-domain sentiment classification

using source domain labeled data, together with target domain labeled and unlabeled

46

data. In this experiment, when we consider target domain labeled data, we split the

target domain (movie domain with 400 instances) or (DVDs domain with 800 in-

stances) or (DVDs domain with 400 instances) or (kitchen domain with 400 instances)

as 100 labeled target domain instances and the remaining as unlabeled target domain

instances. We consider 2 folds of the target domain (labeled and unlabeled data) along

with source domain (labeled data) as our training data and use the remaining one fold

of the target domain unlabeled data as our test data. So, the number of test instances

are one-third of the total number of unlabeled target domain instances.

• Case 3: In addition to the above two experiments, we also perform two supervised sen-

timent classifications. In this case, we perform a supervised (näıve Bayes multinomial)

sentiment classification with target domain labeled instances as training data and tar-

get domain unlabeled instances as test data. These experiments are also performed

using 3 fold cross-validation on target domain.

• Case 4: We perform another supervised classification (näıve Bayes multinomial), with

target domain labeled plus target domain unlabeled instances (assumed labeled as

well) as training data and target domain labeled instances as test data. We consider

this as the upper bound for our experiments. These experiments are performed using

3 fold cross-validation on target domain as well.

Unigrams with Leaf Nodes as Features: The following experiments are performed

with source as movie and target as DVDs. We have also used source as DVDs and target as

movie. There is another special case that we have considered to have with source as movie

(400 instances) and target as DVDs (400 instances). The goal of these experiments is to

learn what sets of grams are more predictive. Based on the experimental results for each

experiment for the above 4 cases, we decide whether to include the set of all the grams or

a reduced set of grams (based on frequency).

47

1. In this experiment we consider all the grams as features. We consider the top 50 FCE

features as generalized features for representing the source domain and all the grams

present in the target domain as our vocabulary for the target domain. As a special

case, we performed another experiment as described above, except that we used the

top 100 FCE features as generalized features for representing the source domain.

2. In this experiment we consider grams that occur more than 1 time. Here we consider

the top 50 FCE features as generalized features for representing the source domain and

all the grams present in the target domain as our vocabulary for the target domain.

We performed another experiment as described above, except that we used the top

100 FCE features as generalized features for representing the source domain.

3. In this experiment we consider grams that occur more than 2 time. Here we consider

the top 50 FCE features as generalized features for representing the source domain and

all the grams present in the target domain as our vocabulary for the target domain.

We performed another experiment as described above, except that we used the top

100 FCE features as generalized features for representing the source domain.

From the above experimental results, we observed that it is better to remove all the grams

that are occurring 1 time and also to consider using top 100 FCE grams as generalized

features. So, for all the remaining experiments with various source and target combinations

along with different gram representations, we consider grams>1 in source and target domains

with the top 100 FCE grams as generalized features.

Experiment 4: The purpose of this experiment is to to compare the performance of

sentiment classification using ANB (domain adaption classifier) and supervised näıve Bayes

algorithm (domain specific classifier) across all possible combinations of source and target

domains. Here, we compare the results of ANB and näıve Bayes by performing 3 fold

cross-validation on target domain. We also compare the performance of ANB classifier

for cross-domain sentiment classification by using a little amount of target domain labeled

48

data versus ANB classifier without any target domain labeled data. In addition to the

four different cases mentioned in experiment 3, we perform another supervised classification

(näıve Bayes multinomial), with training as source domain labeled data and target domain

unlabeled instances as test data represented as Case 5 in our experiments. This is considered

as the lower bound for our experiments and we perform a 3 fold cross-validation on target

domain.

Experiment 5: The purpose of this experiment is to evaluate the performance of domain

adaptation for cross-domain sentiment classification by using ANB with various types of

grams as features from PT (structured syntax subtrees obtained by using sentiment word

based pruning strategy) trees. So, we perform all combinations of source and target domain

as specified in Experiment 3, with various types of grams as features from structured syntax

tree (PT tree) as our features.

4.3 Data Description

This section gives an overview of the data that we used in our experiments. We used

two different datasets. One dataset is the movie review dataset obtained from Pang and

Lee [2005], which contains 5331 positive sentences and 5331 negative sentences. We have

manually constructing the second dataset by extracting reviews from Amazon and BestBuy.

In order to extract the data from BestBuy we have used the BestBuy API package at https:

//bbyopen.com/developer. After creating an account, they provide us a unique apikey so

that we can use the key to retrieve the necessary information. But we cannot directly get

the reviews from BestBuy. First, we use a command to retrieve the sku numbers for the

reviews with rating>3 or reviews with rating<3 for a given product. Next, we use another

command to retrieve the reviews of the products using the sku numbers obtained from above.

We select reviews with rating>3 because generally reviews with rating 4 or 5 are considered

as positive reviews. And we select reviews with rating<3 because generally reviews with

rating 1 or 2 are considered as negative reviews. We have manually examined each sentence

49

https://bbyopen.com/developer
https://bbyopen.com/developer

to make sure that we include a sentence with a positive sentiment in positive reviews class

and a sentence with negative sentiment in a negative reviews class. The dataset contains

customer reviews of products such as movies, DVDs and kitchen appliances.

The above extraction procedure resulted in 200 positive sentences and 21 negative sen-

tences for the movie domain from BestBuy. For the DVDs domain, we extracted 400 positive

and 400 negative sentences and for the kitchen appliances domain, we extracted 192 positive

sentences and 79 negative sentences from BestBuy. But we want our dataset to have an

equal amount positive and negative sentences (as we didn’t aim to evaluate the effect of

unbalanced dataset on the results). So, we also crawled through Amazon customer reviews

and extracted 179 negative sentences for the movie domain. We have also extracted 8 posi-

tive sentences and 121 negative sentences for the kitchen appliances domain from Amazon.

Finally, we have 400 (200 positive, 200 negative) instances in the movie domain (M), 800

(400 positive, 400 negative) instances in the DVDs domain (D) and 400 (200 positive, 200

negative) instances in the kitchen appliances (K) domain. These numbers are summarized

in Table 4.1. As we have two datasets for the DVD domain, one containing 400 instances

and the second one containing 800 instances, we will denote these datasets by D (400) and

D′ (800), respectively, and will use these notation from now on. As above, the movie dataset

is denoted by M and the kitchen appliances dataset is denoted by K.

Table 4.1: Customer review dataset

Customer review product sentences

Product Total No. of sentences No. of pos. sentences No. of neg. sentences
movie 400 200 200
DVDs 800 400 400

kitchen appliances 400 200 200

In our work, we use the movie review dataset from Pang and Lee [2005] (consisting of

5331 positive sentences and 5331 negative) for building a domain specific classifier and the

50

customer review dataset for building the domain adaptation classifier. For Experiments

1 and 2, we used 10662 (5331 positive and 5331 negative) sentences from the movie re-

view dataset by Pang and Lee [2005] as the experimental dataset. We use SVM-light-tk

tool for this experiment. To identify words, the sentiment words dictionary, available at

http://www.cs.uic.edu/ liub/FBS/sentiment-analysis, html was used. The sentiment word

list was first developed and used by Hu and Liu [2004].The sentiment words dictionary

consists of 6789 sentiment-words. For the adjective words, we used the online list of adjec-

tive words which contains about 1141 at http://www.enchantedlearning.com/wordlist/

adjectives.shtml. For single domain, we also performed experiments using unigrams as

features. Unigrams are nothing but one grams and they are singular words present in

sentences from the dataset. Based on unigrams, we look at each sentence to identify the

presence of those words. For unigrams, we consider the list of words present in the experi-

mental dataset (i.e, movie review dataset by Pang and Lee [2005]) as the vocabulary, after

eliminating all the stop-words.

For Experiments 3, 4 and 5, we have customer reviews as our dataset. For Experiments

3 and 4, a detailed description of the total number of grams in the customer review dataset

obtained from a complete syntax tree for each sentence are shown in Table 4.2, Table 4.3,

Table 4.4, Table 4.5 and Table 4.6. For Experiment 5, the total number of grams in the

customer review dataset obtained from a path tree (PT obtained by applying sentiment

based pruning strategy) for each sentence are shown in Table 4.7 and Table 4.8.

Table 4.2: Number of all grams with leaf nodes as grams in M , D, D′ and K, respectively

Number M D D′ K

unique grams 8037 9391 18147 9726
unique grams>1 985 1267 2202 1279

51

http://www.enchantedlearning.com/wordlist/adjectives.shtml
http://www.enchantedlearning.com/wordlist/adjectives.shtml

Table 4.3: Number of unigrams with leaf nodes as grams in M and D′

Number M D′

unique grams 2150 3942
unique grams>1 698 1447
unique grams>2 418 940
unique grams>3 304 680
unique grams>4 249 565
unique grams>5 201 478

Table 4.4: Number of unigrams with leaf nodes as grams in M , D and K

Number M D K

unique grams 2150 2273 2228
unique grams>1 698 861 869

Table 4.5: Number of unigrams without leaf nodes as grams in M , D, D′, K

Number M D D′ K

unique grams 231 256 313 249
unique grams>1 171 192 246 184

Table 4.6: Number of all unigrams as grams in M , D, D′, K

Number M D D′ K

unique grams 2374 2523 4230 2474
unique grams>1 864 1047 1682 1053

Table 4.7: Number of all grams with leaf nodes as PT grams in M , D, K

Number M D K

unique grams 5148 6275 6044
unique grams>1 633 796 780

Table 4.8: Number of unigrams with leaf nodes as PT grams in M , D, K

Number M D K

unique grams 1362 1519 1414
unique grams>1 415 526 511

52

Chapter 5

Results

5.1 Experiment 1 Results

The average results using SVM-light-TK tool along with tree kernel based approach on the

movie review dataset (5331 positive, 5331 negative sentences) are shown in Figure 5.1. The

following notations are used in the figure: FT represents full tree; MCT-SPS represents

minimum complete tree obtained using sentiment word pruning strategy and MCT-APS

represents minimum complete tree obtained using adjective word pruning strategy; PT-SPS

represents path tree obtained using sentiment word pruning strategy and PT-APS represents

path tree obtained using adjective word pruning strategy.

Table 5.1: Results for Experiment 1: domain specific classifiers using SVM and trees

Features Positive Negative

Trees Precision Recall F1 Precision Recall F1

FT 0.7038 0.7009 0.7023 0.7022 0.7052 0.6829
MCT-SPS 0.7460 0.6923 0.7180 0.7131 0.7643 0.7377
PT-SPS 0.7258 0.7342 0.7299 0.7153 0.7065 0.7108

MCT-APS 0.6916 0.6883 0.6894 0.6901 0.6919 0.6916
PT-APS 0.6796 0.6677 0.6751 0.6690 0.6841 0.6763
Unigrams 0.6726 0.7123 0.6917 0.6951 0.6541 0.6738

The experimental results show that PT and MCT results are better than the results of

FT, possible because FT might loose some useful information. We can even see that PT is

better than MCT because PT reduces additional noise from MCT by pruning the nodes from

53

the left and the right side of a given tree. As a baseline, we conducted experiments using

unigrams. The results show that tree kernel based method is very good when compared to

the basic kernel method. We can see that the results obtained using unigrams are very less

when compared to those obtained using various tree kernels as shown in Figure 5.1. This

shows that tree kernels are very good in sentiment classification by capturing the information

in the form of syntax trees.

5.2 Experiment 2 Results

The average results for 3 fold cross-validation using SVM with various types of grams as

features on movie review dataset (by Pang and Lee [2005]) from FT and PT trees are shown

in Table 5.2 and Table 5.3. These grams are extracted from the movie review dataset (10662

sentences). The grams extracted from PT trees are obtained using sentiment word based

pruning strategy. In the figure, FT represents full tree, PT represents path tree, ALN

represents all grams with leaf nodes, ULN represents unigrams with leaf nodes and UNLN

represents unigrams with no (i.e., without) leaf nodes.

Table 5.2: Results for Experiment 2: domain specific classifiers using SVM and grams from
FT

Features Positive Negative

Grams Precision Recall F1 Precision Recall F1

ALN 0.7406 0.7313 0.7359 0.7344 0.7436 0.7389
ULN 0.7350 0.7204 0.7276 0.7256 0.7400 0.7327

UNLN 0.5837 0.6214 0.6019 0.5952 0.5569 0.5754
All unigrams 0.6765 0.6848 0.6805 0.6809 0.6724 0.6765

The average results for 3 fold cross-validation using näıve Bayes multinomial with various

types of grams as features on movie review dataset (by Pang and Lee [2005]) from FT and

PT trees are shown in Table 5.4 andTable 5.5. These grams are extracted from the movie

review dataset (10662 sentences). The grams extracted from PT trees are obtained using

sentiment word based pruning strategy. As mentioned above, FT represents full tree, PT

54

Table 5.3: Results for Experiment 2: domain specific classifiers using SVM and grams from
PT-SPS

Features Positive Negative

Grams Precision Recall F1 Precision Recall F1

ALN 0.7361 0.7481 0.7312 0.6797 0.6742 0.6606
ULN 0.7190 0.7034 0.7111 0.7090 0.7244 0.7167

UNLN 0.5671 0.6476 0.6046 0.5887 0.5049 0.5435
All unigrams 0.6608 0.6719 0.6663 0.6658 0.6545 0.6600

represents path tree, ALN represents all grams with leaf nodes, ULN represents unigrams

with leaf nodes and UNLN represents unigrams with no (i.e., without) leaf nodes.

Table 5.4: Results for Experiment 2: domain specific classifiers using NBM and grams
from FT

Features Positive Negative

Grams Precision Recall F1 ROC Precision Recall F1 ROC

ALN 0.7610 0.7493 0.7550 0.8316 0.7526 0.7643 0.7583 0.8316
ULN 0.8220 0.7953 0.8083 0.8766 0.8013 0.8270 0.8143 0.8766

UNLN 0.5670 0.6163 0.5906 0.6023 0.5793 0.5286 0.5526 0.6023
All unigrams 0.7883 0.7663 0.7770 0.8506 0.7720 0.7933 0.7826 0.8506

Table 5.5: Results for Experiment 2: domain specific classifiers using NBM and grams
from PT-SPS

Features Positive Negative

grams Precision Recall F1 ROC Precision Recall F1 ROC
ALN 0.7330 0.8940 0.8026 0.9026 0.8606 0.6583 0.7386 0.9026
ULN 0.7846 0.7793 0.7823 0.8543 0.7806 0.7860 0.7833 0.8543

UNLN 0.5626 0.6006 0.5810 0.5940 0.5716 0.5333 0.5516 0.5940
All unigrams 0.8023 0.7753 0.7890 0.8660 0.7823 0.8090 0.7950 0.8660

5.3 Experiment 3 Results

Irrespective of the source and the target domains, we used the frequently co-occurring

entropy (FCE) method to calculate the entropy values for both the source and target domain

55

in order to select the generalized features for the source domain. We have considered the

following cases for all possible combinations of source and target domain and performed a

three fold cross-validation for each experiment:

1. Case 1: Results using an adaptive näıve Bayes classifier where source domain consists

of labeled data and target domain consists of both labeled and unlabeled data. When

we consider target domain labeled data, we split the target domain (movie domain

400 instances) or (DVDs domain 800 instances) or (DVDs domain 400 instances)

or (kitchen domain 400 instances) as 100 labeled target domain instances and the

remaining as unlabeled target domain instances. The number of test instances are

one-third of the total number of unlabeled target domain instances.

2. Case 2: Results using an adaptive näıve Bayes classifier where source domain consists

of labeled data and target domain consists of only unlabeled (movie domain consists

of 300 instances or DVDs domain consists of 700 instances or kitchen domain consists

of 400 instances) data. The number of test instances are one-third of the total number

of unlabeled target domain instances. This is considered as the Lower bound for our

experiments.

3. Case 3: Results using a supervised classification by using target domain labeled data

as training and the one-third of the target domain unlabeled data as testing instances.

4. Case 4: Results using a supervised classification with two-thirds of target domain

labeled data along with target domain unlabeled data as training instances and one-

third of target domain unlabeled data as testing instances. This is considered as the

Upper bound for our experiments.

In the following tables we use represent the movie domain as M , DVDs domain with 400

instances as D, DVDs with 800 instances as D′, kitchen domain as K. We also represent

Case 1 as “1”, Case 2 as “2”, Case 3 as “3” and Case 4 as “4”.

56

5.3.1 Unigrams with Leaf Nodes as Grams

Experiments with Source D′ and Target M : The following experiments are performed

to decide the number of grams to use as features from the target domain and the number of

generalized features we have to use for the source domain. First, we have experimented using

the source domain as DVDs (800 instances) and target domain as movie (400 instances).

Here we performed all the above four cases considering all the grams, or grams with count

>1 or count >2 or count >3 and by taking 50 or 100 as generalized features for the source

domain. Next, we have performed all the above specified cases with variable amount of

grams by considering the source domain as movie (400 instances) and target domain as

DVDs (800 instances) and also by considering source domain as movie (400 instances) and

target domain as DVDs (400 instances). FCE represents frequently co-occurring entropy.

The results from Table 5.6, show that Case 4>Case 1>Case 3>Case 2. The results ob-

tained by using the “grams>1”, “grams>2” are better than or very close to those obtained

using “all the grams” as features. We have also seen that the results obtained by consider-

ing the top 100 FCE features as generalized features are generally better than the results

obtained using the top 50 FCE features as generalized features.

The results from Table 5.7, show that Case 4>Case 1>Case 3>Case 2. The results

obtained by using the “grams>1”, “grams>2” are better than using “all the grams” as

features. We have also seen there is an increase in the performance of the classifiers by

considering the top 100 FCE features as generalized features.

The results from Table 5.8 show that Case 4>Case 1>Case 3>Case 2. The results

obtained by using the “grams>1” or “grams>2” along with top 100 FCE features as gener-

alized features are better than using “all the grams” as features. By looking at the results

from Table 5.8 and 5.7, we have also observed that the performance of the classifier is de-

creased when we have more amount of unlabeled data in the target domain. It might be

because the source domain is not having sufficient amount of labeled data to train a good

classifier.

57

Table 5.6: Results using unigrams with leaf nodes as grams for Source D′ and Target M

Grams FCE Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

all 50

1 0.5573 0.8516 0.6733 0.7136 0.6793 0.3170 0.4256 0.7136
2 0.5113 0.3703 0.4170 0.5363 0.5106 0.6506 0.5663 0.5363
3 0.7933 0.4666 0.5836 0.7230 0.7053 0.8656 0.7203 0.7230
4 0.7546 0.8206 0.7860 0.8636 0.8026 0.7330 0.7663 0.8636

100

1 0.7236 0.6973 0.7076 0.7823 0.7196 0.7386 0.7270 0.7733
2 0.3250 0.0613 0.1020 0.4383 0.4840 0.8793 0.6240 0.4383
3 0.7933 0.4666 0.5836 0.7230 0.7053 0.8656 0.7203 0.7230
4 0.7546 0.8206 0.7860 0.8636 0.8026 0.7330 0.7663 0.8636

>1 50

1 0.6603 0.8076 0.7253 0.7753 0.7710 0.5843 0.6593 0.7753
2 0.5150 0.8500 0.6463 0.5833 0.4190 0.2273 0.2833 0.5836
3 0.7563 0.4656 0.5710 0.7380 0.6150 0.8493 0.7120 0.7380
4 0.7923 0.8293 0.8060 0.8636 0.8200 0.7793 0.7963 0.8636

100

1 0.6760 0.7400 0.7060 0.7740 0.7140 0.6473 0.6780 0.7740
2 0.6283 0.6326 0.6253 0.6773 0.6186 0.6066 0.6073 0.6773
3 0.7563 0.4656 0.5710 0.7380 0.6150 0.8493 0.7120 0.7380
4 0.7923 0.8293 0.8060 0.8636 0.8200 0.7793 0.7963 0.8636

>2 50

1 0.6536 0.6756 0.6620 0.7253 0.6576 0.6413 0.6470 0.7253
2 0.5030 0.8730 0.6282 0.5090 0.6150 0.1340 0.1800 0.5090
3 0.7236 0.4956 0.5850 0.7203 0.6080 0.8003 0.6883 0.7203
4 0.7953 0.8110 0.8023 0.8670 0.7973 0.7890 0.7926 0.8670

100

1 0.6800 0.6550 0.6660 0.7460 0.6600 0.6880 0.6730 0.7460
2 0.6840 0.6193 0.6453 0.6810 0.6506 0.7176 0.6780 0.6810
3 0.7236 0.4956 0.5850 0.7203 0.6080 0.8003 0.6883 0.7203
4 0.7953 0.8110 0.8023 0.8670 0.7973 0.7890 0.7926 0.8670

>3 50

1 0.7173 0.7390 0.7260 0.7820 0.7330 0.7083 0.7183 0.7820
2 0.5560 0.4996 0.5180 0.5803 0.5556 0.6130 0.5773 0.5803
3 0.7713 0.5846 0.6640 0.7570 0.6670 0.8253 0.7370 0.7570
4 0.7543 0.8006 0.7763 0.8520 0.7873 0.7410 0.7626 0.8520

100

1 0.6356 0.6973 0.6646 0.7350 0.6656 0.5980 0.6286 0.7350
2 0.4840 0.6360 0.5390 0.5360 0.5160 0.3533 0.3970 0.5360
3 0.7713 0.5846 0.6640 0.7570 0.6670 0.8253 0.7370 0.7570
4 0.7543 0.8006 0.7763 0.8520 0.7873 0.7410 0.7626 0.8520

58

Table 5.7: Results using unigrams with leaf nodes as grams for Source M and Target D′

Grams FCE Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

all 50

1 0.5833 0.8286 0.6723 0.6490 0.6820 0.3816 0.4350 0.6490
2 0.4930 0.8246 0.6140 0.4280 0.4013 0.1530 0.1900 0.4206
3 0.7213 0.3746 0.4523 0.7190 0.5776 0.8323 0.6683 0.7190
4 0.7360 0.7010 0.7170 0.8150 0.7133 0.7493 0.7296 0.8150

100

1 0.5066 0.9516 0.6606 0.5156 0.6090 0.0743 0.1310 0.5156
2 0.4960 0.9546 0.6520 0.4096 0.2326 0.0339 0.0573 0.3940
3 0.7213 0.3746 0.4523 0.7190 0.5776 0.8323 0.6683 0.7190
4 0.7360 0.7010 0.7170 0.8150 0.7133 0.7493 0.7296 0.8150

>1 50

1 0.7040 0.4646 0.5593 0.7363 0.6026 0.8076 0.6903 0.7430
2 0.5213 0.4556 0.4413 0.5170 0.4740 0.5500 0.4750 0.5170
3 0.7383 0.3850 0.5043 0.7340 0.5820 0.8596 0.6926 0.7340
4 0.7650 0.7306 0.7466 0.8270 0.7443 0.7793 0.7603 0.8270

100

1 0.6803 0.6150 0.6420 0.7366 0.6423 0.6966 0.6660 0.7366
2 0.6930 0.6163 0.6346 0.7280 0.6503 0.6970 0.6563 0.7280
3 0.7383 0.3850 0.5043 0.7340 0.5820 0.8596 0.6926 0.7340
4 0.7650 0.7306 0.7466 0.8270 0.7443 0.7793 0.7603 0.8270

>2 50

1 0.7190 0.4806 0.5746 0.7293 0.6103 0.8116 0.6956 0.7293
2 0.5560 0.4080 0.4520 0.5256 0.4916 0.6236 0.5386 0.5256
3 0.7330 0.4443 0.5523 0.7226 0.6003 0.8366 0.6986 0.7226
4 0.7640 0.7296 0.7460 0.8156 0.7393 0.7733 0.7560 0.8156

100

1 0.6773 0.6383 0.6516 0.7390 0.6626 0.6896 0.6706 0.7390
2 0.6876 0.4520 0.5430 0.7060 0.5926 0.7936 0.6780 0.7060
3 0.7330 0.4443 0.5523 0.7226 0.6003 0.8366 0.6986 0.7226
4 0.7640 0.7296 0.7460 0.8156 0.7393 0.7733 0.7560 0.8156

>3 50

1 0.6780 0.4683 0.5530 0.6983 0.5916 0.7730 0.6706 0.6983
2 0.4713 0.6300 0.5330 0.4380 0.4716 0.3076 0.3540 0.4380
3 0.7213 0.4070 0.5110 0.7276 0.5873 0.8360 0.6886 0.7276
4 0.7906 0.7220 0.7533 0.8346 0.7450 0.8046 0.7726 0.8346

100

1 0.6753 0.5050 0.5773 0.7083 0.6053 0.7566 0.6720 0.7083
2 0.6323 0.5370 0.5740 0.6926 0.6023 0.6856 0.6363 0.6926
3 0.7213 0.4070 0.5110 0.7276 0.5873 0.8360 0.6886 0.7276
4 0.7906 0.7220 0.7533 0.8346 0.7450 0.8046 0.7726 0.8346

59

Table 5.8: Results using unigrams with leaf nodes as grams for Source M and Target D

Grams FCE Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

all 50

1 0.8783 0.8726 0.8740 0.9370 0.8800 0.8806 0.8786 0.9370
2 0.4883 0.5693 0.5056 0.5153 0.5860 0.4323 0.4356 0.5153
3 0.8886 0.6363 0.7216 0.8823 0.7420 0.9126 0.8086 0.8823
4 0.9000 0.8993 0.8990 0.9713 0.9000 0.9020 0.9003 0.9713

100

1 0.6640 0.9596 0.7843 0.8996 0.9300 0.5133 0.6593 0.8996
2 0.5406 0.9726 0.6950 0.5827 0.8523 0.1703 0.2756 0.7693
3 0.8886 0.6363 0.7216 0.8823 0.7420 0.9126 0.8086 0.8823
4 0.9000 0.8993 0.8990 0.9713 0.9000 0.9020 0.9003 0.9713

>1 50

1 0.9063 0.8396 0.8713 0.9410 0.8503 0.9140 0.8810 0.9410
2 0.3970 0.3930 0.3693 0.4896 0.5520 0.5976 0.5440 0.4896
3 0.8306 0.7136 0.7673 0.8790 0.7483 0.8543 0.7966 0.8790
4 0.9110 0.8990 0.9030 0.9683 0.9020 0.9143 0.9080 0.9683

100

1 0.8750 0.8646 0.8686 0.9430 0.8686 0.8733 0.8700 0.9430
2 0.5353 0.7066 0.6016 0.6300 0.7316 0.4680 0.5460 0.6300
3 0.8306 0.7136 0.7673 0.8790 0.7483 0.8543 0.7966 0.8790
4 0.9110 0.8990 0.9030 0.9683 0.9020 0.9143 0.9080 0.9683

>2 50

1 0.9036 0.8070 0.8526 0.9470 0.8246 0.9133 0.8666 0.9470
2 0.4050 0.3400 0.3916 0.3853 0.4420 0.5180 0.4766 0.3853
3 0.8753 0.7013 0.7786 0.8920 0.7496 0.8990 0.8173 0.8920
4 0.9300 0.9400 0.9093 0.9703 0.8866 0.9340 0.9093 0.9703

100

1 0.9123 0.8266 0.8673 0.9533 0.8410 0.9420 0.8786 0.9533
2 0.8626 0.8800 0.8713 0.9346 0.8776 0.8603 0.8686 0.9346
3 0.8753 0.7013 0.7786 0.8920 0.7496 0.8990 0.8173 0.8920
4 0.9300 0.9400 0.9093 0.9703 0.8866 0.9340 0.9093 0.9703

>3 50

1 0.9313 0.7886 0.8540 0.9473 0.8136 0.9386 0.8713 0.9473
2 0.3450 0.2660 0.2936 0.3536 0.4806 0.6090 0.5260 0.3536
3 0.8616 0.7090 0.7780 0.8853 0.7506 0.8846 0.8120 0.8853
4 0.9463 0.8666 0.9036 0.9630 0.8766 0.9456 0.9090 0.9630

100

1 0.9263 0.8163 0.8673 0.9536 0.8323 0.9316 0.8786 0.9536
2 0.8923 0.8553 0.8730 0.9530 0.8586 0.8906 0.8730 0.9580
3 0.8616 0.7090 0.7780 0.8853 0.7506 0.8846 0.8120 0.8853
4 0.9463 0.8666 0.9036 0.9630 0.8766 0.9456 0.9090 0.9630

60

From the above experiments, we have seen that Case 1 results are better than Case

2 results. It is because in Case 1, we are using target domain labeled data along with

source domain labeled data for training a classifier to predict the labels for target domain

unlabeled data. We have also seen that the results obtained using the grams>1 and also

by using grams>2 along with top 50 or 100 FCE features as generalized features are better

than any other combinations. Next, we have seen that the results obtained by using source

as DVDs (800) and target as movie (400) are better than less amount source domain data

such as using source as movie (400) and target as DVDs (800) domain. Case 4 results are

considered as upper bound for our experiments. For the above experiments, we have found

that the results for Case 4>Case 1>Case 3>Case 2 for majority of the experiments. Thus,

from the above experiments we have decided that we will perform the remaining experiments

by using grams>1 along with top 100 FCE features as generalized features in source domain

and the whole vocabulary as features in target domain.

5.4 Experiment 4 Results

5.4.1 Results Using Unigrams with Leaf Nodes as Grams

In addition to the four different cases, we are performing another experiment (i.e., Case 5)

with source domain data as training data and target domain unlabeled data as test data.

The target domain unlabeled data is divided into three folds and the results are calculated

as the average of the 3 folds. This is considered as the Lower bound for our experiments.

We represent Case 5 as “5”. Table 5.9 shows that the results for Case 4>Case 1>Case

3>Case 2 >Case 5. From Table 5.9, we can see that sentiment classification across M→K

and K→D domains are better when compared with K→M and D→K.

5.4.2 Results Using All Grams with Leaf Nodes as Grams

Table 5.10, shows that the results for Case 4>Case 1>Case 3>Case 2>Case 5. From Ta-

ble 5.10, we can see that sentiment classification across M→D, M→K and K→D domains

61

Table 5.9: Results using unigrams with leaf nodes as grams

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

D→K

1 0.7420 0.8130 0.7690 0.8666 0.7876 0.7360 0.7563 0.8666
2 0.6506 0.6473 0.6413 0.7466 0.6560 0.6736 0.6573 0.7466
3 0.7663 0.5783 0.6570 0.7860 0.6600 0.8340 0.7333 0.7860
4 0.8240 0.8530 0.8290 0.9240 0.8400 0.8366 0.8323 0.9240
5 0.6750 0.5823 0.6200 0.7260 0.6306 0.7306 0.6720 0.7260

K→D

1 0.8943 0.7876 0.8370 0.9416 0.8073 0.9066 0.8536 0.9416
2 0.8943 0.7876 0.8373 0.9446 0.8066 0.9053 0.8530 0.9446
3 0.8716 0.7226 0.7873 0.8943 0.7666 0.8910 0.8236 0.8943
4 0.9250 0.8676 0.8940 0.9706 0.8733 0.9256 0.8976 0.9706
5 0.7540 0.6583 0.7026 0.7920 0.6953 0.7836 0.7366 0.7920

K→M

1 0.6836 0.5883 0.6323 0.7103 0.6426 0.7346 0.6856 0.7103
2 0.5396 0.3413 0.4176 0.5010 0.5213 0.7143 0.6020 0.5010
3 0.7563 0.4906 0.5890 0.7426 0.6273 0.8450 0.7170 0.7426
4 0.7486 0.7796 0.7633 0.8603 0.7966 0.7406 0.7540 0.8603
5 0.5633 0.5213 0.5390 0.5933 0.5540 0.5956 0.5713 0.5933

M→K

1 0.7513 0.8113 0.7843 0.8553 0.7980 0.7400 0.7676 0.8553
2 0.5890 0.6936 0.6363 0.6363 0.6250 0.5143 0.5633 0.6363
3 0.7663 0.5446 0.6350 0.7776 0.6490 0.8323 0.7283 0.7776
4 0.8343 0.8203 0.8266 0.9116 0.8206 0.8330 0.8260 0.9116
5 0.5873 0.6396 0.6123 0.6373 0.5976 0.5446 0.5693 0.6373

62

are better when compared with D→M , K→M and D→K. From Table 5.9 and Table 5.10,

we can also observe that the results obtained using “unigrams with leaf nodes” as features

are better than or very near to the results obtained using “all grams with leaf nodes” as

features.

5.4.3 Results Using Unigrams without Leaf Nodes as Grams

Table 5.11, shows that the results for Case 4>Case 3>Case 1>Case 2>Case 5 in majority

of the cases. By comparing the results from Table 5.11 with the results from Table 5.9 and

Table 5.10, we can state that by using “unigrams without leaf nodes” as features decreases

the performance of sentiment classification across domains. Thus the results suggests that

“unigrams without leaf nodes” are not as informative as “all grams with leaf nodes” and

“unigrams with leaf nodes”.

5.4.4 Results Using All Unigrams as Grams

Table 5.12 shows that the results for Case 4>Case 1>Case 3>Case 2>Case 5 in majority

of the cases. By comparing the results from Table 5.12 with the results from Table 5.9,

Table 5.10 and Table 5.11, we observed that using “all unigrams” as features are better

than using “unigrams without leaf nodes” as features. However, “all unigrams” are not as

informative as “all grams with leaf nodes” and “unigrams with leaf nodes”.

5.5 Experiment 5 Results

5.5.1 Results Using All Grams with Leaf Nodes from PT Trees
as Grams

Table 5.13 shows that the results for Case 4>Case 1>Case 3>Case 2>Case 5 in majority

of the cases. By comparing the results from Table 5.13 with the results from Table 5.10,

we observed that using grams derived from “path tree” as features are not as good as the

grams derived from the complete syntax tree. However, we have observed that sentiment

63

Table 5.10: Results using all grams with leaf nodes as grams

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

M→D′
1 0.6156 0.7286 0.6650 0.6760 0.6736 0.5410 0.5953 0.6760
2 0.5103 0.8833 0.6443 0.5046 0.4530 0.1473 0.2116 0.5046
3 0.7433 0.3753 0.4963 0.7163 0.5820 0.8696 0.6966 0.7263
4 0.7510 0.7160 0.7323 0.8063 0.7316 0.7630 0.7463 0.8063
5 0.5770 0.7300 0.6440 0.6496 0.6283 0.4630 0.5323 0.6496

D′→M

1 0.6056 0.6950 0.6453 0.6923 0.6356 0.5363 0.5756 0.6923
2 0.5950 0.5093 0.5450 0.6013 0.5643 0.6483 0.6003 0.6013
3 0.8103 0.4570 0.5553 0.6840 0.6143 0.8573 0.7083 0.6840
4 0.7756 0.7480 0.7580 0.8383 0.7590 0.7876 0.7703 0.8383
5 0.6143 0.4580 0.5246 0.6086 0.5726 0.7206 0.6376 0.6086

M→D

1 0.8880 0.8866 0.8863 0.9443 0.8870 0.8870 0.8866 0.9443
2 0.5933 0.8336 0.6926 0.7060 0.7653 0.4393 0.5536 0.7060
3 0.8760 0.6620 0.7466 0.8866 0.7303 0.8986 0.8030 0.8866
4 0.9426 0.8733 0.9063 0.9790 0.8820 0.9473 0.9130 0.9790
5 0.5313 0.6146 0.5693 0.5676 0.5433 0.4590 0.4970 0.5676

D→K

1 0.7643 0.6786 0.7136 0.8003 0.7120 0.7906 0.7446 0.8003
2 0.6463 0.5646 0.5976 0.6953 0.6140 0.6906 0.6460 0.6953
3 0.7503 0.5260 0.6160 0.7280 0.6373 0.8286 0.7190 0.7280
4 0.8320 0.7850 0.8036 0.8943 0.7980 0.8433 0.8160 0.8943
5 0.7060 0.5630 0.6243 0.7160 0.6376 0.7676 0.6946 0.7160

K→D

1 0.9403 0.8393 0.8866 0.9666 0.8553 0.9463 0.8986 0.9666
2 0.9150 0.8520 0.8813 0.9540 0.8980 0.9193 0.8906 0.9540
3 0.8456 0.6896 0.7573 0.8970 0.7380 0.8736 0.7983 0.8970
4 0.9386 0.9006 0.9190 0.9820 0.9030 0.9386 0.9203 0.9820
5 0.7940 0.6930 0.7396 0.8123 0.7276 0.8216 0.7713 0.8123

K→M

1 0.6196 0.5486 0.5770 0.6396 0.6600 0.6946 0.6373 0.6396
2 0.4710 0.3326 0.3866 0.4460 0.4906 0.6390 0.5533 0.4446
3 0.7133 0.4230 0.5253 0.6863 0.5903 0.8283 0.6870 0.6863
4 0.7580 0.7806 0.7663 0.8350 0.7750 0.7473 0.7593 0.8350
5 0.5516 0.5286 0.5393 0.5596 0.5410 0.5626 0.5510 0.5596

M→K

1 0.7723 0.7213 0.7443 0.8316 0.7396 0.7866 0.7610 0.8316
2 0.5793 0.6610 0.6176 0.6456 0.6066 0.5183 0.5576 0.6456
3 0.8033 0.5306 0.6243 0.7256 0.6506 0.8563 0.7333 0.7256
4 0.8316 0.7800 0.8036 0.8910 0.7930 0.8416 0.8153 0.8910
5 0.5610 0.6206 0.5883 0.6243 0.5753 0.5143 0.5420 0.6243

64

Table 5.11: Results using unigrams without leaf nodes as grams

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

M→D′
1 0.5456 0.4853 0.5043 0.5453 0.5196 0.5760 0.5390 0.5453
2 0.5470 0.5050 0.4966 0.5480 0.5056 0.5473 0.4953 0.5480
3 0.5943 0.3740 0.4570 0.6113 0.5466 0.7516 0.6323 0.6113
4 0.6166 0.6203 0.6180 0.6600 0.6180 0.6143 0.6156 0.6600
5 0.5176 0.6843 0.5893 0.5343 0.5373 0.3626 0.4326 0.5343

D′→M

1 0.5133 0.4496 0.4753 0.5426 0.4993 0.5626 0.5263 0.5426
2 0.4776 0.4770 0.4740 0.5033 0.4663 0.4670 0.4633 0.5033
3 0.6593 0.4713 0.5416 0.6686 0.5910 0.7533 0.6590 0.6686
4 0.6793 0.6743 0.6766 0.7356 0.6726 0.6776 0.6750 0.7356
5 0.5243 0.5216 0.5220 0.5310 0.5243 0.5273 0.5246 0.5310

M→D

1 0.5223 0.4540 0.4813 0.5470 0.5130 0.5786 0.5403 0.5470
2 0.5133 0.5610 0.5316 0.4763 0.4943 0.4506 0.4646 0.4583
3 0.6943 0.5080 0.5803 0.6796 0.6080 0.7660 0.6736 0.6796
4 0.6540 0.6660 0.6576 0.6950 0.6566 0.6446 0.6483 0.6950
5 0.4903 0.6020 0.5393 0.4703 0.4843 0.3746 0.4206 0.4703

M→K

1 0.5470 0.4893 0.5140 0.5510 0.5340 0.5896 0.5586 0.5510
2 0.4576 0.4900 0.4693 0.4593 0.4493 0.4173 0.4286 0.4593
3 0.6696 0.4430 0.5306 0.6680 0.5813 0.7786 0.6636 0.6680
4 0.6180 0.6203 0.6110 0.6803 0.6176 0.6140 0.6080 0.6803
5 0.5066 0.5860 0.5426 0.5483 0.5176 0.4350 0.4723 0.5483

K→M

1 0.4736 0.4196 0.4416 0.5200 0.4760 0.5280 0.4976 0.5200
2 0.4536 0.4236 0.4363 0.4750 0.4600 0.4896 0.4723 0.4750
3 0.6513 0.4390 0.5203 0.6636 0.5760 0.7650 0.6540 0.6636
4 0.6436 0.6750 0.6530 0.7400 0.6580 0.6316 0.6390 0.7400
5 0.4800 0.5056 0.4873 0.4936 0.4803 0.4546 0.4613 0.4936

K→D

1 0.5630 0.4916 0.5246 0.5803 0.5506 0.6210 0.5836 0.5803
2 0.5026 0.4323 0.4643 0.5313 0.5020 0.5720 0.5343 0.5313
3 0.6806 0.4850 0.5650 0.6800 0.6010 0.7726 0.6760 0.6800
4 0.6696 0.6246 0.6463 0.7186 0.6510 0.6953 0.6723 0.7186
5 0.6166 0.5930 0.6033 0.6343 0.6063 0.6286 0.6163 0.6343

D→K

1 0.5716 0.4236 0.4853 0.5800 0.5436 0.6856 0.6053 0.5800
2 0.5113 0.4106 0.4493 0.5040 0.4930 0.5890 0.5330 0.5040
3 0.7046 0.4850 0.5393 0.6890 0.5953 0.8150 0.6860 0.6890
4 0.6690 0.6566 0.6580 0.7393 0.6613 0.6700 0.6606 0.7393
5 0.5703 0.5763 0.5700 0.6000 0.5686 0.5616 0.5620 0.6000

65

Table 5.12: Results using all unigrams as grams

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

M→D′
1 0.6526 0.3173 0.4213 0.6550 0.5516 0.8343 0.6630 0.6550
2 0.5526 0.4363 0.4563 0.5826 0.5310 0.6356 0.5636 0.5813
3 0.7790 0.2776 0.3900 0.7206 0.5633 0.9203 0.6970 0.7206
4 0.7583 0.7056 0.7303 0.8173 0.7253 0.7743 0.7486 0.8173
5 0.5340 0.6340 0.5793 0.5666 0.5446 0.4430 0.4883 0.5666

D′→M

1 0.5230 0.8496 0.6326 0.5873 0.5943 0.2060 0.2346 0.5873
2 0.4886 0.7410 0.5850 0.5013 0.3300 0.2316 0.2723 0.5210
3 0.7933 0.4206 0.5383 0.7250 0.6040 0.8780 0.7120 0.7250
4 0.7806 0.8006 0.7893 0.8683 0.7950 0.7756 0.7833 0.8683
5 0.5436 0.4513 0.4923 0.5486 0.5316 0.6223 0.5723 0.5486

M→D

1 0.7376 0.6290 0.6773 0.7823 0.6736 0.7743 0.7190 0.7823
2 0.4523 0.5200 0.4836 0.3936 0.4083 0.3536 0.3783 0.3936
3 0.9100 0.5036 0.6466 0.8570 0.6590 0.9543 0.7790 0.8570
4 0.9166 0.8566 0.8836 0.9563 0.8623 0.9220 0.8890 0.9563
5 0.4936 0.5323 0.5113 0.5203 0.4930 0.4546 0.4723 0.5203

K→D

1 0.8756 0.7713 0.8196 0.9050 0.7930 0.8826 0.8353 0.9050
2 0.8033 0.7600 0.7853 0.8783 0.7740 0.8103 0.7913 0.8783
3 0.8736 0.4836 0.6170 0.8306 0.6416 0.9250 0.7550 0.8306
4 0.9230 0.8306 0.8733 0.9483 0.8406 0.9230 0.8783 0.9483
5 0.7183 0.6696 0.6923 0.7540 0.6843 0.7246 0.7033 0.7540

D→K

1 0.6876 0.8013 0.7376 0.7950 0.7640 0.6340 0.6900 0.7950
2 0.6323 0.5243 0.5706 0.7036 0.5996 0.7006 0.6453 0.7036
3 0.7920 0.3360 0.4493 0.7506 0.5753 0.8896 0.6943 0.7506
4 0.8003 0.7836 0.7916 0.8883 0.7936 0.8070 0.8000 0.8883
5 0.6826 0.5740 0.6233 0.7150 0.6316 0.7326 0.6783 0.7150

M→K

1 0.6553 0.5513 0.5983 0.6823 0.6110 0.7110 0.6563 0.6823
2 0.4780 0.5706 0.5163 0.4990 0.4713 0.3786 0.4166 0.4990
3 0.8193 0.3210 0.4606 0.7263 0.5786 0.9346 0.7136 0.7263
4 0.8176 0.7886 0.8006 0.8796 0.7936 0.8326 0.8100 0.8796
5 0.5243 0.5683 0.5423 0.5353 0.5290 0.4846 0.5026 0.5353

K→M

1 0.5353 0.5443 0.5380 0.5743 0.5426 0.5330 0.5360 0.5743
2 0.4883 0.6536 0.5573 0.4956 0.4633 0.3096 0.3670 0.4956
3 0.7233 0.4353 0.5193 0.7130 0.6016 0.8263 0.6913 0.7130
4 0.7783 0.8206 0.7983 0.8510 0.8120 0.7673 0.7880 0.8510
5 0.4966 0.4826 0.4880 0.5103 0.5046 0.5196 0.5106 0.5103

66

classification across M→D, M→K and K→D domains are better when compared with

D→M , K→M and D→K (i.e., similar to the case when we use grams from complete

syntax tree as features).

5.5.2 Results Using Unigrams with Leaf Nodes from PT Trees as
Grams

Table 5.14 shows that the results for Case 4>Case 1>Case 3>Case 2>Case 5 in majority

of the cases. By comparing the results from Table 5.14 with the results from Table 5.9,

we observed that using grams derived from “path tree” as features are not as good as the

grams derived from the complete syntax tree for performing sentiment classification across

domains. However, we have observed that sentiment classification across M→D, M→K

and K→D domains are better when compared with D→M , K→M and D→K (i.e., similar

to the case, where we use grams from complete syntax tree as features). We have also

observed that the results obtained using “unigrams with leaf nodes” as features are better

than or very near to the results obtained using “all grams with leaf nodes” as features.

67

Table 5.13: Results using all grams with leaf nodes as grams from PT-SPS

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

M→D

1 0.8160 0.8073 0.8106 0.8846 0.8093 0.8223 0.8146 0.8846
2 0.5906 0.7406 0.6520 0.6746 0.6656 0.4956 0.5683 0.6746
3 0.7496 0.6073 0.6636 0.7953 0.6816 0.7960 0.7326 0.7953
4 0.8936 0.7976 0.8400 0.9416 0.8203 0.8973 0.8550 0.9416
5 0.5340 0.5633 0.5446 0.5596 0.5396 0.5100 0.5206 0.5596

D→M

1 0.6530 0.4346 0.5216 0.6753 0.5723 0.7623 0.6536 0.6753
2 0.4866 0.1623 0.2423 0.5096 0.4990 0.8326 0.6226 0.5096
3 0.6453 0.6753 0.6566 0.7046 0.6556 0.6250 0.6356 0.7046
4 0.7740 0.8183 0.7956 0.8740 0.8283 0.7846 0.8056 0.8740
5 0.5140 0.3436 0.4110 0.4810 0.5073 0.6756 0.5793 0.4810

M→K

1 0.7356 0.7856 0.7600 0.7996 0.7720 0.7196 0.7450 0.7996
2 0.5666 0.5043 0.5320 0.5943 0.5450 0.6020 0.5713 0.5943
3 0.6986 0.6480 0.6723 0.7533 0.6683 0.7170 0.6916 0.7533
4 0.7890 0.8096 0.7990 0.8683 0.8116 0.7893 0.8000 0.8683
5 0.5880 0.6016 0.5940 0.6283 0.5936 0.5800 0.5853 0.6283

K→M

1 0.7113 0.5536 0.6173 0.7500 0.6330 0.7746 0.6930 0.7500
2 0.5113 0.2313 0.3183 0.5083 0.5036 0.7793 0.6106 0.5083
3 0.6570 0.6066 0.6280 0.7276 0.6336 0.6860 0.6560 0.7276
4 0.7510 0.7773 0.7606 0.8256 0.7653 0.7443 0.7516 0.8256
5 0.5633 0.5003 0.5270 0.5850 0.5440 0.6033 0.5703 0.5850

D→K

1 0.7303 0.7020 0.7100 0.7743 0.7100 0.7323 0.7156 0.7743
2 0.6716 0.6846 0.6766 0.7263 0.6773 0.6653 0.6700 0.7263
3 0.7060 0.6303 0.6640 0.7646 0.6683 0.7400 0.7006 0.7646
4 0.7976 0.7916 0.7943 0.8643 0.7946 0.8026 0.7983 0.8643
5 0.6726 0.6590 0.6646 0.7300 0.6733 0.6873 0.6793 0.7300

K→D

1 0.8603 0.7536 0.8023 0.9200 0.7786 0.8343 0.8250 0.9200
2 0.9126 0.7246 0.8063 0.9113 0.7676 0.9326 0.8410 0.9113
3 0.7290 0.6510 0.6850 0.7843 0.6796 0.7516 0.7116 0.7843
4 0.8456 0.8183 0.8296 0.9286 0.8180 0.8553 0.8343 0.9286
5 0.7426 0.6226 0.6746 0.7706 0.6740 0.7903 0.7250 0.7706

68

Table 5.14: Results using unigrams with leaf nodes as grams from PT-SPS

S→T Case Positive Negative

Precision Recall F1 ROC Precision Recall F1 ROC

M→D

1 0.8183 0.7856 0.8016 0.9043 0.7953 0.8266 0.8143 0.9043
2 0.7460 0.7960 0.7586 0.8760 0.7786 0.7013 0.7186 0.876
3 0.7903 0.7126 0.7480 0.8286 0.7366 0.8100 0.7703 0.8286
4 0.8533 0.8470 0.8493 0.9436 0.8473 0.8546 0.8503 0.9436
5 0.5550 0.5750 0.5640 0.5803 0.5600 0.5400 0.5490 0.5803

D→M

1 0.7063 0.5123 0.5923 0.6840 0.6156 0.7836 0.6883 0.6840
2 0.4666 0.2083 0.2783 0.5110 0.4930 0.7693 0.5980 0.5110
3 0.6743 0.7236 0.6900 0.7463 0.7006 0.7846 0.6580 0.7463
4 0.7490 0.7986 0.7730 0.8286 0.7863 0.7340 0.7730 0.8286
5 0.5690 0.3460 0.4296 0.5023 0.5283 0.7346 0.6140 0.5023

M→K

1 0.7353 0.7943 0.7633 0.8553 0.7736 0.7116 0.7410 0.8553
2 0.6700 0.4963 0.5833 0.6730 0.6150 0.7480 0.6733 0.6730
3 0.7113 0.7223 0.7153 0.7826 0.7176 0.7070 0.7106 0.7826
4 0.7706 0.8533 0.8096 0.8800 0.8016 0.7463 0.7883 0.8800
5 0.6136 0.5936 0.6033 0.682 0.6053 0.6260 0.6153 0.6820

K→M

1 0.6883 0.6163 0.6483 0.7620 0.6626 0.7273 0.6923 0.7620
2 0.6126 0.1993 0.2903 0.5473 0.5250 0.8786 0.6566 0.5473
3 0.6756 0.7046 0.6866 0.7476 0.6920 0.6506 0.6650 0.7476
4 0.7606 0.8196 0.7876 0.8430 0.8080 0.7396 0.7703 0.8430
5 0.6290 0.5533 0.5883 0.6426 0.6013 0.6733 0.635 0.6426

K→D

1 0.8276 0.7493 0.7863 0.9090 0.7736 0.8453 0.8083 0.9090
2 0.8273 0.8063 0.8163 0.9096 0.8103 0.8330 0.8213 0.9096
3 0.7696 0.6800 0.7206 0.8260 0.7200 0.7990 0.7563 0.8260
4 0.8613 0.8310 0.8453 0.9506 0.8386 0.8643 0.8510 0.9506
5 0.7393 0.6443 0.6886 0.7836 0.6833 0.7713 0.7243 0.7836

D→K

1 0.6816 0.7600 0.7156 0.8160 0.7270 0.6473 0.6816 0.8160
2 0.6023 0.7943 0.6830 0.7073 0.6960 0.4763 0.5630 0.7073
3 0.6920 0.6906 0.6836 0.7763 0.6903 0.6906 0.6823 0.7763
4 0.8023 0.8476 0.8240 0.9126 0.8356 0.7930 0.8133 0.9126
5 0.6636 0.6730 0.6676 0.7346 0.6786 0.6696 0.6730 0.7346

69

Chapter 6

Discussion and Conclusions

In this chapter, we will discuss the questions raised in Section 4.1 using the results reported

in Chapter 5. We also draw some conclusions and address some of the limitations that our

approach faces.

The research questions that we raised are restated here, for convenience:

• Are the grams extracted from syntax trees, when used as features in a domain specific

classifier, comparable in terms of prediction and accuracy to the structured syntax

subtrees? Overall, how useful are these features for the sentence-level sentiment clas-

sification problem?

The results from Table 5.1, Table 5.2 and Table 5.5 show that using different types

of grams as features is as good as using structured syntax subtrees as features for a

domain specific classifier. We performed experiments using different types of grams

from complete syntax tree as well as from path trees. Table 5.2 when compared with

Table 5.1, shows that SVM performs very well when considering “all grams with leaf

nodes” and “unigrams with leaf nodes” as features. Table 5.5 when compared with

Table 5.1, shows that näıve Bayes also performs well when considering “all grams with

leaf nodes” and “Unigrams with leaf nodes” as features.

• What is the effect of using various gram types described in Section 3.4 (i.e., all grams

with leaf nodes, unigrams with leaf nodes, unigrams without leaf nodes, all unigrams)

70

for training the domain adaptation classifiers? Is it better to use all the features or

a reduced set of features? Also, how many features do we need to use as generalized

features?

Table 5.6, Table 5.7 and Table 5.8 show that the results are not very good when we use

all the grams (of a particular type) as features. One reason for this is because some

of those features are not informative for training a cross-domain classifier. However,

when we decrease the number of features (by eliminating the grams that occur only

1 time) we observed that there is an improvement in the performance of sentiment

classification across domains in each of the four different cases. But, if we continue

this process and reduce more the number of features then there may or may not

be an increase in the performance of the classifier across domains. In addition to

the above observations, we noticed that the classifier performs well in majority of

the experiments when we consider including the top 100 FCE features as generalized

features when compared to the results obtained by using top 50 features as generalized

features.

In our experiments, we ended up using a threshold value of 1 because selecting the

grams that occur more than 1 time reduces the number of unimportant features, while

at the same time retaining the important features for the sentiment classification task

across domains. We have also used 100 generalized features because we have seen

that there is an improvement in the results when we consider 100 generalized features

instead of 50 generalized features.

• How does the ANB approach perform when using some target domain labeled data

versus not using any target domain labeled data? Are the results better when using

some target labeled data?

We have seen that the results are better if we consider including the target domain

labeled data for training a classifier. It is because the classifier will have more direct

71

supervision from target and will be able to learn more accurate information related to

the target domain.

• How does the ANB approach perform when compared to supervised NBM classifiers?

Supervised näıve Bayes multinomial classifiers are considered to be an upper bound

for our ANB experiments, when target domain labeled and unlabeled data is used as

training labeled data. We have seen that in the majority of our experiments Case

4>Case 1>Case 3>Case 2>Case 5. We have observed that sentiment classification

across M → D, M → K and K → D domains are better when compared with

D → M , K → M and D → K domains. We have also observed that the results

obtained using “unigrams with leaf nodes” and “all grams with leaf nodes” as features

are better than using “unigrams without leaf nodes” and “all unigrams” .

From the results, we can conclude that the ANB classifier increases the performance of

sentiment classification across domains especially when we use M → D,M → K,K → D

as our source and target domains. We can also conclude that the results obtained using “all

grams with leaf nodes” > “unigrams with leaf nodes” > “all unigrams” >“unigrams without

leaf nodes”, as we have observed in our preliminary results from Table 5.2 and Table 5.5.

However, while our ANB approach performed very well across different domains, there

are some limitations that we would like to address in our future work. One of the major

limitations is that, the results obtained using grams from path tree are not as good as

results obtained using grams from a complete syntax tree as features. The reason for this

might be that path trees are eliminating the information that might be informative to train

a classifier. We would like to further explore this issue by considering various strategies in

our future work.

72

Chapter 7

Future Work

In this chapter, we discuss some of the improvements and possible future directions for our

approach. In order to overcome the limitation of our approach (i.e., the results obtained

using grams from path tree are not as good as results obtained using grams from a complete

syntax tree), we would like to perform the following experiments in our future work:

1. First, we would like to perform sentiment classification across domains by training

a classifier using grams extracted from MCT trees (obtained using sentiment based

pruning strategies).

2. Next, perform sentiment classification across domains, by considering grams extracted

from PT trees (obtained using adjective based pruning strategies).

3. Next, we would like to train a classifier using grams extracted from MCT trees (ob-

tained using adjective based pruning strategies).

4. In addition to the above experiments, we would like to explore some interesting POS

patterns for a given set of sentences. We would like to use these patterns as features

and evaluate the performance of ANB on cross-domain sentiment classification.

73

Bibliography

John Blitzer, Ryan Mcdonald, and Fernando Pereira. Domain adaptation with structural

correspondence learning. In In EMNLP, 2006. URL http://john.blitzer.com/papers/

emnlp06.pdf.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boomboxes and

blenders: Domain adaptation for sentiment classification. In In ACL, pages 187–205,

2007.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20:273–297, 1995. ISSN 0885-6125. URL http://dx.doi.org/10.1007/BF00994018.

10.1007/BF00994018.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard

Harshman. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN

SOCIETY FOR INFORMATION SCIENCE, 41(6):391–407, 1990.

George Forman. An extensive empirical study of feature selection metrics for text clas-

sification. J. Mach. Learn. Res., 3:1289–1305, March 2003. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=944919.944974.

Xavier Glorot. Domain adaptation for large-scale sentiment classification : A deep learning

approach. Learning, 1:513–520, 2011. URL http://www.icml-2011.org/papers/342_

icmlpaper.pdf.

Ali Harb, Michel Plantié, Gerard Dray, Mathieu Roche, François Trousset, and Pascal Pon-

celet. Web opinion mining: how to extract opinions from blogs? In Proceedings of the 5th

international conference on Soft computing as transdisciplinary science and technology,

74

http://john.blitzer.com/papers/emnlp06.pdf
http://john.blitzer.com/papers/emnlp06.pdf
http://dx.doi.org/10.1007/BF00994018
http://dl.acm.org/citation.cfm?id=944919.944974
http://www.icml-2011.org/papers/342_icmlpaper.pdf
http://www.icml-2011.org/papers/342_icmlpaper.pdf

CSTST ’08, pages 211–217, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-046-3.

doi: 10.1145/1456223.1456269. URL http://doi.acm.org/10.1145/1456223.1456269.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD ’04, pages 168–177, New York, NY, USA, 2004. ACM. ISBN 1-58113-888-1. doi:

10.1145/1014052.1014073. URL http://doi.acm.org/10.1145/1014052.1014073.

Thorsten Joachims. Svm-light, 2002. URL http://svmlight.joachims.org/.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of

the 41st Meeting of the Association for Computational Linguistics, pages 423–430, 2003.

Shoushan Li and Chengqing Zong. Multi-domain sentiment classification. In Proceedings of

the 46th Annual Meeting of the Association for Computational Linguistics on Human Lan-

guage Technologies: Short Papers, HLT-Short ’08, pages 257–260, Stroudsburg, PA, USA,

2008. Association for Computational Linguistics. URL http://dl.acm.org/citation.

cfm?id=1557690.1557765.

Tom Mitchell. Machine learning. McGraw-Hill Companies Inc., international edition, 1997.

Alessandro Moschitti. Tree kernels, 2002. URL http://disi.unitn.it/moschitti/.

Ramanathan Narayanan, Bing Liu, and Alok Choudhary. Sentiment analysis of conditional

sentences, 2009. URL http://dl.acm.org/citation.cfm?id=1699510.1699534.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-

domain sentiment classification via spectral feature alignment. In Proceedings of the

19th international conference on World wide web, WWW ’10, pages 751–760, New York,

NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772767. URL

http://doi.acm.org/10.1145/1772690.1772767.

75

http://doi.acm.org/10.1145/1456223.1456269
http://doi.acm.org/10.1145/1014052.1014073
http://svmlight.joachims.org/
http://dl.acm.org/citation.cfm?id=1557690.1557765
http://dl.acm.org/citation.cfm?id=1557690.1557765
http://disi.unitn.it/moschitti/
http://dl.acm.org/citation.cfm?id=1699510.1699534
http://doi.acm.org/10.1145/1772690.1772767

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment cat-

egorization with respect to rating scales. In Proceedings of the ACL, 2005. URL

http://www.cs.cornell.edu/people/pabo/movie-review-data.

César R Souza. Kernel functions for machine learning applications, March 2010. URL http:

//crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.

html.

Songbo Tan, Xueqi Cheng, Yuefen Wang, and Hongbo Xu. Adapting naive bayes to do-

main adaptation for sentiment analysis. ADVANCES IN INFORMATION RETRIEVAL

PROCEEDINGS, 5478:337–349, 2009. URL http://www.springerlink.com/index/

2461874p846n1523.pdf.

Wei Zhang, Peifeng Li, and Qiaoming Zhu. Sentiment classification based on syntax tree

pruning and tree kernel. In Proceedings of the 2010 Seventh Web Information Systems

and Applications Conference, WISA ’10, pages 101–105, Washington, DC, USA, 2010.

IEEE Computer Society. ISBN 978-0-7695-4193-8. doi: 10.1109/WISA.2010.29. URL

http://dx.doi.org/10.1109/WISA.2010.29.

76

http://www.cs.cornell.edu/people/pabo/movie-review-data
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://www.springerlink.com/index/2461874p846n1523.pdf
http://www.springerlink.com/index/2461874p846n1523.pdf
http://dx.doi.org/10.1109/WISA.2010.29

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation for Sentiment Classification
	Problem Addressed and Challenges
	High Level Overview of Proposed Approaches

	Related Work
	Problem Definition and Approaches
	Basic Terminology
	Problem Definition
	Structured Syntax Trees
	MCT and PT Using Sentiment based Pruning Strategies
	MCT and PT Using Adjective based Pruning Strategy

	Gram Features based on Syntax Trees
	Grams based on Complete Syntax Trees
	Grams based on Pruned Syntax Subtrees

	Feature Construction for Domain Adaptation
	Domain Specific Features
	Domain Independent Features

	Approaches Used
	Supervised Learning Algorithms
	Domain Adaptation Algorithms

	Experimental Setup
	Research Questions
	Experiments
	Domain Specific Classifiers
	Domain Adaptation Classifiers

	Data Description

	Results
	Experiment 1 Results
	Experiment 2 Results
	Experiment 3 Results
	Unigrams with Leaf Nodes as Grams

	Experiment 4 Results
	Results Using Unigrams with Leaf Nodes as Grams
	Results Using All Grams with Leaf Nodes as Grams
	Results Using Unigrams without Leaf Nodes as Grams
	Results Using All Unigrams as Grams

	Experiment 5 Results
	Results Using All Grams with Leaf Nodes from PT Trees as Grams
	Results Using Unigrams with Leaf Nodes from PT Trees as Grams

	Discussion and Conclusions
	Future Work
	Bibliography

