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Abstract

There are two important statistical models for multivariate survival analysis, propor-

tional hazards(PH) models and accelerated failure time(AFT) model. PH analysis is most

commonly used multivariate approach for analysing survival time data. For example, in

clinical investigations where several (known) quantities or covariates, potentially affect pa-

tient prognosis, it is often desirable to investigate one factor effect adjust for the impact

of others. This report offered a solution to choose appropriate model in testing covariate

effects under different situations.

In real life, we are very likely to just have limited sample size and censoring rates(people

dropping off), which cause difficulty in statistical analysis. In this report, each dataset is

randomly repeated 1000 times from three different distributions (Weibull, Lognormal and

Loglogistc) with combination of sample sizes and censoring rates. Then both models are

evaluated by hypothesis testing of covariate effect using the simulated data using the derived

statistics, power, type I error rate and covergence rate for each situation.

We would recommend PH method when sample size is small(n ≤ 20) and censoring

rate is high(p ≥ 0.8). In this case, both PH and AFT analyses may not be suitable for

hypothesis testing, but PH analysis is more robust and consistent than AFT analysis. And

when sample size is 20 or above and censoring rate is 0.8 or below, AFT analysis will have

slight higher convergence rate and power than PH, but not much improvement in Type I

error rates when sample size is big(n ≥ 50) and censoring rate is low(p ≤ 0.3). Considering

the privilege of not requiring knowledge of distribution for PH analysis, we concluded that

PH analysis is robust in hypothesis testing for covariate effects using data generated from

an AFT model.
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Chapter 1

Introduction

Survival analysis examines and models the times it takes for events recorded on experimental

units to occur. The term ’survival’ arose from early applications where the event was death

or component failure. Nowadays survival analysis has been applied to a variety of areas,

such as economic, public health, industry, etc. The survival analysis is competitive for

prediction in comparison with usual or logistic regression.2Early work in survival analysis

ignored heterogeneity among the units on which event times were recorded and analyzed

data as being a random sample from a family of continuous distributions specified up to

an unknown parameter. This early approach did not adjust the event times for measurable

differences in the units, which can, in the modern era, be accounted for by incorporating

covariates in the model. For example, covariates such as weight, age and smoking status

of individuals could have important effects on their lifetimes. In a clinical trial, covariates

are used to represent different treatments and/or treatment doses. In reliability, covariates

such as the turning speed of a machine tool or the stress applied to a component can affect

the lifetime of a component.

Survival analysis provides a framework for the inclusion as time-varying covariates, such

as macroeconomic variables, interest rate and unemployment index. But in this report, we

only study the fixed covariate effect. Suppose that based on a random sample {(Ti, zi); i =

1, 2, . . . , n}, lifetimes {Ti}, covariates {zi} represent characteristics of the unit on which

lifetime is recorded and do not change over time. It is desired to test if the components of a
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fixed covariate vector z jointly effect the distribution of lifetime X. For example, the useful

life of a battery life may be heavily influenced by environment such as heat and moisture

but not by the gender of the driver of the car.

The effect of covariates on survival often complicates the analysis of a set of lifetime

data. Two methods that are often used to incorporate the effect of covariates on lifetimes

are based on the accelerated failure time (AFT) and the proportional hazards (PH) models,

the latter developed by Cox (1972). Accelerated life models are parametric and PH models

are referred to as being semi-parametric. Both models make strong assumptions. The

purpose of this report is to study via simulation the robustness of the PH model in testing

for covariate effects when the data come from an accelerated life model whose hazards may

not be proportional. As described below, my study will allow right random censoring of

the event times. I will not investigate diagnostic methods for assessing the validity of each

model.

The survival function and the hazard function are important descriptions of lifetime

distributions. For a positive, continuous random variable having probability density function

f(x), the probability of an individual surviving beyond time x (experiencing the event after

time x) is given by the survivor function defined as:

S(x) = Pr(X > x) =

∫ ∞
x

f(t)dt (1.1)

The hazard function is the instantaneous failure rate, also known as the conditional

failure rate is defined by

h(x) = lim
4x→0

P [x ≤ X < x+4x | X ≥ x]

4x
=
f(x)

S(x)
= −d ln

[S(x)]

dx
(1.2)

There are some typical hazard functions3 used in real application shown in 1.1:
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Figure 1.1: Hazard functions
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Censoring is a form of missing data problem which is common in survival analysis. If it

is known only that the date of death is after some date, this is called right censoring. Right

censoring will occur for those subjects whose birth date is known but who are still alive

when they are lost to follow-up or when the study ends. If a subject’s lifetime is known to

be less than a certain duration, the lifetime is said to be left-censored. {Xi} denotes the

lifetime, and {Ci} is the censoring time for i = 0, 1, . . . , n. The actual observations consists

of {Ti, δi}, where Ti = min{Xi, Ci} and δi = I(Xi ≤ Ci) is an indicator of the censoring

status of {Ti}. The right censored data is actually observed by the vectors {(Ti, δi = 0, zi)},

where, for unobserved censoring variables {(Ti, δi = 1, zi)}.

Examples of right censoring are shown in 1.2:

Figure 1.2: Right censoring and uncensoring
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1.1 Proportional Hazards Models

Cox’s (1972) semi-parametric proportional hazards (PH ) model relates the distribution of

continuous lifetime X to covariate z through a function of the form g(z, β),usually calibrated

so that the parameter vector β is zero only if the covariates acting jointly play no role in

the distribution of event times. Cox’s PH model is used widely in model selection.2 The PH

model assumes that the hazard function of a component having covariate vector z, denoted

h(·|z) usually has the from

h(t|z) = exp(z′β)h0(t) (1.3)

where h0(·) is an unknown, continuous, baseline hazard function and g(z, β) = exp(z′β).

The PH model implies that h(t|z1)/h(t|z2) is free of time t for all pairs of covariate vectors

z1 and z2, hence the term proportional hazards, which is a very restrictive assumption. Since

the baseline hazard portion of the model is unspecified and the influences of the explanatory

variables are described in a parametric linear-regression type model, the Cox model is said

to be semi-parametric. Inference about β can be carried out using Cox’s (1972) partial

likelihood, denoted Lp(β). I will focus on testing for a covariate effect by testing

H0 : β = 0 v.s. H0 : β 6= 0 (1.4)

1.2 Partial likelihoods for PH model

As indicated earlier, our data are based on a sample of size n consisting of the triple

(Tj, δj, zj), j = 1, 2, . . . , n . Recall that due to censoring, we observe Ti = min(Yi, Ci), δi =

I(Yi ≤ Ci) . We assume that censoring is non-informative in that, given zj , the event and

censoring time for the jth observation are independent, j = 1, 2, . . . , n and that the distri-

bution of censoring time is free of unknown parameters. For simplicity, suppose there are

no ties between the event times. Let t1 < t2 < · · · < tD denote the ordered, distinct event

5



times and Z(i)k be the kth covariate associated with the individual whose failure time is ti

. The partial likelihood based on the hazard function as specified by Eq.(1.3), is expressed

by reference6,4,7 and5

Lp(β) =
D∏
i=1

exp[
∑p

k=1 βkz(i)k]∑
j∈R(ti)

exp[
∑p

k=1 βkzjk]
(1.5)

where R(Ti) = {j : Tj > Ti} is the ’risk set’ at time Ti. This partial likelihood can be treated

as a standard likelihood and inference carried out by usual means. Let LL(β) = ln(Lp(β)).

We can write LL(β) as

LL(β) =
D∑
i=1

p∑
k=1

βkz(i)k −
D∑
i=1

ln[
∑

j∈R(ti)

exp[

p∑
k=1

βkzjk]]. (1.6)

The partial maximum likelihood estimates for β are found by solving the equations

obtained by setting the partial derivatives of LL(β) with respect to β equal to zero. The

partial information matrix is the negative of the matrix of second derivatives of the log

likelihood and is given by I(β) = [Igh(β)]p×p with the (g, h) element given by

Igh(β) =
D∑
i=1

∑
j∈R(ti)

zjgzjbexp[
∑p

k=1 βkzjk]∑
j∈R(ti)

exp[
∑p

k=1 βkzjk]

−
D∑
i=1

[
∑

j∈R(ti)
zjgexp[

∑p
k=1 βkzjk]][

∑
j∈R(ti)

zjhexp[
∑p

k=1 βkzjk]]

[
∑

j∈R(ti)
exp[

∑p
k=1 βkzjk]][

∑
j∈R(ti)

exp[
∑p

k=1 βkzjk]]
(1.7)

There are three main tests for hypothesis about regression parameters β . Let β̂p =

(β̂p1, β̂p2, · · · , β̂pk) denote the partial maximum likelihood estimates of β obtained as dis-

cussed above and let I(β̂p) be the k × k information matrix evaluated at β̂p and defined by

Eq. (1.7). The Wald test of the global hypothesis of H0 : β = 0, v.s.Ha : β 6= 0 uses the

test statistic:

X2
w = β̂′pI(0)β̂p (1.8)

6



which for large samples has approximately a chi-squared distribution with p degrees of

freedom if H0 is true.

The Likelihood ratio test of the global hypothesis uses the test statistic:

X2
LR = 2[LL(β̂p)− LL(0)] (1.9)

which for large samples has approximately a chi-squared distribution with p degrees of

freedom if H0 is true.

The Score test is based on the efficient scores, U(βp) = (U1(βp1), U2(βp2), · · · , Uk(βpk)).

The efficient score equation are found by taking partial derivatives of Eq.(1.6) with respect

to βp as follows. Let

U(βp) = ∂LL(βp)/∂βh, h = 1, 2, · · · , k (1.10)

Uh(βp) =
D∑
i=1

Z(i)h −
D∑
i=1

∑
j∈R(ti)

Zjhexp[
∑k

l=1]βlZjl∑
j∈R(ti)

exp[
∑k

l=1]βlZjl
(1.11)

For large samples, U(βp) is asymptotically distributed as k-variates normal distribution

with mean 0 and covariance I(βp) when H0 is true. Hence, a test statistic with an asymptotic

chi-square distribution is given by

X2
SC = U(β̂p)

′I−1(0)U(β̂p) (1.12)

1.3 Accelerated Failure Time model

In the accelerated failure time model (AFT), covariates act multiplicatively on lifetime, as

given by

X = exp(µ+ γ′z + σW ) = exp(γ′z) exp(µ+ σW ) = exp(γ′z) exp(µ)T σ, σ > 0 (1.13)

where µ is a location parameter, σ a positive scale parameter and T = exp(W ) is a baseline

lifetime whose distribution is fully specified. Here, a test for joint covariate effects becomes

7



H0 : γ = 0, v.s. Ha : γ 6= 0 (1.14)

The accelerated failure model is best understood on a log transformed scale, Y = ln(X).

Then, we obtain a linear model,

Y = lnX = µ+ γ′z + σW (1.15)

where γ′ = (γ1, · · · , γp) is a vector of regression coefficients and W may be viewed as an error

term even though it does not necessarily have mean zero. Interpretations of the regression

coefficients γ differ among the distributions of W . A variety of models can be used for W or,

equivalently, for baseline lifetime distribution T = exp(W ). I will investigate three families

of lifetimes, the lognormal, log-logistic and Weibull. These can be modeled by Eq.(1.13).

Only the Weibull is also a PH model. A full likelihood incorporating right censoring can

easily be constructed for the accelerated failure time model in Eq.(1.13). It is given by6

L(γ, µ, δ) = Πn
j=1[fY (yj|γ, µ, δ)]δj [SY (yj|γ, , µ, δ)]1−δj (1.16)

where fY (yj|γ, , µ, δ), SY (yj|γ, , µ, δ) are respectively the density function and survival func-

tion of log-lifetime Y . And we assume that the distributions of the covariates {zi} do not

contribute to the likelihood of (µ, σ, γ). Numerical methods must be used to maximize these

complicated likelihoods.

Likelihood based inference for AFT models can be used to test Eq.(1.14), which like

Eq.(1.4) addresses the question: Do the covariates do jointly effect the distribution of lifetime

X? There are three likelihood based tests, likelihood ratio, score and Wald, similar to their

partial counterparts described above.

Since sure knowledge as to whether a PH model, an AFT model or some other model

holds is rarely available, robustness of these tests with respect to model misspecification is

an important issue. To explore this issue, my report used simulation to assess and compare

the performance of Cox’s PH partial likelihood ratio test for joint covariate effects in terms

8



of size and power to the ’correct’ AFT likelihood ratio test when data are generated by one

of the three AFT models described above. Due to time limitations, I will not compare the

performance of the AFT tests among themselves.
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Chapter 2

Distributions

2.1 Weibull distribution

If we specify a standard extreme value distribution for W , T = exp(W ) has a standard

exponential distribution? . Then, lifetime X then has a Weibull distribution, denoted

X ∼ We(α, λ), α > 0, λ > 0, whose density, survivor function and hazard function have

respectively, for x > 0, the forms are:

f(x|α, λ) = λαxα−1exp(−λxα)

S(x|α, λ) = exp(−λxα)

h(x|α, λ) = λαxα−1 (2.1)

with

α = 1/σ, λ = exp(−(µ+ γ′z)/σ), (2.2)

where γ are coefficients of covariate z given in Eq.(1.13), µ is location parameter on log scale

given in Eq.(1.15).

This is also a PH model since, letting R.R denote relative risk, with

10



β′ = −γ
σ

R ·R(z1, z2) =
h(t|Z1)

h(t|Z2)
= expβ(z1−z2) (2.3)

is free of lifetime t. It is the only AFT model that also has a proportional hazards repre-

sentation.

Below are plots of probability density functions of some Weibull distributions:

Figure 2.1: Probability density functions of Weibull distribution
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2.2 Lognormal Distribution

The lognormal distribution is popular because of its relationship to the normal distribution.

Specifically, if X is lognormal, ln(X) is normal. Further, the Lognormal hazard function

has non-monotone behavior. It increases initially, then decreases and eventually approaches

zero. This means that lifetimes with a Lognormal distribution have an increasing rate of

failure as they age for some period of time? . But, after survival to a specific age, the rate

of failure decreases as time increases.

If we specify that T = exp(W ) in Eq.(1.13) with W ∼ N(0, 1), life time X has a

Lognormal distribution,

X ∼ lognormal(µ+ γ′z, σ2) (2.4)

and hence,

Y ∼ normal(µ+ γ′z, σ2) (2.5)

Equivalently, the density of X is given by

fX(x, µ+ γ′z, σ2) =
1

xσ
√

2π
exp−

(lnx−µ−γ′z)2

2σ2 (2.6)

The survivor function of X is then expressed as

S(x) = 1− Φ[
ln(x)− µ− γ′z

σ
], (2.7)

where Φ is the distribution function of a standard normal distribution. Hence,

h(x) =
fX(x)

S(x)
=

1
xσ
√

2π
exp−

(lnx−µ−γ′z)2

2σ2

1− Φ[ ln(x)−µ−γ′z
σ

]
(2.8)

Then, the ratio of the hazard functions for two different covariates is given by
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R ·R(z1, z2) =
h(t|Z1)

h(t|Z2)
=

f(t|Z1)
S(t|Z1)

f(t|Z2)
S(t|Z2)

=

1
tσ
√
2π
exp
− (lnt−µ−γ′z1)

2

2σ2

1−Φ[
ln(t)−µ−γ′z1

σ
]

1
tσ
√
2π
exp
− (lnt−µ−γ′z2)2

2σ2

1−Φ[
ln(t)−µ−γ′z2

σ
]

(2.9)

which is not a free of t and hence not a PH model.

Below are plots of the probability density functions of some Lognormal distributions:

Figure 2.2: Probability density functions of lognormal distribution

13



2.3 Loglogistic Distribution

The log-logistic distribution has the following density function? :

fX(x, γ) =
γxγ−1

(1 + xγ)2
x > 0, γ > 0. (2.10)

If we specify that W has a logistic distribution so that T = exp(W ) in Eq.(1.13) has a

Loglogistic distribution with density denoted by

fX(x|µ, γ, σ) ∼ loglogistic(
1

σ
, exp((µ+ γ′z))), (2.11)

which is

fX(x|µ, γ, σ) =
1

σ
(

x

exp(µ+ γ′z)
)

1
σ
−1 exp(µ+ γ′z) (2.12)

Then the survivor function and hazard function of lifetime X are given respectively by

S(x) = [1 + (
x

exp(µ+ γ′z)
)

1
σ ]−1

h(x) = f(x)/S(x) =

1
σ
( x

exp(µ+γ′z)
)

1
σ
−1 exp(µ+ γ′z)

1 + ( x
exp(µ+γ′z)

)
1
σ

(2.13)

which is hump-shaped. The ratio of hazard functions for two different covariates is given by

R ·R(z1, z2) =
h(t|Z1)

h(t|Z2)
=

f(t|Z1)
S(t|Z1)

f(t|Z2)
S(t|Z2)

=

( t
exp(µ+γ′z1)

)
1
σ−1

1+( t
exp(µ+γ′z1)

)
1
σ−1

( t
exp(µ+γ′z2)

)
1
σ−1

1+( t
exp(µ+γ′z2)

)
1
σ−1

(2.14)

which is not a free of t and hence not a PH model.

This model is the only AFT model that also has a representation as a proportional odds

model. Specifically, for the loglogistic AFT model, the odds of survival beyond time t are

given by
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S(x|Z)

1− S(x|Z)
= exp(β′Z)

S0(x)

1− S0(x)
(2.15)

where

β′ = −γ
σ

(2.16)

Below are plots of the probability density functions of some Loglogistic distributions:

Figure 2.3: Probability density functions of loglogistic distribution
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Chapter 3

Simulation

3.1 Introduction

Simulation is a numerical technique for conducting experiments on a computer. In statistics

simulation experiments are most often used to study properties of statistical methods which

cannot otherwise be easily evaluated. Monte Carlo simulations in statistics are computer

experiments involving random sampling from probability distributions to study properties

of statistical methods? . Here we will use software R to generate random numbers using

Monte Carlo methods.

I generated data from the three families of parametric AFT models described above, the

Weibull, Lognormal and Loglogistic. Two tests for no covariate effect were carried out on

each data set: the likelihood ratio test for the AFT model used to generate the data and

the partial likelihood ratio test for Cox’s PH model. Both tests are ’correct’ for the Weibull

model, but only the parametric likelihood ratio tests for the other two. Comparisons of

estimated type I error rates and power allow me to assess the robustness and performance

of Cox’s test relative to the Lognormal and Loglogistic likelihood ratio tests and compare

Cox’s semiparametric procedure to the fully parametric procedure in the case of the Weibull

distribution.

In this study, typically a sample of n random numbers X1, . . . , Xn were generated as

observations from the three accelerated failure time models described above. Specifically,
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my simulation study entails random sampling from the Weibull, Lognormal, and Loglogistic

distributions.

3.2 Simulation Settings

My report designed and implemented a simulation study of size and power of the tests

described above. The independent variables are: sample size, distribution of the simulated

data, parameter values, censoring rate and number of covariates.

3.2.1 Distributions

For simplicity, I limited my study to the widely used Weibull, Lognormal and Loglogistic

distributions. For the Lognormal distribution, we chose parameter values µ = 0, σ = 0.5,

and the resulting lognormal density is shown in Fig.3.1b. For the Weibull distribution, the

shape parameter β = 2.5 was used. For the Loglogistic, the shape parameter β = 0.25

was used. The corresponding densities are shown in Fig.3.1a- 3.1c. Note that since I just

studied the three specific distributions, the conclusions in this report need not apply to

other members of these families or other distributions.

3.2.2 Right Censored Data and Sample Size

In this simulation, we only generated right-censored data, in which the study units are lost to

follow-up (or the study ends) and might have experienced a recurrence of the event at some

time in the future. But, the researcher wouldn’t know if or when this happened. Generating

censored data requires specifying both the lifetime and censoring distributions. One of the

simulation methods discussed as the random censorship model9 and8. is that, we assume

that we have n independent, identically distributed lifetimes (that is, nonnegative random

variables), {Xi}, with continuous distribution function F, and n independent, identically

distributed censoring times, {Ci}, with continuous distribution function G. We also assume

that {Xi} and {Ci} are independent for i = 1, 2, . . . n. The distributions for F and G in
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reference [3] were set as normal, exponential, weibull distributions.

Censoring index δi is determined by comparing {Xi} and {Ci}, and in the reference

article, it simulated distributions of {Xi} and {Ci} under assumptions that they follow the

same and specific distribution. But there are various distributions for F and G, and they

don’t necessarily follow the same distribution. It is not necessary for us to study all kinds of

lifetime and censoring time distributions in this paper. We will simplify things and represent

censoring as follows.

Recall that lifetimes {Ti} are assumed to be independent, a lifetime is censored only if

the censoring index δ = 0 and that the censoring rate is denoted by p. I assume the censoring

index δ is independent from lifetime {Ti}. I set δ = 0 for the first m = censoring rate ∗

sample size observations. This procedure, although it does not exactly conform to the usual

right censoring model, provides an easy way to approximate 100p% non-informative right

censoring.

What constitutes a reasonable sample size depends to some extent on the number of

covariates and the censoring rate. I used one and three covariates, censoring rates p in the

range of(0.2 ∼ 0.9) and sample sizes n in the range of (10 ∼ 50) to represent typical medical

or engineering type problems. Medical experiments often deal with many covariates and

high censoring rates.

3.2.3 Covariate vectors and coefficient

Also for simplicity, I generated covariates by sampling from a uniform distribution on the

unit interval. For the one covariate model, its coefficient γ was set to range over the interval

[0,5) by increments 0.1 to study power. So, there are 50 γs in total. Recall that

lifetime = exp(µ+ γ × Z)T σ. (3.1)

In case of the three covariate lifetime model, I generated independent uniforms {Ui}3
i=1

for each data set and let covariates {Zi}3
i=1 be the resulting order statistics, which are

correlated, as often happens in the real world. The covariate coefficients γ’s are random
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numbers in the range of (0,5). But, I made sure γ1 = γ2 = γ3 = 0 occurred so that I study

the type I error rate. Recall that the three covariate lifetime model is then given by

lifetime = exp(µ+ γ1 × Z1 + γ2 × Z2 + γ3 × Z3)T σ. (3.2)

In sum, I considered cases where the coefficients γ of the covariates equal zero to check

type I error rates and some values of γ not equal to the zero vector to study power. I carried

out some preliminary tests to find reasonable values for γ so that at least some of the tests

have estimated powers close to one.

3.2.4 Monte Carlo Replicates N

Since the experimentation is done on a computer, we can easily replicate the experiments.

The larger the number of Monte Carlo replicates, N, the better the approximation will be.

However, computing time and computer or software (e.g. SAS, R) memory may be limited,

making it necessary to run the N Monte Carlo replicates in smaller batches.

The empirical standard deviation for the estimated true level α̂ for testing no treatment

effects is

sd(α̂) =

√
(α̂)(1− α̂)

N
(3.3)

If α̂ = 0.05, and we want sd(α̂) ≤ 0.01,

sd(α̂) =

√
(0.05)(0.95)

N
≤ 0.01 (3.4)

then we must choose N ≥ 475. If α̂ = 0.05 and N = 1000, sd(α̂) = 0.0069 and the

corresponding 95% confidence interval for α is 0.05± (1.96)(0.0069) = [0.0365, 0.0635].

In this experiment, we will use N=1000. I simulated combinations of 100 covariate

coefficients, 4 sample sizes, 7 censoring rates and 3 distributions. For each combination, I

generated 1000 datasets in order to average out the effects of randomness. Time is always

an issue when it comes to large scale simulations. In my report I used the software package

R to generate a 1000 ∗ (100 ∗ 4 ∗ 7 ∗ 3) data matrix and carried out PH and AFT analyses
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on each data set, taking around 10 hours of CPU time. I used Java to do further analyses

of the output from R in Chapter 4.

3.3 Goodness of fit test to Simulation data

There are several statistical software packages such as R and SAS that can be used for

simulation in reference1. R is very convenient for programming and making graphs. It is

free and widely used. I used functions ”rweibull”,”rlnorm” and ”rlogis” in R to generate

data. But, the accuracy of its functions and macros is not validated by any one reliable

source. We may therefore have some underlying risk in simulation and analysis when using

R. In order to have some confidence in using R, I carried out χ2 goodness of fit tests to

test if the data it generated came from the specified distribution, denoted F. Recall that

Fig. 3.1a- 3.1c plot the density functions I used in my simulation study. The three density

distributions have similar shapes.

The Pearson’s chi-square test is used to test the following hypothesis:

H0 : The data are a random sample from distribution F

Ha : The data are not a random sample from F (3.5)

Pearson’s chi-square test uses a measure of goodness of fit which is the sum of differences

between observed and expected outcome frequencies (that is, counts of observations). The

data generated by R were divided into k bins (defined below) and the test statistic defined

as:

χ2 = Σk
i=1(Oi − Ei)2/Ei, (3.6)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i under

H0. The expected frequency is calculated by
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Figure 3.1: Densities of Studied Distribution

(a) Weibull density function (b) Lognormal density function

(c) Loglogistic density function
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Ei = n(F (Yu)− F (Yl)), (3.7)

where Yu is the upper limit for class i, Yl is the lower limit for class i, and n is the sample

size. This test is sensitive to the choice of bins. There is no optimal choice for the bin width

since the optimal bin width depends on the distribution. Most reasonable choices should

produce similar, but not identical results. I used 0.3 ∗ s, where s is the sample standard

deviation, for the class width. The lower and upper bins are at the sample mean plus and

minus 6.0∗s, respectively, resulting in a target of 20 bins. In order to determine the degrees

of freedom of the chi-squared distribution, one takes the total number of bins and subtracts

one. For example, since there are 20 bins, I compared to Eq. (3.6) a chi-squared distribution

with 19 degrees of freedom.

For large sample size, under H0, the test statistic follows, approximately, a chi-square

distribution with (k − 1) degrees of freedom where k is the number of non-empty bins

Therefore, the hypothesis that the data are from a population with the specified distribution

is rejected at nominal type I error rate α if

χ2 > χ2
(α,k−1) (3.8)

where χ2
(α,k−1) is the 100(1− α) chi-square percentage point of a χ2 distribution with k − 1

degrees of freedom.

For example, I performed the chi-square test with n = 50 observations generated using R

from the Weibull, Lognormal and Loglogistic distributions. The chi-square test was applied

to each specific distribution respectively, as shown in Table 3.1. The test statistics are all

small and we don’t reject the null hypothesis at any reasonable type I error rates. So I

concluded that R could be used to generate data for my simulation study.

Now, I use sample data generated from Weibull distribution to illustrate survival analysis

carried out by R. There is only one covariate Z in this example, which is sampled from a

uniform distribution, Z ∼ U(0, 1). For sample size n = 50, and censoring rate p = 0.5, there
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Table 3.1: Goodness of fit, 50 observations

chi-square goodness of fit
weibull lognormal log-logistic

Test Statistic 12.2566 9.2372 10.36
P-Value 0.129 0.600 0.416

are p × n = 25 right censored data points. The accelerated failure lifetime model is given

by:

lifetime = exp(5Z)T, (3.9)

where T has a standard exponential distribution so that T has the Weibull distribution we

specified above.

Fig.3.2 below is a plot of simulated lifetimes vs their corresponding covariate Z. The

red circle points are censored lifetime and the blue plus points are true lifetimes. The

lifetimes, covariates and censoring variables used to generate the plot are given in Table

3.2. For this sample data, both the PH and AFT based tests report small p-values, p-value

= 0.00001. Hence, both tests yields the same conclusion, reject H0 in Eq.1.4, which is the

correct decision here since γ = 5 is not zero.

In sum, I carried out a simulation study using one or three predictors and different

combinations of sample size and censoring rates. I generated 1000 data sets for each value

of γ from 0 to 5 in increments of 0.1 from each of the three AFT models described above.

Tests with nominal type I error rate 0.05 were carried out by rejecting the null hypothesis,

that γ = 0 if the reported p-value was at most 0.05. The estimated power of the test for

each value of γ was obtained by tallying the proportion of the 1000 data sets that led to

rejection of H0 . The PH partial likelihood ratio tests and the correct AFT likelihood ratio

test were carried out for each model. The power plots and data sheets were presented in

Chapter 4.
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Figure 3.2: Simulated data from Weibull
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Table 3.2: Random Sample data from Weibull

Lifetime Covariate Censor

2.540639 0.445524 0
17.50793 0.644185 0
3.939988 0.22012 0

185.55 0.930428 0
4.252931 0.225385 0
2.095554 0.170033 0
99.41442 0.863456 0
70.00906 0.878021 0
93.47316 0.944982 0
23.1394 0.542224 0

0.602702 0.24987 0
6.165455 0.484835 0
98.16364 0.92288 0
2.152622 0.207742 0
4.78132 0.295521 0

50.02159 0.861418 0
12.1357 0.54584 0
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Table 3.2: Random Sample data for Weibull

Lifetime Covariate Censor

46.78178 0.789511 0
3.190324 0.295456 0
143.2624 0.970317 0
0.684381 0.230309 0
15.40339 0.415117 0
2.044376 0.208141 0
1.743995 0.131936 0
4.884992 0.263578 0
1.050948 0.08123 1
22.05879 0.688035 1
50.31091 0.757446 1
16.50599 0.528918 1
19.6669 0.700643 1

8.548341 0.523447 1
27.72673 0.547905 1
30.39002 0.785065 1
7.97606 0.342266 1

50.23128 0.995804 1
34.87643 0.715028 1
40.63037 0.762608 1
1.260967 0.13311 1
12.92038 0.493604 1
1.065531 0.204003 1
3.955906 0.249272 1
52.48039 0.762551 1
16.96415 0.517036 1
0.694777 0.000712 1
6.133684 0.907436 1
73.22687 0.866193 1
18.81652 0.63778 1

14.922 0.600493 1
6.667701 0.334432 1
6.67046 0.441778 1
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Chapter 4

Survival analysis methods Assessment
and Application

In this chapter, we assess the Cox’s PH and AFT model in terms of the convergence rate,

type I error rate and power on the simulated data. And we will apply both PH and AFT

methods in a real medical example and evaluate the analysis performance.

4.1 Non-convergence of Maximization Algorithm

The AFT analysis is based on maximizing the complicated likelihood given in Eq.(1.16).

The PH analysis is based on solving the system of equations given in Eq.(1.5). It is possible

that either or both of the algorithms used to carry out these processes fail to converge for a

given data set. The boxplots in Fig.4.1 show the non-convergence rates (NR) for sample size

less than 20, when sample size is larger than 20, NR decreases rapidly to less than < 1%.

The comparison for PH and AFT model is shown in Table ??.

Table 4.1: Model comparison in non-convergence rate

Model n <= 20 n > 20

PH 2.5% < 1%
AFT 5% < 1%

In Fig.4.2, we found out that AFT analysis only has higher NR’s for small sample size(10)

or censoring rate(0.8,0.9). PH analysis is stable and robust under extreme situation, for
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example, small sample size(10) and high censoring rate(0.9), while AFT method does not

hold. The comparison between models in censoring rate is shown in Table 4.2.

Table 4.2: Model comparison in non-convergence rate

Model p <= 0.8 p > 0.8

PH < 2% 2%
AFT <= 1.5% 6%

Overall, We would recommend choosing between PH and AFT analyses according to

sample sizes and censoring rates for one-covariate model. Observed NR’s for both one or

three predictor cases are presented in Tables A.1- A.3in the Appendix. It can be seen that,

NR gets worse as censoring increases and is a bigger problem for PH than for AFT analysis.

Going forward, data sets where an algorithm failed to converge for a method were deleted

from the tally of results for that method.

Figure 4.1: Boxplots of NR: PH V.S. AFT, 1 covariate
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Figure 4.2: NR Comparisons for PH and AFT Analyses, 1 covariate

(a) NR V.S. Distribution (b) NR V.S. Distribution

(c) NR V.S. Censor rate (d) NR V.S. Censor rate

(e) NR V.S. Sample Size (f) NR V.S. Sample Size
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4.2 Type I error rate study

Type I error, also known as false positive, occurs when a statistical test rejects a true null

hypothesis. For example, in the one covariate study, the null hypothesis states that γ =

0. A type I error occurs if γ = 0 and the test rejects the hypothesis, falsely suggesting

that γ 6= 0. I set the nominal type I error rate at 0.05 in my simulation study. But when

sample size is small (n ≤ 20), and the censoring rate is high (p ≥ 0.8), it is expected that

actual type I error rates may differ from 0.05. Recall that, I simulated data sets having

high censoring rates and small sample sizes with one covariate and three covariates, which

are common situations in real life. For example, in some medical studies of cancer, we

are often interested in more than one factor, have small samples and many subjects may

not complete the study due to a variety of reasons. Type I error rate performance is an

important criterion for choosing between PH analysis or AFT analysis.

In my simulation for the one-covariate model, sample sizes were set as 10,20,30,50, and

censoring rates are set as 0.2,0.3,0.5,0.7,0.8,0.9. The estimated type I error rates are given

in Table 4.5. In Fig.4.3, the median of type I error rate of PH analysis is about 0.05, which

is lower than the median of AFT analysis (0.08).

Fig.4.4 presents the comparisons of estimated Type I error rates (α) for the one-covariate

model according to censoring rates, sample sizes, distributions adjusting for PH and AFT

analyses. We could see a significant type I error rate at sample size(10) or censoring rate(0.9)

for both of the analyses, up to 0.4, which are not acceptable. When sample size is over 20,

type I error rates do not change very much. The comparisons are shown in Table 4.3-4.4.

Table 4.3: Model comparison in type I error rate

Model n <= 10 n >= 20

PH 0.09 0.05
AFT 0.15 0.05

Furthermore, both PH and AFT analyses are not suitable for small sample sizes and
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Figure 4.3: Boxplot of Type I Error Rates V.S. Analysis Methods, 1 covariate

Table 4.4: Model comparison in type I error rate

Model p <= 0.8 p >= 0.9

PH 0.06 0.12
AFT 0.05 0.4

high censoring rates(n=10,p=0.9), since they have large type I error rates, up to 0.2, as

shown in Table 4.5.Overall, we don’t recommend using PH and AFT analysis under this

situation. A good performance occurs when an actual type I error rate is close to 0.05, this

occurs, for example, when sample size is above 30, and censoring rate is not higher than 0.5.

For the 3 covariate model, estimated type I error rates are given in Table A.4 in the

Appendix. As shown in the tables, the type I error rates for the 3 covariate model are much

higher than for the 1 covariate model. For small sample sizes and high censoring rates, the

estimated type I error rates are as high as 0.4, which means both PH or AFT analysis are
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Table 4.5: Type I error rates for 1 covariate model

PH AFT censor rate sample size distribution

0.084 0.103 0.2 10 Weibull
0.074 0.102 0.2 10 lognormal
0.082 0.099 0.2 10 loglogistic
0.065 0.096 0.3 10 Weibull
0.065 0.102 0.3 10 lognormal
0.092 0.113 0.3 10 loglogistic
0.08 0.123 0.5 10 Weibull

0.062 0.112 0.5 10 lognormal
0.086 0.133 0.5 10 loglogistic
0.098 0.171 0.7 10 Weibull
0.092 0.136 0.7 10 lognormal
0.097 0.137 0.7 10 loglogistic
0.113 0.234 0.8 10 Weibull
0.099 0.192 0.8 10 lognormal
0.100 0.198 0.8 10 loglogistic
0.097 0.390 0.9 10 Weibull
0.101 0.358 0.9 10 lognormal
0.092 0.355 0.9 10 loglogistic
0.056 0.056 0.2 20 Weibull
0.077 0.077 0.2 20 lognormal
0.055 0.055 0.2 20 loglogistic
0.048 0.061 0.3 20 Weibull
0.066 0.074 0.3 20 lognormal
0.062 0.077 0.3 20 loglogistic
0.050 0.065 0.5 20 Weibull
0.058 0.068 0.5 20 lognormal
0.049 0.071 0.5 20 loglogistic
0.060 0.091 0.7 20 Weibull
0.060 0.081 0.7 20 lognormal
0.063 0.087 0.7 20 loglogistic
0.059 0.108 0.8 20 Weibull
0.063 0.104 0.8 20 lognormal
0.066 0.098 0.8 20 loglogistic
0.101 0.209 0.9 20 Weibull
0.086 0.127 0.9 20 lognormal
0.085 0.141 0.9 20 loglogistic
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Table 4.5: Type I error rates for 1 covariate model

PH AFT censor rate sample size distribution

0.056 0.064 0.2 30 Weibull
0.062 0.071 0.2 30 lognormal
0.06 0.059 0.2 30 loglogistic

0.055 0.067 0.3 30 Weibull
0.066 0.073 0.3 30 lognormal
0.059 0.056 0.3 30 loglogistic
0.05 0.065 0.5 30 Weibull

0.057 0.066 0.5 30 lognormal
0.057 0.073 0.5 30 loglogistic
0.062 0.075 0.7 30 Weibull
0.054 0.071 0.7 30 lognormal
0.047 0.064 0.7 30 loglogistic
0.073 0.093 0.8 30 Weibull
0.055 0.065 0.8 30 lognormal
0.054 0.07 0.8 30 loglogistic
0.079 0.130 0.9 30 Weibull
0.065 0.078 0.9 30 lognormal
0.076 0.105 0.9 30 loglogistic
0.062 0.064 0.2 50 Weibull
0.059 0.057 0.2 50 lognormal
0.063 0.069 0.2 50 loglogistic
0.057 0.06 0.3 50 Weibull
0.049 0.063 0.3 50 lognormal
0.063 0.064 0.3 50 loglogistic
0.047 0.055 0.5 50 Weibull
0.041 0.052 0.5 50 lognormal
0.044 0.062 0.5 50 loglogistic
0.037 0.049 0.7 50 Weibull
0.050 0.057 0.7 50 lognormal
0.051 0.064 0.7 50 loglogistic
0.053 0.059 0.8 50 Weibull
0.057 0.078 0.8 50 lognormal
0.055 0.06 0.8 50 loglogistic
0.061 0.08 0.9 50 Weibull
0.063 0.075 0.9 50 lognormal
0.057 0.071 0.9 50 loglogistic

33



not suitable. We don’t recommend using PH and AFT analysis when sample size is low,

say 10, and censoring rate is at least 0.9.
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Figure 4.4: Type I Error Rate Comparisons for PH and AFT Analyses, 1 covariate

(a) Distribution (b) Sample Size

(c) Censor rate (d) Censor rate

(e) Sample Size (f) Sample Size
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4.2.1 Estimated Type I Error Rates Test

When sample size is 10 and censoring rate is 0.9, the type I error rates are quite high which

indicate that both PH and AFT analyses are not suitable in this case. In this section, I

only considered the type I error rates for n ≥ 20, p ≤ 0.8. I carried out tests of hypotheses

to check if actual type I error rates α differ from 0.05. Specifically, I tested:

H0 : α = 0.05, v.s. Ha : α 6= 0.05 (4.1)

Estimated type I error rates based on N datasets tend to approximately follow a standard

normal distribution, α̂ ∼ N(α, s2), s =
√
α(1− α)/N . Accordingly, I used the test

statistic

Zobs =
α̂− 0.05

s

s =

√
0.05(0.95)

N
=

√
0.05(0.95)

1000
= 0.0069 (4.2)

We reject H0 in Eq.(4.1) if |Zobs| ≥ 1.96, and conclude that the actual type I error rate

is not equal to 0.05 at the 5% significance level. The 95% fail to reject H0 range for α is

(0.037,0.063). For the one covariate model, most of the estimated type I error rates of PH

and AFT analyses fall into this range, as shown in Table 4.5. Although about 10% of those

type I error rates are out of this range, they are almost all smaller than 0.11, we could

conclude that actual type I error rates are mostly acceptably close to 0.05 for practical use.

For the 3 covariate model, the type I error rates are given in Table A.4. By carrying

out the equivalence test of the estimated type I error rates to 0.05, most of the type I error

rates are around 0.1, higher than for the 1 covariate model.

4.3 Power study

In this section, I study ”power”, which is the probability of rejecting H0 when it is not true.

We see from the definition that power is related to the type I error rate. Generally, lowering
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the probability of type I errors, raises the probability of type II errors and lowers power.

In some cases we compare the powers of tests that have different type I error rates. How

to balance Type I error and power depends on the researcher’s judgement and objective

condition.

The estimated power plots in Fig.4.5, show the power trends versus the single covariate

case as the coefficient γ varies from 0 to 5. For the 1 covariate model, the horizontal axis

represents γ2, and the vertical axis represents estimated power. Note that estimated powers

increase as the horizontal scale γ2 increases from 0-25. In the power plots for 3 covariate

model in Fig.4.8, the horizontal axis is
γ21+γ22+γ23

3
, and the vertical axis represents power.

Note that estimated powers increases as the horizontal scale
γ21+γ22+γ23

3
increases from 0-25.

We superimposed the two power plots of PH and AFT analyses adjusting for sample size,

censoring rate and distribution. Estimated PH powers are denoted by blue, blank circles,

and AFT powers by red plus sign. In general, we see that for the one covariate case, AFT

analysis has higher power than PH analysis. The power plots of PH and AFT analyses are

almost identical as powers converge to 1, and the biggest differences between the power of

two analyses occur before power converges to 1. The comparisons of power convergence

rates are given in Table 4.6- 4.7. Fig.4.5,4.6,4.7 show the power plots for the one-covariate

model with different sample sizes and censoring rates. The power plots for other sample

sizes and censoring rates are given in Fig.B.1 in the Appendix.

Table 4.6: Model comparison in power convergence to 1

Model n = 20 n = 50

PH γ2 = 5 γ2 = 2.5
AFT γ2 = 5 γ2 = 2.5

The power plots for the three covariate model are given in Fig.4.8, Fig.4.9 as well as

in Fig.B.2, we see that there is a great difference in the power trends between the one

covariate and three covariate models. Because the different ways to simulate data in Section

3.2.3, the power plots for three covariate model are not as smooth and continuous as one
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Table 4.7: Model comparison in power convergence to 1

Model p = 0.2 p = 0.5

PH γ2 = 2.5 γ2 = 5
AFT γ2 = 2.5 γ2 = 5

covariate model. We could see that there is a sharp increase of power reaching to 1 for three

covariate model. AFT analysis has higher power and type I error rates than PH analysis

and it converges slightly less rapidly to 1 than PH analysis. As sample sizes increase or

censoring rates decrease, the two power trends converge. The power plots don’t differ much

across the distributions either. I discuss how the sample sizes, censoring rates, distributions

and covariate numbers affect power difference between PH and AFT analyses later in this

chapter.
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Figure 4.5: Power Plots for 1 Covariate Model,n=20,p=0.2
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Figure 4.6: Power Plots for 1 Covariate Model,n=20,p=0.5
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Figure 4.7: Power Plots for 1 Covariate Model,n=50,p=0.5
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Figure 4.8: Power Plots for 3 Covariate Model,n=20,p=0.5
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Figure 4.9: Power Plots for 3 Covariate Model,n=50,p=0.5
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4.4 McNemar’s Test for PH and AFT Analysis

Referring to Section 4.3, when γ is small from (0-1.5), estimated PH and AFT power trend

lines appear to be different. With large sample size and small censoring rate, for example,

n=50, p=0.2, the two power trend lines appear to be identical in this case. In order to

test if there is difference between the two analyses, I applied two criteria: type I error rate

and maximum power difference. McNemar’s test is used to evaluate these criteria in the

following sections.

McNemar’s test is used to test if there is difference in population proportions based upon

experiments where both responses are recorded on each experimental unit. It is named after

Quinn McNemar, who introduced it in 1947? . McNemar’s test is most easily carried out by

summarizing the data in the ”four fold” table given in Table 4.8, where nij is the observed

count in row i, column j and pij is the corresponding population proportion under the

circumstance of a specific γ, sample size, censoring rate of one or three covariate model.

The estimates of {pij} are given by

p̂11 =
n11

n11 + n12

,

p̂12 =
n12

n11 + n12

,

p̂21 =
n21

n21 + n22

,

p̂22 =
n22

n21 + n22

. (4.3)

The null hypothesis of marginal homogeneity states that the marginal probabilities, i.e.

p11 + p12 = p11 + p21 and p21 + p22 = p12 + p22 are equal. Thus, the hypothesis of McNemar’s

Test is given by

H0 : p12 = p21 v.s. Ha : p12 6= p21 (4.4)

McNemar’s test statistic with Yates’ correction for continuity is given by:
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Table 4.8: Four Fold Table

Test 2 rejects Test 2 not reject

Test 1 rejects n11(p11) n12(p12)
Test 1 not reject n21(p21) n22(p22)

χ2 =
(| n12 − n21 | −0.5)2

n12 + n21

. (4.5)

Under the null hypothesis, with a sufficiently large number of discordant (counts n12 and

n21), χ2 has a approximately chi-squared distribution with 1 degree of freedom. If either

n12 or n21 is small (n12 +n21 < 25) then χ2 may not be well-approximated by the chi-square

distribution. The binomial distribution can be used to obtain the ”exact” distribution for

obtaining p-values. In this formulation, underH0, n12 has conditional on n12+n21, a binomial

distribution with size parameter equal to n12 +n21 and ”probability of success” = 0.5, and is

essentially the sign test. For n12 + n21 < 25, the binomial calculations should be performed

and result in an what’s called an exact test. If the statistic provides sufficient evidence

to reject the null hypothesis, in favor of the alternative hypothesis that Ha : p12 6= p21 ,

conclude in the setting discussed here that the power functions for the PH and AFT model

analysis are not identical. This procedure is carried out for γ = 0 and γ 6= 0 in the following

sections.

4.4.1 Type I Error Rate Criterion

Type I error rate is the first key issue in comparisons of PH and AFT analyses. I used the

type I error rate difference(ERD) to measure the difference of type I error rate between two

analyses, denoted by

ERD =| αAFT − αPH | (4.6)

where αAFT and αPH are type I error rates for AFT and PH analyses at γ = 0. Let α̂AFTand

α̂PH be estimated type I error rates of the AFT and PH analysis respectively. Then ERD

can be estimated by
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ÊRD =| α̂AFT − α̂PH | (4.7)

Since both methods were applied to the same simulated data set, I used McNemar’s test

to test the difference between the two analyses in type I error rate. Thus, the hypothesis of

McNemar’s test is given by

H0 : ERD = 0, v.s. Ha : ERD 6= 0. (4.8)

For example, the type I error rates given in Table 4.5 is 0.062 for PH analysis, and 0.064

for AFT analysis. McNemar’s test for the equality of correlated type I error rates yields:

χ2 =
(| 8− 6 | −0.5)2

8 + 6
= 0.285 (4.9)

with df = 1, p − value = 0.593 and we fail to reject H0 : ERD = 0 and we don’t have

evidence to conclude that there is a statistically significant difference between the type I

error rates of the PH and AFT analysis at the 5% significance level when sample size is 50

and censoring rate is 0.2 for the 1 covariate model.

In order to test whether PH and AFT analyses are different in terms of type I error

rates, I carried out McNemar’s tests in all cases and found out that PH and AFT don’t

differ much in type I error rates in most cases for Lognormal and Loglogistic distributions.

Some of the tables are given in Tables A.5. But, for the Weibull distribution, there is a

significant difference between the two analyses. For example, when sample size is 30 and

censoring rate 0.5 for 1 covariate model, the four fold tables and McNemar’s tests for the

three distributions are shown in Table 4.9a- 4.9c. With p − value = 0.016 for Weibull, we

reject H0 : ERD = 0 and conclude that there is a significant different in type I error rates

for Weibull distribution when sample size is 30 and censoring rate is 0.5 for the 1 covariate

model. With p− value = 0.069, 0.3 for Lognormal and Loglogistic distributions, we fail to

reject H0 : ERD = 0 and we don’t have evidence to conclude that there is a statistically

significant difference between the type I error rates of the PH and AFT analysis at the 5%
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significance level for Lognormal and Loglogistic distributions when sample size is 30 and

censoring rate is 0.5 for the 1 covariate model. I performed McNemar’s tests in all cases and

found out that only for sample size 50 and censoring rate less than or equal to 0.5, there are

no significant differences in type I error rates among methods. When sample size is small

< 50, PH analysis has smaller type I error rate than AFT analysis. The four fold tables are

given in Tables A.5 in the Appendix.

Table 4.9: Four Fold Table for Type I error rate, 1 covariate model

(a) n=30, p=0.5, Weibull

ERD PH

reject not reject
AFT reject 56 18

not reject 6 918

χ2 5.51
p-value 0.016

(b) n=30, p=0.5, Lognormal

ERD PH

reject not reject
AFT reject 61 26

not reject 14 899

χ2 3.31
p-value 0.069

(c) n=30, p=0.5, Loglogistic

ERD PH

reject not reject
AFT reject 52 12

not reject 7 929

χ2 1.066
p-value 0.3

(d) n=50, p=0.2, Weibull

ERD PH

reject not reject
AFT reject 38 8

not reject 6 948

χ2 0.285
p-value 0.593

(e) n=50, p=0.2, Lognormal

ERD PH

reject not reject
AFT reject 32 27

not reject 24 917

χ2 0.176
p-value 0.67

(f) n=50, p=0.2, Loglogistic

ERD PH

reject not reject
AFT reject 33 21

not reject 13 933

χ2 1.88
p-value 0.17
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4.4.2 Maximum Power Difference Criterion

In order to test whether PH and AFT analyses are different in terms of power, I tested

statistical signficiance of the difference between the two estimated power plots. Whether

the power differences are statistically significant or not is a key question for helping us to

choose between the two analyses. I used the maximum power difference(MPD) to measure

the difference of power between two analyses, defined by

MPD = max{| K(i)
AFT −K

(i)
PH | , i = 1, 2, · · · ,m} (4.10)

where K
(i)
AFT and K

(i)
PH are powers for AFT and PH analyses at alternative γi 6= 0. Let

K̂
(i)
AFTand K̂

(i)
PH be estimated powers of the AFT and PH analysis respectively. Then MPD

can be estimated by

M̂PD = max{| K̂(i)
AFT − K̂

(i)
PH | , i = 1, 2, · · · ,m}, (4.11)

Since both methods were applied to each simulated data set, I used McNemar’s test to

test

H0 : MPD = 0, v.s. Ha : MPD 6= 0. (4.12)

In my case, the units are data sets and the responses are rejection of the hypothesis

of the covariates being zero. I could use McNemar’s test at each alternative value of the

covariate(s). Instead, I carried out McNema’s test at the alternative where the estimated

power curves are furthest apart, which is an adaptive way to test H0 : MPD = 0 in Eq.

(4.12). A small p-value could then be interpreted as evidence that the power curves are not

identical. Since for Weibull distribution, both tests are appropriate as discussed in Section

2.1, it is not surprising that the two power trend plots appear be similar. For example,

the smallest MPD given in Table 4.11 is 0.047 with sample size 50, censoring rate 0.2 and

Weibull distribution. The four fold table in Table 4.10 of rejections of H0 is shown below.

McNemar’s test for the equality of correlated power rates yields:
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Table 4.10: Four fold table for MPD with n=50, p=0.2, Weibull 1 covariate Model

MPD PH
reject not reject

AFT
reject 702 55

not reject 16 227

χ2 =
(| 55− 16 | −0.5)2

55 + 16
= 21.422 (4.13)

with df = 1, p− value = 4.115E − 5 and we reject H0 : MPD = 0 and conclude that there

is a statistically significant difference between the powers of the PH and AFT analysis at

the 5% significance level when sample size is 50 and censoring rate is 0.2 for the 1 covariate

model. We concluded that the power of AFT analysis differs from PH analysis in this case.

But, as we look at the power plots in Fig.4.10, the two power trend lines for PH and AFT

analysis are almost the same after the powers reach 1, while they are quite different when γs

are close to 0. Statistical significance is probably obtained here because of the large number

(1000) of data sets.

Since when n ≤ 10, p ≥ 0.9, it is not suitable to use PH and AFT analyses because

of high NR and type I error rates. So I just did McNemar’s tests to cases n ≥ 20 or

p ≤ 0.8, and found out that AFT analysis has different power in testing for covariates than

PH analysis. The four fold tables are given in Tables A.6. So far, by carrying McNemar’s

test for the equality of correlated powers and type I error rates, we conclude that there are

differences in powers between PH and AFT analysis, while no difference in type I error

rates for one covariate effect with sample size 50 and censoring rate 0.2 at 5% significance

level. We also learned that when sample sizes are 20 or above and censoring rates are less

than 0.9, the non-convergence rate is low and type I error rates are around 0.05. By carrying

out McNemar’s test for these cases, M̂PD > 0 and there was an indication of a superior

performance for AFT analysis in those cases where it’s estimated type I error rate is close

to nominal. But whether using PH or AFT depends mainly on a researcher’s judgement.
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Figure 4.10: Power Plots for 1 Covariate Model,n=50,p=0.2
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Table 4.11: Maximum Power Difference for 1 Covariate Model

max{|P̂H − ÂFT |} censor size distribution

0.091 0.2 20 Weibull
0.131 0.2 20 lognormal
0.113 0.2 20 loglogistic
0.060 0.2 30 Weibull
0.101 0.2 30 lognormal
0.130 0.2 30 loglogistic
0.097 0.3 20 Weibull
0.108 0.3 20 lognormal
0.107 0.3 20 loglogistic
0.094 0.5 20 Weibull
0.110 0.5 20 lognormal
0.101 0.5 20 loglogistic
0.108 0.7 20 Weibull
0.117 0.7 20 lognormal
0.128 0.7 20 loglogistic
0.131 0.8 20 Weibull
0.128 0.8 20 lognormal
0.112 0.8 20 loglogistic
0.069 0.3 30 Weibull
0.097 0.3 30 lognormal
0.101 0.3 30 loglogistic
0.071 0.5 30 Weibull
0.095 0.5 30 lognormal
0.110 0.5 30 loglogistic
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Table 4.11: Maximum Power Difference for 1 Covariate Model

max{|P̂H − ÂFT |} censor size distribution

0.086 0.7 30 Weibull
0.106 0.7 30 lognormal
0.095 0.7 30 loglogistic
0.090 0.8 30 Weibull
0.111 0.8 30 lognormal
0.093 0.8 30 loglogistic
0.059 0.5 50 Weibull
0.079 0.5 50 lognormal
0.102 0.5 50 loglogistic
0.052 0.7 50 Weibull
0.098 0.7 50 lognormal
0.087 0.7 50 loglogistic
0.078 0.8 50 Weibull
0.091 0.8 50 lognormal
0.079 0.8 50 loglogistic
0.047 0.2 50 Weibull
0.075 0.2 50 lognormal
0.142 0.2 50 loglogistic
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4.4.3 Modeling MPD

As we learned from the last two sections, there is a statistically significant difference be-

tween the powers of the PH and AFT analyses, and the MPD changes as sample sizes and

censoring rates change. Here, I studied how MPD is effected by sample size, censoring rate,

distribution, method of analysis and number of covariates.

As noted above, PH and AFT models are equivalent for the Weibull distribution. We

therefore used the Weibull distribution as a reference category, and compared power per-

formance of Lognormal v.s. Weibull, Loglogistic V.S. Weibull. We built a first order linear

regression model for MPD, considering the independent variables sample size, censoring

rate, covariate number, distribution and method of analysis. We used least squares to fit

the linear regression model

MPD = β0 + β1X1 + β2X2 + β3W1 + β4W2 + ε, (4.14)

where we denote X1 for sample size with levels(20,30,50),X2 for censoring rate with level-

s(0.2,0.3,0.5,0.7,0.8). W1 is a dummy variable for the Lognormal distribution, W2 is a dum-

my variable for the Loglogistic distribution and ε ∼ N(0, σ2). Specifically, W1 = 1,W2 = 0

denotes Lognormal distribution, W1 = 0,W2 = 1 denotes Loglogistic distribution, and

W1 = 0,W2 = 0 denotes Weibull distribution.

The fitted model obtained from R for MPD is shown as Eq.(4.15):

M̂PD = 0.107− 0.001X1 + 0.008X2 + 0.022W1 + 0.026W2. (4.15)

with R2 = 0.7, all factors are significant with p-values < 0.05, except censoring rate with

p-value=0.424.

From the MPD fitted model Eq.(4.15), the coefficient of sample size is -0.001, which

means if sample size increases by 10, we estimate that MPD decreases by 0.01, adjusted for

the factors censoring rate, distribution. The estimated coefficient of censoring rate is 0.008,

which means if censoring rate increases 0.1, the MPD increases by 0.0008 which is quite
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small, adjusted for the factors sample size and distribution. Since the p-value for censoring

rate is greater than 0.05, we concluded that the censoring rate effect is not statistically

significant, the other factors being fixed.

In Eq.(4.15), the Weibull distribution is the reference category, and the coefficient is 0.022

for Lognormal distribution dummy variable and 0.026 for Loglogistic distribution dummy

variable, adjusting for other factors. So, as expected the MPDs between PH and AFT

analysis increase if the distribution is Lognormal or Loglogistic rather than Weibull, if the

other factors are fixed. From Table 4.11, the MPD is smallest for Weibull distribution, and

relatively smaller for Lognormal distribution than Loglogistic distribution.

4.5 PH and AFT Survival Analysis Application

A study was conducted on the effects of ploidy on the prognosis of patients with cancers of

the mouth6. Patients were selected who had a paraffin-embedded sample of the cancerous

tissue taken at the time of surgery. Follow-up survival data was obtained on each patient.

The tissue samples were examined using a flow cytometer to determine if the tumor had

an aneuploid (abnormal) or diploid (normal) DNA profile using a technique discussed in

SickleCSantanello et al. (1988). The data in Table 4.12 is on patients with cancer of the

tongue. Times are in weeks.

Table 4.12: Death times (in weeks) of patients with cancer of the tongue

Aneuploid Tumors:
Death Times: 1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27,

28, 30, 30, 32, 41, 51, 65, 67, 70,
72, 73, 77, 91, 93, 96, 100, 104, 157, 167

Censored Observations: 61, 74, 79, 80, 81, 87, 87, 88, 89,
93, 97, 101, 104, 108, 109, 120,

131, 150, 231, 240, 400

Diploid Tumors:
Death Times: 1, 3, 4, 5, 5, 8, 12, 13, 18, 23, 26, 27, 30,

42, 56, 62, 69, 104, 104, 112, 129,181
Censored Observations: 8, 67, 76, 104, 176, 231
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Table 4.13: Survival Analysis Application

PH analysis AFT analysis
Weibull Lognormal Loglogisitc

likelihood ratio test 0.3378 0.88 23.79 26.47
p-value 0.5611 0.3490 < 0.0001 < 0.0001

In the study patients were classified as having either an aneuploid or diploid DNA profile.

As Weibull regression model is widely used in medical study, we applied weibull distribution

to this data with a single covariate, Z, that is equal to 1 if the patient had an aneuploid

DNA profile and 0 otherwise. In order to test the hypothesis of effect of ploidy on survival

using the likelihood ratio test, I used maximum likelihood function to estimate Weibull

distribution for Aneuploid tumor, in which weibull scale parameter λ = 0.016 and weibull

shape parameter α = 0.832. And Weibull distribution for Diploid tumor, in which weibull

scale parameter λ = 0.775 and weibull shape parameter α = 0.036.

I applied the PHREG procedure for PH analysis and LIFEREG procedure for AFT

analysis with distributions Weibull, Lognormal and Loglogistic in SAS to test covariate

effect of aneuploid DNA profile. The likelihood ratio test statistics are given in Table 4.13.

Both PH analysis and AFT test using Weibull distribution give p-value greater than 0.05,

which we failed to reject the null hypothesis, while the other AFT tests using lognormal and

loglogistic distributions yield opposite conclusion. We could see that selection of distribution

greatly effect AFT test.

An appealing feature of the Cox model is that the baseline hazard function is esti-

mated nonparametrically, and so unlike most other statistical models, the survival times

are not assumed to follow a particular statistical distribution. According to PH analy-

sis output in Table 4.13, the estimated coefficient of variable tumor is β̂ = 0.16929, the

Se{β̂} = 0.28955, and the estimated hazard ratio is exp(β̂) = 1.184, which means the

hazard risk of death would be 1.184 times larger if the tumor is Diploid than Aneuploid.

While the confidence interval for β is (-0.398,0.737), and the confidence interval of hazard
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ratio is (exp(−0.398), exp(0.737)) = (0.671, 2.089). The hazard ratio confidence interval

contain 1 indicates that the covariate(tumor type) effect is probably not associated with the

event(death) probability , and thus not associated with the length of survival.

56



Chapter 5

Conclusion and Further Study

5.1 Conclusion

The Proportional hazard model is a class of survival model often used in Medical, Biological,

and Engineering fields, etc. In a proportional hazards model, the effect of a unit increase in

a covariate is multiplicative with respect to the hazard rate. Another type of survival model,

the accelerated failure time model, does not require such proportional hazards. Both models

are used to assess the effects of covariates on lifetimes. In order to study and compare

the performance of these models, we applied PH model analysis to data simulated using

AFT models. We simulated accelerated lifetime model data with one covariate and three

covariates in Chapter 3. The comparison of estimated powers from the two models presented

in Chapter 4 leads to the following conclusions.

1. Under extreme circumstance, such as low sample sizes (n = 10), or high censoring

rates (p = 0.8), the PH model has higher percent of non-convergence estimates than the

AFT model. Overall, both PH model and AFT analyses have low power in testing for

covariate effects. But, the PH analysis has lower Type I error than AFT analysis, indicating

its robustness.

2. When sample size increases from 20-50, the power plots of PH and AFT model become

increasingly similar to each other, although there is still a statistically significant difference

in power. The biggest difference in power exists when γ is small. Overall, AFT analysis has
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a slightly higher power than PH analysis.

3. When sample size is large n ≥ 50 and censoring rate is small p ≤ 0.3, there is not a

statistically significant difference in type I error rates for the two analyses. Otherwise, PH

analysis has a slightly lower type I error rate than AFT analysis.

Since using an AFT analysis requires specifying the distribution of lifetime data, we

would prefer applying a PH analysis rather than AFT analysis in practice. Generally, we

conclude that PH model is quite robust in terms of type I error rate and type II error rate

with respect to AFT model in applied statistics.

5.2 Further Study

There are some questions in my simulation and analysis need to be considered in future

work.

(1) Censoring index

In my study, I simplified the generation of censoring index as an independent variable

with lifetime as shown in Section 3.2.2. In the future work, we should simulate the censoring

distribution as well as the lifetime distribution.

(2) Distribution

In the report, I only compared the three distributions(Weibull, Lognormal and Loglogis-

tic) which are used widely in biology and engineering. And I selected specific distributions

with similar shape from the three families as shown in Section 3.2.1. We don’t know any-

thing about the performance of PH and AFT tests on other distributions in these families or

other families of distribution, which limits the applicability of the conclusions we obtained

in this report.

(3) Other types of censoring data

In my report, I only simulated the right censoring data with censoring rate p = 0.2 ∼ 0.9.

There are other types of censoring data like left censoring, interval censoring, and truncated

data.
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(4) Assumption of applying correct distribution in AFT analysis

A limitation of using AFT analysis is that we need to specify the distribution of the data.

In my simulation, I always applied the correct distribution for AFT analysis. Consequently,

we don’t know anything about the performance of AFT analysis in case of using the wrong

distributions. Future studies should compare the power performance of PH analysis and

AFT analysis with the wrong distributions.

(5) How fast power reaches 1

As we look at the power plots for the two analyses, it seems that AFT analysis converges

faster in power than PH analysis until power reaches 1. This behavior should be investigated

in future work.

(6) Computing time

Because the simulated data are stored in a large dimension matrix, as shown in Section

??, it consumed a lot of computer memory and required a long time to execute the analyses.

I suggest that future studies use multi-thread programming to decrease the running time.
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Table A.1: Non-convergency rates for Weibull, 1 covariate

PH (%) AFT (%) gamma Censoring rate Sample Size

1.2 1.6 0 0.8 10
0.9 1.3 0.5 0.8 10

1 1.4 1 0.8 10
1.3 1.1 1.5 0.8 10
1.2 1.8 2 0.8 10
1.1 1.4 2.5 0.8 10
1.8 1.6 3 0.8 10
1.2 1.3 3.5 0.8 10
1.1 1.8 4 0.8 10

2 1.7 4.5 0.8 10
1.7 1.7 5 0.8 10

0 0.2 0.5 0.8 20
0 0.3 1 0.8 20
0 0.1 1.5 0.8 20

0.3 0.4 2.5 0.8 20
0 0.2 3 0.8 20

0.1 0.2 3.5 0.8 20
0.3 0.2 4 0.8 20
0.4 0 4.5 0.8 20
0.2 0.2 5 0.8 20

0 0.1 0 0.5 10
0 0.1 0.5 0.5 10

0.2 0.1 1.5 0.5 10
0.4 0 2 0.5 10
0.1 0 2.5 0.5 10
0.4 0 3.5 0.5 10
0.6 0 4 0.5 10
0.5 0.1 4.5 0.5 10
2.9 8.2 0 0.9 10
0.9 9.1 0.5 0.9 10
1.6 7.7 1 0.9 10
1.7 8.3 1.5 0.9 10

2 7.8 2 0.9 10
2.7 6.7 2.5 0.9 10

2 6.7 3 0.9 10
1.8 5.6 3.5 0.9 10
1.6 7.4 4 0.9 10
2.3 5.7 4.5 0.9 10
2.3 5.9 5 0.9 10
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Table A.2: Non-convergency rates for Lognormal, 1 covariate

PH(%) AFT(%) gamma censor rate Sample size

0.6 0 0 0.8 10
1 0 0.5 0.8 10

0.9 0 1 0.8 10
1.2 0 1.5 0.8 10
0.8 0 2 0.8 10
1.7 0 2.5 0.8 10
2.1 0 3 0.8 10
1.3 0 3.5 0.8 10
1.1 0 4 0.8 10
1.9 0 4.5 0.8 10
1.5 0 5 0.8 10
0.2 0 0 0.8 20
0.1 0 1 0.8 20
0.1 0 1.5 0.8 20
0.1 0 2 0.8 20
0.2 0 2.5 0.8 20
0.2 0 3 0.8 20
0.2 0 3.5 0.8 20
0.1 0 4 0.8 20
0.3 0 4.5 0.8 20
0.1 0 5 0.8 20
0.1 0 0.5 0.5 10
0.3 0 1.5 0.5 10
0.1 0 2.5 0.5 10
0.3 0 3 0.5 10
0.4 0 3.5 0.5 10
0.3 0 4 0.5 10
0.7 0 4.5 0.5 10
0.9 0 5 0.5 10
1.8 0.3 0 0.9 10
1.3 0.5 0.5 0.9 10
1.9 0.3 1 0.9 10
2.3 0.4 1.5 0.9 10
1.8 0.1 2 0.9 10
2.4 0.3 2.5 0.9 10
1.5 0.2 3 0.9 10
1.3 0.4 3.5 0.9 10

2 0.3 4 0.9 10
2.4 0.2 4.5 0.9 10

2 0.2 5 0.9 10
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Table A.3: Non-convergency rates for Loglogistic, 1 covariate

PH(%) AFT(%) gamma censor rate Sample size

0.9 0 0 0.8 10
0.9 0 0.5 0.8 10
1.2 0 1 0.8 10
0.5 0 1.5 0.8 10
0.9 0 2 0.8 10
1.2 0 2.5 0.8 10
1.4 0 3 0.8 10
1.5 0 3.5 0.8 10
1.4 0 4 0.8 10

2 0 4.5 0.8 10
1.8 0 5 0.8 10
0.1 0 0.5 0.8 20
0.1 0 2.5 0.8 20
0.1 0 3 0.8 20
0.1 0 4.5 0.8 20
0.1 0 5 0.8 20
0.1 0 1 0.5 10
0.1 0 1.5 0.5 10
0.1 0 2.5 0.5 10
0.2 0 3.5 0.5 10
0.3 0 4 0.5 10
0.3 0 4.5 0.5 10
0.5 0 5 0.5 10
1.3 0.5 0 0.9 10
1.6 0.9 0.5 0.9 10
2.1 0.1 1 0.9 10
0.9 0.3 1.5 0.9 10
1.3 0.5 2 0.9 10

2 0.3 2.5 0.9 10
2 0.2 3 0.9 10

2.1 0.6 3.5 0.9 10
1.4 0.3 4 0.9 10
1.6 0.2 4.5 0.9 10
1.3 0.6 5 0.9 10
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Table A.4: Type I error rates for 3 covariate model

PH AFT censor rate sample size distribution

0.119 0.216 0.2 10 Weibull
0.124 0.178 0.2 10 lognormal
0.134 0.207 0.2 10 loglogistic
0.154 0.223 0.3 10 Weibull
0.123 0.18 0.3 10 lognormal
0.155 0.228 0.3 10 loglogistic
0.177 0.267 0.5 10 Weibull
0.192 0.279 0.5 10 lognormal
0.196 0.281 0.5 10 loglogistic
0.263 0.401 0.7 10 Weibull
0.289 0.382 0.7 10 lognormal
0.256 0.347 0.7 10 loglogistic
0.092 0.492 0.8 10 Weibull
0.097 0.444 0.8 10 lognormal
0.097 0.463 0.8 10 loglogistic
0.082 0.101 0.2 20 Weibull
0.075 0.092 0.2 20 lognormal
0.094 0.114 0.2 20 loglogistic
0.087 0.111 0.3 20 Weibull
0.073 0.096 0.3 20 lognormal
0.095 0.113 0.3 20 loglogistic
0.093 0.12 0.5 20 Weibull
0.088 0.103 0.5 20 lognormal
0.088 0.111 0.5 20 loglogistic
0.113 0.163 0.7 20 Weibull
0.113 0.138 0.7 20 lognormal
0.093 0.137 0.7 20 loglogistic
0.106 0.171 0.8 20 Weibull
0.129 0.161 0.8 20 lognormal
0.123 0.178 0.8 20 loglogistic
0.09 0.099 0.2 30 Weibull

0.073 0.079 0.2 30 lognormal
0.066 0.073 0.2 30 loglogistic
0.085 0.101 0.3 30 Weibull
0.065 0.077 0.3 30 lognormal
0.064 0.079 0.3 30 loglogistic

65



Table A.4: Type I error rates for 3 covariate model

PH AFT censor rate sample size distribution

0.09 0.117 0.5 30 Weibull
0.072 0.089 0.5 30 lognormal
0.072 0.099 0.5 30 loglogistic
0.085 0.118 0.7 30 Weibull
0.085 0.104 0.7 30 lognormal
0.084 0.119 0.7 30 loglogistic
0.102 0.138 0.8 30 Weibull
0.085 0.101 0.8 30 lognormal
0.064 0.106 0.8 30 loglogistic
0.058 0.070 0.2 50 Weibull
0.066 0.080 0.2 50 lognormal
0.06 0.077 0.2 50 loglogistic

0.063 0.077 0.3 50 Weibull
0.058 0.068 0.3 50 lognormal
0.065 0.070 0.3 50 loglogistic
0.063 0.076 0.5 50 Weibull
0.06 0.065 0.5 50 lognormal

0.059 0.061 0.5 50 loglogistic
0.055 0.069 0.7 50 Weibull
0.080 0.082 0.7 50 lognormal
0.064 0.079 0.7 50 loglogistic
0.069 0.087 0.8 50 Weibull
0.069 0.083 0.8 50 lognormal
0.062 0.077 0.8 50 loglogistic
0.059 0.074 0.2 70 Weibull
0.067 0.067 0.2 70 lognormal
0.046 0.04 0.2 70 loglogistic
0.055 0.067 0.5 70 Weibull
0.07 0.061 0.5 70 lognormal

0.057 0.062 0.5 70 loglogistic
0.061 0.068 0.8 70 Weibull
0.067 0.084 0.8 70 lognormal
0.056 0.079 0.8 70 loglogistic
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Table A.5: Four Fold Table for ERD, 1 covariate model

(a) n=30, p=0.3, Weibull

ERD PH

reject not reject
AFT reject 41 25

not reject 6 928

(b) n=30, p=0.3, Lognormal

ERD PH

reject not reject
AFT reject 33 20

not reject 22 925

(c) n=30, p=0.3, Loglogistic

ERD PH

reject not reject
AFT reject 58 16

not reject 10 916

(d) n=30, p=0.2, Weibull

ERD PH

reject not reject
AFT reject 45 20

not reject 7 927

(e) n=30, p=0.2, Lognormal

ERD PH

reject not reject
AFT reject 35 31

not reject 19 915

(f) n=30, p=0.2, Loglogistic

ERD PH

reject not reject
AFT reject 44 22

not reject 18 916

(g) n=50, p=0.5, Weibull

ERD PH

reject not reject
AFT reject 46 13

not reject 15 926

(h) n=30, p=0.3, Lognormal

ERD PH

reject not reject
AFT reject 35 20

not reject 19 926

(i) n=30, p=0.3, Loglogistic

ERD PH

reject not reject
AFT reject 31 21

not reject 12 936

(j) n=50, p=0.7, Weibull

ERD PH

reject not reject
AFT reject 50 20

not reject 7 922

(k) n=50, p=0.7, Lognormal

ERD PH

reject not reject
AFT reject 38 18

not reject 14 930

(l) n=50, p=0.7, Loglogistic

ERD PH

reject not reject
AFT reject 44 23

not reject 5 928
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Table A.6: Maximum power differences for 3 covariate model

max{|PH − AFT |} censor size distribution

0.206 0.2 10 Weibull
0.171 0.2 10 lognormal
0.175 0.2 10 loglogistic
0.236 0.3 10 Weibull
0.182 0.3 10 lognormal
0.182 0.3 10 loglogistic
0.194 0.5 10 Weibull
0.171 0.5 10 lognormal
0.168 0.5 10 loglogistic
0.225 0.7 10 Weibull
0.220 0.7 10 lognormal
0.240 0.7 10 loglogistic
0.512 0.8 10 Weibull
0.535 0.8 10 lognormal
0.537 0.8 10 loglogistic
0.130 0.2 20 Weibull
0.108 0.2 20 lognormal
0.115 0.2 20 loglogistic
0.141 0.3 20 Weibull
0.114 0.3 20 lognormal
0.109 0.3 20 loglogistic
0.148 0.5 20 Weibull
0.112 0.5 20 lognormal
0.135 0.5 20 loglogistic
0.165 0.7 20 Weibull
0.140 0.7 20 lognormal
0.126 0.7 20 loglogistic
0.175 0.8 20 Weibull
0.159 0.8 20 lognormal
0.160 0.8 20 loglogistic
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Table A.7: Maximum power differences for 3 covariate model

max{|PH − AFT |} censor size distribution

0.081 0.2 30 Weibull
0.094 0.2 30 lognormal
0.078 0.2 30 loglogistic
0.078 0.3 30 Weibull
0.110 0.3 30 lognormal
0.115 0.3 30 loglogistic
0.101 0.5 30 Weibull
0.120 0.5 30 lognormal
0.125 0.5 30 loglogistic
0.132 0.7 30 Weibull
0.122 0.7 30 lognormal
0.124 0.7 30 loglogistic
0.152 0.8 30 Weibull
0.135 0.8 30 lognormal
0.126 0.8 30 loglogistic
0.016 0.2 50 Weibull
0.057 0.2 50 lognormal
0.067 0.2 50 loglogistic
0.020 0.3 50 Weibull
0.079 0.3 50 lognormal
0.063 0.3 50 loglogistic
0.058 0.5 50 Weibull
0.097 0.5 50 lognormal
0.104 0.5 50 loglogistic
0.103 0.7 50 Weibull
0.122 0.7 50 lognormal
0.126 0.7 50 loglogistic
0.112 0.8 50 Weibull
0.100 0.8 50 lognormal
0.120 0.8 50 loglogistic
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Table A.8: Four Fold Table for MPD, 1 covariate model

(a) n=20, p=0.2, Weibull

MPD PH

reject not reject
AFT reject 642 89

not reject 20 249

(b) n=20, p=0.2, Lognormal

MPD PH

reject not reject
AFT reject 537 132

not reject 12 319

(c) n=20, p=0.2, Loglogistic

MPD PH

reject not reject
AFT reject 646 123

not reject 15 216

(d) n=30, p=0.2, Weibull

MPD PH

reject not reject
AFT reject 534 79

not reject 20 367

(e) n=30, p=0.2, Lognormal

MPD PH

reject not reject
AFT reject 450 123

not reject 29 398

(f) n=30, p=0.2, Loglogistic

MPD PH

reject not reject
AFT reject 681 122

not reject 18 179

(g) n=30, p=0.5, Weibull

MPD PH

reject not reject
AFT reject 459 84

not reject 15 442

(h) n=30, p=0.5, Lognormal

MPD PH

reject not reject
AFT reject 476 101

not reject 21 402

(i) n=30, p=0.5, Loglogistic

MPD PH

reject not reject
AFT reject 437 92

not reject 19 434

(j) n=50, p=0.5, Weibull

MPD PH

reject not reject
AFT reject 253 37

not reject 20 690

(k) n=50, p=0.5, Lognormal

MPD PH

reject not reject
AFT reject 834 72

not reject 4 90

(l) n=50, p=0.5, Loglogistic

MPD PH

reject not reject
AFT reject 414 110

not reject 14 462
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Figure B.1: Power plots for 1 covariate model

(a) n=10,p=0.2 (b) n=20,p=0.2

(c) n=30,p=0.2 (d) n=50,p=0.2
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Figure B.1: Power plots for 1 covariate model

(e) n=10,p=0.3 (f) n=20,p=0.3

(g) n=30,p=0.3 (h) n=50,p=0.3
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Figure B.1: Power plots for 1 covariate model

(i) n=10,p=0.5 (j) n=20,p=0.5

(k) n=30,p=0.5 (l) n=50,p=0.5
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Figure B.1: Power plots for 1 covariate model

(m) n=10,p=0.7 (n) n=20,p=0.7

(o) n=30,p=0.7 (p) n=50,p=0.7
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Figure B.1: Power plots for 1 covariate model

(q) n=10,p=0.8 (r) n=20,p=0.8

(s) n=30,p=0.8 (t) n=50,p=0.8
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Figure B.1: Power plots for 1 covariate model

(u) n=10,p=0.9 (v) n=20,p=0.9

(w) n=30,p=0.9 (x) n=50,p=0.9
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Figure B.2: Power plots for 3 covariate model

(a) n=10,p=0.2 (b) n=20,p=0.2

(c) n=30,p=0.2 (d) n=50,p=0.2
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Figure B.2: Power plots for 3 covariate model

(e) n=10,p=0.3 (f) n=20,p=0.3

(g) n=30,p=0.3 (h) n=50,p=0.3
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Figure B.2: Power plots for 3 covariate model

(i) n=10,p=0.5 (j) n=20,p=0.5

(k) n=30,p=0.5 (l) n=50,p=0.5
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Figure B.2: Power plots for 3 covariate model

(m) n=10,p=0.7 (n) n=20,p=0.7

(o) n=30,p=0.7 (p) n=50,p=0.7
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Figure B.2: Power plots for 3 covariate model

(q) n=10,p=0.8 (r) n=20,p=0.8

(s) n=30,p=0.8 (t) n=50,p=0.8
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