UNIVERSIDADE DO ALGARVE

FACULDADE DE CIÊNCIAS E TECNOLOGIA

SARAH A. RAUTENBACH

Assessment of the marine biodegradation and suitability

of textile carrier substrates for Zostera marina transplantation

SARAH A. RAUTENBACH

Assessment of the marine biodegradation and suitability of textile carrier substrates for *Zostera marina* transplantation

Master in Marine and Coastal Systems (MACS) Work under supervision of: Dr. Aschwin Hillebrand Engelen, CCMAR Prof. Dr. Marleen De Troch, Ghent University PhD Student Riccardo Pieraccini

UNIVERSIDADE DO ALGARVE

FACULDADE DE CIÊNCIAS E TECNOLOGIA

Work authorship statement /Declaração de autoria de trabalho

Assessment of the biodegradation of textile substrates in the marine environment and their suitability as carrier substrate for seagrass transplantation of Zostera marina

I declare to be the author of this work, which is unique and unprecedented. Authors and works consulted are properly cited in the text and are included in the listing of references included.

Declaro ser o(a) autor(a) deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída.

Faro, 30.09.2021

©Copyright: Sarah Antonia Rautenbach

the University of Algarve has the right, perpetual and without geographical boundaries, to archive and make public this work through printed copies reproduced in paper or digital form, or by any other means known or to be invented, to broadcast it through scientific repositories and allow its copy and distribution with educational or research purposes, non-commercial purposes, provided that credit is given to the author and Publisher.

A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Acknowledgements

I would like to express my greatest gratitude and thanks to Dr. Aschwin Hillebrand-Engelen, who guided me unexceptionally through the fabrication of this master thesis. His dedication for his students was shown through his availability and willingness to help and support me throughout the planning, experimental as well as analytical phases of this work. Thanks for the permanent encouragement on the professional and personal level.

Another special thanks to PhD Student Riccardo Pieraccini, without whom I would not have had the opportunity of being part in this great research project. I am very grateful for his assistance and availability at all times. Despite the on-going pandemic Riccardo gave me the best support possible from a distance and I enjoyed this collaboration and partnership greatly.

Furthermore, I would like to thank Prof. Dr. Marleen De Troch for her assistance, supervision and feedback.

Much appreciation to João Eugénio Bernardino Pena dos Reis and Miguel Patusco dos Santos for the technical and sometimes very creative support during my experimental work at Ramalhete Field Station.

A big thanks to Dipl.-Ing. (FH) Kai Nebel from Reutlingen University and Margarida da Conceição Pereira Ramires CIMA for letting me use the laboratory and equipment in order to execute part of the analysis of my samples.

Thank you to my dear friends Julia, Aude, Lari, Katha and all the beautiful people from Praia de Faro for keeping me sane after some long days of work and helping me to refresh my mind with a nice camping trip or vinho in Faro and Cologne.

I would like to speak out great thanks to my family, especially to my mother Michaela, my father David, my sister Leo and my grand-mother Rita. Thank you for always holding my back and never letting me down or alone. I love you all very much and without you I would have not been able to do this work.

Abstract

Seagrass meadows provide essential eco-system services for humankind but have been declining over the past and still ongoing, mainly attributed to anthropogenic disturbances. The development of cost-effective and large-scale strategies for seagrass restoration has been challenging. In this study fundamental knowledge was generated to identify textile fabrics from natural derivatives to serve as carrier substrate for transplantation purposes. In a series of experiments the biodegradation behavior of textiles was assessed, differing in material and design. Specimen were buried in the intertidal of the Ria Formosa Lagoon and retrieved after set intervals. Weight, tensile strength and oxygen consumption rate were used as descriptors for biodegradation. The least degraded fabric was composed from coir, followed by the jute and sisal layouts, which performed similarly. The response of *Zostera marina* shoots towards the textiles was analyzed by placing shoots, incorporated into the fabrics, into mesocosms. Survival rates along with the development of new leaves was higher in shoots growing on sisal layouts than in controls and shoots in coir nets. This study demonstrated that the fixation of the plants onto a dense mesh as the sisal one offers significant support for shoots to grow on, resulting in superior health compared to single lose shoots. Additionally, earlier induced biodegradation in sisal layouts possibly fostered shoots with plant-growth-supporting substrates, according to the health state of these shoots. Hence, time of biodegradation was found to be vital for seagrass transplantation. Rapid degradation, leaving no carrier substrate as in controls and fertilized shoots, was proven to reduce survival chances. Retarded degradation like in coir fabrics, decelerates the supply of growth supporting substrates. Concluding, the dense sisal mesh was found to be the most successful fabric for transplantation of Zostera marina due to its biodegradation rate, high tensile strength, facilitating handling, along with sufficient fixation of the shoots.

Keywords: Seagrass, restoration, *Zostera marina*, cost-effective, geotextiles, biodegradation

Resumo

A sociedade actualmente enfrenta um grande número de desafios ambientais que precisam de ser enfrentados e resolvidos. O ambiente marinho é essencial para o bemestar humano e proporciona vários serviços ecossistêmicos, como zonas favoráveis á práctica de pesca, rotas de transporte de mercadorias e pessoas, serviços recreativos e muito mais. Com o aumento da influência antropogênica adversa neste ambiente, os serviços do ecossistema tornam-se mais escassos, dando origem a uma variedade de problemas para a população humana. As ervas marinhas desempenham um papel fundamental na boa continuação de vários desses serviços ecossistêmicos, servindo como habitat de berçário para diferentes espécies, protegendo as costas da erosão e sequestrando o carbono atmosférico. No entanto, os prados de ervas marinhas têm diminuído nas últimas décadas, em grande parte devido a distúrbios antropogénicos. O foco principal deste trabalho é o restabelecimento dos prados de ervas marinhas.

O desenvolvimento de estratégias econômicas e em grande escala para a restauração de ervas marinhas tem sido um desafio. A falta de recursos, dificuldades de logística, baixa eficiência e eventos ambientais adversos, como tempestades, foram os principais contribuintes para o fracasso de muitos programas de restauração. Neste estudo, conhecimentos fundamentais foram gerados para identificar uma nova abordagem de restauração de ervas marinhas em que tecidos de derivados naturais serviram como substrato de transporte para fins de transplante. Formulando e colocando em práctica um conjunto de experiências, o comportamento de biodegradação de tecidos no ambiente marinho foi avaliado, uma vez que, até ao momento, só há informações disponíveis sobre a degradação terrestre. Os tecidos diferenciam-se em material (fibra de coco, sisal, juta) e design (malha, tapete não tecido). Os tecidos foram combinados em uma chamada "estructura de sanduíche" na qual uma esteira não tecida foi colocada entre duas malhas do mesmo tipo, gerando assim um composto estabilizador (malha) e base de enraizamento (esteira) para os brotos de Zostera marina. Os espécimes foram enterrados na zona entre-marés do estuário da Ria Formosa e avaliados semanalmente durante o primeiro mês, e posteriormente, mensalmente durante mais dois meses. A perda de peso e a perda de resistência à tracção foram usadas como descrictores físicos, e a taxa de consumo de oxigênio como descrictor biológico para a taxa de biodegradação. O tecido com menor taxa de degradação foi o composto de fibra de coco, seguido pelos layouts de juta e sisal,

que tiveram desempenho semelhante. No entanto, as telas de sisal possuem a maior resistência observada à tração inicial e final, sendo a melhor escolha de material.

A resposta dos rebentos da Zostera marina aos têxteis foi analisada através da incorporação dos mesmos nos têxteis, que posteriormente foram colocados em mesocosmos. Os mesocosmos foram dotados de um fluxo de ar coerente e afluência de água do mar do estuário da Ria Formosa. Parâmetros físicos como temperatura, salinidade, intensidade da luz e oxigênio dissolvido foram monitorizados durante todo o período da experiência. A saúde dos brotos diminuiu em todos os tanques e tratamentos após um período de sete semanas, conforme demonstrado na diminuição das taxas de sobrevivência. Os brotos que cresceram em layouts de sisal mostraram maior resistência ao stress do que os controles e os brotos incorporados às redes de coco. Isso foi revelado pela menor mortalidade de brotos que crescem em tecidos de sisal, juntamente com um aumento do desenvolvimento de novas folhas. Além disso, o rendimento quântico efectivo - um proxy para a atividade fotossintética - foi maior nesses brotos. Desse modo, este estudo demonstrou que a fixação das plantas em uma malha densa como a do sisal oferece um suporte significativo para o crescimento de brotos, resultando em saúde superior quando comparado com brotos isolados. Além disso, a biodegradação induzida mais cedo em layouts de sisal (comprovada pelos testes de biodegradação), possivelmente promoveu brotos com substractos de suporte de crescimento de plantas, melhorando a sua integridade e capacidade de produzir novas folhas. Portanto, o tempo de biodegradação foi considerado vital para o transplante de ervas marinhas. A rápida degradação, sem deixar substracto portador como nos brotos de controle e fertilizados, demonstrou reduzir as chances de sobrevivência. Em contraste, a degradação retardada, como em tecidos de coco, desacelera o fornecimento de substratos de suporte de crescimento. A integridade dos brotos fertilizados estava mais intacta do que a dos brotos incorporados à malha de fibra de coco, apoiando a suposição de que a nutrição é crucial para a saúde das ervas marinhas. A nutrição saudável pode até superar o efeito positivo derivado de um substracto de suporte a longo termo. Portanto, um dispositivo de ancoragem como o tecido de sisal com um efeito secundário de fertilização parece ser a solução ideal.

A distinção entre as esteiras não-tecidas - que eram compostas de fibra de coco, mas diferiam em sua densidade e espessura - não poderia ser feita porque estas comportaram-se de forma contrária durante as experiências do mesocosmo. A esteira mais densa apresentou melhor desempenho embebida na malha de sisal, porém comportou-se inferiormente na malha de coco. Assim, uma investigação mais aprofundada deve ser realizada para examinar o efeito do enraizamento, testando diferentes materiais por um período mais longo, uma vez que nenhum enraizamento foi observado durante as sete semanas da experiência.

Concluindo, a malha densa de sisal mostrou-se o tecido de maior sucesso para transplante de *Zostera marina* em condições controladas com base em sua taxa de biodegradação e alta resistência à tracção, que facilita o manuseio para o transporte, além de proporcionar fixação suficiente para os brotos. No entanto, os testes foram realizados em escala de laboratório por um curto período de tempo e não foram submetidos a forças hidrodinâmicas. É possível que a rápida biodegradação da malha de sisal seja muito pronunciada a longo prazo, não dando aos brotos o tempo adequado para se enraizarem no solo de sedimentos. Mais pesquisas na tradução destas descobertas para o ambiente "selvagem" devem ser realizadas.

Palavras-chave: Ervas marinhas, restauração, *Zostera marina*, custo-benefício, geotêxteis, biodegradação

CONTENT

List of Figures9						
List of 7	ables					
Abbreva	ations12					
1 Int	roduction and motivation1					
1.1	Restoration programs					
1.2	Seagrasses: Biology and distribution5					
1.3	Model species: <i>Zostera marina</i>					
1.4	Natural fibers					
1.4	1 Coir (Coconut)11					
1.4	. 2 Jute12					
1.4	.3 Sisal					
1.5	Biodegradation textiles in marine environment13					
2 Res	earch objective					
3 Sta	te of the art					
3.4	Restoration and creation of seagrass meadows19					
3.5	Risk and problems of conventional methods21					
3.6	Textiles in seagrass restoration23					
4 Ma	erials and methods25					
4.1	Study site					
4.2	Textile selection					
4.3	Analysis of biodegradability of textiles					
4.3	.2 Burial experiment					
4.3	.1 Granulometry					
4.3	.3 Relative weight loss					
4.3	.4 Tensile strengths loss					
4.3	.5 Aerobic biodegradation					
4.4	Analysis of <i>Zostera Marina</i> Response to textiles34					
4.4	.1 Shoot collection					
4.4	.2 Shoot preparation					
4.4	3 Mesocosm experiment					
4.4	4 Examination of seagrass response to textile					
4.4	.5 Pulse-Amplitude-Modulation (PAM)					
4.5	Statistical analyses					
5 Res	5 Results 41					
5.1	5.1 Biodegradation experiment					
5.2 Mesocosm experiment						
6 Dis	ussion					

6.1	Biodegradation	.59
6.2	Mesocosm	.63
7 Co	onclusion	.67
Refere	nces	.69
Appen	dices	.79

LIST OF FIGURES

Fig. 1. Illustration of <i>Zostera Capensis</i> as an example for seagrass morphology adapted from (Collier, 2004)
Fig. 2. <i>Zostera marina</i> distribution (left), adapted from (Borum <i>et al.</i> , 2004) and scheme of <i>Zostera marina</i> morphology (right) (Fonseca <i>et al.</i> , 1998)
Fig. 3. Sediment and sediment-free methods of seagrass transplantation. (1) Sod method on the left and two types of the plug method in the middle and right. (2) Hessian bag transplant of shoots (3) Seagrass shoots tied to metal frame (4) Staple method (5) Staple method. Placing staples into sediment. (Erftemeijer, 2020)
Fig. 4. Experimental flow chart textile burial trials (1) and mesocosm trials (2)
Fig. 5. Study site at research station 'Ramalhete' in Praia de Faro, Portugal. Burial experiments were executed in the adjacent lagoon of the Ria Formosa. Establishment of mesocosms for seagrass transplant trials were conducted in the facilities of the research center
Fig. 6. Illustration of the substrate selection. Each mesh was combined with a mat, resulting in six different layout designs. The mat was placed in between two layers of the mesh and the three layouers were sewn together with a sisal thread, creating a so-called sandwich structure
Fig. 7. Schematic spatial plan for the burial of one time interval (one sampling round), showing the six layouts of the sandwich structures including 5 cm spacing in between the specimen. Five replicates per layouts were buried, n=30 for one sampling round. Six patches as showcased above were located next to another in the intertidal zone of the Ria Formosa Lagoon. Total n=180
Fig. 8. Pin method for marking seagrass in order obtain leaf elongation over time (Short & Coles, 2001).
Fig. 9. Left: Shoot incorporation into sandwich structure. Shoot incl. rhizomes and roots was placed through the mesh but kept on top of the mat. Right: Example of schematic plan of shoot localization within textile. Green dots represent the shoots and the orange tag identifies the textile layout and replica number
Fig. 10. Outdoor tanks under shading (top). Mesocosms placed in outdoor tanks and close up of mesocosm with constant incoming waterflow and airflow (airflow tube was removed for purpose of taking the photograph) (bottom)
Fig. 11. Temperature profile of the sediments from the burial site from April 15th to July 12th, with an increase in temperature of approx. 0.4°C per week over the time of the experiment
Fig. 12. Photograph of six different textile layouts after burial in the Ria Formosa Lagoon for 1,2,3,4,8 and 12 weeks. Samples were rinsing with freshwater after exhumation and dried for 72h at 60°C. Top left: CC, top right: CT7, middle left: JC, middle right: JT7, bottom left: SC, bottom right: ST7. Controls on the left with burial time increasing towards the right. For layout code see refer to Fig. 6
Fig. 13. Relative weight loss of buried textile layouts over time starting after week 1 until week 12. Each boxplot represents five replicates per time interval. Letters below boxplot charts explain differences within individual layouts over time. Letters in the box below boxplot charts explain difference in one time interval among the layouts
Fig. 14. Tensile strength loss profile of controls and buried textile layouts over time from week 1 to week 12. Letters below boxplot charts explain differences within individual layouts over time. Each boxplot represents five replicates per time interval. Letters in the box below boxplot charts explain difference in one time interval among the layouts. Left y-axis describes tensile strength of coir net and jute net layouts. Right y-axis describes tensile strength of sisal layouts

Fig. 17. Top: Relative weight loss of buried textile layouts after twelve weeks. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate final differences among layouts. Middle: Relative tensile strength loss of buried textile layouts after twelve weeks. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate final differences among layouts. Bottom: Duplication of microbial respiration (OCR) in textile layouts, comparing control rates with rates of layouts, retrieved after twelve months. Each boxplot represents five replicates per time interval. After twelve months. Each boxplot represents five replicates per time interval. After twelve months among layouts.

Fig. 19. Physical parameters of the water pumped from the Ria Formosa Lagoon into Ramalhete research station. Mesocosms were provided with this water and supplied with a constant water inflow at all times. Temperature shown here is analogous to logged temperature in the tanks and buckets. ...50

Fig. 21. Exemplary replicated of seagrass shoots before and after the experiment. Five replicates per layout accommodated five shoots. Left: Intact shoots before. Right: Leftover of shoots after seven weeks of experiment. A=CC, B=CT7, C=SC, D=ST7, E=Fertilizer, F=Controls. For layout code see refer to Fig. 6. 51

LIST OF TABLES

Table 1. Composition and properties of natural fibers commonly used to make natural geotextiles, (Koohestani et al., 2019; Wu et al., 2020)11
Table 2. Terrestrial biodegradation rate of Coir, Jute and Sisal from different test procedures and test environments. 15
Table 3. Presentation of five different selected textile substrates as carrier substrates for implantation ofZostera marina shoots and their weight and tensile strength
Table 4. Terrestrial degradation behavior of natural materials. Data based on a comprehensive review ofseveral studies. Hence, the individual methodologies on testing the degradation behavior vary andtherefore, degradation time varies strongly. (Daria <i>et al.</i> , 2020)
Table 5. Summary of total sample number and required burial area. 30
Table 6. Parameters for tensile strength test procedures for textiles according to DIN EN ISO 13934-1(ISO 13934-1:1999)
Table 7. General permutational MANOVA results of physical (weight loss, tensile strength loss) and biological (OCR) descriptors of biodegradation of textile layouts, buried in the Ria Formosa lagoon with factor Layout and time of burial. Per Layout and Time interval five replicates were buried, total n=180. α -level=0.05, significant result presented by *
Table 8. General permutational MANOVA results of morphological and photosynthetic parameters of <i>Zostera marina</i> shoots with factors 'Layout' and 'Time Interval'. Used layouts were CC,CT7,SC, ST7 along with fertilized shoots and controls (see composition Fig. 6) Per Layout five replicates were placed into independent mesocosms with five shoots each. Total shoot n=150. α -level=0.05, significant result presented by *
Table 9. Legend - Translation of graph labels 84

ABBREVATIONS

С	Control
CC	Coir net – Coir mat
CCMAR	Center of Marine Sciences
CT7	Coir net – Type 7 mat
FT	Fertilizer
JC	Jute net – Coir mat
JT7	Jute net – Type 7 mat
Ν	Nitrogen
OCR	Oxygen Consumption Rate
P ₂ O ₅	Phosphorus pentoxide
PAM	Pulse-Amplitude-Modulation
PS I	Photosystem I
PS II	Photosystem II
SC	Sisal net – Coir mat
SiO ₂	Silicon Dioxide
ST7	Sisal net – Type 7 mat

1 INTRODUCTION AND MOTIVATION

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) identified that, nature is declining world-wide at an unprecedented rate. The rate of ecosystem loss and species extinction is accelerating, resulting in severe impacts on ecosystem services such as food security, livelihood, economy, health and more (IPBES, 2019). The current extinction rate is 1,000 times higher compared to natural background rates and is most likely to rise up to the 10,000 fold (Vos *et al.*, 2015). According to IPBES, global indicators of ecosystem extend and conditions decreased 47 % from the estimated natural baseline. Main driver for loss of biodiversity and ecosystems are assigned to significant habitat alteration through human activity. In between the 18th and 21st century more than 85 % of wetlands have diminished as well as 66 % of the marine environment has been drastically transformed up to this day.(IPBES, 2019).

Especially marine environments suffer from anthropogenic exploitation. Overfishing, aquaculture, exploitation of resources and other coastal engineering activities contribute to habitat changes, in a possibly even synergistical manner (Halpern *et al.*, 2008). The majority of human activities operate in the intertidal and nearshore zone such as marshes, mangroves, sand beaches, dunes, seagrass beds, and coral and oyster reefs, pressuring these ecosystems to a higher extent than the offshore regions (Halpern *et al.*, 2008; Barbier, 2017). Terrestrial and marine environments along with human welfare depend strongly on the ecosystem services, provided by the coast and the high seas (Barbier, 2017) due to the profound interconnectivity between ecological and socioeconomic systems (Margerum, 1999). Marine systems protect coasts from storms and erosion, provide food, oil, minerals and other resources, are used for recreational purposes, transport and pollution control (Barbier, 2017). The decline in fish populations, for example, results in a decreased food provision (humans and animals) and water quality, increased algae blooms, hypoxia and possibly the loss of complete ecosystem losses, endangering 100-300 million people (IPBES, 2019).

The diminishing of natural environments, and thus decreases in ecosystem services for humankind and environment, calls for protection and restoration efforts. Many systems cannot recover themselves as efficient as through assisted action, even if stressors are minimized or completely removed, therefore active restoration must be emphasized (Perrow & Davy, 2004; Rey Benayas *et al.*, 2009). The integrity of ecosystems can be either entirely restored, recreated and/or enhanced, depending on their initial state and the desired purpose of restoration (Wilson & Forsyth, 2018). The success of restoration programs can be determined by measuring the improvement of ecosystem services (Basconi *et al.*, 2020).

A vast number of essential ecosystem services are provided by organisms such as seagrass meadows. They provide nursery homes for juveniles or food for other organisms. Seagrass patches are one of the most productive ecosystems in the world (Reynolds, 2013; Descamp et al., 2017a), and are crucial for anthropogenic purposes such as protection of beaches from erosion and sequestering carbon from the atmosphere (Descamp et al., 2017b; Unsworth et al., 2019). However, seagrass meadows suffer from high stress and have been constantly declining since the preindustrial times (Eriander, 2017). Over the past 130 years, one third of worldwide seagrass meadows disappeared with a decrease of 7 % yr⁻¹ since 1990 (Waycott et al., 2009). The diminishing of seagrass meadows can be primarily attributed to anthropogenic stressors. These include the input of chemical loads into the system, physical damage (dredging, mooring and propeller scars), input of increased nutrient loads and more (Fonseca et al., 1998; Descamp et al., 2017b; IPBES, 2019). Worldwide restoration efforts have been made since the late 1930's (Tan *et al.*, 2020). Especially, the United States and Australia are well experienced in seagrass restoration and were amongst the first nations to give attention to these ecosystems (Fonseca et al., 1998; Erftemeijer, 2020). Nevertheless, due to the slow recovery rate of seagrasses and the low germination rate of their seeds, large scale and long term restoration of meadows has turned out to be a difficult task and success rates are therefore considerably low (average 37 % success rate) (Fonseca et al., 1998; Xu et al., 2016; Eriander, 2017). Currently, a wide number of innovative methodologies and approaches are under development and tested globally on different seagrass species at different latitudes. Traditional and most conventional techniques of seagrass restoration include the sod, single shoot and/or seed transplant method, including different planting and anchoring systems such as metal frames, mussels, rocks, textile bags and strips, simple burying and more (Erftemeijer, 2020).

The main issue, arising with the application of traditional transplanting methods, is the adverse effect on the donor meadows. Adult plants are used for transplanting efforts

therefore, the population of the donor meadow declines for restoration efforts. Especially, in large scale projects, existing seagrass meadows suffer from the exploitation of sods and shoots from their system. Many times the donor meadow cannot recover from the loss due to their slow recovery rate (Fonseca *et al.*, 1998; Xu *et al.*, 2016). Furthermore, various studies on seagrass restoration report their transplantation attempts as successful, although the monitoring periods of often less than a year are not sufficient to give reliable results (Zhou *et al.*, 2014). Premature meadows suffer from hydrological pressures such as waves and storm events and often cannot withstand the disturbing forces (Paulo & Cunha *et al.*, 2019). Beyond that, environmental and biological factors vary within years, therefore a short monitoring period lacks these variabilities and shoots that survived in one year might not survive the following (Zhou *et al.*, 2014).

Combined, these problems call strongly for the development of donor-free methods for seagrass restoration in order to protect the donor population and additionally, provide a carrier substrate, that can function as growing surface for the premature seagrass shoots, therewith they can withstand the first winter storms of the year after transplantation.

This work focus on the establishment of basic knowledge on the response (survival rate) of seagrass shoots, planted into different carrier substrates (textiles) and their ability of the roots to entangle into substrates as well as on the performance (degradation and mechanical strength) of these textiles in the marine environment. Solely textiles, that are fully biodegradable, without releasing adverse by-products during degradation into the system, were assessed experimentally. The intention was not to disturb the marine system by placing synthetic structures into the environment and, to develop an innovative and feasible transplanting method, which does not harm donor meadows to such an extent as traditional transplanting does. A variety of requirements must be met for the textiles to be successful in the field. The material needs to be resistant against permanent hydrological pressures such as currents from tides, wave action as well as winter storms. Beyond physical pressures, the materials must withstand microbial attacks and saline marine conditions for an extended period. Hence, the biodegradation rate of each textile was evaluated by monitoring weight and tensile strength loss along with aerobic microbial activity of buried textiles in the marine environment. Moreover, the textiles must supply a matrix, which allows the roots of the seagrass to incorporate in, thereby stabilization of the shoots in the environment can be assured. Shoots were incorporated into the textiles and their response monitored and analyzed.

This work bears great potential in providing essential information on a new method for restoration. Future studies of the project aim at the multiplication of harvested seagrass shoots in artificial tanks and eventually, transplant the multiplied population back into the environment. The textiles will serve as a large-scale base, which facilitates transport and results in effortless out bedding of the new plants. Thereby, donor meadows face less disturbances and, new shoots have sufficient time to root into the seabed due to the stabilization by the carrier substrate

1.1 RESTORATION PROGRAMS

The unprecedent deterioration of marine ecosystems related to human activities bears adverse effects on human welfare. Marine ecosystems provide several essential functions with respect to food supply, coastal protection, erosion control and more. Coastal and marine managers face the challenge on sustaining and restoring these ecosystems to assure security for humankind. Artificial solutions, such as groins and jetties have been used to control the degradation of these ecosystems, however these man-made solutions fall short in resiliency and may further complicate the status of the nearby ecosystem along with generating exorbitant costs (Ferrario et al., 2014). Recently focus has been set on so-called ecosystem engineers such as corals, mangroves, seagrasses and others. These organisms modify their abiotic environment and create favorable abiotic and biotic conditions for other species and men (Jones et al., 1994; Rossi et al., 2013; Basconi et al., 2020). Ecosystem engineers are a cost-effective option for restoration programs of ecosystem services (Byers et al., 2006). However, these organisms are part of the diminishing ecosystem and therefore, lose their ability to protect and sustain ecosystem services (Rossi et al., 2013). Consequently, ecosystem engineers can either be newly introduced into a system or, more importantly, conserved and restored where they already exist in order to reestablish and maintain their supporting impact on their environment (Law et al., 2017).

According to Basconi *et al.*, (2020) restoration ecology gained strong interest in the past two decades. The intention of this emerging scientific branch is to rehabilitate

ecosystems in comparison to a historical baseline. Hence, it aims at habitats, in which the ecosystem of concern was present beforehand and suffered damage and loss. In order to succeed, Bayraktarov et al., (2016) suggest four criteria, that must be considered; (1) understanding of the functions of the ecosystems, (2) removal of anthropogenic disturbances, (3) clearly defined success evaluation, (4) long term monitoring > 5 years (approx. 15-20) years). Different restoration techniques have been developed, ranging from planting juveniles to adult organisms, collected from a donor site, or the introduction of artificial structures, hosting the target species (Basconi et al., 2020). During an analysis of 235 articles on marine restoration programs conducted by Bayraktarov et al., (2016) the main target species, costs as well as main challenges with respect to rehabilitation actions were identified. Ecosystems from most interest for restoration purposes include salt marshes, coral reefs, oyster reefs, seagrass meadows and mangroves. Costs range widely depending on methodology and resources. Estimated costs can range from US\$ 2.508/ha for mangrove restoration up to US\$ 383,672/ha for seagrass restoration (Bayraktarov *et al.*, 2016). According to Bayraktarov et al., (2016) total restoration costs appear not to increase with expansion of the project scale in regard to coral reef and seagrass meadow restoration. Though, most projects were conducted on a small scale; <1 ha and <10 ha, for coral reef and seagrass respectively, wherefore the estimation might not be accurate (Bayraktarov et al., 2016). The least successful (38 % success rate), but at the same time one of the most cost-intensive programs is related to seagrass (Bayraktarov et al., 2016), therefore already existing approaches must be improved or new innovative strategies must be developed.

1.2 SEAGRASSES: BIOLOGY AND DISTRIBUTION

Seagrasses are aquatic plants, distributed throughout shallow marine systems around the world, from the Southern Hemisphere to tropical regions up to the Arctic (Reynolds, 2013). They are angiosperms (flowering plants) and inhabit coastal areas from the intertidal up to depths excess of 50 m (Duarte, 2001; Reynolds, 2013; Encyclopedia Britannica, 2020). Seagrasses are further categorized as monocotyledons (angiosperms), implying they possess one embryonic leaf in their seeds (Encyclopedia Britannica, 2020).

There are 72 species of seagrasses identified, assigned to four main taxonomic groups; *Zosteraceae, Hydrocharitaceae, Posidoniaceae* and *Cymodoceaceae* (Reynolds, 2013).

According to Short *et al.*, (2007) species are distributed to different extent throughout the six global bioregions: Temperate North Atlantic, Temperate North Pacific, Mediterranean, Temperate Southern Oceans, Tropical Atlantic, Tropical Indo-Pacific. The Temperate North Atlantic features an overall low species diversity and is dominated by the species *Zostera marina*, which grows predominantly in estuaries and lagoons. Extensive species diversity can be found in the estuarine and surf zones of the Temperate North Pacific including species of *Zostera spp.* and *Phyllospadix spp.*.Closer towards low latitudes, the Mediterranean waters host a modest amount of different seagrasses including temperate and tropical species, dominated by *Posidonia oceanica*. The Temperate Southern Oceans are habitat to a vast number of seagrass meadows ranging from low to high diversity temperate seagrasses. *Posidonia* and *Zostera* dominate this area. The highest biodiversity of seagrass species can be found in the tropical regions of the Indo-Pacific as well as the Tropical Atlantic, both dominated by *Thalassia testudinum*. (Short *et al.*, 2007; Eriander *et al.*, 2016)

The morphology of seagrasses can be divided into above and below ground parts (Fig. 1). According to the definition of Kuo & Hartog, (2006) above ground, multiple elongated leaves are embraced in shoots. A basal sheath wraps each leaf, protecting the apical meristem. Sugar production via photosynthesis occurs in the distal blade as well as transpiration of water vapor. Above ground parts are characterized by three tissues; the epidermis as a surface layer, regulating transpiration and aeration together with provision of mechanical support, the vascular bundle, which contains the phloem and the xylem, responsible for organic and inorganic solute transport and the parenchyma tissue, controlling photosynthesis and storage. Below ground parts anchor the seagrass to the seabed and include roots, rhizomes and in some cases erected stems, which together construct a widely interconnected underground system. Roots, shoots and stems are connected to the creeping rhizomes at each node or every other node. Additional to the mechanical support, the rhizomes provide essential functions for regulation and maintenance of seagrass growth, including the storage of nutrients. During sexual reproduction seagrasses develop flowers, which produce seeds for pollination and fertilization. (Kuo & Hartog, 2006)

Seagrasses produce offspring either asexually by growing new rhizomes and thus, producing new shoots or sexually by the transport of male pollen through the water, fertilizing female flowers and producing seeds (Reynolds, 2013). Genotypic diversity is assured via sexual

reproduction, which offers advantages in maintaining and withstanding climatic changes (Paulo & Diekmann *et al.*, 2019), whereas during clonal propagation, offspring feature the identical genetic information as the parent and amongst each other (Eckert, 2001). Billingham *et al.*, (2003) identified, that the preferred reproduction mode changes throughout shoot location within a meadow. Clonal reproduction appears to be the favored strategy at outer margins of a meadow, in contrast to an increased sexual reproduction in the central regimes (Billingham *et al.*, 2003).

Fig. 1. Illustration of Zostera Capensis as an example for seagrass morphology adapted from (Collier, 2004).

Seagrasses provide a variety of ecosystem services for their surrounding environment and therefore, contribute to marine and human welfare (Eriander *et al.*, 2016). They are one of the most productive ecosystems globally and, hence, are essential for primary production and the export of its compounds into the surrounding environment (Fonseca *et al.*, 1998; Reynolds, 2013; Descamp *et al.*, 2017a). Furthermore, seagrasses function as recruiting areas for many marine organisms for instance for fish, prawns and invertebrates. Moreover, seagrasses supply food for invertebrates to large fish, carbs, mammals and birds as well as protection for smaller species (Reynolds, 2013; Descamp *et al.*, 2017a). Beyond the provision of biological and ecological ecosystem services, seagrasses also influence the physical

environment positively for humans by securing lose sediment from the seabed via their widely distributed underground root and rhizome system, inhibiting erosion of beaches and controlling sediment flow (Fonseca et al., 1998; Descamp et al., 2017b). Furthermore, hydrodynamics and wave height can be reduced by more than 36 %, contributing to coastal protection (Narayan et al., 2016). Additionally, seagrasses can be a useful tool for management purposes such as water quality assessment and improvement (Fonseca et al., 1998) by trapping fine particles in and therefore, cleaning the water column (Eriander et al., 2016; Narayan et al., 2016). Beyond the direct influence of the seagrasses on the marine environment, they also affect the atmosphere in a beneficial manner. Seagrasses are considered a blue carbon storage, due to their ability to sequester atmospheric carbon and store it in the soil, accounting for 10–18 % of global carbon burial in the marine environment (Röhr et al., 2018; Unsworth et al., 2019; Bedulli et al., 2020). A recent study from Bedulli et al., (2020) (Bedulli et al., 2020)(Bedulli et al., 2020)conducted on Rottnest Island, Australia, even identified an approximately storage capacity from mixed seagrass populations of 22 % of the island's carbon dioxide emissions (Bedulli et al., 2020). These studies prove that seagrasses can play a key role in fighting anthropogenic induced CO₂.

The importance of seagrass meadows for assuring socioecological security requires intensified conservation and restoration actions of these ecosystems.

1.3 MODEL SPECIES: *ZOSTERA MARINA*

Zostera marina, also known as "common eelgrass", is the most dominant angiosperm species throughout the Northern Hemisphere, distributed from the Arctic down to the warm waters of the Mediterranean Sea (Fig. 2) (Setchell, 1935; Borum *et al.*, 2004; Eriander *et al.*, 2016). It populate the intertidal as well as subtidal (10-15 m depth), determined by water clarity and light penetration (Borum *et al.*, 2004; Short *et al.*, 2007). Populations differ in their morphology, with increasing size towards higher latitudes, in their tolerance to temperature and salinity as well as in their lifecycle, confirmed by occurrences of perennial, biennial and annual populations (Larkum *et al.*, 2006; Short *et al.*, 2007).

Zostera marina (Fig. 2) predominantly grows in monospecific meadows and varies seasonally in biomass production, shoot density and morphology (Solana-Arellano *et al.*, 1997;

Borum *et al.*, 2004; Short *et al.*, 2007). It is composed of three to seven leaves per shoot, which feature a width of 2 mm to 10 mm and an average length between 30 to 60 cm, depending on their maturity status. Shoots are connected to below ground rhizomes, which form a new rhizome segment (internode) for each new leaf along with 2 - 20 cm long root bundles on each node. Flowering occurs during spring to fall and 2-4 mm long seeds develop, which distribute by either floating away with the detached shoots or fall to the nearby ground within the same meadow (Borum *et al.*, 2004).

Fig. 2. Zostera marina distribution (left), adapted from (Borum et al., 2004) and scheme of Zostera marina morphology (right) (Fonseca et al., 1998).

Zostera marina populations have suffered strongly from variations in abundancy throughout the last century. In the 1930's almost the complete population (90 %) in the Northern Atlantic has been diminished due to an epidemic disease known as the saprophytic net slime mold, *Labyrinthula spp.* (TUTIN, 1938; Ralph & Short, 2002; Keser *et al.*, 2003). Beyond that, long term decline in *Zostera marina* populations has been attributed to anthropogenic disturbances in e.g. Rhode Island, United States (Short *et al.*, 1996). Particularly increasing eutrophication is detrimental to the high light requiring species of *Zostera marina* due to its reducing effect on water clarity and therefore, light attenuation (Dennison *et al.*, 1993; Eriander, 2016). Additionally, eelgrass lacks the ability to re-establish itself once destroyed in a larger scale even if, pressures are minimized or eliminated (Boström *et al.*,

2014). The vast decline of eelgrass meadows and the inability to recover on their own, leaves them one of the most endangered and vulnerable ecosystem worldwide(Dennison *et al.*, 1993; Waycott *et al.*, 2009; Boström *et al.*, 2014).

Zostera marina was identified as the most threatened species along the Portuguese coast, impacted by bivalve hand trawling, boat mooring and channel dredging (Cunha *et al.*, 2013). Meadows of this species are abundant in only two sites in Portugal; Lagoa de Óbidos and the Ria Formosa Lagoon, covering a total area of 0.075km² (Cunha *et al.*, 2013). The Ria Formosa Lagoon in the south of Portugal accommodates 42 meadows of *Zostera marina*, which account for an area of 5.01 ha (Cunha *et al.*, 2009). Restoration efforts of *Zostera* in other regions of the country such in the Arrábida national park were subject to failure (Cunha *et al.*, 2013).

1.4 NATURAL FIBERS

Natural fibers are gaining increased popularity in the field of geotextiles, especially attributed to their green biodegradation (Ghosh *et al.*, 2017; Wu *et al.*, 2020). As of today, according to Wu *et al.*, (2020), geotextiles made of natural fibers have the ability to replace 50 % of the synthetic products on the market (Wu *et al.*, 2020).

Natural fibers can be divided into three categories: plant fibers, animal fibers and mineral fibers. Plant fibers are the most favorable fiber, due to their low cost in sourcing and processing as well as their superior mechanical performance (Wu *et al.*, 2020). The three main components of plant fibers are cellulose, hemicellulose and lignin, whose weight proportion determines the physical properties of the fibers (Table 1) (Wu *et al.*, 2020).

Textiles offer a wide range of applications and are often found in the geotechnical sector (Wu *et al.*, 2020). These so-called geotextiles are commonly produced from petrochemical derivates (Wu *et al.*, 2020). Nowadays the demand for green geotextiles is rising and where applicable preferred (Mahuya *et al.*, 2009; Wu *et al.*, 2020). Green geotextiles are composed from natural fibers and have no adverse effect on the environment (Mahuya *et al.*, 2009). Among plant fibers jute and coir convince with their outstanding mechanical performance, hence are used in this branch (Mahuya *et al.*, 2009). Sisal fibers feature

distinctive seawater resistance and are prominent materials for maritime applications such as ropes and nets (Mukherjee & Satyanarayana, 1984).

Table 1. Composition and properties of natural fibers commonly used to make natural geotextiles, (Koohestan
et al., 2019; Wu et al., 2020).

Type of	Cellulose	Lignin	Hemicellulose	Donsity	Strain at Broak	Tensile	Young's
	(()	Lig	((20)	Strength	Modulus
Fiber	(wt%) (wt%)	(wt%)	(g/m³)	(%)	(Mpa)	(Mpa)	
Flax	71-78	2.2	18.6-20.6	1.4-1.5	1.2-3.2	345-1500	27.6-80
Hemp	57-77	3.7-13	14-22.4	1.48	1.6	550-900	70
Jute	45-71.5	12-26	13.6-21	1.3-1.46	1.5-1.8	393-800	10-30
Kenaf	31-57	15-19	21.5-23	1.2	2.7-6.9	295-930	22-60
Ramie	68.6-76.2	0.6-0.7	5-16.7	1.5	2-3.8	220-938	44-128
Nettle	86	5.4	4	1.51	1.7	650	38
Sisal	47-78	7-11	10-24	1.33-1.5	2-14	400-700	9-38
Abaca	56-63	7-9	21.7	1.5	2.9	430-813	33.1-33.6
Cotton	85-90	0.7-1.6	5.7	1.21	3-10	287-597	5.5-12.6
Coir	36-43	41-45	0.15-0.25	1.2	15-30	175-220	4-6

Source: (Koohestani et al., 2019; Wu et al., 2020)

1.4.1 COIR (COCONUT)

Coconut fibers (*Cocos nucifera*) are considered fruit/seed fibers, which are obtained from the surrounding husk of the coconut (Satyanarayana *et al.*, 1981; Ramamoorthy *et al.*, 2015). Palm trees take up 10 million ha of land throughout the tropical regions, making coir fibers an easily accessible, economic and renewable resource (LEKHA & KAVITHA, 2006; Lal *et al.*, 2017; Bui *et al.*, 2020). The Food and Agriculture Organization of the United Nations FAO elaborated the five nations that contribute to 90 % of the global coir fiber production (0.78 million tons/year; (Satyanarayana *et al.*, 1981), which are India, Sri Lanka, Thailand, Vietnam, and Philippines (Bui *et al.*, 2020). The application of these fibers reaches from ropes over mattresses and geotextiles to automobile seats and more (Bui *et al.*, 2020).

The multicellular coir fiber¹ features a polygonal or round cross section (diameter approx. 0.3 mm) and fiber length ranges between 5 to 350 mm on average (Satyanarayana *et al.*, 1981; Lekha, 2004; Daria *et al.*, 2020). The fibers consists mainly of 36-43 % of cellulose

¹ 30 to 300 or more cells in the total cross-section of the coir fiber Satyanarayana et al. (1981)

and 0.15-0.25 % of hemicellulose with a lignin content of 41-46 %, being the highest lignin content found in all natural fibers (Lekha, 2004; Daria *et al.*, 2020). Further components are pectin (2.75-4 %) and water solubles (Satyanarayana *et al.*, 1981; Lekha, 2004). The high density of these fibers leaves them more durable than other natural fibers such as jute and sisal (Lekha, 2004; Daria *et al.*, 2020). The increased lignin percentage gives the fiber the advantage of lower water absorption capacity, hence increasing its resistance towards microbial attack as well as higher resistance towards elongation (Sumi *et al.*, 2018; Daria *et al.*, 2020). Most important, coconut fibers feature resistance towards seawater and are utilized e.g. in the control of sea-erosion (Satyanarayana *et al.*, 2020). The main disadvantage of this fiber is its low tensile strength, which can be only improved via specific physical and chemical treatments (Ramamoorthy *et al.*, 2015; Bui *et al.*, 2020; Daria *et al.*, 2020).

1.4.2 JUTE

Jute fibers are considered bast fibers, which are won from the stem of the Corchorus capsularis/ Corchorus olitorius, making them one of the most low-cost natural fibers (Singh et al., 2018). The plants are mainly grown for their fiber, since they are cheap to cultivate and process. Furthermore, their annual growth pattern results in vast material supply (Ramamoorthy et al., 2015; Singh et al., 2018). The global annual production accounts for $2300 \times 10^3 - 2850 \times 10^3$ tons, which for the most part comes from India, China, Bangladesh, Nepal, Thailand, Indonesia, and Brazil (Ramamoorthy et al., 2015; Singh et al., 2018). Mean fiber length accounts for 2.5 mm (Alloftextiles Online Limited, 2015). The reported chemical composition varies slightly amongst studies. According to Ramamoorthy et al., (2015) and Daria et al., (2020) cellulose content ranges between 56-71.5 %. Reported values for hemicellulose lie between 29-35 % and for lignin 11-14 %. Despite the low resistance of jute fibers against moisture, acid and UV light (Singh et al., 2018) they perform sufficiently in geotechnical applications at low cost such as consolidation, drainage, soil filtration, road construction, stabilization and protection of slopes, and erosion control (Datta, 2007; Chattopadhyay & Chakravarty, 2009; Daria et al., 2020). Jute fiber are prone to degrade rapidly in saltwater (Daria et al., 2020). However, studies have not been performed in marine environment but only laboratory conditions, therefore the fiber's behavior in realistic conditions will be assessed in this research.

1.4.3 SISAL

Sisal fibers are categorized as hard fibers, harvested from the leaves of the *agave sisalana* plant (Ramamoorthy *et al.*, 2015). The total fiber production worldwide accounts for approximately 4.5 million tons per year, mainly cultivated in Tanzania and Brazil, but also found in China and Kenya (Chand *et al.*, 1988; Ramamoorthy *et al.*, 2015). Sisal fibers are utilized for ropes and twines and chords, especially for marine and agricultural purposes as well as for upholstery, padding, fish nets and decorative articles (Li *et al.*, 2000; Ramamoorthy *et al.*, 2015). Values for the chemical composition of the fiber vary strongly amongst source and age of the plant (Li *et al.*, 2000). According to Li *et al.*, (2000) the cellulose content ranges between 49.62-60.95 %, and the lignin content from 3.75-4.40 %. Differing values are reported from Ramamoorthy *et al.*, (2015) with a range of 67-78 % and 8-11 %, respectively. The fiber length is between 1.0 and 1.5 m and the diameter around 100-300 μ m (Li *et al.*, 2000). Sisal fibers feature a high tensile strength and are robust against deterioration in saltwater, making them suitable for this study (Haque *et al.*, 2015).

1.5 BIODEGRADATION TEXTILES IN MARINE ENVIRONMENT

The term 'biodegradable' must be clearly defined. Illustrated by Endres & Siebert-Raths, (2009) there are two steps taking place during degradation. Primary degradation implies the splitting of macro-molecules of a material by microorganisms into smaller particles. The decomposition products are subsequently converted into H₂O and CO₂ enzymatically, resulting in the final decomposition and, can be absorbed by the microorganisms. If a material cannot be decomposed completely it cannot be considered biodegradable. External conditions such as time, temperature and humidity influence the efficiency of biodegradability (Deutsches Institut für Normung e.V.; Endres & Siebert-Raths, 2009).

Biodegradability tests do not follow a standard test procedure. The understanding and test methods of biodegradability relate to the field of application such as wastewater treatment or biodegradation in marine environments and can vary strongly. Timescale and decomposition stage are not defined, hence the term 'biodegradability' can result in misleading assumptions (Harrison *et al.*, 2018b). Arshad & Mujahid, (2011) categorizes

biodegradability in three stages of the progression of decomposition (Arshad & Mujahid, 2011; Harrison *et al.*, 2018a):

- Biodeterioration stage = depolymerization by enzymic hydrolysis or peroxidation of carbon chain polymers; mass loss and loss of mechanical properties (mass loss > 90 % assumed to be degraded)
- 2. **Bio fragmentation stage** = disintegration and fragmentation without significant gas evolution
- 3. **Microbial assimilation stage** = digestion of low molecular weight species = gas evolution and mineralization

Biobased fibers can be composed of natural fibers like animal or plant fibers or synthetic fibers, which are spun from starch, lipids, sugar and other extracted compounds derived from plants and other natural resources (Thyavihalli Girijappa *et al.*, 2019). Despite the biological origin of a fiber, fully biodegradation is not granted (Siracusa, 2019). Especially biosynthetics often do not undergo all three stages of biodegradation in a natural environment (Siracusa, 2019). Therefore, in this study we focus on solely natural fibers, therewith no harmful byproducts are released in the environment.

Several studies on the terrestrial biodegradation of natural fibers have been conducted in laboratory condition as well as in the natural environment. A widely used standardized test procedure is the so-called *Soil Burial Test* (*DIN EN ISO 11721-1:2001*) applied to natural and synthetic fibers (Arshad & Mujahid, 2011; Sülar & Devrim, 2019) along with the standard test procedure on biodegradation via composting (*DIN EN 13432:2000-12*) (FITR, 2008). Nevertheless, data on material degradation rate vary strongly within studies and cannot be directly compared due to modifications of the test procedures and differences in reporting (Table 2).

Information on the biodegradability rate of natural fibers in the marine environment is lacking. Public and socioeconomic interest lie in the behavior of synthetic fibers in marine systems primarily, due to the release of synthetic microfibers into aquatic environments during clothes laundering as well as the utilization of synthetic geotextiles (Dilkes-Hoffman et al., 2019). Only recently, a study from Zambrano et al., (2020) drew attention to the biodegradation process of cotton and rayon yarns in lake water, seawater and sludge (30 ppm of total suspended solids) according to the standards *DIN EN ISO 14851:2019-07* and *ASTM D6691-09*. The study identified an increased degradation of the yarns after 30 days exposed to sludge (87-89 %), followed by lake water (72 %) and least degradation in seawater (45-48 %) (Zambrano *et al.*, 2020).

Table 2. Terrestrial biodegradation rate of Coir, Jute and Sisal from different test procedures and testenvironments.

Material	Environment	Degradation time	Source
Coir	n/a	6-36 months	(Daria <i>et al.,</i> 2020)
Coir	compost (50 ºC)	215 days	(FITR, 2008)
Coir	soil	36-48 months	(Greenfix)
Jute	n/a	6-18 months	(Daria <i>et al.,</i> 2020)
Jute	soil	40 % weight loss after 3 months	(Arshad & Mujahid, 2011)
Sisal	n/a	12 months	(Daria <i>et al.,</i> 2020)
Sisal	compost (50 ºC)	41 days	(FITR, 2008)
Sisal	soil	24-36 months	(The East Africa Sisal Company Ltd.)

2 **RESEARCH OBJECTIVE**

The main goal of this work is to generate basic knowledge for the development of a feasible and large-scale solution for seagrass restoration, based on the utilization of textiles. This is achieved by identifying suitable materials and textile structures, used as a carrier base for seagrass shoot transplants. The fabrics act as an anchoring device for roots and rhizomes of seagrasses to entangle in and hence, shoots can overcome heavy storm events until they are fully capable to withstand hydrological pressures. The model seagrass of this work is the in the Northern Hemisphere most dominant seagrass species *Zostera marina*.

Two main objectives were pursued in this study in order to acquire a suitable material selection for seagrass restoration studies.

- 1. To investigate the performance over time of the different textile substrates in regard to durability and physical properties after extended exposure to the marine environment.
 - Burial of six different textile layouts in the intertidal of the Ria Formosa
 Lagoon and retrieval after set time intervals in order to assess:
 - a. Weight loss over time
 - b. Tensile strength loss over time
 - c. Aerobic microbial activity
- 2. Assessment of *Zostera marina* response to the incorporation into the textiles in a mesocosm
 - ii. Replicates of five seagrass shoots were inserted in each of the textiles and placed in independent mesocosms in order to examine:
 - a. Survival rate
 - b. Plant and root morphology

3 STATE OF THE ART

3.4 **RESTORATION AND CREATION OF SEAGRASS MEADOWS**

Restoration efforts of seagrass meadows have been made around the world for over seventy decades, with emerging interest from the 1970's on (van Katwijk et al., 2016). The majority of the reported studies since the 70's were conducted in the temperate and subtropical latitudes of the Northern Hemisphere (68 %) (van Katwijk et al., 2016). Numerous species with various morphologies were used in the trials, Zostera marina being the most popular (50 %). Most studies were conducted in developed countries such as United States, Australia and Europe (van Katwijk et al., 2016). Especially in the United States high expertise in seagrass restoration has been developed, since it was initiated there already in the 1940's (Fonseca et al., 1998) in conjunction with the longest restoration program of 48 years (planted in 1973, Florida) (van Katwijk *et al.*, 2016). Another lucrative example is the four decade long, large scale restoration program of Zostera marina in Chesapeake Bay, USA (Fonseca et al., 1998; Erftemeijer, 2020) along with the restoration of Posidonia australis and P. sinuosain in Oyster Bay, Australia, convincing with high long term survival rate of over 90 % (Bastyan & Cambridge, 2008). In contrast, nations in tropical latitudes lack knowledge and experience and awareness on conservation and rehabilitation matters is just gaining political and socioeconomical interest in present days (Eriander et al., 2016; Erftemeijer, 2020).

Transplanting strategies for seagrasses can be divided into traditional transplanting methods, in which mature plants are used as donors, and seed germination, a more recent approach (Eriander *et al.*, 2016; Erftemeijer, 2020). Traditional restoration methods can be subdivided into sediment and sediment-free methods (Fig. 3). One approach, including sediments, is the plug method. Here, donor seagrasses, including attached sediments, are collected in tubes and transported to the restoration site (Fonseca *et al.*, 1998; Riniatsih *et al.*, 2018). Another approach is, to dig up a shovel of sediments including shoots and transplant the whole sod with shoots, sediment and benthic fauna all together (so-called sod/turf technique). Various variations of the sod method have been established, adapted to the in situ environments (Erftemeijer, 2020). Sediment-free methods are e.g., the staple method, which promises high success rates, though, is labor intensive, as it requires SCUBA diving.

Shoots, roots and rhizomes are collected, while sediments are removed, and subsequently stapled onto the seabed. Various devices can be used for anchoring the plants like shells,

Fig. 3. Sediment and sediment-free methods of seagrass transplantation. (1) Sod method on the left and two types of the plug method in the middle and right. (2) Hessian bag transplant of shoots (3) Seagrass shoots tied to metal frame (4) Staple method (5) Staple method. Placing staples into sediment. (Erftemeijer, 2020).

stones and rods (Erftemeijer, 2020). In order to decrease costs, an improved version of this method, so called Transplanting Eelgrass Remotely with Frame Systems (TERFS), was created, in which a metal frame, together with anchored shoots, is submerged. However, the metal frame must be retrieved after some time (Park & Lee, 2007). Another technique, which holds high innovative potential was tested in Kenya and Western Australia. Shoots were attached to sand filled hessian bags, which served as stabilization for root and rhizome growth and subsequently submerged (UNEP-Nairobi Convention/WIOMSA). Beyond the traditional methods, various attempts on seed transplantation have been made. Seeds are collected from fertile shoots and stored in tanks for several weeks until seeds accumulate on the bottom of the tank. Eventually, the seeds can be released into the aquatic system via different methods

such as burying, placed into hessian bags etc. (Christensen *et al.;* Fonseca *et al.*, 1998; Unsworth *et al.*, 2019; Erftemeijer, 2020).

Suitable practice and donor meadow are selected for the individual restoration programs, based on environmental conditions and the economical/financial resources. Latitude, tidal regime, grain size, water depths, salinity are factors, that must be taken into consideration during the decision process. Exemplary, in intertidal zones access is simple and the staple technique can be a convenient solution without increased logistical efforts, whereas transplantation of seagrasses in deep subtidal waters may require SCUBA diving or the submerging of frames with attached shoots in order to be more cost-effective. (Erftemeijer, 2020)

Additional to the choice of planting methodology, site selection plays an essential role in restoration success (van Katwijk *et al.*, 2016). Protection from severe hydrodynamical activity, light availability and acceptable water quality, free from deterioration, are the minimum requirements for prosperous transplanting (Bayraktarov *et al.*, 2016; van Katwijk *et al.*, 2016).

3.5 RISK AND PROBLEMS OF CONVENTIONAL METHODS

State-of-the-art restoration methods predominantly depend on adult plants as donor material, collected from native meadows (Basconi *et al.*, 2020). However, an increased withdrawal of individual units from a meadow impedes the functionality of a holistic system, resulting in increased vulnerability of the meadow towards biotic and abiotic stressors. Patchy meadows, with increased margins, are more likely to be subject of increased grazing activities of herbivores, whereas dense meadows rather function as nursery than nourishment (Statton *et al.*, 2015). Moreover, changes in the spatial distribution of seagrass meadows alter the provision of ecosystem services such as the sequestration of carbon from the atmosphere. Stocks were found to be 20 % higher in the meadow's interior, in contrast to lower stocks at the edges and bare patches (Ricart *et al.*, 2015). Decrease in meadow density, furthermore, gives opportunity to fast-growing invasive species to colonize within the meadow, resulting in competition and disruption (Williams, 2007; Cullen-Unsworth & Unsworth, 2016).

Beyond selection of appropriate methodology, scientists have been facing the challenge of evaluating and quantifying restoration success. Conventionally, success rate has

been measured on the mortality of the transplants, nevertheless the variety of used metrics leads to profound differences in the assessment of success, resulting in biased reporting (Basconi *et al.*, 2020). Biased reporting is further nurtured through the pressure put on the scientific community from stakeholders and regulators to publish successful results, withdrawing the opportunity for follow up research to improve from already made mistakes (Zedler, 2007).

Amongst the challenges in assuring non-biased reporting, the monitoring intervals as well as duration of restoration programs play a key role (Basconi *et al.*, 2020). Most transplanting programs undergo irregular and short monitoring periods, thereby making the program appear successful. Consequently, in reality failed programs cannot be detected and, opportunities for improvement dissipate (Tan *et al.*, 2020). Unfortunately, many shoots do not survive in the long term and the success rate of transplanting studies might even result in a negative balance, due to the harm induced on the donor population and the loss of the newly transplanted meadow due to storm events or other environmental/biological factors (Cunha *et al.*, 2012; Tan *et al.*, 2020). In order to enhance resilience and long term success of the restoration site, small scale trials must be translated into large scale programs, which has been challenging up to present day (van Katwijk *et al.*, 2016).

In particular logistics can bear challenges, often resulting in high costs. Obstacles, summarized in the UNEP Nairobi Convention, include e.g., the high weight of sediments and shoots, collected using the sod method, complicating transport and transplanting. Sediment-free methods are very labor intensive due to the cleaning of roots and rhizomes from sediments and the individual transplanting of the shoots, which may require SCUBA diving. Difficulties deriving using seed transplanting is the low germination rate of the seeds, which accounts for approximately 5 - 10 %. Additionally, seeds might be transported far away from the original transplanting site through currents or get eaten by predators, decreasing the chances of successful restoration (Erftemeijer, 2020). Crucial is, that in the majority of cases the transplantation rate cannot compete with the mortality rate, amplifying the importance of finding large-scale restoration solutions (Fonseca *et al.*, 1998).

Textiles appear as a cost-effective solution, offering the opportunity of large-scale deployment. They are applicable for seed transplanting techniques as well as growing surface
for cultivating seagrasses (Erftemeijer, 2020). Seeds can be placed into small bags, inhibiting grazing and relocation through currents (Delefosse & Kristensen, 2012). Utilized as a carrier substrate, they assure stability for the immature shoots and allow efficient and easy handling (Irving *et al.*, 2014). Design and material of the substrate are essential factors when developing textile-based solutions for seagrass transplants and methodologies must be further investigated as well as adapted to the targeted environment (Irving *et al.*, 2014; Tan *et al.*, 2020).

3.6 TEXTILES IN SEAGRASS RESTORATION

The application of textiles for seagrass restoration is not a new approach (Tan *et al.*, 2020). Some research, examining different configurations of textiles as carrier substrate for either shoots or seeds, is already existing. Advantages associated with textiles are for example the protection of predation (Tan et al., 2020), stabilization of shoots (Ferretto et al., 2019) and the protection of meadows from bioturbating animals, therewith increasing chances of survival (Wendländer et al., 2019). In a continuing research in Adelaide, Australia, sprigs of Amphibolis antarctica were sewed on coarse and fine hessian bags and, seedlings were placed into sand filled hessian bags (Irving et al., 2010; Irving et al., 2014; Tanner et al., 2014). After eight months of monitoring the hessian bags were degraded, eroded and dislodged due to intense storms and excessive wave energy. Despite the premature failure, this methodology is promising, since the hessian bags provide a stable sediment base, they degrade fully, they are inexpensive and easy to handle (simply be thrown off the boat). The authors concluded that the coarse bags performed better than the fine ones but, must be more robust to withstand hydrodynamics. In continued studies the authors proposed the treatment of the hessian bags with organosilanes (non-toxic silicone coating), thereby decelerate degradation (Irving et al., 2010; Irving et al., 2014; Tanner et al., 2014). Another attempt on using hessian bags as carrier textile was made in the United Kingdom, though, using seeds instead of sprigs (Unsworth et al., 2019). During this study seeds of Zostera marina were sown on hessian bags as well as approximately 100 seeds placed in small hessian bags with 100 cm³ sand. The hessian bags were eroded after eight to nine months and some rhizomes rooted into the sediment below (Unsworth et al., 2019). Furthermore, the so-called Tortilla Method, which was developed in the United States, was applied in a study on seagrass transplantation at the University of Algarve. Fine and coarse woven coir textiles were selected, and shoots were sown into the textile. After a timeframe of two weeks *Zostera marina*, established into the fine mesh, showed no signs of survival. On the contrary, shoots entangled into the coarse mesh appeared fine (Pickerell *et al.*, 2012; O'Brien, 2019).

Overall, textiles appear to bear high potential for seagrass transplantation, since they are feasible and simple to deploy into the marine environment. However, in most studies the textile degraded too fast for the roots to incorporate into the seabed, hence a long-term success could not be achieved. Therefore, the efficiency on material selection and design requires refinement. Moreover, most experiments were conducted on the small scale and did not provide any information on the large-scale performance. Beyond that, many authors seek for different approaches, from the use of sand-filled bags for shoot recruitment to the use of small bags for seed germination. This results in non-comparable data, which cannot build on top of one another. Therefore, it is from importance, that an approach is funded continuously over a long period in pursuance of achieving large scale and long-term success. To the present day there are yet abounding knowledge gaps on the utilization of textiles for seagrass rehabilitation. Further research must be conducted in order to gather more information on textile's behavior in marine environment and their influence on seagrass growth.

4 MATERIALS AND METHODS

This research was divided into two series of experiments (Fig. 4). The biodegradation behavior amongst different textiles in the marine environment was examined (Fig. 4, (1)) along with the assessment of the response of *Zostera Marina* shoots incorporated into these fabrics and accommodated in an outdoor mesocosm (Fig. 4, (2)).

4.1 STUDY SITE

The study was conducted in the south of Portugal on the Algarvian Coast at *Ramalhete Marine Station*, CCMAR (Center of Marine Sciences) (Fig. 5). The field station is situated in the Ria Formosa near Faro. The Ria Formosa is a barrier island system and is one of the most vital systems for seagrass populations in Portugal. It provides a surface area of 84 km² and is classified as a mesotidal system, which is connected to the ocean through six tidal inlets (Guimarães *et al.*, 2012). The back-barrier is dominated by mudflats, but some sandflats occur

as well. Three seagrass species (*Cymodocea nodosa, Zostera marina, Zostera noltii*) can be found to large extent in the Ria Formosa in the intertidal and subtidal areas of the lagoon (Guimarães *et al.*, 2012; Cunha *et al.*, 2013). Water temperature in the Ria Formosa ranges from 12 °C in the winter to 27 °C in the summer and salinity accounts for 13 - 36.5 ppt, depending on the fluvial or oceanic influx at a given point (Newton & Mudge, 2003). The southern coasts is highly impacted by the frequent and intense southern storms throughout the year, which bear challenges for seagrass transplantation (Cunha *et al.*, 2013).

Fig. 5. Study site at research station 'Ramalhete' in Praia de Faro, Portugal. Burial experiments were executed in the adjacent lagoon of the Ria Formosa. Establishment of mesocosms for seagrass transplant trials were conducted in the facilities of the research center.

4.2 TEXTILE SELECTION

Distinct demands on the textiles were made, which were divided into primary and secondary demands. Essential was that exclusively textile of natural derivatives were selected for this study due to the adverse effect of petroleum based fibers during production and degradation on the environment and organisms (Cole, 2016). Biobased and/or biodegradable polymers such as Polylactic Acid (PLA) appeared on the market in order to substitute petroleum derivatives and thus, tackle resource scarcity and greenhouse gas emission (Hottle et al. 2013). However, harmful effects of these types of plastics are not well understood to date and

therefore, were also excluded from this research (Senga Green; Shruti & Kutralam-Muniasamy, 2019). Further essential requirements included resistance against hydrological activity in particular tides, wave action, currents as well as against relocation of the textile from shoot cultivation tanks into the open ocean, along with the provision of an open matrix, for enabling the roots to entangle into the textile. Secondary demands were desirable, but not compulsory. The biodegradation period should be no longer than the period, that shoots need to securely anchor into the seabed and, preferably degradation products should support seagrass growth by functioning as natural nutrient supply.

Materials, composed of sisal, coir and jute were adjudged to meet the criteria for this study. The fabrics came in form of a mesh and a nonwoven mat and were combined to six different layouts, resulting in six net-mat combinations (Fig. 6; Table 3). Coconut-based materials were selected, because coconut possesses high resistance against outer influences from environmental and biological processes (e.g. wave action or microbial attack) attributed to their high content of lignin (Food and Agriculture Organization of the United Nations; Sumi *et al.*, 2018). Beyond its physical properties, coir fibers are also produced in a sustainable matter, due to low water and energy consumption during production (Healabel). Alongside

Product	Material	Matrix	Weight [g/m²]	Tensile strength [kN/m]
Coconet 400	Coir	Net	400	11.2
Geo-Sisal Peatsock	Sisal	Net	1000	1.2
Geojuta	Jute	Net	500	15.0-20.0
Cocomat	Coir	Mat	450	0.5
Type 7	Coir	Mat	762	2.1

Table 3. Presentation of five different selected textile substrates as carrier substrates for implantation of *Zostera*marina shoots and their weight and tensile strength.

with coir, jute is a popular material used as natural geotextiles, by reason of its superior performance in environmental conditions (Wu *et al.*, 2020). Furthermore, jute is one of the most feasible natural fibers on the market (Food and Agriculture Organization of the United Nations). The third material chosen for this study was sisal. Sisal features high tensile strength and high resistance against seawater, as it is conventionally used for marine ropes, therefore it appeared to be suitable for this research (Yu, 2015). The mesh size and weight varied significantly amongst the nets likewise the weight between the mats. Both mats were

composed of a coconut nonwoven, held together by a polypropylene net and thread, which were removed before the beginning of the trials.

Fig. 6. Illustration of the substrate selection. Each mesh was combined with a mat, resulting in six different layout designs. The mat was placed in between two layers of the mesh and the three layouers were sewn together with a sisal thread, creating a so-called sandwich structure.

The textiles were coupled in six different combinations. Each mat was incorporated into one net on the top and bottom and sewn together with a sisal thread, resulting in a so-called sandwich structure (net-mat-net layout). The specimen measured 50 x 300 mm, the standardized sample size for determining the maximum force at break (ISO 13934-1:1999).

Up to present, the performance and degradation rate of natural textiles placed in the marine environment lacks knowledge and, data is primarily available on terrestrial degradation processes. The following presented data on terrestrial biodegradation is based on a comprehensive review of published peer-reviewed academic papers (Table 4) (Daria *et al.*, 2020).

Table 4. Terrestrial degradation behavior of natural materials. Data based on a comprehensive review of
several studies. Hence, the individual methodologies on testing the degradation behavior vary and therefore,
degradation time varies strongly. (Daria <i>et al.,</i> 2020)

Material	Time Interval [months]
Coconut	6-36
Jute	6-18
Sisal	12

Biodegradation rate can be assessed using differing methodologies including e.g. soil burial test, composting and heating. Hence, the degradation rate of the selected materials ranges widely throughout literature and collected data must be compared critically with respect to the difference in applied methods and standards.

It was expected that due to the saline environment, coupled with hydrodynamical activities, the degradation process will be accelerated and hence, textile integrity will diminish more rapidly than reported in studies conducted in the terrestrial environment. Furthermore, it was assumed that **Geo-sisal** layouts will degrade slower than the other nets (**Coconet**, **Geojute**) due to the enclosed and narrow structure of the mesh, leaving less contact surface for microbial attack coupled with the material's high resistance to saltwater. The mats did not differ in their material, thus assumptions on their biodegradation behavior were only based on the structure of the mat. Hence, it was believed that **Type 7** mat will degrade more rapid than the **Cocomat**, because its less dense and lighter, leaving it more vulnerable to biological, physical and chemical activity.

4.3 ANALYSIS OF BIODEGRADABILITY OF TEXTILES

This study examined the biodegradation rate of natural fibers (coir, jute, sisal), buried in the intertidal zone during a period of three months. In order to identify the rate of mechanical decomposition (Stage 1), the weight loss and the loss in tensile strength over time, according to DIN EN 12127:1997-12 and DIN EN ISO 13934-1, were determined. Beyond mechanical examination, the oxygen consumption rate on the surface of the substrates was measured as a proxy for microbial activity (Stage 3).

4.3.2 BURIAL EXPERIMENT

Specimen were buried 5 cm underground during the low tide in the intertidal of the Ria Formosa Lagoon. The layouts were grouped in clusters per time intervals. Samples within the interval were buried in a random manner thereby, comparable environmental conditions were assured for each testing round (Fig. 7). According to a study from the Fraunhofer Institute (FITR, 2008), degradation of natural fibers is initiated after approximately five to seven days.

Fig. 7. Schematic spatial plan for the burial of one time interval (one sampling round), showing the six layouts of the sandwich structures including 5 cm spacing in between the specimen. Five replicates per layouts were buried, n=30 for one sampling round. Six patches as showcased above were located next to another in the intertidal zone of the Ria Formosa Lagoon. Total n=180.

Therefore, sampling was conducted in intervals of seven days in the first month, hence four sampling rounds. Subsequently, specimen were collected on a monthly basis as it was expected that, degradation slows down in the following month compared to the first phase. In total 180 samples, including replicates, lasting for six sampling rounds were buried (Table 5). Average temperature in the sediment at same depth accounted for 22.5 °C.

Layout No.	6
Replicates per Layout	5
Sampling Intervals	6
Total Sample No.	180
Sample Size [mm]	300 x 50
Total burial area (including spacing of 5 cm) [m ²]	5.4

Table 5. Summary of total sample number and required burial area.

After the retrieval of the substrates per time interval, the samples were rinsed with fresh water. The water was collected during the process and filtered through a nylon sieve with a mesh size of 80µm in order to retain fibers, that were washed out during the process. The substrates and the gathered fibers (incl. residues of sediments) were dried at 60 °C for

72 h. Subsequently, the dried fibers were separated via sieving (1 mm) from the sediments and weighted in order to record the weight loss during rinsing of the samples.

4.3.1 GRANULOMETRY

Grain size analysis of the study area was conducted (Rosa *et al.*, 2013) and classified according to the phi (Φ)scale intervals (Krumbein, 1934) and gravel-sand-mud composition-triangle (Folk & Ward, 1957). Seven cores of sediments with a length of 8 cm and a radius of 3 cm were collected from each of the interval areas. Organisms were sorted from the sediment cores and stored in 70 % ethanol before granulometry analysis. In order to conduct granulometric analysis as well as determine the content of organic matter in the sediments, organic matter was degraded according the the method described by Robinson, (1927), using hydrogen peroxide. Concentrations of H2O2 of 60 Vol and 130 Vol were added to the sediments, respectively. Subsequently, the samples were placed in a warm bath, catalyzing the process of degradation. Hydrogen peroxide and deionized water were added frequently, in order to prevent the samples from drying through evaporation of the fluids. The samples were kept in the warm bath overnight, hence full degradation of organic matter was assured. The final weight of the organic matter was calculated by subtracting the final sample dry weight w_f from the initial weight w_i. (Robinson, 1927)

TEXTURAL ANALYSIS

To distinguish coarse and fine sediments, wet separation was carried out. This involved washing the sample with deionized water in a sieve of 63 µm to split the coarser sediment (> 63 µm) from the finer sediment (< 63 µm). The coarser sediment fraction was then transferred and dried in the oven at 60 $^{\circ}$ C(Rosa et al., 201 3) whereas the finer, suspended sediments were filtered with a ceramic filter, filled with active coal, and collected in a 1 L measuring cylinder, which was filled with deionized water up to 800ml. Following, the coarse sediment was analyzed dry sieved with a mechanical shaker (Rosa *et al.*, 2013). Any aggregates were gently removed to allow grains to be retained. Each sieve on the mechanical shaker was separated by fractions by phi (Φ) levels, with (Φ)= -log2d, where d is the grain size in mm² (Krumbein, 1934). Each weight retained on the sieve was noted for further analysis. Fine sediments, that were not obtained during wet separation but collected after dry sieving, were added to the 800 ml suspension of fine sediments. The finer sediments obtained were

analyzed by using the pipette method (Rosa *et al.*, 2013). 70 ml of Sodium Hexametaphosphate (3.04g/L) were added to the suspension and the samples homogenized by mixing them with a rubber rod for two minutes and then letting them rest overnight. Temperature was recorded before the analysis, on which the depth at which samples were taken was based on. At the defined depth, a small portion of the suspension was taken from the measuring cylinder using a graduated pipette at an increment of 20ml. Six withdrawals per sample were collected in prior defined time intervals (Appendix 2). The withdrawals were dried, and the weights taken and the associated scale phi (Φ) value intervals were calculated (Krumbein, 1934)

GRANULOMETRIC PARAMETERS

A grain size distribution and statistics program, GRADISTAT was used to calculate granulometric parameters, which runs within a Microsoft excel spreadsheet package (Blott & Pye, 2001). Method of Moments was calculated in this program arithmetically (metric units), geometrically and logarithmically (phi units) and using graphical moment of Folk & Ward, (1957), allowing Folk and Ward descriptive terms to be applied to moments statistics (Blott & Pye, 2001).

4.3.3 RELATIVE WEIGHT LOSS

In order to determine the relative weight loss over time, the initial weight w_i of each specimen, dried in the oven for 24 h at 60 °C, was taken before the burial experiments. The final weight w_f of the retrieved samples was taken and the relative weight loss calculated in percentage from the arithmetic means of w_i and w_f for each layout (adapted from Chakraborty *et al.*, (2014)). The average weight of the retained fibers during washing w_w was added to the final weight in order to not falsely attribute it to the degradation process;

$$\frac{w_i - w_f + w_w}{w_i} \times 100$$
 1

w_i Initial weight

w_f Final weight

w_w Weight rinsed out fibers

4.3.4 TENSILE STRENGTHS LOSS

Tensile strength loss over time of the textiles was used as a descriptor for biodegradation as well as for the evaluation of their suitability for this research. The carrier substrates must feature sufficient tensile strength, when relocated from the mesocosm into the coastal environment as well as resisting hydrodynamical forces, hence the slower the decline in mechanical properties, the better. Examination of maximum force was conducted according to the DIN EN ISO 13934-1 (Table 6) (ISO 13934-1:1999), executed on the INSTRON 5565. Before testing, the sisal thread of the prior sewing process was removed.

Table 6. Parameters for tensile strength test procedures for textiles according to DIN EN ISO 13934-1 (ISO 13934-1:1999).

Specimen number	Width [mm]	Length [mm]	Rate of Extension [mm/min]	Pretension [N]
5	50 ± 0.5	200 + Clamps	100	0.5

Along with the samples, five controls were tested. Thereby, providing a set of data for comparison, indicating the initial maximum force ts_i of each layout prior burial. The arithmetic mean was calculated for all layouts and controls and the relative tensile strength loss over time computed;

$$\frac{\overline{ts_l - ts_f}}{intervals}$$

tsi Initial tensile strength

ts_f Final tensile strength

4.3.5 AEROBIC BIODEGRADATION

As a proxy for the aerobic microbial biodegradation (Stage 3) oxygen levels were measured on the surface of the textiles and converted into oxygen consumption rate (OCR) by fitting a linear regression of the decreasing concentration and quantifying the negative slope in µmol $m^{-3}min^{-1}$ (Dietz *et al.*, 2019). A higher abundancy of organisms results in an increased oxygen consumption rate, therefore it was expected, that the oxygen consumption rate will increase throughout the experiment. Field luminescent DO sensors of the Hach OxygenHQ40D Portable Dissolved Oxygen Meter were placed on top of the textile directly after retrieval. Measurements were taken every 30 s for 5 mins.

2

The oxygen optodes are composed of an oxygen sensitive membrane and measure the oxygen in an optical manner. A manufacturer explains (Häck, 2003) how a sensing foil is excited by a modulated blue light and, red light is emitted. The intensity of the emitted red light expresses the amount of oxygen in the sample. As a control, a reference red LED is emitted at the same time, without exiting the foil. (Häck, 2003) Controls, layouts prior burial, were tested additionally. It was believed that the oxygen levels stay rather constant due to the absence of aqueous aerobic microorganisms in the controls.

4.4 ANALYSIS OF ZOSTERA MARINA RESPONSE TO TEXTILES

4.4.1 SHOOT COLLECTION

A total number of 150 shoots of *Zostera marina* including roots, rhizomes and leaves were harvested from donor meadows in the coastal lagoon Ria Formosa, on Culatra Island with the required license. Plants were collected during low tide, ensuring easy accessibility. The shoots were stored in outdoor tanks, at *Ramalhete research center* with incoming coarse-filtered seawater at local temperature and salinity until preparation. According to Cunha *et. al.* (2009) Culatra Island is a suitable donor site. However populations favor clonal production, resulting in lower genetic diversity in the Ria Formosa meadows compared to central sites (Billingham *et al.*, 2003), which was found to limit transplantation success (Pazzaglia et al. 2021).

4.4.2 SHOOT PREPARATION

The shoots were digitally photographed next to a measuring tape and each leaf was measured and its length (cm) recorded. Leaf elongation was obtained using the pin method according to Short & Coles, (2001). A needle was poked through the leaf sheats allowing the growth assessment at defined monitoring points (Fig. 8). The wet weight of five shoots was taken and the shoots placed randomly into the textile with dimensions of 20 x 20 cm. Roots were pushed through the top grid of the sandwich structure and placed on top of the nonwoven mat, allowing the roots to interconnect with the mat (Fig. 9, left).

Fig. 8. Pin method for marking seagrass in order obtain leaf elongation over time (Short & Coles, 2001).

A plan of the shoot location in each textile was drawn in order to identify the individual shoots after the experiments and to draw a visual and morphological comparison of the shoot development (Fig. 9, right).

Fig. 9. Left: Shoot incorporation into sandwich structure. Shoot incl. rhizomes and roots was placed through the mesh but kept on top of the mat. Right: Example of schematic plan of shoot localization within textile. Green dots represent the shoots and the orange tag identifies the textile layout and replica number.

Five replicas of each textile layout were prepared. The jute net was excluded from this experiment due to its poor performance in the biodegradation trials, therefore a total number of 20 mesocosms, accommodating textile + shoots, were prepared.

4.4.3 MESOCOSM EXPERIMENT

Each textile was installed into a mesocosm (bucket) with a dimension of 30 L. The textiles were fixed to the bottom of the bucket with 1.5 L of local sediment. The mesocosms were placed randomly in outdoor tanks (Appendix 3) and supplied with perpetual inflow of air as well as coarse filtered seawater from the surrounding lagoon (0.85 l/min; Fig. 10). The mesocosms ensured independency of the replicates among one another, inhibiting interchange of water or spreading of diseases within the tanks. Consequently, the risk of large-scale sample loss was decreased. Additional to the textile treatment, 30 g of rooting fertilizer from the shelf (N:1 %, P₂O₅: 20 %, SiO₂: 36 %) was added to five mesocosms each (excluding textiles) and mixed with 2.5 L of sediments. Five shoots were planted into each mesocosm. Furthermore,

Fig. 10. Outdoor tanks under shading (top). Mesocosms placed in outdoor tanks and close up of mesocosm with constant incoming waterflow and airflow (airflow tube was removed for purpose of taking the photograph) (bottom).

five controls (2.5 L sediments, 5 shoots each) were prepared. In total 30 mesocosms (five per treatment), were distributed among four outdoor tanks, resulting in 6-8 buckets/tank. The tanks were under shading at all times (Fig. 10, top). Two temperature loggers were deployed

on the two outer sides of the tanks, alongside with two more loggers inside the buckets on the outer edges of the tank. Additionally, two HOBO light intensity loggers were fixed to two buckets on each outer edge of the tanks. Salinity, pH and dissolved oxygen data was supplied from the *Ramalhete* field station.

4.4.4 EXAMINATION OF SEAGRASS RESPONSE TO TEXTILE

The shoots were monitored in biweekly time intervals for seven weeks and assessed on their

- i. Shoot survival rate (number shoots/ mesocosm)
- ii. Leaf number per shoot
- iii. Number of new leaves per mesocosm
- iv. Leaf elongation per mesocosm aborted due to failure of monitoring
- v. Total root segment elongation per mesocosm
- vi. Pulse-Amplitude-Modulation (PAM): Effective yield of three shoots per mesocosm

The shoots were removed from the textiles after seven weeks and final measurements were taken along with digital photographs of each shoot.

Each new leaf that appeared was marked and counted. Total number of new developed leaves over the course of the experiment was recorded per treatment.

Root segments were measured from the digital photographs in the program *ImageJ* and summed up to a total length per mesocosm. Same measurements were taken at the end of the experiment and the relative rhizome elongation or loss were computed.

In order to identify the stabilization effect of the carrier textile on the shoots, the root entanglement into the textile was inspected at the end of the experiment.

4.4.5 PULSE-AMPLITUDE-MODULATION (PAM)

The transformation of light energy into chemically fixed energy gives origin to chlorophyll (Chi) *a* fluorescence, which channels the absorbed light into the reaction centers photosystems I (PSI) and II (PSII) of an organism, where photochemical energy conversion and heat dissipation happens (Wageningen University & Research, n.a.; Papageorgiou & Govindjee, op. 2010).

Therefore, determination of Chlorophyll (Chi) *a* fluorescence has been used widely as estimate for photosynthesis (Papageorgiou & Govindjee, op. 2010). The PSII is mainly responsible for fluctuation in fluorescence and, thereby indicates variations in PSII photochemical efficiency and heat dissipation (Wageningen University & Research, n.a.).

Pulse-Amplitude-Modulation (PAM), a combination of fluorometry and the saturation pulse method, has been one of the most powerful *in situ* and *in vivo* technique in quantifying photosynthetic productivity (Wageningen University & Research, n.a.; Papageorgiou & Govindjee, op. 2010; Pavlovic *et al.*, 2014). The F_v/F_m ([($F_m - F_0$)/ F_m]) ratio, which derives from the minimal fluorescence yield (F_0) and the maximum yield (F_m), after superimposing a light beam onto the prior dark-adapted leaf, indicates the maximum photochemical efficiency of the PSII and is proportional to the effective yield of photochemistry (Guidi *et al.*, 2019).

The effect of the different treatments on the integrity of the seagrasses was assessed by measuring the quantum effective yield Y of three representative shoots per replicate every two weeks using a Walz DIVING-PAM (Pavlovic *et al.*, 2014; Appendix 11). Prior measurements, a section of each leaf, 2 cm above the sheath, was darkened with a nondestructive clip (6.5 g), that possesses a small shutter, preventing light from entering. The shutter was reopened after five minutes and the fiberoptic positioned on the leaf (Heinz Walz GmbH, 1998). The Dark Clip allows a precise placement of the fiberoptics on the sample. The fiberoptics were positioned in a 90° angle with regard to the leaf surface and were kept at a distance of 3 mm (Heinz Walz GmbH, 1998). Background signals were compensated through the AUTO-ZERO command, which was initially performed (Heinz Walz GmbH, 1998).

4.5 STATISTICAL ANALYSES

For all analyses the significance level $\alpha = 0.05$ was defined. Outliers were removed and substituted with the median. Subsequently, the data was logarithmized and normalized in *PRIMER 6*. Normality test and trend detection were conducted with the programming language *R Commander 4.1.0*. Despite the normalization of the data, the *Sharpio-Wilk* test detected a non-normal distribution (Appendix 5), therefore non-parametric methods were applied to the data.

PERMANOVA analysis was executed in *PRIMER 6* in order to detect differences among textiles along with PERMADISP analysis in case of increased variance within a parameter. The analysis was applied for burial as well as mesocosm experiments.

Boxplots and line graphs were generated in the program *Matlab*. Boxplot charts were generated from five replicates per layout and time interval for burial and mesocosm experiments. Values for the line graphs of the mesocosm experiment were computed from the median of the concerned parameter per layout and monitoring point, always consisting of five replicates together with the standard deviation.

Statistical hypothesis tested:

*H*₀: Growth and integrity of Zostera marina shoots does not perform differently by the fixation of the shoots into a carrier substrate than single shoots out planted directly into the sediment.

5 **RESULTS**

5.1 **BIODEGRADATION EXPERIMENT**

Sediments of the study site were categorized as "medium sand" with some inclusions of muddy and gravely sediments according to the Wentworth scale (Wentworth, 1922); Appendix 4) Grain size distribution was narrow, with the mode ranging between 1.2-1.8 ¢ implying sediment conditions were homogenous, assuring comparability among samples.

Average sediment temperatures ranged around 21°C and 24°C during the night and day, respectively. However, sediments were slightly cooler in April compared to July and increases approximately 0.4 °C per week over the period of the experiment (Fig. 11).

Biodegradation of the samples was proven by the detected negative trend throughout the different parameters for most the samples (Appendix 6).

Visual inspection of the controls compared to the samples after 84 days of burial demonstrated that samples of **CC** and **CT7** layouts appeared intact throughout the experiment, indicating a low degradation (Fig. 12). The nonwoven mats of **JC** and **JT7** samples

were thinned out, implying lack of protection of the mat through the jute net, due to its open grid. Specimen from **SC** and **ST7** layouts suffered loss of yarns on the outer corners of the mesh, causing a thinning of the sample. Nevertheless, the high thread density of the sisal nets offered protection for the mats, which did not show signs of degradation.

Weight loss was monitored as a proxy for mechanical degradation and analyzed via PERMANOVA (Table 7; Appendix 8). Layouts composed of coir nets showed an overall constant weight until the final phase of the experiment, in which they experienced marginal drop in weight (Fig. 13). The average weight of **CC** layouts increased by approx. 3 % in the first three

Fig. 12. Photograph of six different textile layouts after burial in the Ria Formosa Lagoon for 1,2,3,4,8 and 12 weeks. Samples were rinsing with freshwater after exhumation and dried for 72h at 60°C. Top left: CC, top right: CT7, middle left: JC, middle right: JT7, bottom left: SC, bottom right: ST7. Controls on the left with burial time increasing towards the right. For layout code see refer to Fig. 6.

weeks (**p=0.001**) and dropped to the initial weight in the fourth week, indicating no weight loss (**p=0.005**). After twelve weeks weight reduced by 0.66 % (**p=0.009**). **CT7** samples showed a similar behavior, with weight fluctuating between in- and decreasing trends in the first three weeks. In week eight the weight reduced by 2 % (**p=0.018**) and stayed constant after for the

following month (**p=0.393**). No weight loss was recorded for the **JC** layout within the first four weeks but a sudden drop was recorded after eight weeks with a final weight loss of 15 % (**p=0.002**). **JT7** replicates varied among each other within the first four weeks, indicated by the high variance in week three and four, though lowered overall 7 % after eight weeks, which

Fig. 13. Relative weight loss of buried textile layouts over time starting after week 1 until week 12. Each boxplot represents five replicates per time interval. Letters below boxplot charts explain differences within individual layouts over time. Letters in the box below boxplot charts explain difference in one time interval among the layouts.

was doubled after twelve weeks (p=0.001). Weight of SC textiles reduced in the first week of burial by 7 % (p=0.001) and stayed constant for the following three weeks until it dropped by 14 % and 21 % in week eight and twelve, respectively ($p\leq0.013$). The same pattern of weight loss was observed for ST7 samples, which lost in total 18 % of their initial weight (p=0.001). Among layouts, samples composed from coir nets showed the lowest weight loss, opposed to the 30x and 10x higher weight loss of sisal net layouts for CC and CT7, respectively (p=0.001) (Fig. 17, top). Final weight loss of jute net layouts ranged in between coconut (avg. 10x higher) and sisal layouts (avg. 1.5 x lower) ($p\leq0.017$). No differentiation between the mats within one group of nets could be made.

The second indicator examined for mechanical degradation was tensile strength loss (Fig. 14;Appendix 7). Tensile strength loss of **CC** layouts did not show differences up to three

months of burial, after which a decrease of 34 %, compared to the control, was recorded (**p=0.003**). **CT7** layouts showed high durability throughout the whole experiment and tensile strength only reduced after two months by 25 % (**p=0.009**), featuring some fluctuations (±12 %) of in- and decrease beforehand. Tensile strength of **JC** layouts stayed constant until the final period of the experiment, in which strength was 3x times lower, compared to the controls (**p=0.001**). Loss of tensile strength was initiated a month earlier for **JT7** layouts than for **JC**. The samples experienced a reduction of strengths after eight weeks of 55 % (**p=0.037**) and after 12 weeks of 78 % (**p=0.006**) in total. Sisal layouts showed low resistance against degradation regarding preservation of tensile strength. A first drop of 25 % in tensile strength

Fig. 14. Tensile strength loss profile of controls and buried textile layouts over time from week 1 to week 12. Letters below boxplot charts explain differences within individual layouts over time. Each boxplot represents five replicates per time interval. Letters in the box below boxplot charts explain difference in one time interval among the layouts. Left y-axis describes tensile strength of coir net and jute net layouts. Right y-axis describes tensile strength of sisal layouts.

was observed for **SC** layouts after 7 days of burial (**p=0.004**). Subsequently, strength loss stagnated and did not lower up until the two months mark, where tensile strength lost 58 % of its original strength. This was followed by another drop at the three months mark, resulting in a total strength loss of 74 %. (**p≤0.001**). **ST7** samples revealed a similar behavior as **SC** layouts with 4 % lower final tensile strength loss of 70 % compared to the **SC** (**p=0.001**). Tensile strength of all layouts differed right to begin with. The tensile strength of sisal net layouts was 6x higher in the controls compared to coir net layouts and even 25x higher than jute net

layouts (**p=0.001**). Due to the durability of the coir net, the magnitude of difference between sisal net and coir net layouts decreased from 6x to a 2x lower tensile strength after three months of burial (**p=0.005**;Fig. 17, middle). The magnitude of difference between sisal and jute stayed the same as the controls after three months (**p=0.001**). No difference between the two mats was detected, as results between same net type resulted in comparable values.

Table 7. General permutational MANOVA results of physical (weight loss, tensile strength loss) and biological (OCR) descriptors of biodegradation of textile layouts, buried in the Ria Formosa lagoon with factor Layout and time of burial. Per Layout and Time interval five replicates were buried, total n=180. α -level=0.05, significant result presented by *.

Parameter	Factor	DF	Pseudo-F	P (MC)	Significance
Weight loss					
	Layout	5	124.12	0.001	*
	Time interval	6	173.13	0.001	*
	Layout * Time interval	30	15.22	0.001	*
	Residuals	168			
Tensile Strength					
	Layout	5	1066.80	0.001	*
	Time interval	6	84.79	0.001	*
	Layout * Time interval	30	26.55	0.001	*
	Residuals	168			
OCR					
	Layout	5	7.10	0.001	*
	Time interval	6	11.37	0.001	*
	Layout * Time interval	30	1.97	0.002	*
	Residuals	168			

Microbial degradation, measured as oxygen consumption rate (OCR), showed controls featured low to absent aerobic micorbial activity, with OCR values revolving around zero (Fig 15). Among controls, **ST7** was different from all layouts ($p \le 0.007$). OCR within **CC** layouts was initiated in the first week, indicating the settling of aerobic microbes within the fabric, resulting in an final OCR 416x higher compared to controls ($p \le 0.014$; Fig. 16). The variance within **CT7** samples resulted in no statistical difference between the controls and the final samples. Nevertheless, OCR appeared to increase 104x, comparing medians at the start and the end of the experiment. OCR in **JC** layouts increased 415x over the course of the experiment (**p=0.014**). OCR for **JT7** textiles appeared to increase almost 50 % between the fourth and eighth week, followed by a minor decrease after eight weeks, but overall featuring a 207x

higher OCR at the final stage compared to the controls ($p\leq0.016$). Differences of OCR for SC layouts were recorded after two months, accounting for a 63x higher OCR than the controls (p=0.018). Threshold for ST7 structures was observed after twelve weeks, featuring a 27x higher OCR than at the start (p=0.006). Up until the second week OCR among layouts did not indicate any distinction. After the third week some differentiation was noted in between sisal net structures and JC as well as in between SC and CT7 layouts (p=<0.018), which however, disappeared towards the end of the experiment. Although final values of OCR are only half as high in CC layouts than in the other layouts ($p\leq0.04$), the highest increase over time, in comparison with the control, was recorded for this structure, followed by JC and JT7 layouts. Similar pattern was observed for sisal net layouts. Despite comparable final values, SC experienced a 2x higher increase of OCR than ST7 layouts, when comparing controls and final rates. Variance increased on average 1400x from the controls to the final time point of three months (p=0.001), possibly influencing PERMANOVA results.

In conclusion **coir** net layouts sustained their morphological appearance along with mechanical integrity the greatest throughout the experiment (Fig. 17). Yet, especially **CC** layouts possessed a pronounced duplication of microbial respiration. Despite the increased duplication, total OCR was rather low in **coir** net layouts. In contrast, **sisal** net layouts suffered from instant weight and tensile strength loss as well as increased total microbial respiration, regardless of the comparatively low duplication. Weight loss in **jute** net layouts was slightly slower than in **sisal** net ones, however tensile strength loss appeared to be similar. Aerobic activity was increased, comparable to the **sisal** net layouts.

Fig 15. Representation of the initial differences in OCR controls of textile layouts. Each boxplot represents five replicates. Letters below demonstrate differences among layouts. OCR rates revolve around zero, indicating no to low aerobic microbial activity. Differences among layouts possibly attributed to different surface structures.

Fig. 17. Top: Relative weight loss of buried textile layouts after twelve weeks. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate final differences among layouts. Middle: Relative tensile strength loss of buried textile layouts after twelve weeks. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate final differences among layouts. Bottom: Duplication of microbial respiration (OCR) in textile layouts, comparing control rates with rates of layouts, retrieved after twelve months. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate set interval. Letters below boxplot charts indicate final differences among layouts, retrieved after twelve months. Each boxplot represents five replicates per time interval. Letters below boxplot charts indicate final differences among layouts.

It was observed that the three parameters followed a similar pattern over the time of the experiment for **sisal** layouts, experiencing an initial steep drop in the first week and second one after the fourth week (Fig. 18). For **coir** net layouts it appeared as tensile strength loss and the increase in OCR were related. In **CC** layouts the two parameters experienced a drop

Fig. 18. Relative weight loss, tensile strength and OCR per layout over the period of the experiment. Outer left yaxis refers to OCR. Y-axis is reversed compared to figures above to showcase relation among parameters. The more negative the datapoint, the higher was the OCR in this figure. Inner left y-axis refers to rel. weight loss. Right y-axis refers to tensile strength. Demonstration of average values, each computed from five replicates. Error bars are not depicted in order to facilitate understanding of the relation among parameters but information of variance can be extracted from the boxplot charts of the result section.

in the third week, continuing into the fourth week for tensile strength. A sudden increase in both parameters was noted subsequently, followed by another drop after the eighth week. Tensile strength and OCR of **CT7** layouts went through a cycle of de- and increase throughout

the experiment. The three descriptors of biodegradation showed no analogous behavior for **jute** layouts. All parameters featured a terminal decrease but the fluctuations in between time intervals were different among them.

5.2 MESOCOSM EXPERIMENT

Water temperature ranged between 19 °C and 28 °C (night/day) and was on average 24.5 °C (σ = 1.19) from June to August (Fig. 19). No temperature difference between the two sides of the tanks was observed (Appendix 9). Dissolved oxygen accounted for 94 % (σ = 0.16) and showed an average difference of 2 % between June and August. The pH was 7.91 (σ = 0.16) and stayed constant over the period of the experiment. Constant behavior was also observed for salinity with an average of 37.4 psu (σ = 0.46).

Daily light intensity on the northeast face of the tanks was on average 526.17 lux (σ = 401.06) (Fig. 20). The southwest facing side showed a higher illuminance, accounting for 2316.13 lux (σ = 2245.01).

Shoot integrity suffered severely over the course of the experiment (Fig. 21; Appendix 10). On average the relative leaf number decreased by 80 - 100 % in all treatments ($p \le 0.015$) after seven weeks (Fig. 22, top). No overall difference among the layouts was detected (p=0.968). Yet, after one week CC layouts had 15 % and 20 % more leaves than SC layouts and fertilized mesocosms, respectively ($p \le 0.019$). Nevertheless, no distinction could be made

anymore at the final time interval of seven weeks (Fig. 23, top). Survival rate of shoots in all layouts was stable the first three weeks and declined by avg. 10 % up to the fifth week in **CC**

Fig. 20. Daily light intensity (6:00 am to 8:00pm) over time from the start until the end of the experiment of two Hobo loggers placed on the northeast side and the southwest side of the tank set up. Grey bars indicate northeast side. Black bars indicate south west side of the tanks.

Fig. 21. Exemplary replicated of seagrass shoots before and after the experiment. Five replicates per layout accommodated five shoots. Left: Intact shoots before. Right: Leftover of shoots after seven weeks of experiment. A=CC, B=CT7, C=SC, D=ST7, E=Fertilizer, F=Controls. For layout code see refer to Fig. 6.

and **CT7** layouts ($p \le 0.021$) (Fig. 22, bottom). Subsequently, after seven weeks, the number of shoots reduced in all layouts by another 55 % ($p \le 0.038$). Among layouts variations in survival rate were revealed (p=0.008; Table 8). After three weeks survival rate of shoots in **CT7** layouts was 20 % lower than in layouts **SC**, the **controls** and the fertilized mesocosms (**FT**) ($p \le 0.044$). The following two weeks the differences disappeared and a difference between layout **CC** and **SC** appeared, with **SC** showing a 40 % higher survival rate than **CC** (p=0.003). The difference persisted throughout the final stage of the experiment (seven weeks) and eventually survival rate in **SC** layouts was twice as much as in **CC** as well as in **controls** (Fig. 23, bottom; $p \le 0.013$).

Fig. 22. Decrease of average relative leaf number (top) and survival (bottom) of eelgrass leaves over seven weeks. Shoots were integrated into four different textile layouts (CC, CT7, SC, ST7) along with fertilized shoots (FT) and controls (C). Experimental set up consisted of five shoots per textile and five textiles per layout. Textile with shoots were placed in outdoor flow-through mesocosm, with seawater from the Ria Formosa lagoon. Demonstration of average values each computed from five replicates and standard deviation. For layout code see refer to Fig. 6.

Fig. 23. Boxplot chart of relative leaf number (%) at the start and after seven weeks (top), Boxplot chart of relative survival rate (%) at the start and after seven weeks (bottom). Letters indicate differences among layouts within time interval.

Total length of root segments within a substrate lowered from the beginning to the end of the experiment for all layouts similarly (**p=0.545**) (Fig. 24, top). However, it was observed (not statistically significant), that some replicates increased in their segment length especially, shoots incorporated in **SC** layouts. Although the replicates featured an extensive spreading, variance ranged in the positive spectrum of root segment elongation, implying better growth of these samples compared to shoots, placed into other layouts. Replicates within the other layouts (**Control, CC, ST7, FT**) featured positive elongation in some replicates

but negative in others, though, medians entirely ranged in the negative spectrum. Biomass

Fig. 24. Eelgrass relative root segment elongation (top), relative wet weight loss (middle) and total number of new developed leaves (bottom) after seven weeks in the mesocosm. Letters indicate differences among layouts within time interval.

decreased excessively during the experiments and the median of the wet weight loss for all substrates ranged around 50 to 70 % (Fig. 24,middle). Wet weight loss was observed to be 25 % higher of shoots growing on **ST7** layout than on **SC** layouts (**p=0.018**). Moreover, **control** shoots experienced 15 % higher wet weight loss than shoots in **SC** layouts (**p=0.017**).

New leaves emerged over the time of the experiment and were recorded at every monitoring period and summarized at the end of the experiment (Fig. 24, bottom). Shoots growing on **SC** substrates developed 3x more leaves than shoots in **CC** layouts (**p=0.036**). Shoots incorporated into other fabrics produced an intermediate number of leaves (approx. between 2-6 leaves) (**p=0.293**)

Overall shoots in all mesocosms showed ananalogous trend in effective

quantum yield as the survival rate, dropping abruptly after five weeks ($p \le 0.008$), except for shoots incorporated in layouts **ST7** and the fertilized shoots, which experienced a decrease after seven weeks ($p \le 0.033$). Shoots incorporated into **CC**, **CT7** and **SC** sandwich structures behaved in a similar matter, with an final averaged effective quantum yield ratio of **0.14** (Fig. **25**, bottom). Effective quantum yield appeared to be decreasing 3x less in shoots of layout **ST7**, followed by a 2x less decrease in the fertilized plants (**FT**). Contrary to the decreasing yield in most shoots, yield increased for some shoots in **ST7** substrates. Shoots in **controls** showed no more effective quantum yield, differing from shoots incorporated into **CC** and **CT7** layouts ($p \le 0.026$). Effective quantum yield measurements presented 7.5x higher variances at the final stage than at the start, leaving results questionable (**permadisp p=0.001**; Appendix 8; Fig. 25,top).

Fig. 25. Averaged effective quantum yield over time from week1 until week 7 (top). Average values are each computed from five replicates together with standard deviation. Boxplot chart of rel. effective quantum yield before and after seven weeks (bottom). Letters indicate differences among layouts within time interval.

Table 8. General permutational MANOVA results of morphological and photosynthetic parameters of *Zostera marina* shoots with factors 'Layout' and 'Time Interval'. Used layouts were CC,CT7,SC, ST7 along with fertilized shoots and controls (see composition Fig. **6**) Per Layout five replicates were placed into independent mesocosms with five shoots each. Total shoot n=150. α -level=0.05, significant result presented by *.

Parameter	Factor	DF	Pseudo-F	P (MC)	Significance
Survival rate					
	Layout	5	3.31	0.008	*
	Time interval	4	123.81	0.001	*
	Layout * Time interval	20	1.50	0.085	-
	Residuals	120			
Leaf number					
	Layout	5	0.197	0.968	-
	Time interval	4	463.92	0.001	
	Layout * Time interval	20	1.915	0.012	*
	Residuals	120			
PAM					
	Layout	5	1.76	0.136	-
	Time interval	4	85.18	0.001	*
	Layout * Time interval	20	1.88	0.024	*
	Residuals	336			
New Leaves					
	Layout	5	1.32	0.293	-
	Residuals	24			
Root segment elongation					
	Layout	5	0.79	0.545	-
	Residuals	24			
Wet Weight Loss					
	Layout	5	2.43	0.070	-
	Residuals	24			

Despite differences in light intensity between the outer edges of the tanks, no differences within the survival rate, leaf number, new developed leaf number along with rel. effective quantum yield were detected among tanks ($p \ge 0.137$, Appendix 8).

It was observed that effective quantum yield and shoot survival rate followed a similar pattern over the time of the experiment. During the first three weeks both parameters were rather stable and experienced a sudden drop after the third week continuously until the end of the experiment. Leaf number suffered from loss from the beginning of the trials and followed a linear decrease throughout the entire period of the seven weeks.

Fig. 26. Relative survival rate, relative leaf number and quantum effective yield per layout over the period of the experiment. Left y-axis refers to rel. survival rate and rel. leaf number. Right y-axis refers to effective quantum yield. Demonstration of average values, each computed from five replicates. Error bars are not depicted in order to facilitate understanding of the relation among parameters but information of variance can be extracted from the boxplot charts of the result section.
6 DISUSSION

6.1 **BIODEGRADATION**

Physical properties of the individual fibers as well as their processing into woven textiles influenced the outcome of the biodegradation experiments. Coir fibers are considered the most durable fiber (Lekha, 2004), agreeing with the marginal weight loss of both coir net layouts. Increase in weight might be associated to the very porous structure of the net and mats, making it easily accessible for microorganisms or sediment accumulation, obscuring weight loss through degradation. This assumption agrees with findings from Di Franco et al., (2004), who claimed that weight determination is sensitive to errors due to the prior described cause. Contrasting behavior was observed in sisal layouts leading to the assumption that the dense grid did not allow any accumulation of biomass or sediments and resulting in an initially measurable weight loss. Because of the wide grid of the jute mesh entrapment of any kind within the substrates might have been possible, indicated by the initial increase in weight, comparable to the coir net layouts. Nevertheless, the wide grid could not prevent eventual weight loss, leaving the mats unprotected and degrade faster than the CC and CT7 layouts. It appeared that the threshold of initiating biodegradation with regard to weight loss was reached after eight weeks for jute and sisal net layouts, which both experienced sudden drops in weight after that point of time. In the following month weight dropped more rapidly than before, implying that, as soon the degradation process is initiated, it proceeds much faster than at the start and, thus is not a linear function of exposure.

Tensile strength loss analysis was only applied to the nets, as the machine brackets hold on to the outer layer of the substrate (net). Mats were not relevant for this analysis since their purpose was not to increase stability but serve as rooting ground for the shoots. Tensile strength varied between the layouts from the beginning due to differences in yarn thickness as well as weaving design. Mechanical properties of textile fabrics are influenced by the individual fiber properties and subsequently modified by the conversion into yarns and into the final fabric (Saiman *et al.*, 2014).During tensile strength testing the longitudinal applied load foremost attacks the fiber friction among fibers, followed by the elongation of the yarns (Saiman *et al.*, 2014).Furthermore, force at break increases with weft yarn density (Nassif,

2012). The original superior performance of the **sisal** net layouts can be attributed to its high tensile strength of the individual fibers (Haque et al., 2015) in combination with the high density weft design of the net. Coir fibers possess lower tensile strength than jute fibers (Wu et al., 2020). Yet, tensile strength of the coir net fabrics was far better than tensile strength of the **jute** nets probably due to the very low density of yarn count within the **jute** nets, leading to inferior capability of withstanding the applied load. Nevertheless, the baseline of tensile strength of the individual layouts did not influence their over time performance after burial. Although sisal layouts possessed the highest tensile strength in the controls, they experienced the most significant loss in tensile strength over time. The decrease of tensile strength as a function of exposure of these layouts was associated with the weight loss. Within both variables sisal nets reduced performance in the first week and subsequently stayed constant until the 8th week of the experiment, in which another significant drop in performance was discovered. The magnitude of diminution between the 4th and the 8th week ranged around 1.3-2x for both parameters, demonstrating analogous reduction. Additionally, oxygen consumption rates correspond to the behavior of the mechanical parameters. Though, differences between the first and second month were not significant (p=0.051) a clear upward trend of OCR was observed, initiated after eight weeks alike weight loss and tensile strength loss. Furthermore, differences in variance between the first four weeks and the following (Permdisp p=0.001, Appendix 7) might have influenced the PERMANOVA results, and therefore not indicating the significance of difference between these two time intervals. Tensile strength loss in jute nets behaved in a similar matter, in which a sudden decrease of strength was revealed in the last two months of the experiment. According to a study from Saha et al., (2012) jute fabrics, exposed to a 3 % NaCl aqueous solution for 120 days, were left with 15 % of their original tensile strength. Tensile strength for jute layouts in this study reduced by approx. 70% after a period of 84 days, comparable to the results from this study. The decrease of tensile strength was more pronounced even, possibly due to the additional component of the burial. Yet, although weight reduction between jute net layouts was the same after two months, tensile strength loss was not induced in **JC** layouts up until the third month, whereas tensile strength reduced half already after two months in JT7 structures. According to these findings tensile strength reduction clearly was influenced by another factor than just weight loss. Oxygen consumption rate ranged in similar magnitudes for both jute net layouts, implying comparable aerobic microbial activity. Hence, OCR was not the influencing factor on the variance in tensile strength loss between the layouts. Aerobic microbial activity appeared to be rather independent from the mechanical properties for jute net layouts until the final stage of the experiment. Complementary to the tensile strength loss in **JC**, an increase of OCR was recorded. Nevertheless, other conformities among the parameters for jute net layouts were not identified. Tensile strength loss in coir net layouts followed, like sisal net layouts, the pattern of the weight loss. After eight weeks tensile performance of **CT7** layouts lowered 1.3x compared to the first month, alike the weight and, increased in the same magnitude as it lowered after twelve weeks for tensile strength and weight. Also, CC layouts dropped in weight and tensile strength simultaneously after three months, indicating correlating behavior between tensile strength and weight loss. The overall OCR was rather low in **coir** net textiles compared to the other layouts. The high lignin content in the coir fibers results in protection of the cellulose, thus protection from chemical and biological deterioration (Rajan et al., 2005), which was supported by the findings of this study. Microorganisms are more susceptible to degrade fibers with higher cellulose and hemicellulose components and only few microorganisms are capable of decomposing lignin (Rajan et al., 2005). Composition of cellulose, hemicellulose and lignin is comparable between sisal and jute fibers, potentially explaining the similar degradation behavior of these two layouts.

Generally, the increased variance in OCR might have led to misinterpretation of final results questionable, which though, is an inherent occurrence in biological investigations (Hicks *et al.*, 2020). Possible reason for the high variance in the tensile strength in **coir** net and **jute** net layouts might be the inconsistency of the thickness of yarns, therefore forces distribute differently throughout the samples among replicates. This assumption is supported by the low variance in **sisal** layouts, attributed to the very consistent net it provides. Weight loss appeared to be less affected by spreading, wherefore results are more reliable. Improvement of results can be achieved by using an increased sample size and thereby, achieve a more consistent pattern.

This study showed that, the biodegradation of fibers from natural derivates requires a certain time of response until the degradation process is induced. All layouts were rather stable in their physical properties along with aerobic microbial activity and declined significantly in performance after a threshold of two or three months. Furthermore, it was

proven that, the chemical composition of the fibers was responsible for the degree of degradation of the different layouts, as the two opposing weave designs of a high-density sisal mesh appeared to degrade in similar manner as a low-density **jute** mesh. Moreover, this work showcased that textile substrates degrade more rapidly submerged in the marine environment than in terrestrial. **Sisal** fibers degrade within 24-36 months in contact with soil (The East Africa Sisal Company Ltd.). This study revealed, that if sisal would degrade at the same rate as the past three months, a full weight loss of less in twelve months would be achieved. Weight loss in coir textiles proceeds much slower than the given 36-48 months rate from literature (Greenfix). Yet, tensile strength was reduced by avg. 30 % after three months, whereas according to Sumi et al., (2018) coir buried in sand lacked 63 % of tensile strength after one year, corresponding to the initial statement that saline environment catalyzes degradation. According to a study from Arshad & Mujahid, (2011) jute lost 40 % of its weight after three months. In the case of this study structures composed with **jute** nets only degraded by 15 % during that time period. Though, due to the wide grid of the jute net, weight decrease affected the interior coir mats directly, therefore it is not clear how much the jute net itself degraded, as it only took a small weight percentage of the overall weight of the sandwich structure. It was expected that the high resistance of sisal to saltwater would result in a superior performance of these layouts above the others with regard to biodegradation and that the enclosed net structure would decrease microbial attack. This study demonstrated that despite the high resistance of sisal fibers towards saline water, biodegradation was more pronounced than in **coir** net textiles and was more similar to **jute net** layouts, disproving with expectations. Predictions about the mats were not met. Type 7 mat did not experience increased biodegradation compared to the **cocomat**. In fact, no distinction between the two types of nonwovens was discovered.

6.2 MESOCOSM

During the course of the experiments shoot integrity and number decreased in all treatments, wherefore it was examined in which setting shoots were the healthiest over time and survived the longest. Mortality was potentially caused by immoderate water temperature. Annual average water temperatures around the donor meadow (Culatra island) range between 18 °C – 20°C (Newton & Mudge, 2003), approx. 8°C lower than the temperature in the tanks. Additionally, minimum light requirements for *Zostera marina*, which, according to Eriander, (2017), account for approx. 1875 lux, were only met at the southwest facing tanks. Though, differences among replicates were not associated with their location in the tanks. Another assumption is that, the damaged of the leaf puncturing was to severe, leaving shoots unable to recover. Leaves turned brown from the puncture on towards the top and subsequently the entire leave. Therefore, the measurement of leaf elongation could not be executed further after three weeks into the experiment. Repuncturing also failed, since leaves turned brown shortly after again. Hence, leaf elongation was excluded from the parameters.

Superior performance was observed in sisal layouts, in which shoots appeared to undergo slowest degradation along with even some recovery towards the end of the experiment. Mortality rate was lowest in these layouts, resulting in an increased leaf number. Furthermore, shoots developed the highest number of new leaves and even root segment elongation was observed in shoots, incorporated into SC fabrics, which, though was not statistically proven. On the contrary, coir layouts offered the lowest support for shoots, indicated by the inferior results of all parameters with **CT7** layouts performing slightly better than CC layouts. Shoots in controls did not appear to grow well either, leading to the assumption, that a mesh with a certain thread density, and thus supporting system, can result in better growth such as the sisal net. Despite these findings, fertilized shoots, which were not growing on a carrier fabric, featured lower deterioration in their morphological appearance than shoots growing on coir nets. Hence, the study demonstrated that the textile design, especially thread density, along with the material selection are vital factors in the development of textiles fostering shoot stabilization and growth, which was also showcased in a study from Keune, (2017). The coir grid possibly did not supply sufficient support for the shoots due to its lower thread density. Therefore, many leaves were lost from which the shoots could not recover and died eventually. Yet, as hydrodynamics were not mimicked in this experiment, the stabilizing function of the meshes was not analyzed empirically and hence, fertilized shoots possibly might behave inferior than coir net layouts outside laboratory conditions. Contrary to this study, findings from other research suggest that coarse weave meshes are more suitable for transplants of recruits and shoots as the rough surface of the mesh facilitates root anchoring (Irving *et al.*, 2010; Tanner *et al.*, 2014; O'Brien, 2019). Yet, this assumption is not applicable to this study as textile design along with function of the individual substrates (mesh, mat) differed among studies. The function of the mesh in this study was to provide enough support for the above ground parts of the as well as sediment stabilization and strength for transport in future applications in the marine environment. A surface for root entanglement was given by the mat. Thus, this work demonstrated that minor changes in design alter the functionality immediately and must be tailored carefully to the particular purpose such as rooting surface below ground or stabilization above ground of leaves and shoots.

Furthermore, material degradation might affect shoot evolution via the provision of compounds, that foster vegetation (Marczak *et al.*, 2020). The in this study proven earlier induced degradation process of the **sisal** fibers, resulted in earlier release of vegetation supporting compounds into the mesocosm, supporting shoots in the production of new leaves and maintaining the original shoot number as long as possible. **Coir** fibers are subject to slow degradation thus, nutrients might be released in lower concentrations compared to the **sisal** layouts and hence, the rate of newly developed leaves was the lowest in these layouts. Tanner *et al.*, (2014) claims that fast material degradation has adverse effect on shoot recruitment. Lose parts of the textile disturb the shoots and put them under physical pressure. Because this study was not executed in an environment exposed to hydrodynamical forces, this finding is not applicable to this series of experiments and thus had no influence the results. Nevertheless, the concern is valid and must be further investigated in future studies set beyond laboratory conditions.

It was recognized that roots did not entangle into the mats during the period of the experiment. As horizontal rhizome growth is rather slow (26 cm apex-1 yr-1(Marba *et al.*, 2004) it was not expected to observe interactions between the rhizomes and the mats. Additionally, shoot development behaved contrary in the mats. Combined with the sisal net,

ST7 performed inferior compared to **SC**, but, in combination with the coir net, **CT7** showed better results than **CC**. Hence, no distinction in performance related to the mats could be made. Highest wet weight loss was identified in **ST7** layouts as well as loss in root segment length. Therefore, wet weight loss was attributed to loss in segment length due to the higher wt.% of the roots than the leaves.

Most of the green leaves lost their integrity shortly after the start of the experiment and turned into a brownish color. This was caused by the transformation of chlorophyll into pheophytin, which is associated with external stressors such as increased temperature or light (Aramrueang et al., 2019). Effective quantum yield decreased in shoots in all layouts, associated with the loss of chlorophyll-*a* and possibly with down-regulation of photosynthesis due to low irradiance conditions (Beer et al., 1998). Shoots in coir layouts and controls possessed very low to absent effective quantum yield, respectively, indicating low photosynthetic activity. Despite the increased development of new leaves in controls, yield dropped abruptly after three weeks along with an analogous increase in mortality and loss in leaf number, implying that new leaves did not survive in the environmental conditions of the mesocosm and shoots could not recover. Highest effective quantum yield at the final stage of the trials was found in shoots growing on **ST7** layouts, even showing rates higher for some replicates than at the beginning of the experiment, leading to the assumption that some of the survived shoots were recovering and even thriving. Yet, an average decrease of effective quantum yield was also noted for ST7 plants. Shoots incorporated into SC layouts featured some increased yield, however on average lower photosynthesis was detected than in ST7 layouts. Still, rates were higher than in other treatments suggesting that the high survival rate as well as increased leaf production rate in **sisal** layouts had positive influence on effective quantum yield. Fertilized plants did not show any distinctive behavior from shoots incorporated into sisal layouts, indicating that the fertilizer did not foster the integrity of the plants to higher extent than the stabilization effect of the dense **sisal** mesh though higher than the wider **coir** mesh. In summary the relation of effective quantum yield with the development of new healthy leaves and the general mortality rate of the shoots is proven by the continuously pattern of shoots growing on sisal mesh performing superior in all three parameters, followed by **fertilized** shoots. Inferior performance was detected in shoots growing on **coir** mesh and lowest plant integrity was found to be in **controls**.

7 CONCLUSION

In summary the most robust set up against biodegradation were layouts composed of coir nets. Coconut fibers are proven to be very durable as well as the yarn thickness of the mesh resulted in the improvement of tensile strength properties compared to the individual fibers. It was discovered though that the retarded degradation of the material and the textile design offered no positive effect on maintenance of the integrity nor growth of *Zostera marina* shoots as performance of shoots planted without carrier substrate (controls) was similar. It was also demonstrated that fertilized shoots, planted without carrier substrate, maintained better integrity than shoots in coir meshes but worse than in sisal, emphasizing the importance of right material and design selection. Despite the highest degradation rate, sisal layouts possessed the highest initial and final tensile strength, resulting in less risk of failure during transport and out-planting of seagrasses into the marine environment. Additionally, a more rapid degradation might lead to nourishment of the shoots supporting growth. Moreover, shoots incorporated into sisal meshes were proven to thrive in some replicates and overall were in better state than shoots from other treatments.

Nevertheless, trials were conducted in controlled conditions for a short period of time and were not subjected to hydrodynamic forces. It is possible that the rapid biodegradation of the sisal mesh might be too pronounced over the long run, not giving shoots adequate time to root into the sediment floor. Further research in the translation of these findings into the open environment must be pursued.

Altogether, the null hypothesis was rejected as this work clearly depicted that a textile carrier substrate can have positive influence on *Zostera marina* shoot integrity and that the material and design of the substrate are vital factors to achieve successful restoration.

REFERENCES

Alloftextiles Online Limited (2015) Jute Fibers.

- Aramrueang, N., Asavasanti, S. & Khanunthong, A. (2019) Leafy Vegetables. In: Integrated Processing Technologies for Food and Agricultural By-Products. Elsevier, pp. 245-272.
- Arshad, K. & Mujahid, M. (2011) Biodegradation of textile materials. Dissertation, Boras, The swedish school of textiles.
- Barbier, E.B. (2017) Marine ecosystem services. *Current Biology* : *CB*, 27(11), R507-R510.
- Basconi, L., Cadier, C. & Guerrero-Limón, G. (2020) Challenges in Marine
 Restoration Ecology: How Techniques, Assessment Metrics, and Ecosystem
 Valuation Can Lead to Improved Restoration Success. In: Jungblut, S., Liebich, V.
 & Bode-Dalby, M. (Eds.) YOUMARES 9 The Oceans: Our Research, Our Future.
 Springer International Publishing: Cham, pp. 83-99.
- Bastyan, G.R. & Cambridge, M.L. (2008) Transplantation as a method for restoring the seagrass Posidonia australis. *Estuarine, Coastal and Shelf Science*, 79(2), 289-299.
- Bayraktarov, E., Saunders, M.I., Abdullah, S., Mills, M., Beher, J. & Possingham,
 H.P. et al. (2016) The cost and feasibility of marine coastal restoration. *Ecological Applications : a Publication of the Ecological Society of America*, 26(4), 1055-1074.
- Bedulli, C., Lavery, P.S., Harvey, M., Duarte, C.M. & Serrano, O. (2020)
 Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a
 Touristic and Environmentally-Friendly Island. *Frontiers in Marine Science*, 7, 338.
- Beer, S., Vilenkin, B., Weil, A., Veste, M., Susel, L. & Eshel, A. (1998) Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. *Marine Ecology Progress Series*, 174, 293-300.
- Billingham, Reusch, T.B.H., Alberto, F. & Serrão, E.A. (2003) Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. *Marine Ecology Progress Series*, 265, 77-83.
- Blott, S.J. & Pye, K. (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms*, 26(11), 1237-1248.
- Borum, J., Duarte, C.M., Krause-Jensen, D. & Greve, T.M. (2004) European seagrasses: an introduction to monitoring and management.

- Boström, C., Baden, S., Bockelmann, A.-C., Dromph, K., Fredriksen, S. & Gustafsson, C. et al. (2014) Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. *Aquatic Conservation : Marine and Freshwater Ecosystems*, 24(3), 410-434.
- Bui, H., Sebaibi, N., Boutouil, M. & Levacher, D. (2020) Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. *Fibers*, 8(6), 37.
- Byers, J.E., Cuddington, K., Jones, C.G., Talley, T.S., Hastings, A. & Lambrinos, J.G. et al. (2006) Using ecosystem engineers to restore ecological systems. *Trends in Ecology & Evolution*, 21(9), 493-500.
- Chakraborty, S., Mumtahenah Siddiquee, K., Maksud Helali, D.M. & Gafur, M. A (2014) Investigation of an Optimum Method of Bio degradation Process for Jute Polymer Composites. *American Journal of Engineering Research*, 2014(03(01)), 200-206.
- Chand, N., Tiwary, R.K. & Rohatgi, P.K. (1988) Bibliography Resource structure properties of natural cellulosic fibres ? an annotated bibliography. *Journal of Materials Science*, 23(2), 381-387.
- Chattopadhyay, B.C. & Chakravarty, S. (2009) Application of jute geotextiles as facilitator in drainage. *Geotextiles and Geomembranes*, 27(2), 156-161.
- Christensen, P.B., Díaz Almela, E. & Diekmann, O. Can transplanting accelerate the recovery of seagrasses? In: *European seagrasses: An introduction to monitoring and management : a publication*, pp. 77-82.
- Cole, M. (2016) A novel method for preparing microplastic fibers. *Scientific Reports*, 6, 34519.
- Collier, C. (2004) Zostera capensis (Marine Eelgrass).
- Cullen-Unsworth, L.C. & Unsworth, R.K.F. (2016) Strategies to enhance the resilience of the world's seagrass meadows. *Journal of Applied Ecology*, 53(4), 967-972.
- Cunha, A.H., Assis, J. & Serrao, E.A. (2009) Estimation of available seagrass meadow area in Portugal for transplanting purposes. *Journal of Coastal Research*, 2009(SI 56), 1100-1104.
- Cunha, A.H., Assis, J.F. & Serrão, E.A. (2013) Seagrasses in Portugal: A most endangered marine habitat. *Aquatic Botany*, 104, 193-203.
- Cunha, A.H., Marbá, N.N., van Katwijk, M.M., Pickerell, C., Henriques, M. & Bernard, G. et al. (2012) Changing Paradigms in Seagrass Restoration. *Restoration Ecology*, 20(4), 427-430.

- Daria, M., Krzysztof, L. & Jakub, M. (2020) Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. *Journal of Cleaner Production*, 268, 122129.
- Datta, U. (2007) Application of Jute Geotextiles. *Journal of Natural Fibers*, 4(3), 67-82.
- Delefosse, M. & Kristensen, E. (2012) Burial of Zostera marina seeds in sediment inhabited by three polychaetes: Laboratory and field studies. *Journal of Sea Research*, 71, 41-49.
- Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V. & Kollar, S. et al. (1993) Assessing Water Quality with Submersed Aquatic Vegetation. *BioScience*, 43(2), 86-94.
- Descamp, P., Cornu, T., Bougerol, M., Boissery, P., Ferlat, C. & Delaruelle, G. et al. (2017a) Experimental Transplantation of Posidonia Oceanica. 13th International MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Management and. Malta, 31.10.-4.11.2017.
- Descamp, P., Cornu, T., Bougerol, M., Boissery, P., Ferlat, C. & Delaruelle, G. et al. (2017b) Experimental Transplantation of Posidonia Oceanica. 13th International MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Management and. Malta, 31.10.-4.11.2017.
- Deutsches Institut für Normung e.V. DIN EN 17228:2019-06: Kunststoffe_-Biobasierte Polymere, Kunststoffe und Kunststoffprodukte_- Begriffe, Merkmale und Kommunikation; Deutsche Fassung EN_17228:2019, Berlin. Beuth Verlag GmbH.
- Dietz, L.J., Venkatasubramani, A.V., Müller-Eigner, A., Hrabe de Angelis, M., Imhof, A. & Becker, L. et al. (2019) Measuring and Interpreting Oxygen Consumption Rates in Whole Fly Head Segments. *Journal of Visualized Experiments : JoVE*, (143).
- DIN EN 13432:2000-12, Berlin. Beuth Verlag GmbH.
- DIN EN ISO 11721-1:2001, Berlin. Beuth Verlag GmbH.
- Duarte, C.M. (2001) Seagrasses. In: *Encyclopedia of Biodiversity*. Elsevier, pp. 540-550.
- Eckert, C.G. (2001) The loss of sex in clonal plants. *Evolutionary Ecology*, 15(4-6), 501-520.
- Encyclopedia Britannica (2020) Monocotyledon | plant.
- Endres, H.-J. & Siebert-Raths, A. (2009) Technische Biopolymere: Rahmenbedingungen, Marktsitutation, Herstellung, Aufbau und Eigenschaften. Hanser: München.
- Erftemeijer, P.L.A. (2020) Guidelines for Seagrass Ecosystem Restoration in the Western Indian Ocean Region.

- Eriander, L. (2016) *Restoration and management of eelgrass (Zostera marina) on the West Coast of Sweden*. Department of Marine Sciences, Faculty of Science, University of Gothenburg: Göteborg.
- Eriander, L. (2017) Light requirements for successful restoration of eelgrass (Zostera marina L.) in a high latitude environment Acclimatization, growth and carbohydrate storage. *Journal of Experimental Marine Biology and Ecology*, 496, 37-48.
- Eriander, L., Infantes, E., Olofsson, M., Olsen, J.L. & Moksnes, P.-O. (2016)
 Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region. *Journal of Experimental Marine Biology and Ecology*, 479, 76-88.
- Ferrario, F., Beck, M.W., Storlazzi, C.D., Micheli, F., Shepard, C.C. & Airoldi, L. (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. *Nature Communications*, 5, 3794.
- Ferretto, G., Vergés, A., Glasby, T.M., Poore, A.G., Sinclair, E. & Statton, J. et al. (2019) Threatened plant translocation case study: Posidonia australis (Strapweed), Posidoniaceae. *Australasian Plant Conservation*, (28), 24-26
- FITR (2008) Faserbewehrter Boden Faserbewehrung von feinkörnigen Recyclingmaterialien und Aushubböden für eine Verwertung im Erd- und Tiefbau.
- Folk, R.L. & Ward, W.C. (1957) Brazos River bar [Texas]; a study in the significance of grain size parameters. SEPM Journal of Sedimentary Research, 27(1), 3-26.
- Fonseca, M.S., Kenworthy, W.J. & Thayer, G.W. (1998) Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. United States.

Food and Agriculture Organization of the United Nations Jute.

- Ghosh, S.K., Bhattacharyya, R. & Mondal, M.M. (2017) Potential Applications of Open Weave Jute Geotextile (Soil Saver) in Meeting Geotechnical Difficulties. *Procedia Engineering*, 200(1), 200-205.
- Greenfix Greenfix Erosion Control Blanket Type 7: tech-spec.
- Guidi, L., Lo Piccolo, E. & Landi, M. (2019) Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does it Make Any Difference the Fact to Be a C3 or C4 Species? *Frontiers in Plant Science*, 10, 174.
- Guimarães, M.H.M.E., Cunha, A.H., Nzinga, R.L. & Marques, J.F. (2012) The distribution of seagrass (Zostera noltii) in the Ria Formosa lagoon system and the implications of clam farming on its conservation. *Journal for Nature Conservation*, 20(1), 30-40.
- Häck, M. (2003) Optical measurement of oxygen concentration in water: APPLICATION REPORT PROCESS ANALYSISLDO.

- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F. & D'Agrosa, C. et al. (2008) A global map of human impact on marine ecosystems. *Science (New York, N.Y.)*, 319(5865), 948-952.
- Haque, R., Saxena, M., Shit, S.C. & Asokan, P. (2015) Fibre-matrix adhesion and properties evaluation of sisal polymer composite. *Fibers and Polymers*, 16(1), 146-152.
- Harrison, J.P., Boardman, C., O'Callaghan, K., Delort, A.-M. & Song, J. (2018a) Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. *Royal Society Open Science*, 5(5), 171792.

Harrison, J.P., Boardman, C., O'Callaghan, K., Delort, A.-M. & Song, J. (2018b) Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. *Royal Society Open Science*, 5(5), 171792.

Healabel. Coconut Fiber.

- Heinz Walz GmbH (1998) UNDERWATER FLUOROMETERDIVING-PAM: Submersible PhotosynthesisYield Analyzer. Handbook of Operation.
- Hicks, J., Dewey, J., Brandvain, Y. & Schuchardt, A. (2020) Development of the Biological Variation In Experimental Design And Analysis (BioVEDA) assessment. *PloS One*, 15(7), e0236098.
- Hottle, Troy A.; Bilec, Melissa M.; Landis, Amy E. (2013): Sustainability assessments of bio-based polymers. In: Polymer Degradation and Stability 98 (9), S. 1898-1907.
- IPBES (2019) Nature's Dangerous Decline 'Unprecedented' Species Extinction Rates 'Accelerating': Current global response insufficient; 'Transformative changes' needed to restore and protect nature; Opposition from vested interests can be overcome for public good, personal communication.
- Irving, A.D., Tanner, J.E. & Collings, G.J. (2014) Rehabilitating Seagrass by Facilitating Recruitment: Improving Chances for Success. *Restoration Ecology*, 22(2), 134-141.
- Irving, A.D., Tanner, J.E., Seddon, S., Miller, D., Collings, G.J. & Wear, R.J. et al. (2010) Testing alternate ecological approaches to seagrass rehabilitation: links to life-history traits. *Journal of Applied Ecology*, 47(5), 1119-1127.
- ISO 13934-1:1999 Textiles Tensile properties of fabrics Part 1: Determination of maximum force. Beuth Verlag GmbH.
- Jones, C.G., Lawton, J.H. & Shachak, M. (1994) Organisms as Ecosystem Engineers. *Oikos*, 69(3), 373.
- Keser, M., Swenarton, J.T., Vozarik, J.M. & Foertch, J.F. (2003) Decline in eelgrass (Zostera marina L.) in Long Island Sound near Millstone Point, Connecticut (USA) unrelated to thermal input. *Journal of Sea Research*, 49(1), 11-26.

- Koohestani, B., Darban, A.K., Mokhtari, P., Yilmaz, E. & Darezereshki, E. (2019) Comparison of different natural fiber treatments: a literature review. *International Journal of Environmental Science and Technology*, 16(1), 629-642.
- Krumbein, W.C. (1934) Size Frequency Distributions of Sediments. SEPM Journal of Sedimentary Research, Vol. 4.
- Kuo, J. & Hartog, C.d. (2006) Seagrass Morphology, Anatomy, and Ultrastructure.
 In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer Netherlands: Dordrecht, pp. 51-87.
- Lal, D., Sankar, N. & Chandrakaran, S. (2017) Effect of reinforcement form on the behaviour of coir geotextile reinforced sand beds. *Soils and Foundations*, 57(2), 227-236.
- Larkum, A., Duarte, C.M. & Orth, R.J. (2006) Seagrasses; Biology, ecology and conservation. Springer: Dordrecht.
- Law, A., Gaywood, M.J., Jones, K.C., Ramsay, P. & Willby, N.J. (2017) Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands. *The Science of the Total Environment*, 605-606, 1021-1030.
- LEKHA, K. & KAVITHA, V. (2006) Coir geotextile reinforced clay dykes for drainage of low-lying areas. *Geotextiles and Geomembranes*, 24(1), 38-51.
- Lekha, K.R. (2004) Field instrumentation and monitoring of soil erosion in coir geotextile stabilised slopes—A case study. *Geotextiles and Geomembranes*, 22(5), 399-413.
- Li, Y., Mai, Y.-W. & Ye, L. (2000) Sisal fibre and its composites: a review of recent developments. *Composites Science and Technology*, 60(11), 2037-2055.
- Mahuya, G., Choudhury, P.K. & Sanyal, T. (2009) Suitability of natural fibers in geotextile applications.
- Marba, N., Duarte, C.M., Alexandre, A. & Cabaco, S. (Eds.) (2004) How do seagrasses grow and spread ?
- Marczak, D., Lejcuś, K., Grzybowska-Pietras, J., Biniaś, W., Lejcuś, I. & Misiewicz, J. (2020) Biodegradation of sustainable nonwovens used in water absorbing geocomposites supporting plants vegetation. Sustainable Materials and Technologies, 26(1191), e00235.
- Mukherjee, P.S. & Satyanarayana, K.G. (1984) Structure and properties of some vegetable fibres. *Journal of Materials Science*, 19(12), 3925-3934.
- Narayan, S., Beck, M.W., Reguero, B.G., Losada, I.J., van Wesenbeeck, B. & Pontee, N. et al. (2016) The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. *PloS One*, 11(5), e0154735.
- Nassif, G.A.A. (2012) Effect of Weave Structure and Weft Density on the Physical and Mechanical Properties of Micro polyester Woven Fabrics. *Journal of American Science*, (8), 947-952.

- Newton, A. & Mudge, S.M. (2003) Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. *Estuarine, Coastal and Shelf Science*, 57(1-2), 73-85.
- O'Brien, D. (2019) Improving Seagrass Production for Transplants: Micropropagation, adventitious root development, and artificial substrates. Dissertation, Faro, Universidade do Algarve.
- Papageorgiou, G.C. & Govindjee (Eds.) (op. 2010) *Chlorophyll a fluorescence: A signature of photosynthesis*. Springer: Dordrecht, Heidelberg, London.
- Paulo, D., Cunha, A.H., Boavida, J., Serrão, E.A., Gonçalves, E.J. & Fonseca, M. (2019) Open Coast Seagrass Restoration. Can We Do It? Large Scale Seagrass Transplants. *Frontiers in Marine Science*, 6, 16.
- Paulo, D., Diekmann, O., Ramos, A.A., Alberto, F. & Alvares Serrão, E. (2019) Sexual reproduction vs. clonal propagation in the recovery of a seagrass meadow after an extreme weather event. *Scientia Marina*, 83(4), 357.
- Pavlovic, D., Nikolic, B., Djurovic, S., Waisi, H., Andjelkovic, A. & Marisavljevic, D. (2014) Chlorophyll as a measure of plant health: Agroecological aspects. *Pesticidi i fitomedicina*, 29(1), 21-34.
- Pazzaglia, Jessica; Nguyen, Hung Manh; Santillán-Sarmiento, Alex; Ruocco, Miriam;
 Dattolo, Emanuela; Marín-Guirao, Lázaro; Procaccini, Gabriele (2021): The
 Genetic Component of Seagrass Restoration: What We Know and the Way
 Forwards. In: *Water* 13 (6), S. 829.
- Perrow, M.R. & Davy, A.J. (2004) *Restoration in practice*. Cambridge Univ. Press: Cambridge.
- Pickerell, C., Schott, S., Manzo, K., Udelson, B., Krupski, N. & Barbour, K. (2012) The Tortilla Method: Development and testing of a new Seagrass Planting Method.
- Rajan, A., Senan, R.C., Pavithran, C. & Abraham, T.E. (2005) Biosoftening of coir fiber using selected microorganisms. *Bioprocess and Biosystems Engineering*, 28(3), 165-173.
- Ralph, P.J. & Short, F.T. (2002) Impact of the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. *Marine Ecology Progress Series*, 226, 265-271.
- Ramamoorthy, S.K., Skrifvars, M. & Persson, A. (2015) A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. *Polymer Reviews*, 55(1), 107-162.
- Rey Benayas, J.M., Newton, A.C., Diaz, A. & Bullock, J.M. (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. *Science (New York, N.Y.)*, 325(5944), 1121-1124.

- Reynolds, P.L. (2013) Seagrass and Seagrass Beds. Smithsonian's National Museum of Natural History, 28 February.
- Ricart, A.M., York, P.H., Rasheed, M.A., Pérez, M., Romero, J. & Bryant, C.V. et al. (2015) Variability of sedimentary organic carbon in patchy seagrass landscapes. *Marine Pollution Bulletin*, 100(1), 476-482.
- Riniatsih, I., Hartati, R., Endrawati, H., Mahendrajaya, R., Redjeki, S. &
 Widianingsih, W. (2018) The application of Environmental Friendly Technique For
 Seagrass Transplantation. *IOP Conference Series: Earth and Environmental*Science, 116, 12103.
- Robinson, W.O. (1927) THE DETERMINATION OF ORGANIC MATTER IN SOILS BY MEANS OF HYDROGEN PEROXIDE.
- Röhr, M.E., Holmer, M., Baum, J.K., Björk, M., Boyer, K. & Chin, D. et al. (2018)
 Blue Carbon Storage Capacity of Temperate Eelgrass (Zostera marina) Meadows. *Global Biogeochemical Cycles*, 32(10), 1457-1475.
- Rosa, F., Gaspar, M., Rufino, M., Ferreira, O., Matias, A. & Brito, A. (2013) The influence of coastal processes on inner shelf sediment distribution: The Eastern Algarve Shelf (Southern Portugal). *Geologica Acta*, (11), 59-73.
- Rossi, F., Gribsholt, B., Gazeau, F., Di Santo, V. & Middelburg, J.J. (2013) Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae. *PloS One*, 8(6), e66650.
- Saha, P., Roy, D., Manna, S., Adhikari, B., Sen, R. & Roy, S. (2012) Durability of transesterified jute geotextiles. *Geotextiles and Geomembranes*, 35, 69-75. Available from: https://doi.org/10.1016/j.geotexmem.2012.07.003.
- Saiman, M.P., Wahab, M.S. & Wahit, M.U. (2014) The Effect of Fabric Weave on the Tensile Strength of Woven Kenaf Reinforced Unsaturated Polyester Composite.
 In: Ahmad, M.R. & Yahya, M.F. (Eds.) Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014). Springer Singapore: Singapore, pp. 25-29.
- Satyanarayana, K.G., Kulkarni, A.G. & Rohatgi, P.K. (1981) Structure and properties of coir fibres. *Proc. Indian Acad. Sci. (Engg. Sci.)*, (Vol. 4), 419-436
- Senga Green, D. *Environmental impacts of plastic debris on marine ecosystems.* Royal Society of Chemistry.
- Setchell, W.A. (1935) Geographic Elements of the Marine Flora of the North Pacific Ocean. *The American Naturalist*, 69(725), 560-577.
- Short, F., Carruthers, T., Dennison, W. & Waycott, M. (2007) Global seagrass distribution and diversity: A bioregional model. *Journal of Experimental Marine Biology and Ecology*, 350(1-2), 3-20.
- Short, F.T., Burdick, D., Granger, S. & Nixon, S.W. (1996) Long-term decline in eelgrass, Zostera marina L. linked to increased housing development. Seagrass

Biology: Proceedings of an international workshop. Rottnest Island, Australia, 25.-29. January, 1996.

Short, F.T. & Coles, R.G. (Eds.) (2001) Global Seagrass Research Methods. Elsevier.

- Shruti, V.C. & Kutralam-Muniasamy, G. (2019) Bioplastics: Missing link in the era of Microplastics. *Science of The Total Environment*, 697, 134139.
- Singh, H., Inder Preet Singh, J., Singh, S., Dhawan, V. & Kumar Tiwari, S. (2018) A Brief Review of Jute Fibre and Its Composites. *Materials Today: Proceedings*, 5(14), 28427-28437.
- Siracusa, V. (2019) Microbial Degradation of Synthetic Biopolymers Waste. *Polymers*, 11(6).
- Solana-Arellano, M.E., Echavarria-Heras, H.A. & Ibarra-Obando, S.E. (1997) Leafsize Dynamics forZostera marinaL. in San Quintin Bay, México: a Theoretical Study. *Estuarine, Coastal and Shelf Science*, 44(3), 351-359.
- Statton, J., Gustin-Craig, S., Dixon, K.W. & Kendrick, G.A. (2015) Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. *PloS One*, 10(10), e0137778.

Sülar, V. & Devrim, G. (2019) Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. *Fibres and Textiles in Eastern Europe*, 27(1(133)), 100-111.

Sumi, S., Unnikrishnan, N. & Mathew, L. (2018) Durability studies of surfacemodified coir geotextiles. *Geotextiles and Geomembranes*, 46(6), 699-706.

Tan, Y.M., Dalby, O., Kendrick, G.A., Statton, J., Sinclair, E.A. & Fraser, M.W. et al. (2020) Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. *Frontiers in Marine Science*, 7, 367.

Tanner, J.E., Irving, A.D., Fernandes, M., Fotheringham, D., McArdle, A. & Murray-Jones, S. (2014) Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. *Ecological Management & Restoration*, 15(3), 168-179.

The East Africa Sisal Company Ltd. Geo-Sisal Peatsock: Data Sheet.

- Thyavihalli Girijappa, Y.G., Mavinkere Rangappa, S., Parameswaranpillai, J. & Siengchin, S. (2019) Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. *Frontiers in Materials*, 6.
- TUTIN, T.G. (1938) THE AUTECOLOGY OF ZOSTERA MARINA IN RELATION TO ITS WASTING DISEASE. *New Phytologist*, 37(1), 50-71.
- Unsworth, R.K.F., Bertelli, C.M., Cullen-Unsworth, L.C., Esteban, N., Jones, B.L. & Lilley, R. et al. (2019) Sowing the Seeds of Seagrass Recovery Using Hessian Bags. *Frontiers in Ecology and Evolution*, 7.

- van Katwijk, M.M., Thorhaug, A., Marbà, N., Orth, R.J., Duarte, C.M. & Kendrick, G.A. et al. (2016) Global analysis of seagrass restoration: the importance of large-scale planting. *Journal of Applied Ecology*, 53(2), 567-578.
- Vos, J.M. de, Joppa, L.N., Gittleman, J.L., Stephens, P.R. & Pimm, S.L. (2015) Estimating the normal background rate of species extinction. *Conservation Biology : the Journal of the Society for Conservation Biology*, 29(2), 452-462.
- Wageningen University & Research (n.a.) Pulse-Amplitude-Modulation (PAM).
- Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C. & Olyarnik, S. et al. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. *Proceedings of the National Academy of Sciences of the United States of America*, 106(30), 12377-12381.
- Wendländer, N.S., Troels Lange, Rod M. Connolly, Erik Kristensen, Ryan M. Pearson & Thomas Valdemarsen et al. (2019) Assessing methods for restoring seagrass (Zostera muelleri) in Australia's subtropical waters. *Marine and Freshwater Research*, 71(8), 996-1005.
- Wentworth, C.K. (1922) A Scale of Grade and Class Terms for Clastic Sediments. *The Journal of Geology*, 30(5), 377-392.
- Williams, S.L. (2007) Introduced species in seagrass ecosystems: Status and concerns. *Journal of Experimental Marine Biology and Ecology*, 350(1-2), 89-110.
- Wilson, A.M.W. & Forsyth, C. (2018) Restoring near-shore marine ecosystems to enhance climate security for island ocean states: Aligning international processes and local practices. *Marine Policy*, 93(4), 284-294.
- Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y. & Lu, Y. et al. (2020) Review of Application and Innovation of Geotextiles in Geotechnical Engineering. *Materials* (*Basel, Switzerland*).
- Xu, S., Zhou, Y., Wang, P., Wang, F., Zhang, X. & Gu, R. (2016) Salinity and temperature significantly influence seed germination, seedling establishment, and seedling growth of eelgrass Zostera marina L. *PeerJ*, 4, e2697.
- Yu, C. (2015) Natural Textile Fibres. In: Textiles and Fashion. Elsevier, pp. 29-56.
- Zambrano, M.C., Pawlak, J.J., Daystar, J., Ankeny, M., Goller, C.C. & Venditti, R.A. (2020) Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: Effects of cellulose and polyester-based microfibers on the microbiome. *Marine Pollution Bulletin*, 151, 110826.
- Zedler, J.B. (2007) Success: An Unclear, Subjective Descriptor of Restoration Outcomes. *Ecological Restoration*, 25(3), 162-168.

Zhou, Y., Liu, P., Liu, B., Liu, X., Zhang, X. & Wang, F. et al. (2014) Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. *PloS One*, 9(4), e92982.

APPENDICES

Appendix 1

Wentworth phi scale of sediment classification according to grain size

¢ = 1	PHI - COVEF log ₂ (μm = 0.	mr SSI d ir	n ON n mm) 1mm	onal mm and al inches	SIZE Went	TERMS (after worth,1922)	SIE	EVE ZES	imeters ains ive size	Nur of g	nber rains ma	Sett Velo (Qua	ling city artz,	Thres Velo for tra	shold ocity action
Ø	1	m	m	racti ecim		· · · · · · · · · · · · · · · · · · ·	o. lard	ġ	dia I gr			20 °	°C)	cm/	sec
-8 -	_200		256	- 10.1"	во	ULDERS	STM N Stand	Tyler esh No	mediate natura alent to	uartz teres	tural and	pheres bs, 1971)	ushed	n, 1946)	ied from om,1939)
-7 -		-	128	- 5.04"	co	≥-8¢) BBLES	(U.S.	Σ	Inter of equiv	S de	Na	v g cm/s	ර sec	(Nevi	(modifi Hjuistro
-6 -	- 50	-	64.0 53.9 45.3	- 2.52"		very	- 2 1/2" - 2.12"	2"						150	1 m above bottom
-5 -	-40 -30 -		33.1 32.0 26.9	- 1.26"		coarse	- 1 1/2" - 1 1/4" - 1.06"	- 1 1/2" - 1.05"					- 50	- 150	-
-4 -	-20 -		17.0 16.0 13.4	- 0.63"	LES	modium	- 3/4" - 5/8" - 1/2" - 7/16"	742" 525"				- 100 - 90 - 80	- 40	- 100	-
-3-	—10 		9.52 8.00 6.73	- 0.32"	PEBB	fice	- 3/8" - 5/16" 265"	371" - 3				- 70 - 60	- 30	- 80	
-2-	-5 -4 -3	-	5.66 4.76 4.00 3.36	- 0.16"	-	very	- 4 - 5 - 6	4 5 6				- 50 - 40	- 20	- 60	- 100 .
-1-	-2	-	2.83 2.38 2.00 1.63	- 0.08" inches	*	Granules	- 7 - 8 - 10 - 12	- 7 - 8 - 9 - 10				- 30		- 50	-
0-	1 1	-	1.41 1.19 1.00 .840	mm - 1		coarse	- 14 - 16 - 18 - 20	- 12 - 14 - 16 - 20	- 1.2	72	6	- 20	- 10 - 9 - 8	- 40	- 50 - 40
1-	5 4		.707 .545 .500 .420	- 1/2	Q	coarse	- 25 - 30 - 35 - 40	- 24 - 28 - 32 - 35	86 59	- 2.0 - 5.6	- 1.5 - 4.5	10 - 8 - 7 - 6	- 7 - 6 - 5	- 30	- 30
2-	3	-	.354 .297 .250	- 1/4	SAN	medium	- 45 - 50 - 60 - 70	- 42 - 48 - 60 - 65	42 30	- 15 - 43	- 13 - 35	- 5 - 4 - 3	- 4 - 3	20	
3 -	2	-	.177 .149 .125	- 1/8		fine	- 80 - 100 - 120	- 80 - 100 - 115	215 155	- 120 - 350	- 91 - 240	- 2	- 2	– 20 – Minir (Inman	num 1,1949)
4-	1 	-	.105 .088 .074 .062	- 1/16		very fine	- 170 - 200 - 230	- 170 - 200 - 250	115 080	- 1000 - 2900	- 580 - 1700	0.5 0.329	- 0.5		
5-	05 04 03	-	.053 .044 .037 .031	- 1/32		coarse	- 270 - 325 - 400	- 270 - 325				- - 0.1 - 0.085		ginning ocity	uo p
6-	02	_	.016	- 1/64	5	medium	differ ale	by as scale	þ		ę	- 0.023	(vlu	the be the vel	red, an
7.	01			-1/129	S	fine	enings mm sc	s differ hi mm	angular z sand		angular z sand	- 0.01	(R = 6π	stween rt and	measu actors.
	005		.008	1/050		very fine	ieve op m phi	penings from p	to sub d quart mm)		to sub d quart	- 0.0014	es Law	ation be transpo	ocity is other 1
8-	004 003	-	.004	- 1/256	M	Clay/Silt boundary for mineral analysis	Some s htly fro	Sieve ol as 2%	Applies rounder (in		Applies	-0.001	Stoke	The relation the con the	the velo
9-	002	-	.002	- 1/512	CLA	£,	Note: S sligl	Note: 9 much	Note: A sub		Note: # sub	-0.00036		Note: 1 of tr	that t

Grain size analysis wet separation sampling intervals

Plan mesocosm experiment: Position of replicates in the tanks

Appendix 4

Folk and Ward triangle. Results of grain size analysis from burial site

Sharpio-Wilk normality test results

* =significant

Identification	Parameter	w-value	p-value	Significance
CC	Weight loss	0.974	0.550	-
СС	Tensile strength loss	0.969	0.404	-
CC	OCR	0.753	0.000	*
CT7	Weight loss	0.972	0.508	-
CT7	Tensile strength loss	0.938	0.046	*
CT7	OCR	0.675	0.000	*
JC	Weight loss	0.727	0.000	*
JC	Tensile strength loss	0.955	0.163	-
JC	OCR	0.694	0.000	*
JT7	Weight loss	0.800	0.000	*
JT7	Tensile strength loss	0.962	0.267	-
JT7	OCR	0.745	0.000	*
SC	Weight loss	0.831	0.000	*
SC	Tensile strength loss	0.967	0.358	-
SC	OCR	0.733	0.000	*
ST7	Weight loss	0.815	0.000	*
ST7	Tensile strength loss	0.972	0.486	-
ST7	OCR	0.648	0.000	*

Identification	Parameter	w-value	p-value	Significance
CC	Survival rate	0.730	0.000	*
CC	Leaf number	0.900	0.018	*
CC	New leaf number	0.502	0.000	*
CC	Wet weight loss	0.959	0.804	-
CC	Root segment elongation	0.986	0.963	-
CC	Effective quantum yield	0.749	0.000	*
CT7	Survival rate	0.727	0.000	*
CT7	Leaf number	0.909	0.029	*
CT7	New leaf number	0.637	0.000	*
CT7	Wet weight loss	0.888	0.347	-
CT7	Root segment elongation	0.960	0.805	-
CT7	Effective quantum yield	0.723	0.000	*
SC	Survival rate	0.547	0.000	*
SC	Leaf number	0.910	0.031	*
SC	New leaf number	0.725	0.000	*
SC	Wet weight loss	0.917	0.511	-
SC	Root segment elongation	0.828	0.136	-
SC	Effective quantum yield	0.736	0.000	*
ST7	Survival rate	0.659	0.000	*
ST7	Leaf number	0.908	0.028	*
ST7	New leaf number	0.702	0.000	*
ST7	Wet weight loss	0.800	0.081	-
ST7	Root segment elongation	0.928	0.586	-
ST7	Effective quantum yield	0.705	0.000	*

Control	Survival rate	0.649	0.000	*
Control	Leaf number	0.921	0.054	-
Control	New leaf number	0.574	0.000	*
Control	Wet weight loss	0.961	0.814	-
Control	Root segment elongation	0.915	0.497	-
Control	Effective quantum yield	0.750	0.000	*
Fertilizer	Survival rate	0.626	0.000	*
Fertilizer	Leaf number	0.915	0.040	*
Fertilizer	New leaf number	0.610	0.000	*
Fertilizer	Wet weight loss	0.881	0.315	-
Fertilizer	Root segment elongation	0.941	0.672	-
Fertilizer	Effective quantum yield	0.729	0.000	*

Spearman Rank correlation Trend detection of the burial experiments with parameters: Weight loss, tensile strength loss, oxygen consumption rate

Parameter	Layout	ρ	Ρ	Classification Sign	nificance
Weight loss					
	СС	-0.463	5.077e-3	moderate	
	CT7	-0.552	5.797e-4	moderate	
	JC	-0.871	1.005e-11	very strong	
	JT7	-0.638	3.627e-5	strong	
	SC	-0.854	6.804e-11	very strong	
	ST7	-0.927	1.096e-15	very strong	
Tensile Strength					
	СС	-0.438	8.416e-3	moderate	
	CT7	-0.175	3.135e-1	very weak	
	JC	-0.555	5.256e-4	moderate	
	JT7	-0.663	1.400e-5	strong	
	SC	-0.916	1.087e-14	very strong	
	ST7	-0.850	1.027e-10	very strong	
<u>OCR</u>					
	СС	-0.535	9.147e-4	moderate	
	CT7	-0.430	9.914e-3	moderate	
	JC	-0.682	6.232e-6	strong	
	JT7	-0.831	6.435e-10	very strong	
	SC	-0.758	1.308e-7	strong	
	ST7	-0.316	6.413e-2	weak	

Profile tensile strength test INSTRON

Table 9. Legend - Translation of graph labels

German	English
Kraft	Force
Verfahrensweg	Procedural path
Kraft bei Zugfestigkeit	Tensile strength
Zugspannung bei Zugfestigkeit	Tension at force at break
Zugverfahrensweg bei Zugfestikeit	Proceduaral path at force at break

CC Control

[N]	Zugfestigkeit [MPa]	Zugfestigkeit [mm]
1347,02	2,69	54,22
1029,07	2,06	38,05
1036,70	2,07	38,55
713,35	1,43	50,37
1079,76	2,16	44,48

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
833,15	1,67	34,50
1099,28	2,20	46,83
810,37	1,62	49,25
1085,86	2,17	57,36
842,97	1,69	48,26

CC 5

3 4 5

Sraft [kN]

CC 6

Probe 1 bis 5

60 Verfahrweg (mm)

45,8

49,43 37,14 66,58 43,70

1,35

1,43 1,07 1,36 1,43

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
958,42	1,92	46,10
900,87	1,80	56,37
910,09	1,82	61,35
859,44	1,72	48,52
1000.00	2.00	46,14

CT7 2

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
719,88	1,44	47,08
992,80	1,99	54,32
760,54	1,52	51,16
1320,05	2,64	58,68
822,88	1,65	42,34

674,56 715,58 534,82 681,62 715,12

	Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
	896,66	1,79	53,07
	628,89	1,26	38,50
	784,62	1,57	48,76
	829,15	1,66	69,72
5	558,40	1,12	62,42

CT7 4

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
1168,61	2,34	54,73
662,31	1,32	48,97
876,67	1,75	52,70
927,02	1,85	62,37
958,39	1,92	65,30

CT7 1

CT7 5

CT7 6

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
921,09	1,84	52,09
742,79	1,49	57,27
803,39	1,61	67,72
893,09	1,79	54,05
624,05	1,25	42,67

JC 1

[N]	Zugfestigkeit [MPa]	Žugfestigkeit (mm)
325,77	0,65	26,70
299,97	0,60	21,74
394,55	0,79	31,87
230,95	0,46	25,37
317,08	0,63	41,84

JC 3

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
198,95	0,40	25,21
122,43	0,24	19,10
194,42	0,39	20,65
124,74	0,25	31,73
365,22	0,73	20,16

JC Control

JC 4

JT7 1

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
283,10	0,57	35,04
165,48	0,33	49,43
320,26	0,64	23,70
303,80	0,61	37,77
281,84	0,56	28,24

JT7 Control

JT7 2

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
442,81	0,89	22,87
253,87	0,51	32,57
336,24	0,67	36,76
276,50	0,55	30,57
243,93	0,49	12,17

JT7 3

JT7 4

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
305,40	0,61	28,80
278,16	0,56	37,09
199,43	0,40	21,66
334,24	0,67	31,92
146,79	0,29	22,06

JT7 6

SC 1

[N]	Zugfestigkeit [MPa]	Zugfestigkeit (mm)
3499,56	7,00	17,90
4347,08	8,69	17,24
4152,98	8,31	18,80
4951,08	9,90	17,30
3220,40	6,44	14,77

JT7 5

SC Control

SC 2

SC 3

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
3567,61	7,14	12,50
3675,97	7,35	13,19
3778,96	7,56	14,41
2936,89	5,87	13,80
4134,95	8,27	13,27

SC 5

	[MPa]	20grestigkeit [mm]
2898,56	5,80	12,82
2292,38	4,58	13,14
2640,77	5,28	12,65
2480,97	4,96	11,20
1995,83	3,99	12,65

ST7 Control

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
5658,28	11,32	12,08
6304,92	12,61	14,11
6118,77	12,24	15,19
5052,08	10,10	13,50
5977,89	11,96	16,67

ST7 1

ST7 2

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
2937,20	5,87	15,02
4029,19	8,06	14,90
4194,70	8,39	15,58
3819,08	7,64	15,38
3951,04	7,90	15,59

ST74

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
3967,07	7,93	15,00
4621,25	9,24	16,95
4616,28	9,23	15,15
4076,82	8,15	15,25
3811,59	7,62	15,64

ST7 6

Kraftbei Zugfestigkeit [N]	Zugspannungbei Zugfestigkeit [MPa]	Zugverfahrwegbei Zugfestigkeit [mm]
1595,00	3,19	15,84
1742,68	3,49	10,50
1988,00	3,98	13,94
1734,81	3,47	11,71
1788,16	3,58	12,07

ST7 3

PERMANOVA Results

Relative weight loss of textile substrates

PERMANOVA

Permutational MANOVA

Resemblance worksheet Name: Resem3 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

Factors			
Name	Abbrev.	Туре	Levels
Layout	La	Fixed	6
Time Interval	Ti	Fixed	7

PERMANOVA table of results

		,				Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	P(MC)
La	5	56,788	11,358	124,12	0,001	999	0,001
Ti	6	95,055	15,843	173,13	0,001	999	0,001
LaxTi	30	41,784	1,3928	15,221	0,001	997	0,001
Res	168	15,373	9,1505E-2				
Total	209	209					

Details of the expected mean squares (EMS) for the model Source EMS La 1*V(Res) + 35*S(La)Ti 1*V(Res) + 30*S(Ti)

	1 V(NC3) - 50 5(11)
LaxTi	1*V(Res) + 5*S(LaxTi)
Res	1*V(Res)

Construction of Pseudo-F ratio(s) from mean squares

Source	Numerator	Denominator	Num.df	Den.df
La	1*La	1*Res	5	168
Ti	1*Ti	1*Res	6	168
LaxTi	1*LaxTi	1*Res	30	168

Estimates of components of variation

Estimate	Sq.root
0,32189	0,56735
0,52504	0,72459
0,26026	0,51015
9,1505E-2	0,3025
	Estimate 0,32189 0,52504 0,26026 9,1505E-2

Tensile strength loss of textile substrates

PERMANOVA Permutational MANOVA

Resemblance worksheet Name: Resem4 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

Abbrev.	Туре	Levels
La	Fixed	6
Ti	Fixed	7
	Abbrev. La Ti	Abbrev. Type La Fixed Ti Fixed

PERMANOVA table of results

		-				Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	P(MC)
La	5	163,76	32,753	1066,8	0,001	999	0,001
Ti	6	15,62	2,6033	84,793	0,001	998	0,001
LaxTi	30	24,459	0,8153	26,555	0,001	997	0,001
Res	168	5,1579	3,0702E-2				
Total	209	209					

Details of the expected mean squares (EMS) for the model

Source	EMS
La	1*V(Res) + 35*S(La)
Ti	1*V(Res) + 30*S(Ti)
LaxTi	1*V(Res) + 5*S(LaxTi)
Res	1*V(Res)

Construction of Pseudo-F ratio(s) from mean squares

Source	Numerator	Denominator	Num.df	Den.df
La	1*La	1*Res	5	168
Ti	1*Ti	1*Res	6	168
LaxTi	1*LaxTi	1*Res	30	168

Estimates of components of variation

Source	Estimate	Sq.root
S(La)	0,93491	0,96691
S(Ti)	8,5754E-2	0,29284
S(LaxTi)	0,15692	0,39613
V(Res)	3,0702E-2	0,17522

Oxygen consumption rate of textile substrates

PERMANOVA Permutational MANOVA

Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

Factors

Abbrev.	Туре	Levels
La	Fixed	6
Ті	Fixed	7
	Abbrev. La Ti	Abbrev. Type La Fixed Ti Fixed

PERMANOVA table of results

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	P(MC)
La	5	22,43	4,4861	7,1001	0,001	999	0,001
Ti	6	43,12	7,1866	11,374	0,001	999	0,001
LaxTi	30	37,302	1,2434	1,9679	0,007	999	0,002
Res	168	106,15	0,63183				
Total	209	209					

Details of the expected mean squares (EMS) for the model

Source	EMS
La	1*V(Res) + 35*S(La)
Ti	1*V(Res) + 30*S(Ti)
LaxTi	1*V(Res) + 5*S(LaxTi)
Res	1*V(Res)

Construction of Pseudo-F ratio(s) from mean squares

Source	Numerator	Denominator	Num.df	Den.df
La	1*La	1*Res	5	168
Ti	1*Ti	1*Res	6	168
LaxTi	1*LaxTi	1*Res	30	168

Estimates of components of variation

Source	Estimate	Sq.root
S(La)	0,11012	0,33184
S(Ti)	0,21849	0,46743
S(LaxTi)	0,12231	0,34973
V(Res)	0,63183	0,79488

PERMANOVA post-hoc results

Relative weight loss of textile substrates in factor 'Layout'

PERMANO Permutati	VA ional M4	NOVA						Within le	vel '3' of fact	or 'Time Interval'		Unique		
Resemblar	nce wor	ksheet						Groups CC, CT7		t 3,6246	P(perm) 0,028	perms 126	P(MC) 0,009	
Name: Res Data type:	sem3 : Distan	ce						CC, JC CC, JT7		7,4048 1,6628 7,8567	0,008 0,108 0.005	126 126 126	0,001 0,138 0.001	
Normalise Resemblar	nce: D1	Euclide	ean distance					CC, ST7 CT7, JC		9,4296	0,008 0,076	126 126	0,001 0,131	
Sums of sc	quares t	ype: Ty	ype III (partia	al)				CT7, JT7 CT7, SC		0,11531 5,5115	0,931 0,013	126 126	0,898 0,001	
Fixed effe Permutati Number of	ects sum ion met f permu	n to zen hod: Pe itations	o for mixed t ermutation of a: 999	terms f residuals	under a re	educed mod	el	CT7, ST7 JC, JT7 JC, SC		5,6768 0,83884 5,1916 5,7045	0,009 0,507 0,007 0,005	126 126 126 126	0,001 0,397 0,001	
Factors Name				Abbrev		Туре	Levels	JT7, SC		3,9752	0,003	126	0,007	
Layout Time Inter	rval			La Ti		Fixed	6	SC, ST7		1,5707	0,154	125	0,156	
PAIR-WISE	TESTS					T MCG		Denomin Groups	ators	Denominator	Den.df			
Term 'Lax'	Ti' for p	airs of	levels of fact	tor 'Layout				CC, CT7 CC, JC		1*Res 1*Res	8 8			
Within lev	/el '0' of	factor	'Time Interva	aľ				CC, JT7 CC, SC		1*Res 1*Res	8 8			
			Unique					CC, ST7 CT7, JC		1*Res 1*Res	8 8			
Groups			t perms				P(perm) P(MC)	CT7, JT7 CT7, SC		1*Res 1*Res	8 8			
CC, CT7			Denominato	or is O				CT7, ST7 JC, JT7		1*Res 1*Res	8 8			
CC, JC			Denominato	or is O				JC, SC JC, ST7		1*Res 1*Res	8 8			
CC, JT7			Denominato	or is O				JT7, SC JT7, ST7		1*Res 1*Res	8			
CC, SC			Denominato	or is O				SC, ST7		1*Res	8			
CC, S17			Denominato	or 1s U				Average	CC CC	CT7	JC		JT7	SC
CT7, JC			Denominato	or 1s U				сс	0,1556					
CT7 SC			Denominato	r is O				CT7	0,34101	0,18123				
ст7 5т7			Denominato	n is 0				JC	0,46164	0,14011	6,4999E-2			
			Denominato	ris 0				JT7	0,32726	0,31258	0,3648		0,4226	
JC. SC			Denominato	ris 0				SC	1,2224	0,88929	0,76078		0,93012	0,40211
JC. ST7			Denominato	r is 0				ST7	0,95984 0,22119	0,62671	0,4982		0,68297	0,35188
JT7, SC			Denominato	or is O				Within le	vel '4' of fact	or 'Time Interval'				
JT7, ST7			Denominato	or is O				Groups		t	P(perm)	Unique perms	P(MC)	
SC, ST7			Denominato	or is O				CC, CT7 CC, JC		3,5111 3,2295	0,009 0,014	126 126	0,009 0,016	
								CC, JT7 CC, SC		1,5891 6,444	0,113 0,013	126 126	0,154 0,001	
Denomina Groups	itors		Denominato	r		Den.df		CC, ST7 CT7, JC		8,4386 0,25099	0,01 0,802	126 126	0,001 0,811	
CC, JC			1*Res			0		CT7, SC		4,2352	0,808	126	0,766	
CC, SC			1*Res			0		JC, JT7		0,43754	0,018	125	0,003	
CT7, JC			1*Res			0		JC, SC JC, ST7		4,4015 4,2125	0,007	126	0,008	
CT7, SC			1*Res			0		JT7, ST7		1,3993	0,003	125	0,049	
JC, JT7			1*Res 1*Res			0		Denomin	ators	1,7576	0,094	120	0,105	
JC, ST7			1*Res 1*Res			0		Groups	410/5	Denominator 1*Res	Den.df			
JT7, ST7 SC. ST7			1*Res 1*Res			0		CC, JC		1*Res 1*Res	8			
Average D	Distance	betwe	en/within gr	oups				CC, SC CC, ST7		1*Res 1*Res	8 8			
cc	CC 0	CT7	JC	JT7	SC	ST7		CT7, JC CT7, JT7		1*Res 1*Res	8 8			
CT7 JC	0 0	0 0	0					CT7, SC CT7, ST7		1*Res 1*Res	8 8			
JT7 SC	0 0	0 0	0 0	0 0	0			JC, JT7 JC, SC		1*Res 1*Res	8 8			
ST7	0	0	0	0	0	0		JC, ST7 JT7, SC		1*Res 1*Res	8			
Within lev	vel '1' of	factor	Time Interva	al'			Unique	JT7, ST7 SC, ST7		1*Res 1*Res	8 8			
Groups			t R(MC)		P(pe	erm)	perms	Average	Distance betv	ween/within groups	IC		177	sc
CC, CT7			1,1093E-2		0,9	992	125	ST7	0 11415	ch	30		517	50
CC, JC			2,0579		0,0)98	126	CT7	0,33336	0,23586	0 23502			
CC, JT7			1,0594 0,309		0,3	807	126	JT7 SC	0,51711	0,41969 0.82308	0,41117 0.85318	0, 0.	,66835 ,85491	0,45916
CC, SC			7,3055		0,0	008	126	ST7	0,8132 0,24384	0,48189	0,51061	0,	,61762	0,40019
CC, ST7			10,034 0,001		0,0)11	126	Within le	vel '5' of fact	or 'Time Interval'				
CT7, JC			0,87997 0,41		0,4	135	126	Groups		t	P(perm)	Unique perms	P(MC)	
CT7, JT7			0,50195 0,618		0,6	546	126	CC, CT7 CC, JC		2,8007 10,758	0,031 0,01	126 126	0,023 0,001	
CT7, SC			5,3001 0,001		0,0	JU7	126	CC, JT7 CC, SC		5,4802 15,712	0,011 0,01	126 126	0,003 0,001	
C17, ST7			4,0018 0,003		0,0)2/	126	CC, ST7 CT7, JC		14,855 2,8037	0,01 0,038	125 126	0,001 0,019	
JC, JT7 JC, SC JC, ST7		0,62321 0,564 6,0735 0,001 6,1607		0,575 0,007 0,01	126 126 126	CT7, JT7 CT7, SC CT7, ST7 JC, JT7 JC, SC		2,1443 9,3063 6,9714 0,13556 10,393	0,053 0,011 0,007 0,891 0,007	12 12 12 12 12 12	26 26 26 26	0,056 0,001 0,002 0,907 0,002		
---	--	--	------------------------------	---	-------------------	---	---	---	---	---	----------------------	---	--------------------	
JT7, SC		0,001 6,2497 0.001		0,012	126	JC, ST7 JT7, SC		7,9917 6,9037 4 2668	0,013 0,008 0.004	12 12 12	16 16	0,001 0,001 0,003		
JT7, ST7		6,1735 0,001		0,008	126	SC, ST7		4,0536	0,006	12	.6	0,002		
SC, ST7	tors	3,0682 0,024		0,043	126	Denomin Groups CC, CT7	ators	Denominator 1*Res 1*Res	De	n.df 8 8				
Groups CC, CT7 CC, JC CC, JT7 CC, SC CC, ST7 CT7, JC CT7, JT7 CT7, SC CT7, ST7 JC, JT7 JC, ST7 JC, ST7		Denominator 1*Res 1*R		Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8		CC, JT7 CC, SC CC, ST7 CT7, JC CT7, ST7 JC, JT7 JC, ST7 JC, ST7 JC, ST7 JT7, SC JT7, ST7 SC, ST7	Distance betw	1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
SC, ST7		1*Res		8		ST7	CC	CT7	ال	C	JT7		SC	
Average D JT7 CC	istance betwe CC SC 8.8383E-2	en/within gro	ups CT7 ST7	JC		CC CT7 JC JT7	0,1875 0,45651 0,86802 0,88864	0,38266 0,43641 0,50702	0,114	432 077	0.39543			
CT7	0,22644		0,35352			SC ST7	2,2041 1,6068	1,7561 1,1587	1,33 0,738	61 377	1,3155 0,71815		0,32961 0,59736	
JC	0,15994		0,29337	0,15082		Within Io	0,22809	r 'Timo Inton/al'						
JT7	0,14805 0,18231		0,2754	0,14415		Groups	ver o or racte	t	P(perm)	Unic per	jue ms	P(MC)		
SC ST7	1,0451 0,96598 0,59222		1,0435 0,36274 0,59564	0,91151 0,45859		CC, ĊT7 CC, JC CC, JT7		0,99174 7,1841 16,692	0,35 0,005 0,006	12 12 12	26 26	0,371 0,001 0,001		
Within lev	0,51306 el '2' of factor	Time Interval	0,48	0,13307		CC, SC CC, ST7 CT7, JC		7,8218 23,187 6.0443	0,007 0,007 0.007	12 12 12	.6 .6 .6	0,001 0,001 0.001		
Groups		t	P(perm)	Unique perms		CT7, JT7 CT7, SC		9,8277 7,2535	0,008 0,008	12 12	25 25	0,001 0,001		
СС, СТ7		P(MC) 4,414	0,008	126		CT7, ST7 JC, JT7		14,496 0,59349	0,013 0,579	12	.6 .6	0,001 0,547		
CC, JC		0,002 4,3291	0,005	126		JC, SC JC, ST7		3,1018 2,2996 2,8725	0,018 0,073	12 12	.6 .5	0,017 0,063		
CC, JT7		2,5381	0,05	126		JT7, ST7		5,5853 2,0806	0,005	12	.0 16	0,008		
CC, SC		8,7598 0.001	0,01	126		Denomin	ators	2,0000	0,000	12	.0	0,072		
CC, ST7		9,8863 0,001	0,01	126		Groups CC, CT7		Denominator 1*Res	De	n.df 8				
CT7, JC		1,5382 0,165	0,167	126		CC, JC CC, JT7		1*Res 1*Res		8 8				
CT7, JT7		3,5248 0,006	0,005	126		CC, SC CC, ST7		1*Res 1*Res		8 8				
CT7, SC		4,4674 0,003	0,01	126		CT7, JC CT7, JT7		1*Res 1*Res		8 8				
CT7, ST7		3,5431 0,003	0,02	125		CT7, SC		1*Res 1*Res		8				
JC, J17		3,0182 0,016	0,046	126		JC, JT7 JC, SC		1*Res 1*Res		8				
JC, SC		6,3482 0,001 6,2007	0,008	126		JC, S17 JT7, SC		1*Res 1*Res		8 8				
JC, 317		0,002	0,000	120		SC, ST7		1*Res		8				
IT7 ST7		0,001	0.009	120		Average	Distance betw	een/within groups		IC		177	sc	
SC, ST7		0,001 1,7192	0,114	126		ST7 CC	8,0381E-2					••••		
Denomina	tors	0,135				CT7 JC JT7	0,27349 2,2202 2,0248	0,4204 2,068 1,873	19 5 1	0,86545 0,57005	0,1	31673		
Groups CC, CT7 CC, JC CC, JC CC, SC CT7, JT7 CT7, SC CT7, ST7 JC, JT7 JC, ST7 JC, ST7 JT7, SC JT7, ST7 SC, ST7		Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		Den. df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		SC ST7	4,1046 2,9839 0,31735	3,952 2,832	9	1,9152 0,84469	2 0,1	0799 95911	1,4635 1,2221	
Average D	istance betwe	en/within gro	ups CT7	IC										
JT7 CC	SC 9,2731E-2		ST7	JC										
CT7	0,42959		0,25451											
JC	0,2682		0,21914	0,14232										
JI/	0,10805 4,6664E-2		0,32934	0,1/558										
1,0105 ST7 0,75937	0,33039 0,85961 0,30266		0,43018 0,21913	0,59141										

Relative weight loss of textile substrates in factor 'Time Interval'

PERMANOVA Permutational M	ANOVA					Denominators Groups 0 1	Denominator 1*Res		Den.df		
Resemblance wo	orksheet					0, 2	1*Res		8		
Name: Resem3						0,3	1*Res		8		
Data type: Dista	nce					0,4	1*Res		8		
Normalise Resemblance: D	1 Euclidean distance					0, 6 1, 2	1*Res 1*Res		8		
Sums of squares Fixed effects sur Permutation me Number of perm	type: Type III (parti m to zero for mixed thod: Permutation o utations: 999	al) terms f residuals under a re	educed model			1,3 1,4 1,5 1,6 2,3	1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8		
Factors		Abbrov	Tupo	Lovols		2, 4 2, 5 2, 6	1*Res 1*Res 1*Pes		8		
Lavout		La	Fixed	6		3.4	1*Res		8		
Time Interval		Ti	Fixed	7		3, 5	1*Res		8		
PAIR-WISE TESTS	5					4,5	1*Res 1*Res		8		
Term 'LaxTi' for	pairs of levels of fac	tor 'Time Interval'				5,6	1*Res		8		
Within level 'CC'	of factor 'Layout'		Unio	ue		Average Distance	between/within	groups 1	2	3	4
Groups	t	P(perm)	per	ms	P(MC)	5		6	-	-	
0,1	7,6656	0,008	10	5	0,001	0 0					
0, 3	6,1098	0,006	10	5	0,001	1 0,13241		0,15082			
0, 4	1,6774	0,195	10	5	0,138						
0,5	5,4405E-2 3 5521	1	10	5	0,962	2 9,1613E-2		0,16245	0,14232		
1, 2	0,18102	0,911	12	6	0,855	3 0,11011		0,22834	0,11897	6,4999E-2	
1, 3 1, 4	3,44	0,16	12	6 6	0,18	4 0,23931		0,35579	0,2491	0,17461	0,23502
1, 5 1, 6	3,2264 8,0609	0,017 0,006	12 12	6 5	0,016 0,001	5 0,86424		0,98246	0,85644	0,75413	0,63065
2, 3	1,3643	0,211	12 12	6	0,22	0,11432		2 4446	2 3185	2 2162	2 0927
2, 5	3,3177	0,005	12	6	0,011	1,4621		0,86545	2,5105	2,2102	2,0727
2,6	8,1083	0,012	12	6	0,001						
3,4	3,9/19	0,008	12	6 6	0,005	Within level 'J17'	of factor Layout		Unio	110	
3, 6	7,0593	0,014	12	6	0,001	Groups	t	P(perm)	perr	ns P(MC)	
4, 5	0,81371	0,466	12	6	0,435	0, 1	2,5736	0,008	16	0,032	
4,6	3,4361	0,004	12	6	0,012	0,2	7,9168	0,007	16	0,001	
5, 0	1,4520	0,215	12	0	0,170	0, 4	1,3446	0,291	16	0,235	
Denominators						0,5	6,0401	0,007	16	0,001	
Groups 0. 1	1*Res	Den	.ar 8			0,6	18,126	0,005	12	6 0,001	
0, 2	1*Res	8	8			1, 3	0,69496	0,672	12	6 0,477	
0, 3	1*Res	8	3			1,4	1,9374	0,046	12	6 0,084	
0,4	1"Res 1*Res	2	5 R			1,5	6,5632 17 018	0,012	12	6 0,001	
0, 6	1*Res	8	8			2, 3	0,66796	0,823	12	6 0,532	
1, 2	1*Res	8	8			2,4	1,9459	0,048	12	5 0,096	
1, 3	1"Res 1*Res	ک د	5 R			2,5	7,0663	0,009	12	6 0,001 7 0.001	
1, 5	1*Res	ě	8			3, 4	1,242	0,269	12	6 0,255	
1,6	1*Res	8	8			3, 5	4,0146	0,023	12	6 0,009	
2, 3	1"Res 1*Res	ک د	5 R			3,6	10,181	0,008	12	6 0,001 6 0.118	
2, 5	1*Res	8	8			4, 6	6,1488	0,009	12	6 0,001	
2,6	1*Res	8	8			5,6	6,6337	0,006	12	6 0,001	
3, 4	1*Res 1*Pos	٤ s	8			Denominators					
3.6	1*Res	6	8			Groups	Denominator		Den.df		
4, 5	1*Res	8	3			0, 1	1*Res		8		
4,6	1*Res	8	3			0, 2	1*Res		8		
5, 6	1"Res	2	5			0,3	1*Res		8		
Average Distance	e between/within gr	oups				0, 5	1*Res		8		
0		1	2		3	0,6	1*Res		8		
0 0		2	0			1, 2	1*Res		8		
1 0,25185	8.	8383E-2				1,4 1,5	1*Res 1*Res		8 8		
2 0 2604	7,	6598E-2	9.2731F-2			1,6	1*Res		8		
3 0 35153	,, ,	13287	0 12932			2, 4	1*Res		8		
0,1556		19412	0,12752			2,6	1*Res		8		
0,28185	0,	11415	0,19209			3, 4	1*Res		8		
5 0,10491	0),24807	0,25662			3,6	1*Res		8		
0,34774	0,	12021	0,18/5			4, 0	1 Kes		0		

6	0,10614 0,45767	0,3 0,1758	58 82	0,36655 0,16217		4,6 5,6	1*Res 1*Res	8 8		
With	o,0301E-2	of factor 'Layout'				Average Distanc 0	e between/within grou 1	ps 2		3 4
Grou 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5	ips	t 1,7978 1,8547 0,25672 3,0885 3,0885 1,7188 2,5203 1,4809 3,1472 3,4666 2,4828 1,617 0,75638	P(perm) 0,124 0,135 0,963 0,011 0,013 0,126 0,039 0,17 0,033 0,05 0,175 0,46 0,483	Unique perms 16 16 16 16 16 126 126 126 126 126 126	P(MC) 0,113 0,086 0,807 0,017 0,018 0,117 0,035 0,015 0,015 0,012 0,038 0,154 0,479 0,154	0 0 1 0,1727 2 0,16016 3 0,29873 4 0,4753 5 0,88486 0,39543 6 2,1309 1,246	6 0,18231 0,11526 0,28381 0,5869 1,0576 2,3036 0,31673	4,6664E-2 0,25488 0,5714 1,045 2,2911	0,4 0,55 0,94 2,1	226 2378 0,66835 1587 0,70242 714 1,7761
2, 6 3, 4 3, 5 3, 6 4, 5 4, 6 5, 6		0,50497 2,5305 2,875 1,6615 1,0782 3,3873E-2 0,89625	0,625 0,039 0,013 0,172 0,315 0,971 0,405	126 126 126 126 126 126 126 126	0,63 0,036 0,036 0,131 0,329 0,973 0,393	Within level 'SC' Groups 0, 1 0, 2 0, 3 0, 4 0, 5	of factor 'Layout' t 5,6973 6,9598 6,0244 6,2248 18,057	P(perm) 0,014 0,008 0,012 0,006 0,012	Unique perms 16 16 16 16 16	P(MC) 0,001 0,001 0,001 0,001 0,001
Denc Grou 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6	minators ips	Denominator 1*Res	Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			0, 6 1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 2, 6 3, 4 2, 5 2, 6 3, 5 3, 6 4, 6 5, 6	8,0371 0,30804 0,38869 1,3143 7,6047 6,3041 0,10857 1,1095 7,8236 6,2464 0,95239 7,0318 6,1452 5,2304 5,6569 3,7375	0,01 0,774 0,694 0,272 0,004 0,008 0,909 0,294 0,009 0,007 0,379 0,009 0,007 0,379 0,009 0,011 0,009 0,009 0,009 0,009 0,009	16 126 126 126 126 126 126 126 126 126 1	0,001 0,787 0,729 0,001 0,001 0,92 0,291 0,001 0,002 0,366 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,013
3, 4 3, 5 3, 6 4, 5 4, 6 5, 6		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8			Denominators Groups 0, 1 0, 2 0, 3 0, 4 0, 5	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res	Den.df 8 8 8 8 8		
Aver	age Distance l 0 5	between/within group 1 6	os 2	3		0,6 1,2	1*Res 1*Res 1*Pes	8		
0	0	0				1, 5 1, 4 1, 5	1*Res 1*Res	8 8 8		
1	0,35756	0,35352	0.05454			1,6 2,3	1*Res 1*Res	8 8		
2	0,21689	0,47223	0,25451	0.18123		2,4 2,5 2.6	1"Res 1*Res 1*Res	8 8 8		
4	0,26369	0,54653	0,21505	0,2862		3, 4 3, 5	1*Res 1*Res	8 8		
5	0,23586 0,44426	0,70803	0,34072	0,46266		3,6 4,5	1*Res 1*Res	8 8		
6	0,30452 0,32262 0,28393	0,38266 0,56323 0,36642	0,29501	0,34539		4,6 5,6	1*Res 1*Res	8 8		
With	in level 'JC' of	factor 'Layout'	0,42047			Average Distanc 0	e between/within grou 1	ps 2	3	4
Grou	ıps	t 2.1100	P(perm)	Unique perms	P(MC)	5 0 0	6			
0, 1		0,15041 4 5864	0,841	16	0,88	1 0,79328	0,36274			
0, 4 0, 5		2,7736 21,098	0,051 0,006	16 16	0,032 0,001	2 0,85034	0,29667	0,33039		
0, 6 1, 2		7,563 1,6513	0,008 0,138	16 126	0,001 0,135	3 0,8709	0,3229	0,3067	0,40211	0.15011
1, 3		3,7472 3,4785 14 159	0,009 0,015 0,007	126 126 126	0,007 0,011 0.001	4 1,0868 5 2,2004	1 4071	0,37898	0,3941	0,45916
1, 6 2, 3		7,8188 1,7909	0,009 0,091	126 126	0,001 0,117	0,32961 6 4,2108	3,4175	3,3604	3,3399	3,124
2,4		2,2832 12,962 7,4320	0,062 0,013	126 126	0,046 0,001	2,0104	1,4635 7 of factor 'Lavout'			
2,564 2,33,565 3,565 4,56 5,6		12,962 7,4329 1,41 15,883 7,1832 6,734 6,5621 4,7117	0,013 0,009 0,009 0,009 0,009 0,009 0,009 0,005 0,005	126 126 126 126 126 126 126 126	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,004	Within level 'ST Groups 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4 3, 5 3, 6 4, 5 4, 6 5, 6 Denominators Groups 0, 1	7 of factor 'Layout' t 6,9417 7,4845 7,2444 8,5507 19,344 24,687 2,7577 2,7557 2,7557 4,0387 13,113 13,113 13,113 4,0454 7,8443E-2 1,221 8,7115 16,764 1,1186 8,4313 16,465 7,1552 15,396 9,9057 Denominator 1'Bes	P(perm) 0,005 0,009 0,017 0,009 0,009 0,036 0,03 0,017 0,012 0,009 0,927 0,237 0,012 0,007 0,334 0,011 0,011 0,011 0,011 0,005 Den.df	Unique perms 16 16 16 16 126 126 126 126 126 126 126	P(MC) 0,001 0,001 0,001 0,001 0,001 0,022 0,027 0,004 0,001 0,001 0,939 0,245 0,001 0,304 0,001 0,001 0,001 0,001 0,001 0,001
						0, 2 0, 3 0, 4 0, 5	1*Res 1*Res 1*Res 1*Res	8 8 8 8		

0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8 8 8 8 8 8 8 8		
3, 5		1*Res	8		
3,6		1*Res	8		
4, 5		1*Res	8		
4,6		1*Res	8		
5,6		1*Res	8		
Aver 0	rage Distance 0 5 0	between/within groups 1 6	2	3	4
1	0,34036	0,13307			
2	0,59921	0,27079	0,21913		
3	0,60831	0,29013	0,19297	0,22119	
4	0,74353	0,40507	0,23066	0,22504	0,24384
5	1,603 0,22809	1,2626	1,0038	0,9947	0,85948
6	3,09	2,7496	2,4908	2,4817	2,3465
	1,487	0,31735			<i>,</i>

PERMANOVA post-hoc results of tensile strength loss of textile substrates in factor 'Layout'

PERMANOV	/Α						Within le	vel '3' of facto	r 'Time Interval'			
Permutatio	onal MANOVA										Unique	
							Groups		t	P(perm)	perms	P(MC)
Resemblan	nce worksheet						CC, CT7		2,1515	0,088	126	0,069
Name: Rese	sem4						CC. JC		9.3444	0,005	126	0.001
Data type:	Distance						CC IT7		9 9534	0.007	126	0.001
Selection:	All								13 044	0,009	126	0.001
Marmalian	Au						CC, 5C		0 5724	0,000	120	0,001
Normatise							CC, S17		6,5724	0,006	124	0,001
Resemblan	nce: D1 Euclidea	an distance					C17, JC		6,9854	0,006	126	0,001
							CT7, JT7		7,4128	0,012	126	0,001
Sums of sa	uares type: Typ	pe III (partial)					CT7, SC		14.027	0,007	126	0.001
Fixed effec	cts sum to zero	for mixed ter	rms				CT7 ST7		9 1464	0.011	126	0.001
Dormutatio	on mothod: Dor	mutation of r	osiduals under a re	ducad madal					0.255.41	0,011	125	0,001
Permutatio	on method. Per	inucación or n	esiduais under a re	duced model			JC, J17		0,23341	0,755	125	0,815
Number of	permutations:	999					JC, SC		17,068	0,006	126	0,001
							JC, ST7		10,805	0,012	126	0,001
Factors							JT7, SC		17,2	0,009	126	0,001
Name			Abbrev	Type	Levels		1T7 ST7		10 807	0,009	126	0 001
Lavout				Fixed	20100		C CT7		0 49477	0.40	124	0,507
Layout			La	Fixed	0		30, 317		0,00477	0,49	120	0,502
Time Interv	val		11	Fixed	/							
							Denomina	ators				
PAIR-WISE	TESTS						Groups		Denominator		Den.df	
							CC. CT7		1*Res		8	
Torm 'LavT	Ti' for pairs of le	wols of facto	r 'l avout'						1*Pos		8	
		evers of facto	Layout				CC, JC		1 1105		0	
							CC, J17		1"Res		8	
Within leve	el '0' of factor '1	Time Interval'					CC, SC		1*Res		8	
				U	nique		CC, ST7		1*Res		8	
Groups		t	P(perm)	r	Derms	P(MC)	CT7. JC		1*Res		8	
CC CT7		1 0511	0.065		126	0.097	CT7 1T7		1*Pos		8	
		1,7511	0,005		120	0,097	CT7, JT7		1 Res		8	
CC, JC		10,059	0,014		120	0,001	C17, SC		r Res		0	
CC, JT7		8,2051	0,012		126	0,001	CT7, ST7		1*Res		8	
CC, SC		24,573	0,005		126	0,001	JC, JT7		1*Res		8	
CC. ST7		20.253	0.008		126	0.001	JC. SC		1*Res		8	
CT7 IC		25 163	0,005		126	0.001	IC ST7		1*Res		8	
CT7 JT7		10.00	0,005		120	0,001	177 56		1*D		0	
C17, J17		10,99	0,011		120	0,001	J17, SC		i Res		0	
CI7, SC		28,071	0,004		126	0,001	JI7, SI7		1"Res		8	
CT7, ST7		22,292	0,006		126	0,001	SC, ST7		1*Res		8	
JC. JT7	(0.50376	0,643		126	0.604						
IC SC		31 973	0.008		126	0.001	Average I	Distance betw	pen/within arou	ins		
IC 5T7		25 244	0,000		124	0.001	menage	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CT7	IC	177
JC, J17		20,000	0,007		120	0,001				CT7	30	517
J17, SC		30,372	0,009		126	0,001		SC		517		
JT7, ST7		24,521	0,007		126	0,001	CC	9,8326E-2				
SC. ST7	(0.33465	0.75		126	0.748						
/ -			-, -				CT7	0 12583		0 1038		
Denominat	tore							0,12505		0,1050		
Denominat	luis			D			10	0 424		0.3407	((2725.2	
Groups	L	Denominator		Den.ar			JC	0,434		0,3187	6,62/3E-2	
CC, CT7	1	1*Res		8								
CC, JC	1	1*Res		8			JT7	0,42577		0,31047	5,0728E-2	4,8672E-2
CC. JT7	1	1*Res		8								
CC SC		1*Poc		8			sc	1 5801		1 7044	2 0231	2 01/0
CC, 5C		1*D		0			30	0 2007		1,7044	2,0251	2,0149
CC, S17		rikes		0				0,3067				
CT7, JC	1	1*Res		8			ST7	1,7474		1,8627	2,1814	2,1732
CT7, JT7	1	1*Res		8				0,40638		0,56123		
CT7. SC	1	1*Res		8								
CT7 CT7		1*Doc		0			Within Io	ol '4' of facto	r 'Timo Inton/al'			
		1*D		0			within te		i inne intervat		Unince	
JC, JT/	1	1"Res		8			-				Unique	
JC, SC	1	1"Res		8			Groups		t	P(perm)	perms	P(MC)
JC, ST7	1	1*Res		8			CC, CT7		0,63415	0,546	126	0,562
JT7. SC	1	1*Res		8			CC, JC		4,6349	0,005	126	0.003
177 577		1*Pos		8			CC 1T7		4 2005	0.011	120	0.004
517, 517		1 1105		0			CC, 31/		9,2003	0,011	120	0,004
SC, ST/	1	1°Kes		8			CC, SC		9,3394	0,012	126	0,001
							CC, ST7		15,918	0,006	126	0,001
Average Di	istance betwee	n/within grou	IDS				CT7, JC		8,189	0,007	126	0,001
5	CC	С		JC		JT7	CT7. JT7		7.5452	0.007	126	0.001
	sc	ст (т	7				CT7 SC		9 9183	0,008	120	0,001
<i>cc</i>	0 12/12	51					CT7 CT7		17 429	0,000	120	0,001
	0,13412								1 202	0,007	125	0,001
							JC, J1/		1,203	0,252	126	0,259
							JC, SC		14,222	0,008	126	0,001

CT7 JC	0,11531 0,50454	2,6866E-2 0,40815	3,6013E-	2		JC, ST7 JT7, SC JT7, ST7		23,344 13,932 23,023	0,008 0,006 0,003	126 126 126	0,001 0,001 0,001
JT7	0,48615	0,38976	6,3583E-	2	9,5829E-2	SC, ST7		4,6632	0,005	126	0,002
SC	2,7553	2,8517	3,2599		3,2415	Denomine Groups	ators	Denominator		Den.df	
ST7	0,26524 2,8105	2,9068	3,315		3,2966	CC, CT7 CC, JC		1*Res 1*Res		8 8	
	0,28171	0,35116				CC, JT7 CC, SC		1*Res 1*Res		8 8	
Within lev	el '1' of facto	'Time Interval'		Jniaue		CC, ST7 CT7, JC		1*Res 1*Res		8 8	
Groups CC, CT7 CC, JC CC, JT7 CC, SC CC, ST7 CT7, JC CT7, JC CT7, ST7		t 3,4384 6,9941 7,397 9,2291 13,223 13,729 33,952 10,831 15,413 0, 75504	P(perm) 0,027 0,01 0,011 0,012 0,011 0,012 0,011 0,009 0,009 0,009 0,01 0,54	91 91 126 91 126 126 91 66 91 91 91	P(MC) 0,009 0,003 0,001 0,001 0,001 0,001 0,001 0,001 0,001	CT7, JT7 CT7, SC CT7, ST7 JC, JT7 JC, SC JC, ST7 JT7, SC JT7, ST7 SC, ST7	Dictanco bot	1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8 8 8 8 8 8 8 8 8 8	
JC, SC		12,025	0,008	125	0,001	Average	CC	CT7		JC	JT7
JC, ST7 JT7, SC		12,127	0,007	91	0,001	сс	0,21548	517			
SC, ST7		16,904 1,9417	0,015	126	0,001	CT7	0,1576	0,12956			
Denomina	tors					JC	0,37182	0,42957		5,7512E-2	
Groups CC, CT7		Denominator 1*Res	Den.df 8			JT7	0,33636	0,39412	1	5,6141E-2	5,693E-2
CC, JC CC, JT7		1*Res 1*Res	8 8			sc	1,2989	1,2412		1,6708	1,6353
CC, SC CC, ST7		1*Res 1*Res	8 8			ST7	0,3027 2,0112	1,9534		2,383	2,3475
CT7, JC		1*Res 1*Res	8				0,71224	0,26857		·	
CT7, SC		1*Res 1*Pos	8			Within le	vel '5' of fact	or 'Time Interval'		Unique	
JC, JT7		1*Res 1*Pes	8			Groups		t 2 0777	P(perm)	perms	P(MC)
JC, ST7		1*Res	8			CC, JC		6,4438	0,011	90 126	0,002
JT7, SC JT7, ST7		1*Res	8 8			CC, SC		7,2029 7,4218	0,007	126	0,001
SC, ST/		1*Res	8			CC, ST7 CT7, JC		6,1198 9,1875	0,006 0,011	126 91	0,002 0,001
Average D	istance betwo CC	en/within groups CT7	JC		JT7	CT7, JT7 CT7, SC		10,815 10,704	0,007 0,008	126 126	0,001 0,001
сс	SC 0,15604	ST7				CT7, ST7 JC, JT7		7,6723 7,1793	0,007 0,008	126 91	0,001 0,001
CT7	0.20588	1.3679E-2				JC, SC JC, ST7		14,753 9.8123	0,007	91 90	0,001 0,001
JC	0.43065	0.22496	4.1791E-	2		JT7, SC JT7, ST7		15,362 10,173	0,011	126 126	0,001
117	0 44204	0.23635	2 7713E	2	1 1548F-2	SC, ST7		1,034	0,339	126	0,342
517	4 7747	1,0774	2,77132	2	2 2428	Denomine	ators	Deneminator		Den df	
50	0,51013	1,9774	2,2024		2,2138	CC, CT7		1*Res		8 8	
517	2,2413 0,56808	0,423	2,6/19		2,6833	CC, JC CC, JT7		1*Res		8	
Within lev	el '2' of facto	'Time Interval'				CC, SC CC, ST7		1*Res 1*Res		8 8	
Groups CC, CT7 CC, JC CC, JT7 CC, SC CC, ST7 CT7, JC		t 1,0137 9,9553 14,071 15,229 41,188 4,8266	P(perm) 0,385 0,011 0,009 0,014 0,012 0,01	Unique perms 126 125 126 126 91 126	P(MC) 0,354 0,001 0,001 0,001 0,001 0,001	CT7, JC CT7, JT7 CT7, SC CT7, ST7 JC, JT7 JC, SC JC, ST7 JT7, SC		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8 8 8 8 8	
CT7, JT7 CT7, SC		5,3 13,744	0,009 0,008	126 126	0,001 0,001	JT7, ST7 SC, ST7		1*Res 1*Res		8 8	
CT7, ST7 JC. JT7		24,395 2,3862E-2	0,01 0,957	91 126	0,001 0,978	Average	Distance bet	ween/within groups			
JC, SC JC, ST7		18,552 41,657	0,007	126 91	0,001	5	CC SC	ст́7 ST7		JC	JT7
JT7, SC JT7, ST7		19,322 51,345	0,011	126 91	0,001	сс	0,20492				
SC, ST7		1,2725	0,261	91	0,241	CT7	0,19363	9,122E-2			
Denomina Groups	tors	Denominator	Den df			JC	0,47377	0,30663		1,2947E-2	
CC, CT7		1*Res 1*Pos	8			JT7	0,53023	0,36309		5,6459E-2	1,687E-2
CC, JT7		1*Res	8			SC	0,86546	1,0326		1,3392	1,3957
CC, ST7		1*Res	8			ST7	1,0515	1,2186		1,5252	1,5817
CT7, JC CT7, JT7		1*Res	8 8				0,34025	0,43115			
CT7, SC CT7, ST7		1*Res 1*Res	8			Within le	vel '6' of fact	or 'Time Interval'		Unique	
JC, JT7 JC, SC		1*Res 1*Res	8 8			Groups CC, CT7		t 1,6836	P(perm) 0,146	perms 123	P(MC) 0,126
JC, ST7 JT7, SC		1*Res 1*Res	8 8			CC, JC CC, JT7		27,001 24,366	0,006 0,009	126 126	0,001 0,001
JT7, ST7 SC, ST7		1*Res 1*Res	8 8			CC, SC CC, ST7		9,7429 4,2143	0,005 0,01	126 126	0,001 0,005
Average I	istance betw	en/within groups				CT7, JC CT7, JT7		13,272 13,275	0,012 0.01	126 116	0,001
-3- 5	CC SC	ст7 ст	JC 7		JT7	CT7, SC CT7 ST7		6,649 3,641	0,011	126 125	0,001
CC	5,8851E-2	51				JC, JT7		1,3062	0,212	126	0,218
CT7	0,13751	0,1690	6			JC, ST7		7,2459	0,011	126	0,001
JC	0,4309	0,3615	i7 0,1019			JT7, ST7		7,3278	0,012	126	0,001
JT7	0,43194	0,362	6 7,5381E-	2	5,6842E-2	30, 317	ators	1,0342	0,337	120	0,313
SC	1,6062	1,675	5 2,0371		2,0381	Groups	1015	Denominator		Den.df	
	0,2795	1,814	8 2,1763		2,1774	CC, CT7 CC, JC		1"Res		8 8	
ST7	1,7454	,-						1*Doc		0	
ST7	0,203	9,8191	E-2			CC, JT7 CC, SC		1*Res		8	
ST7	0,203	9,8191	E-2			CC, SC CC, SC CC, ST7 CT7, JC		1*Res 1*Res 1*Res		8 8 8	

CT7, SC CT7, ST7 JC, JT7 JC, SC JC, ST7 JT7, SC JT7, ST7 SC, ST7		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8 8 8	
Average l CC	Distance betw CC SC 3,5442E-2	een/within groups CT7 ST7	JC	JT7
CT7	7,7012E-2	8,8127E-2		
JC	0,36593	0,42377	9,3587E-3	
JT7	0,37759	0,43543	1,8706E-2	2,2531E-2
SC	0,38139 9 7784F-2	0,32356	0,74732	0,75898
ST7	0,51532 0,26542	0,46947 0,30158	0,88125	0,89291

PERMANOVA post-hoc results of tensile strength loss of textile substrates in factor 'Time Interval'

PER/ Perr Rese Nam Data Sele Norr	MANOVA nutational MA emblance wori ne: Resem4 a type: Distance cction: All malise	NOVA ksheet ce				D G 0 0 0 0 0 0 0 0 0 0 0	Denominators Groups 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		Den.df 8 8 8 8 8 8 8	
Rese Sum Fixe Pern Num	emblance: D1 is of squares ty id effects sum nutation meth iber of permu	Euclidean distance ype: Type III (partia to zero for mixed t od: Permutation of tations: 999	l) erms residuals under a redu	uced model		1 1 1 1 1 2	, 2 , 3 , 4 , 5 , 6 2, 3	1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8 8 8	
Fact Nam Layo Timo	tors ne out e Interval		Abbrev. La Ti	Type L Fixed Fixed	Levels 6 7	2 2 3 3 3 3	2, 5 2, 6 3, 4 3, 5 3, 6	1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		8 8 8 8 8	
PAIR	R-WISE TESTS					4	1, 5 1, 6	1*Res 1*Res		8	
Terr	n 'LaxTi' for pa	airs of levels of fact	or 'Time Interval'			5	o, 6	1*Res		8	
With	nin level 'CC' o	f factor 'Layout'		Unique		A	Average Distance L 0	between/withi	n groups 1	2	3
Grou 0, 1	ups	t 0,25733	P(perm) 0,789	perms 126	P(MC) 0,828	0	4 9,5829E-2		5	6	
0, 2 0, 3		0,38151 1,3431	0,746 0,244	126 126	0,719 0,224	1	6,607E-2		1,1548E-2		
0,4		1,6438 0,50452	0,15 0,651	126 126	0,139 0,637	2	2 7,3703E-2		3,5419E-2	5,6842E	-2
0,6		4,42/6 7,6551E-3	0,006	126 126	0,003	3	6,5873E-2		5,6196E-2	6,7287E	-2 4,8672E-2
1, 3		1,3342	0,391 0,251	126	0,416	4	6,7542E-2		3,7367E-2	5,464E	-2 4,9876E-2
1, 5		3,318	0,803	125	0,01	5	9,0866E-2		0,11278	0,122	4 6,5804E-2
2, 3		1,6154	0,138	126	0,133	6	0,11395		0,13799	0,1476	51 9,1019E-2
2,6		7,9707	0,01	126	0,001		Within level 'SC' of	factor 'Lavout'	2,70572 2	2,23512	
3, 4 3, 5 3, 6 4, 5 4, 6 5, 6		0,77831 0,46694 3,431 0,99149 0,91887 2,3866	0,467 0,609 0,008 0,374 0,367 0,061	126 126 126 126 126 126	0,461 0,653 0,006 0,358 0,397 0,058	G 0 0 0	Groups), 1), 2), 3	t 4,8093 8,0929 8,133	P(perm) 0,006 0,009 0,013	Uniqu perm 126 126 126	IE IS P(MC) 0 0,004 0 0,001 0 0,001
Dena Grou	ominators ups	Denominator	Den.df	120	0,050	00000), 4), 5), 6	10,461 14,243 24,119	0,01 0,012 0,008	126 126 126	0,001 0,001 0,001
0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4		1*Res 1*	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3	, , 2 , , 3 , , 4 , , 5 , , 6 , , 5 , , 6 , 5 , 6 , 6	2,7196 1,1381 2,7921 4,5683 8,5551 0,51504 2,8207 5,5676 13,017 2,1854 4,6625 11,099 2,2316 8,1586 6,7639	0,501 0,251 0,023 0,009 0,007 0,603 0,044 0,015 0,015 0,015 0,015 0,015 0,016 0,081 0,008 0,067 0,008 0,067	126 126 126 126 126 126 126 126 126 126	0,47 0,296 0,023 0,005 0,001 0,627 0,03 0,002 0,001 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,001
3, 5 3, 6 4, 5 4, 6 5, 6	rago Distanco	1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8			0 0 0 0	Denominators Groups 0, 1 0, 2 0, 3 0, 4	Denominator 1*Res 1*Res 1*Res 1*Res		Den.df 8 8 8 8	
Avei		between/within gr	1	2	3	3 0), 6	1*Res		8	
0	4 0,13412		3	D			, 2 , 3	1*Res 1*Res		8 8	
1	0,12172	0,	15604				, 4 , 5	1*Res 1*Res		0 8 8	
2	8,6961E-2	9,7	388E-2	5,8851E-2		1 2 2	2, 3 2, 4	1*Res 1*Res		o 8 8	

3 0,12057 4 0,18919 0,21548 5 0,14599 0,19359 6 0,2222 0,14327	0 0 0,7 0,7	0,12809 0,18655 0,15172 20492 1,20583 19712	9,4677E-2 0,16502 0,12662 0,20196 3,5442E-2	9,8326E-2 0,1503 0,1401 0,13919	2, 5 2, 6 3, 4 3, 5 3, 6 4, 5 4, 6 5, 6		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8 8 8 8			
Within level 'CT7'	of factor 'Layout'		Unique		Aver	rage Distance	e between/within group 1	os 2		3	4
Groups 0, 1	t 11.689	P(peri 0.01	m) perms 3 91	P(MC) 0,001	0	5 0.26524	6	-		5	
0, 2 0, 3	0,10377 2,6387	0,95 0,01	5 126 6 125	0,92 0,038	1	1,0034	0,51013				
0, 4 0, 5	8,2993E-2 3,3457	0,90 0,01	6 124 1 126	0,944 0,009	2	1,1694	0,37119	0,2795			
0, 6 1, 2	2,0482 2,0875	0,08 0,00	8 125 8 91	0,07 0,061	3	1,2492	0,40854	0,25124	0	,3087	
1, 3 1, 4	0,7186	0,47	3 91 6 90	0,482	4	1,6065	0.61314	0.45459	0.	40684	0.3027
1, 5 1, 6	0,41757 1,8978	0,76 0,11	8 91 6 91	0,7 0,098	5	1,9342	0.93085	0,76481	0,	68499	0.3796
2, 3	1,4522 3,3958E-2	0,18	1 126 2 126	0,184 0.971	6	0,25499	1,5928	1.4267	1	3469	0.98968
2, 5 2, 6	1,6749	0,12 0,39	2 126 6 126	0,129		0,66193	9,7784E-2	, · ·			.,
3, 4 3, 5	1,7416 0,2642	0,11 0,81	1 126 7 126	0,126 0,796	With	nin level 'ST7	" of factor 'Layout'		Unique		
3, 6 4, 5	0,69196	0,48	7 125 5 126	0,499	Grou	squ	t 2.8708	P(perm) 0.034	perms 126	P(MC) 0.027	
4, 6 5, 6	1,2517	0,26	3 126 5 126	0,258	0, 2		8,0366 4 8008	0,012	91 126	0,001	
n, o Denominators	1,0207	0,54	5 120	0,551	0, 4		5,7901	0,008	126	0,001	
Groups	Denominator	I	Den.df		0,6		14,141	0,005	126	0,001	
), 2 0, 2	1*Res		8		1, 3		2,1809	0,069	126	0,069	
), 4), 5	1*Res		8		1, 5		5,4686	0,008	126	0,001	
J, J D, 6	1*Res		8		2, 3		9,0472 0,29877	0,007	91	0,748	
1, 2	1*Res		8		2,4		4,5001	0,275	91 91	0,261	
1, 4 1, 5	1"Kes 1*Res		8 8		2,6		11,284 0,87921	0,006	91 126	0,001	
1, 6 2, 3	1"Res 1*Res		8 8		3, 5 3, 6		2,5938 5,8548	0,045	126 126	0,033 0,001	
2, 4 2, 5	1"Res		8 8		4,5		4,6239 9,966	0,01 0,011	126 126	0,001 0,001	
2,6 3,4	1*Res 1*Res		8		5,6		3,6193	0,016	126	0,014	
3, 5 3, 6	1*Res 1*Res		8		Deno Grou	ominators .ps	Denominator	Den.df			
4, 5 4, 6	1*Res 1*Res		8 8		0, 1 0, 2		1*Res 1*Res	8 8			
5, 6	1*Res		8		0,3 0,4		1*Res 1*Res	8 8			
Average Distance 0	between/within gr	roups 1	2	3	0,5 0,6		1*Res 1*Res	8 8			
4 2,6866E-2		5	6		1, 2 1, 3		1*Res 1*Res	8 8			
0,12906	1,3	3679E-2			1,4 1,5		1*Res 1*Res	8 8			
0,10907	0),13587	0,1696		1,6 2,3		1*Res 1*Res	8 8			
0,10369	7,4	4519E-2	0,13997	0,1038	2,4 2,5		1*Res 1*Res	8 8			
4 7,3863E-2	0),14056	0,13319	0,13173	2,6 3,4		1*Res 1*Res	8 8			
0,12956 5 0,1151	5,7	7594E-2	0,14317	8,208E-2	3, 5 3, 6		1*Res 1*Res	8 8			
0,1374 5 7,3977E-2	9, 7,	,122E-2 ,757E-2	0,12145	8,3559E-2	4, 5 4, 6		1*Res 1*Res	8 8			
0,10861	8,5	5593E-2	8,8127E-2		5,6		1*Res	8			
Vithin level 'JC' o	of factor 'Layout'		Unique		Aver	rage Distance 0	e between/within group 1	2		3	
Froups), 1	t 2,6742	P(peri 0,03	m) perms 9 126	P(MC) 0,026	0	5 0,35116	6				
), 2), 3	1,3463 0,42717	0,21 0,69	9 126 5 126	0,24 0,655	1	0,61548	0,423				
), 4), 5	0,6997 0,97675	0,55 0,35	6 126 7 91	0,538 0,367	2	1,0853	0,5117	9,8191E-2			
), 6 1, 2	6,218 1,8219E-2	0,00 0,99	7 126 9 123	0,001 0,987	3	1,1461	0,64065	0,37401		0,56123	
I, 3 I, 4	2,1911 2,728	0,08 0,02	6 126 6 126	0,054 0,028	4	0,94936	0,44454	0,19722		0,41564	0
, 5 , 6	4,161 8,6733	0,00 0,01	9 91 1 126	0,002 0,001	5	1,8034	1,2144	0,71809		0,68513	
2, 3 2, 4	1,4417 1,6449	0,18 0,12	7 123 8 126	0,205 0,128	6	0,43115 2,5173	1,9284	1,4321		1,3713	
2,5 2,6	1,7724 3,6414	0,14 0,01	9 91 2 126	0,109 0,009		0,71575	0,30158				
8, 4 8, 5	0,14531 4,179E-2	0,92 0.98	1 126 7 91	0,881 0,974							
3, 6 4, 5	2,698 0,17391	0,01	1 126 2 91	0,026							
, 6 , 6	3,0962 11,69	0,03	3 126 9 91	0,016 0,001							
Denominators	,	5,50		2,201							
Groups	Denominator 1*Res	I	Den.df 8								
), 2), 3	1*Res		8								
), 4) 5	1*Res		8								
), 6 1 2	1*Res		8								
1, 3	1*Res		8								
1, 4 1, 5	1*Res		8 8								
1, 6 2, 3	1*Res 1*Res		8								
2, 4 2, 5	1*Res 1*Res		8								
2, 6 3, 4	1*Res 1*Res		8 8								
3, 5	1*Res		8		1						

3, 6 4, 5 4, 6 5, 6		1*Res 1*Res 1*Res 1*Res		8 8 8 8			
Aver	age Distance	between/with	in groups		2		2
	4		1		2		3
0	3,6013E-2		5		Ū		
1	5,7694E-2		4,1791E-2				
2	8,2263E-2		7,2375E-2		0,1019		
3	5,1104E-2		8,0197E-2		9,1906E-2		6,6273E-2
4	4,2374E-2		7,5468E-2		9,3314E-2		5,5559E-2
	5,7512E-2						
5	2,7275E-2		6,7713E-2		8,4158E-2		4,049E-2
,	3,869E-2		1,294/E-2		0 12/00		7 11255 2
0	6,3397E-Z		7 00125 2		0,13099		7,1125E-2
	0,004JE-2		7,0013E-2		9,33072-3		
With	in level 'JT7' o	of factor 'Layou	ıt'				
					Unique	2	
Grou	ps	t		P(perm)	perms	5	P(MC)
0, 1		0,70737		0,458	91		0,524
0, 2		0,83961		0,405	125		0,4
0, 3		0,5805		0,605	126		0,575
0,4		7,2818E-3		1	126		0,992
0, 5		2,5513		0,022	126		0,037
0, 0		3,23/9		0,021	126		0,006
1, 2		2 421		0,780	91		0,075
1,3		1 1701		0,00	91		0,040
1 5		14 798		0,006	91		0.001
1.6		14,661		0.007	91		0.001
2.3		1.9664		0.093	126		0.077
2, 4		1,1449		0.321	126		0.292
2.5		5,4201		0.007	126		0,001
2,6		6,3495		0,008	126		0,003
3, 4		0,8006		0,428	126		0,469
3, 5		3,317		0,012	125		0,008
3,6		4,4199		0,006	126		0,001
4, 5		4,1084		0,009	126		0,005
4, 6		5,1168		0,003	126		0,001
5,6		2,4529		0,042	126		0,045

PERMANOVA post-hoc results of OCR of textile substrates in factor 'Layout'

PERMANOVA Permutational MAN	OVA				JC, JT7 JC, SC		1,9586 3,8179 5,0705	0,098 0,018	41 55	0,087 0,004
Resemblance works Name: Resem2 Data type: Distance	heet				JC, ST7 JT7, SC JT7, ST7 SC, ST7		0,69977 1,569 2,064	0,552 0,152 0,092	91 66 66	0,001 0,486 0,159 0,078
Selection: All Normalise Resemblance: D1 E	uclidean distance				Denomin Groups	ators	Denominator	Den.df		·
Sums of squares typ Fixed effects sum t Permutation metho Number of permuta	oe: Type III (parti o zero for mixed d: Permutation o ttions: 999	al) terms f residuals under a ree	duced model		CC, CT7 CC, JC CC, JT7 CC, SC CC, ST7		1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8		
Factors Name		Abbrev. Levels	Туре		CT7, JC CT7, JT7 CT7, SC CT7, ST7		1 Res 1*Res 1*Res 1*Res	6 8 8 8		
Layout Time Interval		La Ti	Fixed Fixed	6 7	JC, JT7 JC, SC JC, ST7		1*Res 1*Res 1*Res	8 8 8		
PAIR-WISE TESTS	rs of lovels of fac	tor 'l avout'			JT7, SC JT7, ST7		1*Res 1*Res	8		
Within level '0' of fa	actor 'Time Interv	al'			Average	Distance betv	veen/within groups	8		
			Unique		ST7	сс	CT7	JC	JT7	SC
Groups	t P(MC)	P(perm)	perms		CC CT7	0,83413	0 49559			
CC, CT7	0,54262	0,615	126		JC	0,59055	0,40543	0,27567	0.074.45	
CC, JC	0,61 0,52983 0,614	0,629	126		SC ST7	0,6102 0,56291 0,60074	0,45478 0,42218 0,54684	0,43171 0,4858 0,60805	0,37145 0,29452 0,37032	0,14067 0,15431
CC, JT7	0,6074	0,663	126			9,9182E-2				
CC, SC	1,8176	0,109	126		Within le	vel '4' of facto	or 'Time Interval'		Unique	
CC, ST7	4,4495	0,003	126		Groups		t 3 1021E-2	P(perm)	perms	P(MC)
CT7, JC	0,12244	0,883	126		CC, JC		2,0649	0,065	126	0,072
СТ7, ЈТ7	0,91055	0,417	126		CC, SC		0,32834	0,717	91 41	0,746
CT7, SC	1,9007	0,112	126		CT7, JC		2,0659	0,069	126 91	0,089
CT7, ST7	3,5239	0,028	126		CT7, SC		0,43561	0,679	91 66	0,684
JC, JT7	0,91151	0,403	126		JC, JT7		1,8058	0,149	91 91	0,116
JC, SC	2,1806	0,07	126		JC, ST7		2,2412	0,01	66 66	0,056
JC, ST7	4,0088	0,009	126		JT7, ST7		5,0855	0,008	48	0,001
JT7, SC	0,5623	0,559	125		Denomin	ators	1,7470	0,15		0,110
JT7, ST7	0,575 3,9127 0,004	0,01	126		Groups CC, CT7	ulors	Denominator 1*Res	Den.df 8		
SC, ST7	5,3746 0,001	0,008	126		CC, JC CC, JT7 CC, SC		1*Res 1*Res 1*Res	8 8 8		

Denominat Groups CC, CT7 CC, JC CC, JT7 CC, SC CC, ST7 CT7, JC CT7, JT7 CT7, SC CT7, ST7 JC, JT7	tors	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		Den. df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CC, ST7 CT7, JC CT7, JC CT7, SC CT7, ST7 JC, JT7 JC, SC JC, ST7 JT7, SC JT7, ST7 SC, ST7		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
JC, SC JC, ST7 JT7, SC JT7, ST7		1*Res 1*Res 1*Res 1*Res		8 8 8	Average ST7 CC	Distance betv CC 0.37766	ween/within groups CT7	JC	JT7	SC	
SC, ST7		1*Res		8	CT7 JC	0,27928 2,8931	0,26277 2,8613	3,6198			
Average D	istance betwe CC	en/within grou	Ips CT7	JC ST7	JT7 SC	0,42575 0,27286	0,39319 0,24086 0,26453	2,6787 2,9169 3,0609	0,28661 0,44228 0,58701	0,24979	
СС	1,0786E-2		50	517	517	8,0435E-2	0,20433	5,0009	0,50701	0,19039	
CT7	1,295E-2		1,6989E-2		Within le	vel '5' of fact	or 'Time Interval'		Unique		
JC	9,8601E-3		1,2532E-2	1,2201E-2	Groups CC, CT7		t 1,434	P(perm) 0,308	perms 126	P(MC) 0,187	
sc.	2,316E-2		1,0900E-2	1,6403E-2	CC, JC CC, JT7		2,817	0,007	120	0,125	
ST7	1,7685E-2 4,2925E-2		1,3456E-2 3,8886E-2	3.9746E-2	CC, ST7		0,40217	0,772	126 126	0,692	
	4,8789E-2		5,4494E-2	2,4634E-2	CT7, JT7 CT7, SC		1,1386 2,9948E-3	0,259 1	126 125	0,306 0,996	
Within lev	el '1' of factor	'Time Interval'		Unique	CT7, ST7 JC, JT7		1,1857 0,46688	0,304 0,643	126 126	0,25 0,65	
Groups		t R(MC)	P(perm)	perms	JC, SC JC, ST7		0,59244 1,553	0,623	126 126	0,569 0,156	
CC, CT7		1,5342	0,122	66	JT7, SC JT7, ST7		2,524	0,23	91 125	0,041	
CC, JC		1,3466	0,144	91	Denomin	ators	1,0377	0,154	125	0,127	
CC, JT7		0,50657	0,532	17	Groups CC, CT7	4000	Denominator 1*Res	Den.df 8			
CC, SC		3,3209 0,01	0,017	91	CC, JC CC, JT7		1*Res 1*Res	8 8			
CC, ST7		2,6846 0,034	0,025	91	CC, SC CC, ST7		1*Res 1*Res	8			
CT7, JC		0,10472 0,918	0,886	126	CT7, JC CT7, JT7		1"Res	8			
CT7 SC		0,206	0,250	41	CT7, SC CT7, ST7		1 Res 1*Res 1*Pes	8 8			
CT7. ST7		0,323	0.748	91	JC, SC		1*Res 1*Res	8			
JC, JT7		0,61 1,2857	0,212	56	JT7, SC JT7, ST7		1*Res 1*Res	8			
JC, SC		0,237 0,82756	0,661	126	SC, ST7		1*Res	8			
JC, ST7		0,422 0,37293	0,855	126	Average	Distance betv CC	ween/within groups CT7	JC	JT7	SC	ST7
JT7, SC		0,717 3,1332	0,013	56	CC CT7	0,19434 1,0501	1,6107	4 0000			
JT7, ST7		2,5402 0.035	0,013	56	JC JT7	1,4152 1,9072	1,6061 1,7056	1,9892 1,7118 1,3786	1,8651	1 1351	
SC, ST7		1,2045 0,273	0,305	126	ST7	0,41348	1,1303	1,4845	1,8608	0,98601	0,61962
Denomina	tors	-, -			Within le	vel '6' of fact	or 'Time Interval'		Unique		
Groups CC, CT7		Denominator 1*Res		Den.df	Groups CC, CT7		t 1,2911	P(perm) 0,351	perms 91	P(MC) 0,241	
CC, JC CC, JT7		1*Res 1*Res		8	CC, JC CC, JT7		2,4438 2,5537 2,8234	0,032 0,025	91 66	0,051 0,038	
CC, SC CC, ST7		1*Res		8	CC, ST7		2,6324 2,5359	0,008	91	0,018	
CT7, JC CT7, JT7		1*Res		8	CT7, JC		1,0622 1,6845E-2	0,302	91	0,988	
CT7, SC CT7, ST7		1*Res		8	CT7, ST7		3,6415E-2	0,815	126	0,834	
JC, JT7 JC, SC		1"Res 1*Res		8	JC, JT7 JC, SC		1,2663 1,0453	0,244 0,38	91 91	0,232 0,338	
JC, ST7 JT7, SC		1*Res 1*Res		8	JC, ST7 JT7, SC		1,2446 0,37171	0,27 0,688	125 66	0,24 0,7	
JT7, ST7 SC, ST7		1*Res 1*Res		8 8	JT7, ST7 SC, ST7		3,1527E-2 0,33703	0,954 0,76	90 91	0,98 0,756	
Average D	istance betwe	en/within grou	ips CT7	IC	Denomin	ators	Denominator	Den df			
сс	JT7 4.1841E-2		SC	ST7	CC, CT7 CC, JC		1*Res 1*Res	8			
CT7	0,28538		0,44857		CC, JT7 CC, SC		1*Res 1*Res	8 8			
JC	0,26665		0,36461	0,43415	CC, ST7 CT7, JC		1*Res 1*Res	8 8			
JT7	3,4231E-2		0,28013	0,25989	CT7, JT7 CT7, SC		1*Res 1*Res	8			
SC	3,0578E-2 9,7137E-2		0,27255	0,24708	JC, JT7		1*Res 1*Res	8			
ST7	0,17469		0,28745	0,27318 0,16929	JC, ST7 JT7, SC		1*Res 1*Res	8			
Within lev	el '2' of factor	'Time Interval'		- x	JT7, ST7 SC, ST7		1*Res 1*Res	- 8 8			
_				Unique	Average	Distance betv	ween/within groups		_	_	
Groups		t P(MC)	P(perm)	perms	CC	CC 0,33025	CT7	JC	JT7	SC	ST7
		0,31// 0,767 2,5433	0,736	D0 01		1,1568 1,9964 0.86432	1,7424 1,8345 1,2152	2,1028	0 8301		
CC JT7		2, 3433 0,03 1 1891	0,074	71	SC ST7	1,0265	1,2595 1,2 <i>5</i> 95	1,4885 1,4971	0,74965	0,9346	0 87725
CC, SC		0,264	0.342	126		5,75755	1,2770	1,7771	5,7775	5,7777	0,07733
CC, ST7		0,261 0,524	0,559	91							
		0,614			1						

CT7, JC		2,5361	0,057	91
СТ7, ЈТ7		0,031 1,0898	0,363	66
CT7, SC		0,288 1,0836	0,401	91
CT7, ST7		0,312 0,2779	0,732	66
JC, JT7		0,789 1,253	0,267	91
JC, SC		0,245 1,0128	0,338	126
JC, ST7		0,336 2,4174	0,047	91
JT7, SC		0,042 0,1375	0,883	91
JT7, ST7		0,903 0,95609	0,393	66
SC, ST7		0,361 0,97178 0,355	0,457	91
Denomina	tors			
Groups		Denominator	Den.df	
CC, CT7		1*Res	8	
CC, JC		1*Res	8	
CC, J17		1*Res	8	
		1*Dee	0	
CC, S17		1*Bos	0	
CT7 JT7		1*Dor	8	
		1*Res	8	
CT7 ST7		1*Res	8	
JC. JT7		1*Res	8	
JC, SC		1*Res	8	
JC, ST7		1*Res	8	
JT7, SC		1*Res	8	
JT7, ST7		1*Res	8	
SC, ST7		1*Res	8	
Average D	istance betwe	en/within groups		
	CC	СТŻ	JC	
JT7	SC	ST7		
CC	0,22272			
CT7	0,1675	0,14539		
JC	0,56145	0,53275	0,50149	
JT7	0,33046	0,29355	0,47362	
SC	0,34804	0,30486	0,50056	
ST7	0,17613	0,12214	0,51951 0.14316	
Within lev	el '3' of factor	'Time Interval'	2,71010	
				Unique
Groups		t P(MC)	P(perm)	perms
CC, CT7		9,5433E-3 0.992	0,994	91
CC, JC		0,1764 0.861	0,898	56
CC, JT7		0,90805 0,376	0,397	91
CC, SC		1,3498 0,208	0,301	126
CC ST7		1 7811	0 122	91
cc, 317		0,106	0,122	
CT7, JC		0,106 0,26977 0,796	0,83	41
ст7, јс ст7, јт7		0,106 0,26977 0,796 1,2434 0,254	0,83 0,278	41 41
CT7, JC CT7, JT7 CT7, SC		0,106 0,26977 0,796 1,2434 0,254 2,0538 0,092	0,83 0,278 0,061	41 41 91
CT7, JC CT7, JT7 CT7, SC CT7, ST7		0,106 0,26977 0,796 1,2434 0,254 2,0538 0,092 2,7401 0,026	0,83 0,278 0,061 0,009	41 41 91 66

PERMANOVA post-hoc results of OCR of textile substrates in factor 'Time Interval'

PERMANOVA Permutation	al MANOVA				Ave	rage Distance 0	e between/withi	n groups 1	2	3	4
Resemblance	e worksheet				0	5 1,2201E-2		0			
Data type: D	listance				1	0,29809		0,43415			
Normalise	u a. D1 Euclidean dictar				2	0,67112		0,53361	0,50149		
Sums of squares type: Type III (partial)					3	0,66874		0,50211	0,35132	0,27567	
Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model				4	3,0942		2,8931	2,6975	2,6633	3,6198	
Number of permutations: 999			5	1,6956		1,494	1,2753	1,2112	2,6669		
Factors					6	2,287		2,0598	1,8148	1,8053	2,6511
Name Lavout		Abbrev. La	Type Fixed	Levels 6		1,8492		2,1028			
Time Interva	ıl	Ti	Fixed	7	Wit	nin level 'JT7'	of factor 'Layou	iť			
PAIR-WISE T	ESTS				Gro	ups	t 4 5752	P(perm)	Unique perms 56	P(MC)	
Term 'LaxTi'	for pairs of levels of	factor 'Time Interval'			0, 2		2,4025	0,044	91 91	0,047	
Within level	'CC' of factor 'Layout'				0,4		5,6318	0,007	91	0,002	
C		D(=====)	Unique	D(MC)	0, 5		3,2622	0,007	126	0,016	
0.1	3,2984	0,008	91	0.012	1, 2		1,9175	0,011	41	0,008	
0, 2	1,7429	0,047	126	0,113	1, 3		1,5698	0,139	41	0,156	
0,3	2,0021	0,025	126	0,091	1, 4		4,9312	0,014	41	0,002	

0, 4 0, 5 0, 6 1, 2 1, 3 1, 5 1, 6 2, 4 2, 5 2, 6 3, 5 3, 6 3, 5		1,9324 4,0004 3,1357 1,0747 1,8085 1,4922 3,0885 2,6303 1,4298 0,65271 1,1049 1,4859 1,1049 1,0437 1,05 0,70298 0,012907	0,155 0,012 0,006 0,379 0,23 0,023 0,031 0,275 0,557 0,577 0,77 0,737 0,348 0,44 0,667 0,85		126 126 91 91 66 126 126 126 126 126 126 126 126 126	0,075 0,007 0,014 0,332 0,113 0,032 0,163 0,235 0,28 0,163 0,28 0,163 0,315 0,341 0,513 0,898	1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4 3, 5 3, 6 4, 6 5, 6 <i>Denc</i> Grou 0, 1	minators ps	3,1494 3,74 0,31407 1,3018 2,6296 2,4753 1,7151 2,7353 2,6987 2,2965 1,8528 1,2857 Denominator 1*Res	0,011 0,009 0,781 0,224 0,015 0,049 0,108 0,017 0,008 0,026 0,084 0,263	Den.df	56 41 66 66 91 66 41 66 91 91 91	$\begin{array}{c} 0,011\\ 0,006\\ 0,749\\ 0,235\\ 0,027\\ 0,05\\ 0,129\\ 0,024\\ 0,025\\ 0,055\\ 0,108\\ 0,246\end{array}$
4, 6 5, 6 Deno Grou 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 4 2, 5 2, 6 3, 5	minators ps	0,64714 0,69935 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,494 0,5	Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 66	0,513 0,52	0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 2, 6 3, 6 4, 5 5, 6 6	ngo Distance	1*Res 1*Res		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
3, 5 3, 6 4, 5 4, 6		1*Res 1*Res 1*Res		8 8 8			4 0	0 5 2.316E-2	between/with	1 6		2	3
5, 6	ngo Distanco	1*Res	n arouns	8			1	7,5686E-2		3,0578E-2			
Aith	0 4	between men	1 5		2 6	3	2	0,38723		0,3408		0,42464	
0	1,0786E-2		4 19415 2				3	0,41216		0,36675		0,3531	0,37145
2	0,16353		0,13609	0,2	2272		5	0,28661 2,1967		2,121		1,8442	1,8863
3	0,61497		0,58933	0,5	8368	0,83413	1,61 6	91 1,2427		1,8651 1,167		0,90859	0,93227
4	0,28054		0,26835	0,2	7524	0,58822	With	0,69422	f factor 'l avout	1,3597		0,8391	
5	0,28364 0,2619		0,23196 0,19434	0,2	2618	0,54954	Grou	ps	t	P(perm)		Unique perms	P(MC)
6	0,38217 0,31575		0,33049 0,25564	0,3 0,3	0215 3025	0,568	0, 1 0, 2		7,2605 2,1855	0,009 0,005		126 126	0,001 0,051
With	in level 'CT7' (of factor 'Layou	ıt'				0,3		3,9959 2,3422	0,007 0,009		126 91	0,003 0,045
Grou 0.1	ps	t 1.8543	Р	(perm) 0.009	perms 126	P(MC) 0.101	0,5		2,8775 4,1605 1,3274	0,009 0,01 0,149		126 91 126	0,018 0,005 0,204
0, 2 0, 3		3,3235 3,0911		0,008 0,014	91 91	0,01 0,008	1, 3 1, 4		0,77669 0,60272	0,524 0,52		66 91	0,468 0,513
0,40,5		2,6565 1,9045		0,048 0,028 0.067	126 126 126	0,034 0,104 0,101	1,5		2,4751 3,677 1,0718	0,011 0,01 0,382		126 91 126	0,044 0,01 0.34
1, 2 1, 3		0,74148		0,601 0,254	91 91	0,498 0,319	2, 3		0,92526 1,6762	0,473 0,14		91 125	0,386 0,127
1, 4 1, 5		0,28358 1,3215		0,819 0,315	126 91	0,792 0,237	2,6 3,4		2,561 0,13964	0,043 0,895		91 91	0,024 0,888
1, 6 2, 3 2 4		2,0599		0,051	66 91	0,072	3, 5		2,3536 3,5181 2,2757	0,024 0,011 0.033		91 91	0,043
2, 5 2, 6		1,5902 1,6067		0,219 0,22	91 91	0,144 0,164	4,6		3,3871 0,46536	0,007 0,656		66 91	0,007 0,644
3, 4 3, 5		1,5537 0,86043		0,146 0,418	91 91	0,168 0,402	Deno	minators	D		D		
3, 6 4, 5 4 6		0,91585 1,4484 1 473		0,313	91 126 126	0,365 0,196 0.17	0, 1	ps	1*Res 1*Res		Den.dr 8 8		
5,6		7,4498E-2		0,891	125	0,938	0, 3 0, 4		1*Res 1*Res		8 8		
Deno Grou	minators ps	Denominator		Den.df			0,5		1*Res 1*Res		8		
0, 1 0, 2 0, 3		1*Res 1*Res		8			1, 2		1*Res 1*Res		8 8		
0, 4 0, 5		1*Res 1*Res		8 8			1,5 1,6		1*Res 1*Res		8 8		
0,6		1*Res 1*Res		8			2,3 2,4		1*Res 1*Res		8		
1, 4 1, 5		1*Res 1*Res		8			2,6		1*Res 1*Res		8 8		
1,6 2,3		1*Res 1*Res		8			3, 5 3, 6		1*Res 1*Res		8		
2,4		1*Res 1*Res 1*Pos		8 8			4,5		1*Res 1*Res		8 8		
3, 4 3, 5		1*Res 1*Res		8			Aver	age Distance	between/withi	n groups	0		
3,6 4,5		1*Res 1*Res		8			4	0		1 6		2	3
4,6 5,6		1°Res 1*Res		8 8			1	0,16265		5,4525E-2			
Aver	age Distance I 0	between/withi	n groups 1	2		3	2	0,4182		0,31001		0,47589	
4 0	5 1,6989E-2		6				3	0,20594		9,8577E-2		0,30886	0,14067
1	0,32154		0,44857				4	0,22092		0,17304		0,33609	0,18695
2	0,18657		0,28359	0,14539			5	1,1728 0,98819		1,0102 1,1351		0,91825	0,98

3 0,60656		0,48166		0,44372		0,49559
4 0,28392		0,32833		0,20148		0,41294
5 1,1567		1,0918		1,0703		1,0796
1,0752		1,6107				
6 1,2823		1,2002		1,1909		1,1681
1,1787		1,3668		1,7424		
Within level 'JC' of	factor 'Layout				Unique	
Groups	t		P(perm)		perms	P(MC)
0, 1	1,6631		0,026		126	0,126
0, 2	3,6794		0,006		126	0,007
0, 3	5,8575		0,01		56	0,002
0, 4	2,2661		0,006		126	0,059
0, 5	2,0916		0,002		126	0,072
0, 6	2,9655		0,006		126	0,014
1, 2	1,4693		0,176		126	0,164
1, 3	1,7592		0,171		56	0,127
1, 4	2,0317		0,074		126	0,076
1, 5	1,6857		0,059		126	0,125
1,0	2,5148		0,026		126	0,034
2, 3	1,103E-2		0 120		124	0,992
2,4	1,737		0,120		120	0,11
2, 5	2 0391		0,275		120	0,242
3 4	1 7702		0,040		56	0,000
3. 5	1.2544		0.284		56	0.246
3.6	2.0758		0.04		56	0.08
4, 5	0,88071		0,357		126	0,404
4, 6	0,51471		0,587		126	0,627
5,6	0,52852		0,614		91	0,61
Denominators						
Groups	Denominator		1	Den.df		
0, 1	1*Res			8		
0, 2	1*Res			8		
0, 3	1"Res			8		
0,4	1"Res 1*Res			8		
0,5	1*Pos			8		
1 2	1*Res			8		
1, 3	1*Res			8		
1, 4	1*Res			8		
1, 5	1*Res			8		
1,6	1*Res			8		
2, 3	1*Res			8		
2, 4	1*Res			8		
2, 5	1*Res			8		
2, 6	1"Res			8		
3, 4	1"Res			8		
3,5	1*Pos			0		
4 5	1*Res			8		
4. 6	1*Res			8		
5,6	1*Res			8		

6 1,4202 1,1993	1,2 0,896	576 98	1,1 0,9	0705 346	1,2143
Within level 'ST7' o	of factor 'Layout'				
Groups 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4 5, 5 3, 6 5, 6	t 3,0138 2,9687 0,25125 0,20468 1,4131 3,7712 0,19908 2,3138 2,8248 0,62361 3,1335 2,2045 2,2045 2,2045 2,7503 0,69319 3,1927 0,5737 1,3122 3,6828 1,4296 3,776 2,1577	P(perm) 0,007 0,006 0,57 0,874 0,066 0,818 0,07 0,02 0,653 0,01 0,03 0,024 0,616 0,017 0,642 0,042 0,046 0,017 0,042 0,006 0,331 0,006 0,006 0,065		Jnique perms 126 91 66 126 126 126 91 66 91 91 91 91 91 91 91 91 91 91 91 91 91	P(MC) 0,021 0,026 0,565 0,844 0,197 0,066 0,851 0,067 0,017 0,538 0,016 0,053 0,021 0,528 0,014 0,523 0,014 0,523 0,014 0,524 0,019 0,024
Denominators Groups 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 1, 2 1, 3 1, 4 1, 5 1, 6 2, 3 2, 4 2, 5 2, 6 3, 4 3, 5 3, 6 4, 5 4, 6 5, 6	Denominator 1"Res		Den.df & 8 8 8 8 8 8 8 8 8 8 8 8 8		
Average Distance I 0 4 5	between/within grou 1 6	ps	2		3
0 2,4634E-2	U				
1 0,18646	0,169	29			
2 0,16987	0,131	37	0,14316		
3 6,5832E-2	0,175	159	0,156/3		9,9182E-2
8,0435E-2 5 0,37383 0,3914	0,401 0,619	87 162	0,39856		0,39057
6 1,208 1,2144	1,03 1,00	35)9	1,0492 0,87735		1,187

PERMADISP results of OCR

PERMDISP Distance-based test for homogeneity of multivariate dispersions

Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance

Group factor: Time Interval Number of permutations: 999

Number of groups: 7 Number of samples: 210

DEVIATIONS FROM CENTROID F: 11,384 df1: 6 df2: 203 P(perm): 0,001

 PAIRWISE COMPARISONS

 Groups
 t

 (0,1)
 4,1072

 (0,2)
 6,6218
 P(perm) 1E-3 1E-3

(0,3)	6,7892	1E-3
(0,4)	3,3894	1E-3
(0,5)	6,9772	1E-3
(0,6)	7,1476	1E-3
(1,2)	2,1202	0,134
(1,3)	3,1015	3,4E-2
(1,4)	2,7992	3E-3
(1,5)	5,854	1E-3
(1,6)	5,8027	1E-3
(2,3)	1,2219	0,34
(2,4)	2,3688	0,151
(2,5)	5,1113	1E-3
(2,6)	4,937	1E-3
(3,4)	2,0633	0,27
(3,5)	4,5383	1E-3
(3,6)	4,2648	1E-3
(4,5)	0,59354	0,714
(4,6)	0,15625	0,923
(5,6)	0,66773	0,589

MEANS A	ND SI ANDI	ARD ERRORS	
Group	Size	Average	SE
0	30	1,5431E-2	2,9063E-3
1	30	0,15237	3,3214E-2
2	30	0,25672	3,6323E-2
3	30	0,32833	4,5997E-2
4	30	0,83786	0,24263
5	30	1,0047	0,14175
6	30	0,88023	0,12096

PERMADISP results of OCR in sisal layouts

PERMDISP

Distance-based test for homogeneity of multivariate dispersions

Resemblance worksheet Name: Resem7 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance

Group factor: Time Interval Number of permutations: 999

Number of groups: 3 Number of samples: 30

DEVIATIONS FROM CENTROID F: 7,6866 df1: 2 df2: 27 P(perm): 0,005

PAIRWISE	COMPARISONS			
Groups	t		P(perm)	
(4,5)	3,7312		1E-3	
(4,6)	3,9611		1E-3	
(5,6)	0,42698		0,704	
MEANS AN	D STANDARD E	RRORS		
Group	Size	Average		SE
4	10	0,12501		3,5612E-2
5	10	0,65535		0,1376
6	10	0,58032		0,10929

PERMANOVA	post-hoc results	of OCR duplication	of textile su	ıbstrates in f	actor
'Layout'					

PERMANOVA Permutational MANOVA Resemblance worksheet Name: Resem1 Data type: Distance Selection: All Resemblance: D1 Euclidean distance Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Unrestricted permutation of raw data Number of permutations: 999

Factors Name Abbrev. Type Levels

Layout	La	Fixed	6		
PAIR-WISE T	ESTS				
Term 'La'					
Groups CC, CT7 CC, JC CC, JC CC, SC CC, ST7 CT7, JC CT7, JC CT7, ST7 JC, ST7 JC, ST7 JC, ST7 JT7, SC JT7, ST7 SC, ST7	t 1,3028 0,76562 1,5909 2,368 2,9858 2,1312 0,11762 1,1811 2,0808 2,5094 3,2626 3,8486 2,1728 4,342 4,342 3,6831	P(perm) 0,196 0,471 0,135 0,097 0,008 0,046 0,914 0,37 0,045 0,038 0,032 0,01 0,07 0,011	Unique perms 88 91 63 66 91 126 91 91 126 91 91 126 66 91 91 91	P(MC) 0,218 0,478 0,144 0,022 0,065 0,927 0,263 0,057 0,039 0,011 0,005 0,053 0,003 0,003 0,008	
Denominato	ors				
Groups CC, GT7 CC, JC CC, JC CC, SC CC, SC CC, ST7 CT7, JC CT7, SC CT7, ST7 JC, JT7 JC, ST7 JC, ST7 JT7, SC JT7, ST7 SC, ST7	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Average Dis	tance between/within	n groups	177	sc	ст 7
CC 25 CT7 22 JC 23 JT7 21	8,33 8,65 173,68 86,1 300,82 7,43 124,07	275,88 300,86	78,806		517
SC 24 ST7 28	4,01 118,95 5,72 135,71	345,22 392,68	76,809 126,94	40,144 56,812	13,649

PERMANOVA results of HOBO loggers (left) and PERMADISP (right)

PERMANOVA Permutational MANOVA	RMANOVA mutational MANOVA				PERMDISP Distance-based test for homogeneity of multivariate dispersions				
Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance				Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Normalise Resemblance: D1 Euclidean distance					
Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999				Group factor: location Number of permutations: 999 Number of groups: 2 Number of groups: 2					
Factors Name location PAIR-WISE TESTS	Abbrev. lo	Type Fixed	Levels 2		DEVIATIONS FROM CENTROID F: 296,94 df1: 1 df2: 253 P(perm): 0,001				
Term 'lo'					PAIRWISE COMPARISONS Groups (south west,north east)			t 17,232	P(perm) 1E-3
Groups south west, north east			Unique t perms 7,8272	P(perm) P(MC) 0,001	MEANS AND STANDARD ERROF Group south west north east	25 Size 165 90	Average 1,0188 0,34749	SE 2,5213E-2 2,5377E-2	
Denominators Groups			Denominator Den.df	0,001					

south west, north east 253

1*Res

north east 0,48012

Average Distance between/within groups south west south west 1,1704 north east 1,1816

PERMANOVA results leaf number

PERMANOVA Permutational MANOVA

Resemblance worksheet Name: leaf number Data type: Distance Selection: All Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

	Abbrev	v. Type	Levels			
	La	Fixed	6			
al	Ti	Fixed	5			
A table o	of results				Unimum	
df	ss	MS	Pseudo-F	P(perm)	perms	P(MC)
5	75.873	15,175	0.19753	0.957	999	0.968
4	1.4256E5	35639	463.92	0.001	999	0.001
20	2941.8	147.09	1.9147	0.015	999	0.012
120	9218.5	76.821	.,	-,		-,
149	1,5479E5					
he expec EMS	cted mean squ	ares (EMS) for the	e model			
1*V(R	es) + 25*S(La)					
1*V(R	es) + 30*S(Ti)					
1*V(R	es) + 5*S(LaxTi)				
1*V(R	es)					
n of Pse	udo-F ratio(s)	from mean squar	es			
Nume	rator	Denominator	Num.df	Den.df		
1*La		1*Res	5	120		
1*Ti		1*Res	4	120		
1*Lax	Ti	1*Res	20	120		
f compo	nents of varia	tion				
É.	stimate	Sq.root				
-)	2,4659	-1,5703				
	1185,4	34,43				
	14,054	3,7488				
	76,821	8,7648				
	al df 5 4 200 149 he exped EMS 1*V(R))))))))))))))))))))))))))))))))))))	Abbre La al Ti A table of results df SS 5 75,873 4 1,4256E5 20 2941,8 120 9218,5 149 1,5479E5 the expected mean sque EMS 1*V(Res) + 25*S(La) 1*V(Res) + 30*S(Ti) 1*V(Res) + 5*S(LaxTi 1*V(Res) + 5*S(LaxTi 1*V(Res) n of Pseudo-F ratio(s) Numerator 1*La 1*Ti 1*La 1*La 1*Ti 1*LaxTi f components of variate -2,4659 1185,4 14,054 76,821	Abbrev. Type La Fixed al Ti Fixed A table of results df SS MS 5 75,873 15,175 4 1,4256E5 35639 20 2941,8 147,09 120 9218,5 76,821 149 1,5479E5 the expected mean squares (EMS) for the EMS 1*V(Res) + 30*S(Ti) 1*V(Res) + 30*S(Ti) 1*V(Res) + 5*S(La) 1*V(Res) + 5*S(La) 1*V(Res) no f Pseudo-F ratio(s) from mean squar Numerator Denominator 1*La 1*Res 1*La 1*Res 1*La 1*Res f components of variation Estimate Sq.root -2,4659 -1,5703 1185,4 34,43 14,054 3,7488 76,821 8,7648	Abbrev.TypeLevelsLaFixed6alTiFixeddfSSMSPseudo-F575,87315,1750,1975341,4256E535639463,92202941,8147,091,91471209218,576,8211491491,5479E55he expected mean squares (EMS) for the modelEMS1*V(Res) + 30*S(Ti)1*V(Res) + 5*S(La)1*V(Res) + 5*S(LaXTi)1*V(Res)framean squaresNumeratorDenominatorNumeratorDenominatorNumeratorDenominatorNumeratorJenominator1*La1*Res41*LaXTi1*Res41*LaXTi1*Res20f components of variationEstimateSq.root-2,4659-1,57031185,43,748876,8218,7648	Abbrev.TypeLevelsLaFixed6alTiFixed5A table of resultsdfSSMSPseudo-FP(perm)575,87315,1750,197530,95741,4256E535639463,920,001202941,8147,091,91470,0151209218,576,8211491,5479E5he expected mean squares (EMS) for the modelEMS1*V(Res) + 25*S(La)1*V(Res) + 30*S(Ti)1*V(Res)51*V(Res) + 5*S(LaXTi)1*V(Res)51*V(Res)form mean squaresNumeratorDenominatorNum.dfDen.df1*La1*Res41*La1*Res41*La1*Res201*LaXTi1*Res20120fcomponents of variationEstimateSq.root-2,4659-1,57031185,43,748876,8218,7648	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

PERMANOVA post-hoc results of leaf number in factor 'Layout'

PERMANOVA				Denominators					
Permutational MANOVA				Groups		Denominator	Den.o	df	
				CC, CT7		1*Res	8		
Resemblance worksheet				CC, SC		1*Res	8		
Name: leaf number				CC, ST7		1*Res	8		
Data type: Distance				CC. FT		1*Res	8		
Selection: All				CC, Control		1*Res	8		
Resemblance: D1 Euclidean	distance			CT7, SC		1*Res	8		
				CT7, ST7		1*Res	8		
Sums of squares type: Type	III (partial)			CT7, FT		1*Res	8		
Fixed effects sum to zero fo	or mixed terms			CT7, Control		1*Res	8		
Permutation method: Perm	utation of residuals under a	reduced model		SC, ST7		1*Res	8		
Number of permutations: 99	99			SC, FT		1*Res	8		
				SC, Control		1*Res	8		
Factors				ST7, FT		1*Res	8		
Name	Abbrev.	Type	Levels	ST7, Control		1*Res	8		
Lavout	La	Fixed	6	FT, Control		1*Res	8		
Time Interval	Ti	Fixed	5	,					
				Average Distance	e between/within	groups			
PAIR-WISE TESTS				5	CC	CT7	SC	ST7	FT
					Control				
Term 'LaxTi' for pairs of lev	els of factor 'Lavout'			cc	12.039				
					,				
Within level '0' of factor 'Tir	ne Interval'			CT7	8,9255	5,2536			
					-,	-)			
	Unique			SC	9,1908	7,6191	8,7989		
Groups	t		P(perm)		.,	,	-,		
	perms		P(MC)	ST7	10,847	8,3396	9,6701	12,574	
CC, CT7	Denominator is 0		(-	.,•	.,	.,	,	
-									

CC, SC		Denominator is 0			FT	10,26	9,6728	8,2524	10,976	10,354
CC, ST7		Denominator is 0			Control	13,523	14,811	11,106	14,447	10,386
CC, FT		Denominator is 0			Weiter Loop Die G	10,347				
CC, Control		Denominator is 0			Within level 3 of	factor Time Inter	rval		Unique	
CT7, SC		Denominator is 0			Groups CC, CT7		t 0,84707	P(perm) 0,409	perms 126	P(MC) 0,42
CT7, ST7		Denominator is 0			CC, SC CC, ST7		1,8726 1,3347	0,113 0,202	126 126	0,095 0,192
CT7 FT		Denominator is 0			CC, FT		1,4101	0,217	126 126	0,205
CT7 Control		Denominator is 0			CT7, SC		0,85482	0,419	116	0,401
					CT7, FT		0,5929	0,564	126	0,57
SC, ST/		Denominator is 0			SC, ST7		0,4058 0,26206	0,667 0,804	126 81	0,685 0,794
SC, FT		Denominator is 0			SC, FT SC, Control		0,10862 1,641	0,921 0,148	123 126	0,925 0,144
SC, Control		Denominator is 0			ST7, FT ST7, Control		0,11866	0,918	126 126	0,914
ST7, FT		Denominator is 0			FT, Control		1,0745	0,315	126	0,3
ST7, Control		Denominator is 0			Denominators			_		
FT, Control		Denominator is 0			CC, CT7		Denominator 1*Res	Den.c 8	11	
					CC, SC CC, ST7		1*Res 1*Res	8 8		
Denominators Groups		Denominator	Den df		CC, FT		1*Res 1*Res	8		
CC, CT7		1*Res	0		CT7, SC		1*Res	8		
CC, ST7		1*Res	0		CT7, FT		1*Res	o 8		
CC, FT CC, Control		1*Res 1*Res	0		CT7, Control SC, ST7		1*Res 1*Res	8 8		
CT7, SC CT7, ST7		1*Res 1*Res	0		SC, FT SC, Control		1*Res 1*Res	8		
CT7, FT		1*Res 1*Res	0		ST7, FT		1*Res	8		
SC, ST7		1*Res	0		FT, Control		1*Res	8		
SC, FT SC, Control		1*Res 1*Res	0		Average Distance	between/within	groups			
ST7, FT ST7, Control		1*Res 1*Res	0 0			CC Control	CT7	SC	ST7	FT
FT, Control		1*Res	0		сс	12,721				
Average Distance bet	tween/within g	groups			CT7	11,835	12,987			
сс	0	SC 51.	FI Control		sc	13,063	9,937	8,0741		
CT7 SC	0 0 0 0	0			ST7	13,42	11,235	8,7302	12,284	
ST7 FT	0 0	0 0	0		FT	13.855	11.649	9.6157	11.254	14.1
Control	0 0	0 0	0 0		Control	0.0687	9 5151	9.0712	10.879	10 897
Within level '1' of fact	tor 'Time Inter	val'			controt	8,8069	7,5151	9,0712	10,077	10,097
				Unique	Within level '4' of	factor 'Time Inter	rval'			
Groups		t P(MC)	P(perm)	perms	Groups		t	P(perm)	Unique perms	P(MC)
CC, CT7		1,8259	0,101	91	CC. CT7		0 5963	0 42E	. 66	0 589
		0.106			CC. SC		1.6	0.147	91	0,161
CC, SC		0,106 3,2294	0,034	91	CC, SC CC, ST7		1,6 1,1955	0,035 0,147 0,285	91 49	0,161 0,271
CC, SC CC, ST7		0,106 3,2294 0,01 2,2454	0,034 0,054	91 91	CC, SC CC, ST7 CC, FT CC, Control		1,6 1,1955 1,1861 0,36326	0,147 0,285 0,324 0,905	91 49 66 23	0,161 0,271 0,26 0,73
CC, SC CC, ST7 CC, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521	0,034 0,054 0,019	91 91 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7		1,1955 1,1955 1,1861 0,36326 0,99468 0,65617	0,033 0,147 0,285 0,324 0,905 0,214 0,584	91 49 66 23 66 91	0,161 0,271 0,26 0,73 0,37 0,527
CC, SC CC, ST7 CC, FT CC, Control		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204	0,034 0,054 0,019 0,263	91 91 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control		1,6 1,1955 1,1861 0,36326 0,65617 0,85357 0,9535	0,033 0,147 0,285 0,324 0,905 0,214 0,584 0,559 0,451	91 49 66 23 66 91 91 41	0,161 0,271 0,26 0,73 0,37 0,527 0,423 0,352
CC, SC CC, ST7 CC, FT CC, Control CT7 SC		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443	0,034 0,054 0,019 0,263 0,104	91 91 91 66 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC FT		1,6 1,1955 1,1861 0,36326 0,696468 0,65617 0,85357 0,9535 0,26142 0,23749	0,033 0,147 0,285 0,324 0,905 0,214 0,584 0,559 0,451 0,762 0,97	91 49 66 23 66 91 91 41 91 126	0,161 0,271 0,26 0,73 0,37 0,527 0,423 0,352 0,808 0,814
CC, SC CC, ST7 CC, FT CC, Control CT7, SC		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 4,4925	0,034 0,054 0,019 0,263 0,104	91 91 91 66 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, Control SC, ST7 SC, FT SC, Control ST7		1,6 1,1955 1,1861 0,36326 0,99468 0,65617 0,85357 0,9535 0,26142 0,23749 1,9579 0,40542	0,137 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082	91 49 66 23 66 91 91 41 126 91 126	0,161 0,271 0,26 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26	0,034 0,054 0,019 0,263 0,104 0,253	91 91 66 91 126	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control		1,6 1,1955 1,1861 0,36326 0,99468 0,65617 0,95355 0,26142 0,23749 1,9579 0,40542 1,5008	0,133 0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193	91 49 66 23 66 91 91 41 41 126 91 126 56	0,161 0,271 0,26 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,925 0,096	0,034 0,054 0,019 0,263 0,104 0,253 0,072	91 91 66 91 126 126	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control		1,6 1,1955 1,1861 0,36326 0,99468 0,65617 0,85355 0,26142 0,23749 1,9579 0,40542 1,5068 1,3643	0,133 0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239	91 49 66 23 66 91 41 91 126 91 126 56 91	0,161 0,271 0,226 0,73 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,049 1,2204 0,282 2,0443 0,284 1,1835 0,26 1,925 0,266 1,925 0,096 5,1327E-2 0,962	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986	91 91 66 91 126 126 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control		1,6 1,6 1,1955 1,1861 0,39326 0,99468 0,65617 0,85357 0,25142 0,23749 1,9579 0,40542 1,3668 1,3663	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239	91 49 66 23 66 91 41 91 126 91 126 56 91	0,161 0,271 0,26 0,73 0,527 0,423 0,352 0,808 0,814 0,884 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,25521 0,282 2,0443 0,282 2,0443 0,282 1,1835 0,26 1,925 0,26 1,925 0,266 1,925 0,096 0,18669 0,885	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854	91 91 66 91 126 126 91 116	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control CT7, Control FT, Control CC, CT7		1,6 1,6 1,1955 1,1861 0,35326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,23749 1,9579 0,40542 1,3663 1,3663 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,082 0,709 0,193 0,239	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,282 2,0443 0,282 2,0443 0,284 1,1835 0,26 1,925 0,26 1,925 0,266 1,925 0,096 0,18669 0,8865 0,82307	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466	91 91 66 91 126 126 91 116 126	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control CC, CT7 CC, SC CC, ST7		1,6 1,6 1,1955 1,1861 0,35326 0,99468 0,65617 0,85357 0,26142 0,23749 1,9579 0,24742 1,5068 1,3643 Denominator 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,2443 0,084 1,1835 0,26 1,925 0,096 5,1327E-2 0,962 0,962 0,865 0,82307 0,436 0,433 0,436	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306	91 91 66 91 126 126 91 116 126 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control CC, CT7 CC, SC CC, ST7 CC, COTrol CC, COTrol CC, COTrol		1,6 1,6 1,1955 1,1861 0,35326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,40542 1,3668 1,3643 Denominator 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,2443 0,084 1,1835 0,26 1,925 0,096 5,1327E-2 0,962 0,965 0,865 0,865 0,865 0,865 0,865 0,865 0,436 1,1305 0,286	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657	91 91 66 91 126 126 91 116 126 91 126	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control CC, CT7 CC, ST7 CC, ST7 CC, ST7		1,6 1,6 1,1951 1,1861 0,35326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,40542 1,3668 1,3643 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,584 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,1835 0,26 1,1925 0,096 5,1327E-2 0,962 0,865 0,865 0,865 0,865 0,865 0,865 0,436 1,1305 0,286 0,43564 0,682 0,09784	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365	91 91 66 91 126 126 91 116 126 91 126 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, ST7 CT7, ST7 CT7, FT		1,6 1,6 1,1951 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,40542 1,3068 1,3643 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,1835 0,26 1,1835 0,26 1,1925 0,096 0,18669 0,885 0,885 0,885 0,885 0,435 1,1305 0,286 0,435 4,1305 0,286 0,96784 0,36 1,405 0,967	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365	91 91 66 91 126 126 91 116 126 91 126 91	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, FT ST7, Control ST7, FT ST7, Control ST7, Control FT, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, SCT CT7, ST7 CT7, Control SC, ST7 CT7, Control SC, ST7 CT7, Control SC, ST7 CT7, Control SC, ST7 CT7, CONTROL		1,6 1,6 1,1955 1,1861 0,35326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,40542 1,3068 1,3643 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,084 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,1835 0,26 1,1835 0,26 1,1835 0,26 1,1835 0,26 0,966 0,885 0,885 0,885 0,28307 0,435 4,1305 0,286 0,96784 0,96784 0,96784 0,967	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185	91 91 66 91 126 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control FT, Control CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, SC CT7, ST7 CT7, Control SC, CONTOI SC, ST7 SC, Control		1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,24749 1,9579 0,40542 1,3643 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,1835 0,26 1,1835 0,26 1,1835 0,26 1,1925 0,966 0,966 0,885 0,885 0,885 0,885 0,433 6,435 4,1305 0,286 0,435 6,435 4,1305 0,286 0,96784 0,36 1,4858 0,193	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185	91 91 66 91 126 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, SCT CT7, ST7 CT7, Control SC, ST7 SC, FT SC, Control ST7, FT SC, Control ST7, Control		1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,24749 1,9579 0,40542 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,151 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control Denominators Groups		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,084 1,1835 0,084 1,1835 0,926 5,1327E-2 0,966 5,1327E-2 0,966 5,1327E-2 0,966 0,4336 1,1305 0,286 0,043564 0,682 0,43564 0,682 0,435 1,14558 0,193 2 Penominator	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185	91 91 66 91 126 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control		1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,25142 0,23749 1,9579 0,24749 1,9579 0,40542 1,3068 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,770 0,082 0,779 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Penominators Groups CC, CT7 CC, SC		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,084 1,1835 0,084 1,1835 0,926 5,1327E-2 0,966 5,1327E-2 0,966 5,1327E-2 0,966 5,1327E-2 0,966 5,1327E-2 0,966 5,1327E-2 0,966 1,1305 0,286 0,43564 0,682 0,43564 0,682 0,43564 0,3564 1,4858 0,193 Denominator 1*Res 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185	91 91 66 91 126 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control FT, Control CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, FT SC, Control ST7, FT SC, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control FT, Control FT, Control ST7, Control	between/within	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,25142 0,23749 1,9579 0,24749 1,9579 0,40542 1,3068 1,3643 Denominator 1*Res 1	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,770 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST CC, FT CC, Control CT, SC CT, ST CT, FT CT, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators Groups CC, ST CC, ST CC, SC CC, ST		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,084 2,0443 0,084 1,1835 0,262 1,925 0,096 5,1327E-2 0,962 0,436 1,1305 0,285 0,436 1,1305 0,285 0,436 1,1305 0,286 0,43564 0,682 0,96784 0,366 1,4858 0,193 Denominator 1*Res 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST CC, FT CC, Control CT, SC CT7, ST CT7, FT CT7, Control SC, ST7 SC, FT ST, Control ST7, FT ST7, Control FT, Control CC, SC CC, SC CC, ST7 CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CT7, SC CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, CTT SC, COTTOL SC, ST7 SC, CTT SC, COTTOL SC, ST7 SC, COTTOL SC, ST7 SC, COTTOL ST7, CONTROL ST7, SC ST7 ST7, CONTROL ST7, ST7 ST7, CONTROL ST7, ST7 ST7, CONTROL ST7, ST7 ST7, CONTROL ST7, ST7 ST7 ST7, CONTROL ST7, ST7 ST7 ST7, CONTROL ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7	between/within ; CC Control	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,25142 0,23749 1,9579 0,2424 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators Groups CC, ST7 CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 ST7 CT7, ST ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 S		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,084 1,1835 0,084 1,1835 0,906 5,1327E-2 0,962 5,1327E-2 0,962 0,965 5,1327E-2 0,965 0,13669 0,882307 0,43564 0,682 0,43564 0,682 0,43564 0,366 1,4858 0,193 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, SC CT7, FT CT7, Control SC, FT SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, SC CC, ST7 CC, FT CC, SC CT7, ST7 CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, CT7 SC, CT7 SC, CT7 SC, CT7 CT7, ST7 CT7, Control SC, ST7 SC, CT7 SC, CT7 SC, CONTROL SC, ST7 SC, CONTROL ST7, SC ST7 SC, CONTROL ST7, ST7 SC, ST7 SC, CONTROL SC, ST7 SC, CONTROL SC, ST7 SC, CONTROL SC, ST7 SC, CONTROL SC, ST7 SC, CONTROL SC, ST7 SC, SC SC, SC SC SC, SC SC SC SC SC SC SC SC SC SC SC SC SC S	between/within CC Control 7,5251	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,9535 0,26142 0,23749 1,9579 0,24749 1,9579 0,40542 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 91 91 41 91 126 91 126 56 91 126	0,161 0,271 0,276 0,73 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control Penominators Groups CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, SC CC, ST7 CC, ST7 CC, SC CC, ST7 CC,		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,084 1,1835 0,084 1,1835 0,906 5,1327E-2 0,962 5,1327E-2 0,962 0,965 5,1327E-2 0,965 0,13669 0,43564 0,682 0,43564 0,682 0,43564 0,43564 0,43564 0,366 1,4858 0,193 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8	91 91 66 91 126 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, SC CT7, FT CT7, Control SC, FT SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, SC CC, ST7 CC, SC CC, ST7 SC, ST7 SC, ST7 SC, ST7 SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control ST7, Control SC, ST7 SC, Control ST7, Control ST7, Control SC, ST7 SC, COTTOL SC, ST7 SC, COTTOL SC, ST7 SC, CONTOL ST7, CONTROL SC, ST7 SC, ST7	between/within CC Control 7,5251 7,3214	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,23749 1,9579 0,2424 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 91 91 41 91 126 91 126 56 91 126	0,161 0,271 0,271 0,270 0,37 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, Control ST7, FT ST7, Control Denominators Groups CC, CT7 CC, ST7 CC, ST7		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,084 1,1835 0,096 5,1327E-2 0,962 0,965 0,976 5,1327E-2 0,962 0,965 0,0435 0,0435 0,0435 0,4356 1,4858 0,193 Denominator 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, SC CC, ST7 CC, SC CC, ST7 SC, FT SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, ST7 SC, Control SC, CT7 SC, Control SC, ST7 SC, Control ST7, Control SC, ST7 SC, Control ST7, Control SC, ST7 SC, Control ST7, Control ST7, Control SC, CT7 SC CC CT7 SC	<i>between/within</i> CC Control 7,5251 7,3214 10,415	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,23749 1,9579 0,2424 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126	0,161 0,271 0,226 0,73 0,352 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, Control ST7, FT ST7, Control Denominators Groups CC, ST7 CC, ST7		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 0,965 5,1327E-2 0,966 0,4356 0,4356 0,4356 0,4356 1,4858 0,193 Denominator 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, SC CT7, FT CT7, Control SC, FT SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, SC CC, SC CC, ST7 SC, FT SC, CONTOL CT7, SC CT7, ST7 CT7, Control SC, ST7 SC, CONTOL SC, ST7 SC, CONTOL SC, ST7 SC CT7 SC SC ST7	<i>between/within</i> CC Control 7,5251 7,3214 10,415 10,116	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,26142 0,23749 1,9579 0,2424 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 37 57 37	0,161 0,271 0,226 0,73 0,352 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, Control ST7, FT ST7, Control Denominators Groups CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, SC CC, ST7 CC, Control CT7, ST7 CT7, ST7 CT7, Control SC, ST7 CT7, Control SC, ST7 CC, SC CT7, ST7 CT7, ST7 CT7 SC, Control CT7, ST7 CT7 SC, Control CT7, ST7 CT7 SC, Control CT7, ST7 CT7 SC, Control CT7, ST7 CT7 SC, Control CT7 SC, CONTROL CT7 CT7 SC, CONTROL CT7 CT7 CONTROL CT7 CT7 CONTROL CT7 CT7 CONTROL CT7 CT7 CONTROL CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7		0,106 3,2294 0,01 2,2454 0,06 2,29521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 0,965 5,1327E-2 0,966 0,435 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 0,265 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135 1,137 1,135	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST CC, ST7 CC, Control CT, SC CT7, ST7 CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, CT7 ST7, Control ST7, Control ST7, FT ST7, Control CC, SC CC, ST7 CC, SC CC, ST7 SC, CT7 CC, SC CC, ST7 SC, COntrol ST7, FT ST7, Control SC, ST7 SC, COTTOL SC, ST7 SC, CT7 SC, CONTOL SC, ST7 SC, ST7 SC SC ST7 FT	between/within CC Control 7,5251 7,3214 10,415 10,116 14,103	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,25142 0,23749 1,9579 0,24749 1,9579 0,40542 1,5068 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91	0,161 0,271 0,226 0,73 0,352 0,808 0,814 0,682 0,165 0,223 FT
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, Control ST7, FT ST7, Control Denominators Groups CC, CT7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, COntrol CT7, ST7 CT7, Control SC, Control ST7, FT SC, Control ST7, FT SC, Control ST7, FT SC, Control ST7, ST7 CT7, ST7 SC, Control ST7, FT SC, Control ST7, FT CT7, ST7 CT7, ST7 CT7, ST7 SC, Control ST7, FT SC, Control		0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 0,976 5,1327E-2 0,962 0,0865 0,0435 0,435 0,435 0,435 0,435 0,435 1,1305 0,286 0,43564 0,455 0,435 1,1305 0,286 1,1305 0,286 0,43564 0,45564 0,366 1,4858 0,193 Denominator 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST CC, ST7 CC, Control CT, SC CT7, ST7 CT7, ST7 CT7, ST7 CT7, Control SC, ST7 SC, CT7 ST7, Control ST7, FT ST7, Control T7, Control CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, Control SC, ST7 ST7, Control ST7, Control Average Distance CC CT7 SC ST7 FT COntrol	between/within CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,9535 0,23749 1,9579 0,2142 0,23749 1,9579 0,40542 1,5068 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 91 126 56 91 126 126 126 91 126 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223 FT FT
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, Control ST7, FT ST7, Control Denominators Groups CC, CT7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, SC CC, ST7 SC, FT SC, Control ST7, FT SC, Control ST7, FT SC, SC SC, ST7 SC, FT SC, SC SC, ST7 SC, S	tween/within a	0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 5,1327E-2 0,962 0,965 0,096 5,1327E-2 0,962 0,965 0,096 5,1327E-2 0,962 0,085 0,0435 0,0435 0,4356 1,4358 0,193 Denominator 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT7 CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT ST7, Control ST7, FT ST7, Control FT, Control CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, Control SC, ST7 ST7, Control ST7, FT ST7, Control SC, ST7 ST7, Control ST7, FT ST7, Control SC, ST7 SC CC CT7 SC SC ST7 FT Control	between/within CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532 6,1265	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,9535 0,9535 0,23749 1,9579 0,2142 0,23749 1,9579 0,40542 1,5068 1,3643 Denominator 1*Res 1	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,97 0,082 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 91 126 56 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223 FT FT 19,965 13,824
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control Penominators Groups CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CT7, ST7 SC, ST7	<i>tween/within</i> g CC Control	0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 5,1327E-2 0,962 0,965 0,096 5,1327E-2 0,962 0,965 0,096 5,1327E-2 0,962 0,084 0,43564 0,43564 0,43564 0,43564 0,43564 1,1858 0,193 Denominator 1*Res	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 116 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, ST7 CC, ST7 CT7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, Control ST7, FT ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7, Control ST7 CT7 SC SC ST7 FT Control	between/within CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532 6,1265	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,9535 0,25142 0,23749 1,9579 0,2142 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 126 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223 FT FT 19,965 13,824
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control Penominators Groups CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CC, SC CC, ST7 CT7, SC, ST7 CT7, ST7 CT7, SC, ST7 CT7, ST7 CT7 SC, ST7 SC, ST	<i>tween/within</i> g CC Control 11,762	0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,096 5,1327E-2 0,962 5,1327E-2 0,962 0,965 0,096 5,1327E-2 0,962 0,086 0,085 0,0435 0,0435 0,4356 1,4358 0,193 Denominator 1*Res 1*Re	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 92 91 126 91 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators Groups CC, CT7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7 SC CT7 SC CT7 SC ST7 FT Control	<i>between/within</i> CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532 6,1265	1,6 1,6 1,1955 1,1861 0,35326 0,99468 0,65617 0,85357 0,9535 0,23749 1,9579 0,2142 0,23749 1,9579 0,40542 1,5068 1,3643 Denominator 1*Res	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 91 126 56 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223 FT FT
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, SC CC, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, SC Control ST7, FT SC, Control ST7, FT SC, Control ST7, FT SC, Control ST7, FT SC, Control ST7, FT SC, ST7 SC, FT SC, ST7 CT7, ST7 CT7, ST7 CT7, SC CT7, ST7 CT7, ST7 CT7 SC, ST7 ST7, ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7 ST7	tween/within g CC Control 11,762 12,279	0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,925 0,096 5,1327E-2 0,962 0,096 5,1327E-2 0,962 0,096 5,1327E-2 0,962 0,085 0,0435 0,0435 0,435 0,435 0,435 0,435 0,435 1,1305 0,285 0,435 0,435 1,1305 0,285 0,435 0,435 1,1305 0,285 0,435 0,435 1,1305 0,285 0,435 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 0,285 1,1305 1,1305 0,285 1,1305 1,1305 0,285 1,1305 1,1305 1,1305 1,1858 1,	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 126 91 126 91 66	CC, SC CC, ST7 CC, FT7 CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, CT ST7, Control ST7, FT ST7, Control FT, Control CC, CT7 CC, CT7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, Control ST7, Control ST7, FT ST7, Control ST7, Control ST7, FT ST7, Control ST7, Control ST7 SC SC ST7 FT Control	<i>between/within</i> CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532 6,1265	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,9535 0,25142 0,23749 1,9579 0,2142 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,709 0,193 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,193 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,193 0,239	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 91 126 56 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223
CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, ST7 CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control Denominators Groups CC, CT7 SC, Control CT7, ST7 CT7, ST7 CT7, ST7 CT7, ST7 CT7, ST7 SC, FT SC, Control SC, ST7 SC, ET SC, Control ST7, FT SC, Control ST7, FT SC, Control ST7, FT SC, Control SC, ST7 SC, CT7 SC, CT7 SC, CT7 SC, CT7 SC, CONTOL SC SC	tween/within g CC Control 11,762 12,279 17,116	0,106 3,2294 0,01 2,2454 0,06 2,9521 0,019 1,2204 0,282 2,0443 0,084 1,1835 0,26 1,925 0,096 5,1327E-2 0,962 0,096 5,1327E-2 0,962 0,096 5,1327E-2 0,962 0,086 0,4356 0,4356 0,4356 1,1305 0,286 0,43564 0,43564 0,43564 0,43564 0,43564 0,43564 0,43564 0,43564 1,1858 0,193 Denominator 1*Res 1*	0,034 0,054 0,019 0,263 0,104 0,253 0,072 0,986 0,854 0,466 0,306 0,657 0,365 0,185 Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 91 66 91 126 91 126 91 126 91 66	CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control Denominators Groups CC, CT7 CC, SC CC, ST7 CC, ST7 CC, ST7 CC, ST7 CT7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7, Control ST7, FT ST7 CT7 SC CT7 SC CT7 SC ST7 FT Control	between/within CC Control 7,5251 7,3214 10,415 10,116 14,103 5,7532 6,1265	1,6 1,6 1,1955 1,1861 0,3326 0,99468 0,65617 0,85357 0,9535 0,25142 0,23749 1,9579 0,2142 1,5068 1,3643 Denominator 1*Res 1*Re	0,147 0,285 0,324 0,905 0,214 0,559 0,451 0,762 0,709 0,193 0,239 Den.c 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 49 66 23 66 91 41 91 126 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 56 91 126 126 126 126 126 126 126 126 126 12	0,161 0,271 0,226 0,73 0,37 0,527 0,423 0,352 0,808 0,814 0,682 0,165 0,223 FT FT 19,965 13,824

ST7	19,846	14,025	12,562	16,854
FT	22,311	13,5	10,366	14,523
Control	14,754 16,098	10,423 16,151	11,789	16,064
Within level '2' of	factor 'Time Inte	erval'		
Groups		t P(MC)	P(perm)	perms
СС, СТ7		0,59016	0,573	91
CC, SC		0,55071	0,606	126
CC, ST7		0,16006	0,838	66
CC, FT		0,90469	0,358	66
CC, Control		1,7879	0,1	91
CT7, SC		1,5591	0,134	66
CT7, ST7		0,36085	0,807	66
CT7, FT		1,8934	0,097	66
CT7, Control		2,9822	0,043	91
SC, ST7		0,71231	0,502	91
SC, FT 0.66		0,46035	0,59	91
SC, Control		1,5034	0,176	126
ST7, FT		1,0459	0,291	66
ST7, Control		1,898	0,09	91
FT, Control		0,98842 0,364	0,375	91

PERMANOVA post-hoc results of leaf number in factor 'Time Interval'

0, 1 0, 2 0, 3 0, 4 1, 2 1, 3 1, 4 3, 4 3, 4 <i>Den</i> Gro 0, 1 0, 2 0, 3 0, 4 1, 2 1, 3 4 1, 2 3, 4 2, 4 3, 4 2, 4 3, 4 2, 4 3, 4 2, 3 4 1, 2 2, 4 3, 4 2, 4 3, 4 2, 4 3, 4 2, 4 3, 4 2, 4 3, 4 2, 4 3, 4 3, 4 4 3, 4 3, 4 4 3, 4 3, 4 4 3, 4 3,	ominators ups	13,153 29,395 15,2 26,936 8,3499 7,2164 13,908 2,233 8,0208 3,5199 Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	0,012 0,011 0,015 0,01 0,007 0,009 0,006 0,062 0,009 0,023	16 12 16 12 79 107 91 51 66 91 1 .df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,047 0,001 0,009	Average Distanc 0 0 1 44,716 2 51,731 3 67,219 4 84,275 Within level 'Cor Groups 0, 1 0, 2 0, 3 0, 4 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4	e between/within gri 1 15,462 12,788 23,495 40,116 htrol' of factor 'Layou t 5,4854 11,268 23,314 40,152 1,8865 6,0923 9,85 5,2884 10,423 5,5804	2 10,354 16,775 33,101 t' P(perm) 0,009 0,004 0,009 0,015 0,07 0,008 0,013 0,009 0,004 0,013 0,009 0,004 0,013 0,009 0,004	3 14,1 22,228 Unique perms 12 16 16 16 12 91 91 66 116 91 90	4 19,965 P(MC) 0,001 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,001
2, 4		1*Res 1*Res		8		Denominators	5,500 1	0,012		0,001
J, 4		1 1.05		0		Groups	Denominator	Den	.df	
Ave	rage Distance 0	e between/within g 1	roups 2	3	4	0, 1 0, 2	1*Res 1*Res	5		
0	0	7 0004				0, 3	1*Res	Ę		
2	52,924 59,871	26,946	5,2536			1, 2	1*Res	6		
3 ⊿	71,289	38,364	12,758 31,817	12,987		1,3	1*Res 1*Res	Ę		
-	7,6242	50,705	51,017	20,077		2, 3	1*Res	8		
Wit	hin level 'SC'	of factor 'Lavout'				2,4	1"Res 1"Res	٤ ٤		
Cro	100	•	P(norm)	Unique	D(MC)	Average Distance	a batwaan/within ar	0.005		
0, 1	ups	17,909	0,005	16	0,001	Average Distanc	e between/within gr	2	3	4
0, 2		17,062	0,007	16	0,001	0 0	1/ 151			
0, 3		21,196	0,007	16	0,001	2 46,214	16,058	10,347		
1, 2		3,6828	0,018	91	0,011	3 73,583	40,989	27,369	8,8069	
1, 3		7,4083	0,007	113 126	0,001	4 95,649	63,055	49,435	22,066	6,1265
2, 3		2,951	0,023	116	0,031					
2,4		6,2783 3 9782	0,011	126 126	0,002					
		5,7702	0,015	120	0,001					
Den Gro	ominators	Denominator	Der	n df						
0, 1	aps	1*Res		8						
0, 2		1*Res 1*Pos		8						
0, 3		1*Res		8						
1, 2		1*Res		8						
1,3		1*Res		8						
2, 3		1*Res		8						
2, 4		1*Res		8						
3, 4		1-Kes		8						
Ave	rage Distance	e between/within g	roups	2						
	0	I	2	د	4					
0	0	6 2593								
0 1	39,765	0,2075								
0 1 2 3	39,765 54,003	14,238	8,7989	8 0741						
0 1 2 3 4	39,765 54,003 66,593 86,405	14,238 26,828 46,64	8,7989 13,02 32,402	8,0741 19,886						
0 1 2 3 4	39,765 54,003 66,593 86,405 10,442	14,238 26,828 46,64	8,7989 13,02 32,402	8,0741 19,886						
0 1 2 3 4	39,765 54,003 66,593 86,405 10,442	14,238 26,828 46,64	8,7989 13,02 32,402	8,0741 19,886						

PERMANOVA results of relative shoot survival rate

PERMANOVA Permutational MANOVA

Resemblance worksheet Name: survivalrate Data type: Distance Selection: All Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

Factors							
Name		Abbrev.	Туре	Levels			
Layout		La	Fixed	6			
Time Inter	val	Ti	Fixed	5			
PERMANO	/A table o	of results					
						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	P(MC)
La	5	3160	632	3,3147	Ö,012	997	0,008
Ti	4	94427	23607	123,81	0,001	998	0,001
LaxTi	20	5733,3	286,67	1,5035	0,095	998	0,085
Res	120	22880	190,67		,		,
Total	149	1,262E5					

Details of the Source	e expected mean squ EMS	iares (EMS) for the mo	odel	
La	1*V(Res) + 25*S(La)			
Ti	1*V(Res) + 30*S(Ti)			
LaxTi	1*V(Res) + 5*S(LaxT	ïi)		
Res	1*V(Res)	,		
Construction	of Pseudo-F ratio(s)	from mean squares		
Source	Numerator	Denominator	Num.df	Den.df
La	1*La	1*Res	5	120
Ti	1*Ti	1*Res	4	120
LaxTi	1*LaxTi	1*Res	20	120
Estimates of	components of varia	ition		
Source	Estimate	Sq.root		
S(La)	17,653	4,2016		
S(Ti)	780,53	27,938		
S(LaxTi)	19,2	4,3818		
V(Res)	190,67	13,808		

PERMANOVA post-hoc results of relative survival rate in factor 'Layout'

PERMANOVA Permutational MANOVA				Within level '2' of fa	actor 'Time Inte	erval'					
Resemblance worksheet Name: survivalrate				Groups		t	:			P(perm)	perms
Data type: Distance Selection: All				СС, СТ7		P(MC) 1,26	49			0,526	3
Resemblance: D1 Euclidean dist	ance			cc, sc		0,24	1			1	1
Sums of squares type: Type III (Fixed effects sum to zero for m	partial) ixed terms			CC, ST7		0,35 6,2336	6E-9			1	2
Permutation method: Permutation Number of permutations: 999	ion of residuals under a re	duced model		CC. FT		1	1			1	1
Factors				CC. Control		0,334	1			1	1
Name	Abbrev.	Type	Levels			0,381	195			0 159	2
Time Interval	Ti	Fixed	5	CT7_ST7		0,037	10			0,506	-
PAIR-WISE TESTS				CT7 FT		0,24	105			0,500	2
Term 'LaxTi' for pairs of levels of	f factor 'Layout'			CT7, FI		0,044	190			0,2	2
Within level '0' of factor 'Time I	nterval'			CT7, Control		2,44 0,036	195			0,159	2
	Unique			SC, ST7		0,334	1			1	1
Groups	t perms		P(perm) P(MC)	SC, FT		Denominat	or is 0				
СС, СТ7	Denominator is 0			SC, Control		Denominat	or is 0				
CC, SC	Denominator is 0			ST7, FT		0 333	1			1	1
CC, ST7	Denominator is 0			ST7, Control		1	1			1	1
CC, FT	Denominator is 0			FT, Control		Denominat	or is 0				
CC, Control	Denominator is 0			Denominators							
CT7, SC	Denominator is 0			CC, CT7		Denominat 1*Res	or		Den.df 8		
CT7, ST7	Denominator is 0			CC, SC CC, ST7		1*Res 1*Res			8 8		
CT7, FT	Denominator is 0			CC, FT CC, Control		1*Res 1*Res			8 8		
CT7, Control	Denominator is 0			CT7, SC CT7, ST7		1*Res 1*Res			8 8		
SC, ST7	Denominator is 0			CT7, FT CT7, Control		1*Res 1*Res			8 8		
SC. FT	Denominator is 0			SC, ST7 SC, FT		1*Res 1*Res			8 0		
SC. Control	Denominator is 0			SC, Control ST7, FT		1*Res 1*Res			0 8		
ST7 FT	Denominator is 0			ST7, Control		1*Res			8		
ST7 Control	Denominator is 0			Average Distance be	atwaan/within	aroups			0		
	Denominator is 0			Average Distance be	CC	CT7	SC	ST7	FT	Control	
FT, Control	Denominator is 0			CT7	11,2	12					
Denominators				SC ST7	4 6,4	12 11,2	0 4	8			
Groups CC, CT7	Denominator 1*Res	Den.df 0		FT Control	4 4	12 12	0	4 4	0	0	
CC, SC CC, ST7	1*Res 1*Res	0		Within level '3' of fa	ctor 'Time Inte	erval'					
CC, FT	1*Res	0		C				D(Unique	D(MC)
CT7, SC	1*Res	0		CC, CT7		t 0,35355		P(perm) 1		perms 4	0,773
CT7, ST7	1*Res 1*Pos	0		CC, SC		4,4272		0,024		4	0,003
CT7, Control	1*Res	0		CC, FT		1,1767		0,441		4	0,285
SC, ST7	1*Res 1*Pos	0		CC, Control		0,63246		0,741		5	0,523
SC, Control	1*Res	Ő		CT7, ST7		1,2344		0,378		5	0,249
ST7, FT ST7, Control	1*Res 1*Pos	0		CT7, FT		0,58977		0,777		5	0,575
FT, Control	1*Res	0		SC, ST7		0,89443		0,73		3	0,398
Average Distance between/with	nin groups			SC, FT SC, Control		1,633 1,6222		0,282 0,272		4 4	0,132 0,135
CC (SC ST7	FT Contr	rol	ST7, FT		0,66667		0,78		5	0,537
CT7 0	0			FT, Control		0,04053		0,596		5	0,414
SC 0	0 0			1							

ST7 FT Control	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0		Denominators Groups CC, CT7 CC, SC		Denominator 1*Res		C	Den.df			
Within level '1' of fac	tor 'Time	Interval						CC, ST7 CC FT		1*Res 1*Res			8			
Groups		Ur	nique t				P(perm)	CC, Control CT7, SC		1*Res 1*Res 1*Res			8 8 8			
CC, CT7		De	enominator	is O			P(MC)	CT7, FT		1*Res			8			
CC, SC		De	enominator	is O				SC, ST7		1*Res			8			
CC, ST7			1				1	SC, Control		1*Res			8			
CC, FT		De	nominator	is O			0,328	ST7, Control		1*Res			8			
CC, Control		De	enominator	is O				FT, Control		T Res			0			
CT7, SC		De	enominator	is O				Average Distance be	CC	CT7	SC	ST7		FT	Control	
CT7, ST7			1				1	CT7	12	28						
CT7, FT		De	nominator	is 0			0,342	SC ST7	28 23,2	25,6	8 12,8	20				
CT7, Control		De	enominator	is 0				F I Control	18,4 22,4	22,4 24,8	19,2 23,2	19,2 23,2	2	24 3,2	32	
SC, ST7			1				1	Within level '4' of fac	tor 'Time Inte	rval'						
SC, FT		De	nominator	is O			0,355	Groups		t		P(perm)		perms		P(MC
SC, Control		De	enominator	is O				CC, SC		3,2863		0,294		4 5		0,184
ST7, FT			1				1	CC, ST/ CC, FT		1,8383		0,16		5		0,109
ST7, Control			1				0,35	CC, Control CT7, SC		1,1314		0,418		5		0,299
FT, Control		De	1 enominator	is O			0,315	CT7, ST7 CT7, FT		0,45291 0,2325		0,843 1		6 5		0,651 0,845
Denominators Groups CC, CT7 CC, SC CC, ST7 CC, ST7 CC, FT		De 1*1 1*1 1*1	enominator Res Res Res Res			Den.df 0 0 8 0		CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control		1,4434 0,5164 0,80178 3,2863 0,21822 1,8383 1,633		0,314 0,846 0,581 0,024 1 0,178 0,209		4 5 5 6 6 5		0,183 0,62 0,449 0,011 0,821 0,112 0,14
CC, F1 CC, Control CT7, SC CT7, ST CT7, FT CT7, Control SC, ST7 SC, FT SC, Control ST7, FT ST7, Control FT, Control		11 11 11 11 11 11 11 11 11 11 11	Res Res Res Res Res Res Res Res Res Res			0 0 8 0 0 8 0 0 8 0 0 8 8 0		Denominators Groups CC, CT7 CC, SC CC, ST7 CC, FT CC, Control CT7, SC CT7, FT CT7, Control SC, ST7		Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res		2	Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Average Distance bet CC CT7 SC ST7	ween/wi CC 0 0 0	thin grou CT7 0 0	SC	ST7	FT	Control		SC, FT SC, Control ST7, FT ST7, Control FT, Control		1*Res 1*Res 1*Res 1*Res 1*Res			8 8 8 8			
FT Control	0	0	0	4 4	0 0	0		Average Distance be CC CT7 SC	tween/within CC 20 24,8 36	groups CT7 28 27,2	SC 20	ST7	FT	Cont	rol	
								ST7 FT Control	34,4 28,8 16	30,4 24,8 24,8	24 28 36	36 31,2 34,4	32 28,8	2	0	

PERMANOVA post-hoc results of relative survival rate in factor 'Time Interval'

PERMANOVA						Within	level 'ST7'	of factor 'L	_ayout'				
Permutational MA	NOVA											Unique	
						Groups		t		P(per	rm)	perms	P(MC)
Resemblance work	ksheet					0, 1		1		1		1	0,325
Name: survivalrate	e					0, 2		1		1		1	0,341
Data type: Distance	ce					0, 3		1,5		0,4	34	2	0,167
Selection: All						0,4		4,2212	2	0,0	07	8	0,004
Resemblance: D1	Euclidean distance					1, 2		6,2336E-	-9	1		2	1
						1, 3		0,8944	3	0,74	42	3	0,428
Sums of squares ty	ype: Type III (partial)				1, 4		3,7528	3	0,0	15	7	0,006
Fixed effects sum	to zero for mixed te	erms				2, 3		0,8944	3	0,7	31	3	0,394
Permutation meth	od: Permutation of	residuals under a redu	uced model			2,4		3,7528	3	0,0	16	7	0,005
Number of permut	tations: 999					3, 4		2,8402	2	0,0	37	7	0,034
Factors						Denom	inators						
Name		Abbrev.	Туре	Levels		Groups		Denomin	nator		Den.df		
Layout		La	Fixed	6		0, 1		1*Res			8		
Time Interval		Ti	Fixed	5		0, 2		1*Res			8		
						0,3		1*Res			8		
PAIR-WISE TESTS						0,4		1*Res			8		
						1, 2		1*Res			8		
Term 'LaxTi' for pa	airs of levels of facto	or 'Time Interval'				1,3		1*Res			8		
						1,4		1*Res			8		
Within level 'CC' o	f factor 'Layout'					2,3		1*Res			8		
	,				Unique	2.4		1*Res			8		
						3,4		1*Res			8		
Groups	t		P(perm)		perms	.,							
	P(MC)				•	Averag	e Distance	between/v	within groups				
0, 1	Denominator is 0						0 1		2	3	4		
						0	0						
						1	4 8						
							-						

0, 2	1	1	1	2 4 6,4 3 12 12.8 1	8 2.8 20		
0, 3	6,532	0,01	5	4 56 52	52 45,6	36	
0, 4	0,001 11.225	0.016	8	Within level 'FT' of factor 'Lav	out		
4.2	0,001	4		C		D(= ====)	Unique
1, Z	0,356	1	1	Groups P(MC)	t	P(perm)	perms
1, 3	6,532	0,006	5	0,1 Denomina	tor is 0		
1, 4	11,225	0,008	8	0, 2 Denomina 0, 3 2,2	361	0,182	3
2.2	0,001	0.027		0,063	12.1	0.011	
Ζ, 3	4,4272	0,026	4	0, 4 4,7	434	0,011	8
2, 4	9,4281	0,007	10	1, 2 Denomina	tor is 0	0.400	2
3, 4	0,001 5.8138	0.01	7	1, 3 2,2	361	0,192	3
	0,002			1, 4 4,7	434	0,007	8
Denominators				2, 3 2,2	361	0,164	3
Groups	Denominator	Den.df		0,05	12.1	0.000	
0, 1	1*Res	8		2, 4 4,7	434	0,008	8
0, 3	1*Res	8		3, 4 2,	582	0,086	7
1, 2	1*Res	8		0,055			
1,3	1*Res	8		Denominators Croups Denomina	tor D	on df	
2, 3	1*Res	8		0, 1 1*Res		0	
2, 4	1*Res	8		0, 2 1*Res		0	
5, 4	1 1/23	0		0, 4 1*Res		8	
Average Distance	between/within groups			1, 2 1*Res		0	
0 0	4 ر ۲			1, 4 1*Res		8	
1 0 0	8			2, 3 1*Res		8	
3 32 32	28 12			3, 4 1*Res		8	
4 84 84	80 52 20			August Distance batures (u	:		
Within level 'CT7'	of factor 'Layout'			Average Distance between/w 0 1 2	3 4		
			Unique	0 0			
Groups	t	P(perm)	perms	2 0 0 0			
0.1	P(MC)			3 20 20 20	24		
0, 1	Denominator is o			4 00 00 00	43,2 32		
0, 2	2,4495	0,183	2	Within level 'Control' of factor	r 'Layout'		Unique
0, 3	2,7456	0,044	4	Groups	t	P(perm)	perms
0.4	0,021	0.004	7	P(MC)	tor is 0		
0, 4	0,001	0,000	7	0, 2 Denomina	tor is 0		
1, 2	2,4495	0,169	2	0, 3 2,0	058	0,178	4
1, 3	2,7456	0,06	4	0,004	225	0,009	8
	0,031	0.00(7	0,001	tan in 0		
1, 4	0,002	0,006	1	1, 2 Denomina 1, 3 2,0	D58	0,178	4
2, 3	1,4142	0,326	4	0,078	225	0.011	
2, 4	4,111	0,032	7	1, 4 11, 0,001	225	0,011	8
2.4	0,004	0.402	-	2, 3 2,0	058	0,163	4
3, 4	2,3238	0,103	/	2, 4 11.	225	0.007	8
	.,			0,001		0.015	
Denominators Groups	Denominator	Den.df		3, 4 4,3	301	0,015	8
0, 1	1*Res	0		D			
0, 2	1*Res	8		Groups Denomina	tor De	en.df	
0,4	1*Res	8		0, 1 1*Res		0	
1, 2	1*Res	8		0, 2 1 Res 0, 3 1*Res		8	
1, 4	1*Res	8		0, 4 1*Res		8	
2, 3	1*Res	8		1, 2 1 Res 1, 3 1*Res		8	
3, 4	1*Res	8		1, 4 1*Res		8	
Average Distance	between/within groups			2, 3 1 Res 2, 4 1*Res		8	
0 1	2 3	4		3, 4 1*Res		8	
1 0 0				Average Distance between/w	ithin groups		
2 12 12	12			0 1 2	3 4		
4 64 64	52 40,8	28		1 0 0			
Within lovel 'SC' o	f factor 'l avout'			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32		
within level be o	i lactor Layout		Unique	4 84 84 84	60 20		
Groups	+	P(porm)	porms				
Groups	P(MC)	r (periii)	perms				
0, 1	Denominator is 0						
0, 2	Denominator is 0						
0.3	1	1	1				
0, 5	0,367						
0,4	6	0,01	7				
1, 2	Denominator is 0						
1 3	1	1	1				
., .	0,35	1					
1, 4	6	0,011	7				
2, 3	1	1	1				
2.4	0,341 6	0 008	7				
-, .	0,001	-					
3, 4	4,9193 0,002	0,022	6				
	.,						
A				1			
venominators Groups	Denominator	Den.df					
Denominators Groups 0, 1	Denominator 1*Res	Den.df					
venominators Groups 0, 1 0, 2 0, 3	Denominator 1*Res 1*Res 1*Res	Den.df 0 0 8					
<i>Denominators</i> Groups 0, 1 0, 2 0, 3 0, 4	Denominator 1*Res 1*Res 1*Res 1*Res	Den.df 0 0 8 8					

PERMANOVA results (left) and post-hoc results of root segment elongation in factor 'Layout' (right)

PERMANOVA							PERMANOVA					
Permutational M	ANOVA						Permutational N	ANOVA				
Resemblance wo Name: Resem1 Data type: Dista Selection: All Resemblance: D1	orksheet nce 1 Euclidean (distance					Resemblance wo Name: Resem1 Data type: Dista Selection: All Resemblance: D	orksheet nce 1 Euclidean dista	ince			
Sums of squares Fixed effects sur Permutation met Number of perm	type: Type I m to zero for thod: Unrest utations: 99	III (partial) r mixed ter tricted per 9	rms mutation of raw da	ata			Sums of squares Fixed effects su Permutation me Number of perm	type: Type III (p m to zero for miz thod: Unrestricte utations: 999	vartial) xed terms ed permutation of rav	v data		
Factors							Factors					
Name	Abbrev.		Type	Levels			Name	Abbrev.	Type	Levels		
Layout	La		Fixed	6			Layout	La	Fixed	6		
PERMANOVA tab	le of results	;					PAIR-WISE TEST	5				
Source	Unique df	SS	MS		Pseudo-F		Term 'La'					
-	P(perm)	perms	P(MC)		0 70991		Cround			D(norm)	Unique	D(MC)
La 0.614	999	0.545	540,1		0,79001		CC. Control		0.17695	0.875	126	0.87
Res	24	16227	676,13				CC, CT7		0,24273	0,812	126	0,807
							CC, SC		1,1878	0,267	126	0,296
Total	29	18928					CC, ST7		0,17651	0,864	126	0,883
							CC, FI		5,43/5E-2	0,932	126	0,957
Netails of the ev	enected mea	n sauares	(FMS) for the mod	61			Control SC		1 3996	0,031	120	0,05
Source	EMS	in squares	(Emb) for the mou				Control, ST7		2,5458E-2	0,961	126	0,983
La	1*V(Res)	+ 5*S(La)					Control, FT		0,14425	0,895	126	0,889
Res	1*V(Res)						CT7, SC		1,1054	0,359	126	0,303
C	D	4:= (=) 6 ====					CT7, ST7		0,4277	0,675	126	0,679
Source	Numerati	or	Denomin:	ator		Num df	SC ST7		1 296	0,759	120	0,72
Jource	Den.df	.01	Denomina	ator		Num.ur	SC, FT		1,3226	0,196	120	0,213
La	1*La		1*Res			5	ST7, FT		0,14568	0,916	126	0,894
	24						Denominators					
Estimates of con	nponents of	variation					Groups		Denominator	Den.df		
Source	Estimate	·	Sq.root				CC, Control		1*Res	8		
5(La)	-27,206		-5,216				CC, CT7		1*Res	8		
V(Res)	6/6,13		26,003						1"Res 1*Res	8		
							CC. FT		1*Res	8		
							Control, CT7		1*Res	8		
							Control, SC		1*Res	8		
							Control, ST7		1*Res	8		
							Control, FT		1*Res	8		
							CT7 ST7		1*Res	8		
							CT7, FT		1*Res	8		
							SC, ST7		1*Res	8		
							SC, FT ST7_FT		1*Res 1*Res	8		
							Average Distance	e hetween/with	in groups	3		
								CC	Control	CT7	SC	ST7
								FT				-
							СС	32,529				
							Control	24,286	25,177			
							1					

CT7	24,162	21,331	22,633		
SC	35,994	35,224	30,942	42,931	
ST7	27,879	25,471	26,624	39,632	34,997
FT	23,725 24,053	20,129	20,222	33,424	25,376

PERMANOVA results (left) and post-hoc results of wet weight loss in factor 'Layout' (right)

PERMANOVA Permutational MAI	NOVA						PERMANOVA Permutational M	ANOVA				
Resemblance work Name: Resem1 Data type: Distanc Selection: All Resemblance: D1 I	ksheet ce Euclidear	n distance					Resemblance wo Name: Resem1 Data type: Dista Selection: All Resemblance: D	orksheet nce 1 Euclidean dista	nce			
Sums of squares ty Fixed effects sum Permutation meth Number of permut	ype: Type to zero f nod: Unre tations: 9	e III (partial) or mixed te stricted per 199	rms mutation of raw d	ata			Sums of squares Fixed effects sur Permutation me Number of perm	type: Type III (pa m to zero for mix thod: Permutatio utations: 999	artial) æd terms n of residuals under a	a reduced model		
Factors Name Layout	Abbrev. La		Type Fixed	Levels 6			<i>Factors</i> Name Layout	Abbrev. La	Type Fixed	Levels 6		
PERMANOVA table	of resul	ts					PAIR-WISE TESTS	5				
Source	Unique df P(perm	SS) perms	MS P(MC)		Pseudo-F		Term 'La'				Unique	
La 0,058 Res	5 999 24	1300 0,07 2569,5	260,01		2,4286		Groups CC, Control CC, CT7 CC, SC		t 9,3628E-3 1,2119 2,5559	P(perm) 0,986 0,246 0,045	perms 126 126 126	P(MC) 0,989 0,274 0,028
Total Details of the exp	29 Dected me	3869,6 ean sauares	(EMS) for the mod	el			CC, ST7 CC, FT Control, CT7 Control, SC		0,48595 1,4765 1,5179 3,2593	0,688 0,156 0,2 0.014	126 126 126 126	0,648 0,202 0,194 0.017
Source La Res	EMS 1*V(Res 1*V(Res	s) + 5*S(La) s)	())				Control, ST7 Control, FT CT7, SC CT7, ST7		0,53622 1,6186 1,8109 1,6378	0,6 0,165 0,101 0,129	126 126 126 125	0,584 0,135 0,107 0,134
Construction of Ps Source	Numera Den.df	atio(s) from ator	n mean squares Denomina	ator		Num.df	CT7, FT SC, ST7 SC, FT		0,7387 2,8249 0,21115	0,478 0,051 0,814	126 126 126	0,447 0,018 0,823
La	1*La 24		1*Res			5	ST7, FT		1,7977	0,136	126	0,105
Estimates of comp Source S(La) V(Res)	ponents Estimat 30,58 107,00	f variation æ 9 6	Sq. root 5,5308 10,347				Denominators Groups CC, Control CC, CT7 CC, SC CC, ST7 COntrol, SC Control, ST7 Control, ST7 Control, ST7 Control, ST7 Control, FT CT7, SC CT7, ST7 SC, ST7 SC, ST7 SC, FT ST7, FT	e between/withi	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	Den.df 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
							CC	CC FT 13,026	Control	CT7	SC	ST7
							Control	9,3752	9,4352			

СТ7	10,884	9,4579	7,6197		
SC	15,129	14,417	8,9281	6,7977	
ST7	12,572	11,876	14,214	18,369	14,572
FT	16,456 18,574	15,356	12,616	13,184	19,937

PERMANOVA results (left) and post-hoc results of new developed leaf number in factor 'Layout' (right)

PERMANOVA Permutational MAN	NOVA						PERMANO Permutati	IVA ional MAN	IOVA					
Resemblance work Name: Resem2 Data type: Distanc Selection: All Resemblance: D1 E	<i>isheet</i> e Euclidean	distance					Resembla Name: Re Data type Selection: Resembla	nce work sem2 e: Distance : All nce: D1 E	sheet e Cuclidean distance					
Sums of squares ty Fixed effects sum Permutation methon Number of permut	pe: Type to zero fo od: Perm ations: 9	III (partial) or mixed ten utation of re 99	ms vsiduals under a re	educed m	odel		Sums of se Fixed effe Permutati Number o	quares ty ects sum t ion metho of permuta	pe: Type III (partial) to zero for mixed te od: Permutation of r ations: 999	rms esiduals unde	r a reduced m	odel		
Factors Name	Abbrev.		Туре	Levels			Factors Name		Abbrev.	Type	Levels			
	La	c	FIXEd	6				F TFSTS	La	Fixed	0			
PERMANOVA LUDIE	Unique	5					Term 'La'	- 12313						
Source	df P(nerm)	SS	MS P(MC)		Pseudo-F							Unique		
La	5	32,667	6,5333		1,3154		Groups		t	P(per	m)	perms		P(MC)
0,294 Res	163 24	0,293	4 9667				CC, CT7		0,42426	0,7	55 73	8		0,703
		,2	1,7007				CC, ST7		1,0265	0,3	97	9		0,339
Total	29	151,87					CC, FT		0,49424	0,70	19 17	10 9		0,627
							CT7, SC		1,8962	0,1	38	11		0,111
Details of the expe	ected me	an squares (i	EMS) for the mod	el			CT7, ST7		0,54687	0,6	84	10 10		0,594
La	1*V(Res) + 5*S(La)					СТ7, С		1,1068	0,3	74	9		0,3
Res	1*V(Res)					SC, ST7		1,3646	0,2	7	9		0,208
Construction of Ps	eudo-F ra	tio(s) from	mean squares				SC, C		1,0954	0,1	9 41	8		0,161
Source	Numera	tor	Denomina	ator		Num.df	ST7, FT		0,36116	0,8	1	10		0,715
La	1*La		1*Res			5	FT, C		0,80539	0,5	08	10		0,030
	24						Denomina	ators						
Estimates of comp	onents oj	^f variation					Groups		Denominator		Den.df			
Source	Estimate 0 3133	e 3	Sq.root 0 55976				CC, CT7		1*Res		8			
V(Res)	4,9667	,	2,2286				CC, ST7		1*Res		8			
							CC, FT		1*Res		8			
							CT7, SC		1*Res		8			
							CT7, ST7		1*Res		8			
							CT7, FT		1*Res		8			
							SC, ST7		1*Res		8			
							SC, FT		1*Res		8			
							SC, C ST7 FT		1"Res		8			
							ST7, C		1*Res		8			
							FT, C		1*Res		8			
							Average L	Distance b	oetween/within grou	ıps				
								CC	CT7	SC	ST7	FT	C	
							CT7	2,2	2,8					
							SC	3,52	3,24	2,4	2.0			
							FT	2,52 2,64	2,48	∠,o 3,36	2,8 2,76	3,6		
							С	2,56	2,52	2	2,04	2,72	1,8	
							1							

PERMANOVA results effective quantum yield

PERMANOVA Permutationa	al MANOVA	A					
Resemblance Name: Resem Data type: Di Selection: All Resemblance	workshee 1 istance 1 : D1 Euclie	et dean distance					
Sums of squa Fixed effects Permutation Number of pe	res type: sum to ze method: F ermutation	Type III (partial) ero for mixed ter Permutation of r ns: 999	rms esiduals under a reduc	ced model			
Factors							
Name		Abbre	v. Type	Levels			
Layout		La	Fixed	6			
Time Interval	l	Ti	Fixed	4			
PERMANOVA	table of r	esults					
Courses	46			Decude F	D(norm)	Unique	D(MC)
Source		22	M5	PSeudo-F	P(perm)	perms	P(MC)
La	2	0,53278	0,10656	1,7639	0,119	999	0,136
11	3	15,436	5,1455	85,179	0,001	996	0,001
LaxII	15	1,7029	0,11353	1,8794	0,031	999	0,024
Res	336	20,297	6,0408E-2				
Iotal	309	38,025					
Details of the	e expected	d mean squares	(EMS) for the model				
Source	EMS						
La	1*V(Re	s) + 59,82*S(La)					
Ti	1*V(Re	s) + 89,556*S(Ti)				
LaxTi	1*V(Re	s) + 14,975*S(La	xTi)				
Res	1*V(Re	s)					
Construction	of Pseudo	-F ratio(s) from	mean sauares				
Source	, Numer	ator	, Denominator	Num.df	Den.df		
La	1*La		1*Res	5	336		
Ti	1*Ti		1*Res	3	336		
LaxTi	1*LaxT	ï	1*Res	15	336		
Estimatos of	comporer	ts of variation					
Source	componer	stimato	Sa root				
S(La)	7	71/5E-/	2 7775E-2				
S(La)	/, 5	/ 1-+JE-4 6781E-2	0.23820				
S(II) S(IavTi)),)	5/77E-3	0,23029 5 0550E-2				
J(Lax II)	, ,	J+12E-3	0.24570				
v(Res)	6,	0400E-2	0,24376				

PERMANOVA post-hoc results of effective quantum yield in factor 'Layout'

PERMANOVA Permutational MANOVA				Within level '3' of factor 'Time Inte	erval'			Unique
Resemblance worksheet				Groups	DIA	t MC)	P(perm)	perms
Data type: Distance Selection: All				CC, Control	0 0,8	,19489 357	0,842	718
Resemblance: D1 Euclidean distance				CC, CT7	0.4	1,8134 429	0,438	744
Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed te) erms			CC, SC	0 0,4	,74421 469	0,444	749
Permutation method: Permutation of r Number of permutations: 999	residuals under a red	uced model		CC, ST7	1	.,7011)99	0,104	743
Factors				CC, Treatment	1 0.0	,7613)99	0,093	721
Name Lavout	Abbrev. La	Type Fixed	Levels 6	Control, CT7	0 0,3	,98033 35	0,31	724
Time Interval	Ti	Fixed	4	Control, SC	0 0,	,91285 37	0,362	738
PAIR-WISE TESTS				Control, ST7	1 0.0	,8608)62	0,069	733
Term 'LaxTi' for pairs of levels of facto	or 'Layout'			Control, Treatment	1 0.0	,9261)65	0,053	725
Within level '1' of factor 'Time Interval				CT7, SC	6,7 0,9	'538E-2	0,917	745
Groups	Unique t	e	P(perm)	CT7, ST7	0,4	,78158 I47	0,414	717
perms CC, Control	P(MC) 0,6738	36	0,459	CT7, Treatment	0,4	,79209 423	0,44	739
447 CC, CT7	0,526 0,655	7	0,567	SC, ST7	0 0,3	,85521 97	0,382	759
646 CC, SC	0,505 0,434	43	0,682	SC, Treatment	0,4	0,869 108	0,352	725
469 CC, ST7	0,654 1,658	1	0,121	ST7, Treatment	2,3 0,9	114E-2 82	0,978	718
709 CC, Treatment	0,128 3,457	4	0,002	Denominators				
Control, CT7	0,003	17	0,826	CC, Control	De 1*F	les	28	
Control, SC 441	0,835 0,2640 0,793	06	0,784	CC, SC CC, ST7	1*F 1*F	les les	28 28 28	

Control, ST7 725 Control, Treatment 327 CT7, SC 471 CT7, ST7 629 CT7, Treatment 480 SC, ST7 541 SC, Treatment 337 ST7, Treatment 576		1,1458 0,278 2,2099 0,039 0,405 0,707 0,36737 0,35 1,0195 0,341 1,3827 0,175 2,7798 0,01 0,43078 0,68	0,347 0,035 0,726 0,353 0,324 0,23 0,017 0,628	CC, Treatment Control, CT7 Control, SC Control, ST7 Control, Treatment CT7, SC CT7, ST7 CT7, Treatment SC, T77 SC, Treatment ST7, Treatment Average Distance bet	tween/within groups CC Treatment 0 383	1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	28 28 28 28 28 28 28 28 28 28 28 28 28 2	SC
Denominators Groups CC, Control CC, ST CC, ST CC, Treatment Control, SC Control, SC Control, SC		Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	Den.df 28 31 31 31 31 25 25 25 25	Control CT7 SC ST7 Treatment	0,32409 0,35417 0,35263 0,36777 0,33322 0,35374 0,3020	0,34297 0,35898 0,35755 0,38096 0,36645 0,34040	0,37482 0,3557 0,34504 0,34008	0,37971 0,35242 0,3428
Control, Treatment C7T, SC C7T, ST7 C7T, Treatment SC, Treatment SC, Treatment ST7, Treatment Average Distance between	n/within groups	1 Res 1 Res 1 Res 1 Res 1 Res 1 Res 1 Res 1 Res 1 Res	25 28 28 28 28 28 28 28 28	Within level '4' of fac Groups CC, Control CC, CT7	0,30929	t P(MC) 2,206 0,036 0,35408 0,737	P(perm) 0,114 0,888	Unique perms 16 202
сс	CC SC 5,2229E-2	Control ST7	CT7 Treatment	CC, SC CC, ST7		0,15176 0,872 1,6949	0,874 0,074	217 664
Control CT7 SC ST7 Treatment	5,8583E-2 8,6411E-2 5,1219E-2 5,4895E-2 0,12777 0,12772 7,91E-2	6,953E-2 9,6839E-2 5,9872E-2 0,13453 0,19402 7,6828E-2	0,11909 8,7644E-2 0,15487 0,11914	0,1 CC, Treatment Control, CT7 Control, SC Control, ST7 Control, Treatment		0,40635 0,686 1,9183 0,054 2,1793 0,036 4,4589 0,001 2,676	0,66 0,057 0,069 0,001 0,017	416 32 32 577 152
Within level '2' of factor '1	7,6769E-2 'ime Interval'	0,14495	6,8933E-2	ст7, sc		0,014 0,21048 0,823	0,936	337
Groups perms CC, Control 724 CC, CT7 794 CC, SC 647 CC, ST		Unique t P(MC) 1,7933 0,092 0,55439 0,563 0,26812 0,26812 0,791	P(perm) 0,055 0,573 0,825	CT7, ST7 CT7, Treatment SC, ST7 SC, Treatment 0,56 ST7, Treatment		2,1221 0,042 0,77155 0,428 1,9111 0,061 0,57085 1,2618 0,208	0,033 0,533 0,062 0,562 0,157	663 465 745 609 661
CC; 317 797 CC; Treatment 760 Control, CT7 661 Control, SC 699 Control, ST7 724 Control, ST7 724 Control, Treatment 477 CT7, SC 628 CT7, ST7 662 CT7, Treatment 533 SC, ST7 641		0,102,1 0,885 1,5864 0,135 1,2376 0,209 1,8082 0,078 1,8761 0,07 0,8115 0,428 0,36135 0,711 0,44101 0,648 0,95314 0,359 0,11056 0,907	0,837 0,149 0,211 0,045 0,042 0,425 0,674 0,63 0,462 0,911	Denominators Groups CC, Control CC, Cotrol CC, ST CC, ST CC, Treatment Control, ST Control, ST SC, ST S	tween/within groups	Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	Den. 28 28 28 28 28 28 28 28 28 28 28 28 28	df
SC, Treatment 538 ST7, Treatment 556		1,5087 0,144 1,598 0,129	0,116 0,1	CC Control	CC ST7 0,32693 0.20833	Control Treatment 8.2667E-3	СТ7	sc
Denominators Groups CC, Control CC, GT7 CC, ST CC, ST7 CC, Treatment Control, ST7 Control, ST7 Control, Treatment CT7, ST7 CT7, ST7 CT7, ST7 SC7, ST7 SC, Treatment SC, Treatment SC, Treatment		Denominator 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	Den.df 28 30 30 30 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	CT7 SC ST7 Treatment	0,28433 0,29579 0,41137 0,40328 0,33037 0,40189	0,16435 0,18926 0,42871 0,26088 0,37042	0,27531 0,27221 0,41219 0,3142	0,30347 0,40955 0,32251
Average Distance between SC CC	n/within groups CC ST7 0,20322	Control Treatment	СТ7					
Control CT7	0,13519 0,1754	3,9256E-2 0,10144	0,16103					
SC ST7 Treatment	0,17456 0,16223 0,18082 0,16008 0,14581 0,12491	0,11396 0,12106 0,17699 6,0426E-2 0,13383	0,15732 0,16303 0,11712 7,7829E-2					

PERMANOVA post-hoc results of effective quantum yield in factor 'Time Interval

I

PERMANOVA Permutational MA	NOVA				Denominat	tors						
Resemblance wor Name: Resem1 Data type: Distan Selection: All Resemblance: D1	<i>ksheet</i> ce Euclidean distane	ce			Groups 1, 2 1, 3 1, 4 2, 3 2, 4		Denominator 1*Res 1*Res 1*Res 1*Res 1*Res		Den.df 28 28 28 28 28 28 28			
Sums of squares t Fixed effects sum Permutation meth Number of permu	ype: Type III (par to zero for mixe hod: Permutation itations: 999	tial) d terms of residuals unde	er a reduced model		3, 4 Average Di. 1 1 0,119	istance b 1 909	1-kes between/within g 2	groups	3		4	
<i>Factors</i> Name Layout		Abbrev. La	Type Fixed	Levels 6	2 0,135 3 0,329 4 0,590	916 068	0,1610. 0,3312 0,5686	5	0,37482 0,42619		0,27531	
Time Interval		Ti	Fixed	4	Within leve	el 'SC' of	factor 'Layout'			Unique		
PAIR-WISE TESTS					Groups 1, 2		t 1,5299	P(perm) 0,118		perms 535	P(MC) 0,153	
Term 'LaxTi' for p	airs of levels of f	actor 'Time Inter	val'		1, 3 1, 4		3,3214 6,5403	0,009 0,001		693 735	0,003 0,001	
Within level 'CC' o	of factor 'Layout'		Unique		2, 3 2, 4		2,1941 4,9795	0,044 0,001		717 745	0,042 0,001	
Groups 1, 2 1, 3 1, 4	t 1,8882 5,5862 6.4717	P(perm) 0,041 0,001 0.001	perms 762 835 633	P(MC) 0,064 0,001 0.001	3, 4 Denominat Groups	tors	2,1596 Denominator	0,055	Den.df	765	0,037	
2, 3 2, 4	3,1153	0,007	838 828	0,006	1, 2		1*Res 1*Res		28 28			
3, 4	1,3295	0,185	743	0,211	1, 4		1*Res		28 28			
Denominators Groups	Denominator		Den df		2, 4		1*Res 1*Res		28 28			
1, 2	1*Res 1*Res		33		Average Di	istance h	n nes	roups	20			
1, 4	1*Res 1*Pos		31		1 5 480	1 05E-2		2	3	3	4	
2, 3	1*Res		30		2 0,1	1214	0	,16223	0.270	071		
3, 4	i kes		20		4 0,5	7174	0	,52839	0,375	821	0,30347	
Average Distance	between/within	2	3	4	Within leve	el 'ST7' o	f factor 'Layout'					
1 5,2229E-2 2 0,13653 3 0,39832 4 0,56354	(),20322),37497),51338	0,3383 0,37742	0,32693	Groups 1, 2 1, 3		t 2,9105E-2 1,1228	I	P(perm) 0,984 0,273		perms 662 716	P(MC) 0,977 0,263
Within level 'Cont	rol' of factor 'Lay	out'			1, 4 2, 3		2,0866 1,1477		0,057 0,249		735 696	0,033 0,274
Groups	t	P(perm)	Unique perms	P(MC)	2, 4 3, 4		2,136 0,96545		0,038 0,296		743 748	0,039 0,338
1, 2 1, 3	1,2587 4,4661	0,212 0,002	412 844	0,225 0,001	Denominat	tors						
1, 4 2, 3	46,525 4,9833	0,001 0,001	747 837	0,001 0,001	Groups 1, 2		Denominator 1*Res		Den.df 28			
2, 4 3, 4	75,298	0,001	676 689	0,001 0.001	1, 3		1*Res 1*Res		28 28			
Denominators					2, 3 2, 4		1*Res 1*Res		28 28			
Groups 1. 2	Denominator 1*Res		Den.df 23		3, 4		1*Res		28			
1, 3	1*Res		25 25		Average Di	istance b 1	etween/within g 7	iroups	3		4	
2, 3	1*Res 1*Res		26		1 0,194	402	0 1769	۰	-			
3, 4	1*Res		28		3 0,264	488	0,2602	5	0,33322		0 40328	
Average Distance	between/within	groups 2	3	4	Within leve	el 'Treatr	ment' of factor 'l	avout'	0,00001		0,10520	
1 6,953E-2		- 9256F-2	5		Groups	et freue	+	P(perm)		Unique	P(MC)	
3 0,41331 4 0,73428		0,4275	0,34297	8 2667E-3	1, 2		2,4233	0,019		356	0,023	
Within lovel 'CT7'	of factor 'l avout	0,75041	0,33722	0,20072-5	1, 4		4,4256	0,001		700	0,001	
Groups	+	D(norm)	Unique	P(MC)	2, 3		4,9858	0,001		694	0,001	
1, 2	0,5555	0,605	624	0,596	5,4		2,3937	0,03		700	0,027	
1, 3	6,2743	0,001	731	0,008	Groups	lors	Denominator		Den.df			
2, 3	2,3103 5,4707	0,035	712 713	0,029	1, 2		1*Res		28 28			
3, 4	2,4437	0,027	/2/	0,016	1, 4 2, 3		1"Res 1"Res		28 28			
					2, 4 3, 4		1"Res 1*Res		28 28			
					Average Di	istance b	etween/within g	roups				
					1 6,893	1 33E-2		2		3		4
					2 8,766 3 0,23	6/E-2 3511	7	,7829E-2 0,24428		0,31949		
					1 4 0 49	× / / /		0.51185		11 44181	0.3	(1)/)

Universidade do Algarve

PERMADISP results of effective quantum yield

PERMDISP

Distance-based test for homogeneity of multivariate dispersions

Resemblance worksheet Name: Resem1 Data type: Distance Selection: All Resemblance: D1 Euclidean distance

Group factor: Time Interval Number of permutations: 999

Number of groups: 4 Number of samples: 360

DEVIATIONS FROM CENTROID F: 87,814 df1: 3 df2: 356 P(perm): 0,001

PAIRWISE C	OMPARISONS	
Groups	t	P(perm)
(1,2)	2,0473	0,174
(1,3)	16,834	1E-3
(1,4)	11,402	1E-3
(2,3)	11,436	1E-3
(2,4)	8,5052	1E-3
(3,4)	0,3999	0,775

MEANS AN	ID STANDARI	D ERRORS	
Group	Size	Average	SE
1	90	6,8527E-2	9,9232E-3
2	90	0,10406	1,4236E-2
3	90	0,2998	9,5011E-3
4	90	0,29204	1,6907E-2

PERMANOVA results (left) and post-hoc results of effective quantum yield in factor 'Layout' (right)

PERMANOVA Permutational MANOVA

Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Resemblance: D1 Euclidean distance

Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Permutation of residuals under a reduced model Number of permutations: 999

Factors			
Name	Abbrev.	Туре	Levels
Layout	La	Fixed	6

PAIR-WISE TESTS Term 'La'

Unique Groups CC, Control CC, CT7 CC, SC CC, ST7 CC, FT Control CT7 perms 16 P(perm) P(MC) t 3,8633 0,54979 0,035 0,003 126 0,734 8,1037E-2 1 0,181 56 126 0,932 1,4258 0,34651 2,6444 1,2376 2,2021 0,202 0,62 126 0,726 Control, CT7 Control, SC Control, ST7 0,027 0,264 0,003 0,026 0,252 0,054 31 8 31 Control, FT 1,6276 0,099 31 91 0,139 CT7, SC CT7, ST7 0,18626 1,5758 0,59683 0,83 0,108 0,576 0,146 0,58 126 CT7, FT SC, ST7 SC, FT 126 1,3057 0,32275 0,191 0,862 91 91 0,239 0,749 ST7, FT 1,0627 0,337 126 0,332 Denominators Groups CC, Control CC, CT7 CC, SC CC, ST7 Denominator Den.df 1*Res 1*Res 8 8 1*Res 1*Res 8 8 CC, FT Control, CT7 1*Res 1*Res 8 8 8 Control, SC 1*Res

Control, ST7 Control, FT CT7, SC CT7, ST7 CT7, FT SC, ST7 SC, FT ST7, FT		1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res 1*Res	8 8 8 8 8 8 8 8 8			
Average Distance	between/v	vithin groups Control	CT7	sc	ST7	FT
СС	15,951	controt	CIT	50	517	
Control	27,625	1,146				
CT7	16,192	21,564	21,047			
SC	35,338	26,232	33,166	47,421		
ST7	61,776	80,43	65,583	74,864	95,539	
FT	40,205	35,67	38,708	43,364	73,118	54,97

PERMADISP results of effective quantum yield

PERMDISP

Distance-based test for homogeneity of multivariate dispersions

Resemblance worksheet Name: Resem2 Data type: Distance Selection: All Resemblance: D1 Euclidean distance

Group factor: Layout Number of permutations: 999

Number of groups: 6 Number of samples: 30

DEVIATIONS FROM CENTROID F: 4,9933 df1: 5 df2: 24 P(perm): 0,046

PAIRWISE COMPARISONS

Groups		t	P(perm)
(CC,Control)		2,3697	6E-3
(CC,CT7)		0,96767	0,718
(CC,SC)		1,5566	0,17
(CC,ST7)		2,556	1,5E-2
(CC,FT)		3,953	9E-3
(Control,CT7)		7,6773	1,1E-2
(Control,SC)		2,4369	1,4E-2
(Control,ST7)		3,1485	7E-3
(Control,FT)		6,4012	1E-2
(CT7,SC)		1,2738	0,385
(CT7,ST7)		2,3715	1,2E-2
(CT7,FT)		3,8928	9E-3
(SC,ST7)		1,2697	0,442
(SC,FT)		0,63369	0,598
(ST7,FT)		1,0033	0,549
MEANS AND STA	NDARD	ERRORS	
Group	Size	Average	SE

Group	Size	Average	SE
cc	5	11,187	4,3205
Control	5	0,91682	0,34381
CT7	5	15,755	1,902
SC	5	32,365	12,901
ST7	5	61,916	19,371
FT	5	41,47	6,326

PERMANOVA results of comparison between tank locations in parameters survival rate, leaf number, new leaf number and rel. effective quantum yield

PERMANOVA Permutational MAN	NOVA					PERMANOVA Permutational MAN	AVO						
Resemblance worksheet Name: survival Data type: Distance Selection: All Resemblance: D1 Euclidean distance					Resemblance worksheet Name: new leaf number Data type: Distance Selection: All Resemblance: D1 Euclidean distance								
Sums of squares ty Fixed effects sum Permutation metho Number of permut	rpe: Type III (partial) to zero for mixed terms od: Permutation of residu ations: 999	uals under a reduced	l model			Sums of squares ty Fixed effects sum Permutation metho Number of permut	pe: Type to zero fe od: Unres ations: 9	e III (partial) for mixed terms stricted permutat 1999	ion of raw data				
Factors Name Location	Abbrev. Lo	Type Fixed	Levels			Factors Name Location	Ab Lo	bbrev.	Type Fixed	Levels			
PERMANOVA table	of results					PERMANOVA table	of result	ts					
Source	Unique	MS	Pseudo-F			Source	Unique	cc	MS	Psoudo-F		P(porm	
Source	P(perm) perms	P(MC)	PSeudo-F		0.0	Source	perms	P(MC)	2 0520	Pseudo-r		P(perm)
Lo	3 1836,7 155 0,442	612,22	0,95411		0,42	Lo	3 387	9,1583 0,623	3,0528	0,55618		0,634	
Res	26 16683	641,67				Res	26	142,71	5,4888				
Total	29 18520					Total	29	151,87					
Details of the expe Source	ected mean squares (EMS EMS) for the model				Details of the expe Source	ected me EMS	ean squares (EMS)	for the model				
Lo Res	1*V(Res) + 7,4667*S(Lo) 1*V(Res)					Lo Res	1*V(Res 1*V(Res	s) + 7,4667*S(Lo) s)					
Construction of Ps Source	eudo-F ratio(s) from med Numerator	n squares Denominator		Num.df		Construction of Ps Source	eudo-F re Numera	atio(s) from mear ator	n squares Denominator		Num.df		Den.df
Lo	Den.at 1*Lo	1*Res		3		L0	1°L0	furiation	1"Kes		3		26
Fatimates of comm	20					Source	Estimat	te	Sq.root				
Source	Estimate	Sq.root				V(Res)	-0,3262 5,4888	8	2,3428				
S(Lo) V(Res)	-3,9435 641,67	-1,9858 25,331											
PERMANOVA Permutational MAN	NOVA					PERMANOVA Permutational MAN	AVO						
Resemblance work Name: leaf numbe Data type: Distanc Selection: All	isheet er ie					Resemblance work Name: PAM Data type: Distanc Selection: All Resemblance: D1 E	sheet e Euclidean	n distance					
Resemblance: D1 Euclidean distance Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms				Sums of squares ty Fixed effects sum Permutation meth	pe: Type to zero fo od: Unre	e III (partial) for mixed terms stricted permutat	ion of raw data						
Number of permut	ations: 999	CION OF FAW GALA				Factors	ations: 9	199					
Factors Name	Abbrev.	Type	Levels			Name	At	bbrev.	Type Fixed	Levels			
Location	Lo	Fixed	4			PERMANOVA table	of result	ts					
PERMANOVA table	of results						Unique						
Source	Unique	MS	Pseudo-F			Source	df	SS P(MC)	MS	Pseudo-F		P(perm)	
	P(perm) perms	P(MC)	1 0057			Lo	3	7811	2603,7	1,1911		0,312	
Lo 0,137	3 548,66 923 0,168	182,89	1,9257			Res	996 26	0,335 56836	2186				
Res	26 2469,2	94,97				Total	29	64647					
Total	29 3017,9												
Details of the expe Source Lo Res	ected mean squares (EMS EMS 1*V(Res) + 7,4667*S(Lo) 1*V(Res)) for the model				Details of the expe Source Lo Res	EMS 1*V(Res 1*V(Res	ean squares (EMS) s) + 7,4667*S(Lo) s)	for the model				
Construction of Ps Source	eudo-F ratio(s) from med Numerator	n squares Denominator		Num.df		Construction of Ps Source Lo	eudo-F re Numera 1*Lo	atio(s) from mear ator	n squares Denominator 1*Res		Num.df 3		Den.df 26
Lo	Den.dt 1*Lo 26	1*Res		3		Estimates of comp	onents o	of variation	Sa root				
E.C	20					S(Lo)	55,938	8	7,4792				
Estimates of comp Source S(Lo) V(Res)	oonents of variation Estimate 11,775 94 97	Sq.root 3,4314 9 7452				V(Kes)	2186)	46,755				
,													

PERMANOVA post-hoc results of comparison between tank locations in parameters survival rate, leaf number, new leaf number and rel. effective quantum yield

PERMANOVA Permutational MANOVA Resemblance worksheet Name: survival Data type: Distance Selection: All Resemblance: D1 Euclid Sums of squares type: T Fixed effects sum to zer Permutation method: P Number of permutation: Factors Name Location PAIR-WISE TESTS Term 'Lo'	t lean distance ype III (partial) ro for mixed terms ermutation of residual s: 999 Abbrev. Lo	s under a reduced Type Fixed	i model Levels 4			PERMANOVA Permutational MANOVA Resemblance worksheet Name: new leaf number Data type: Distance Selection: All Resemblance: D1 Euclide Sums of squares type: Ty Fixed effects sum to zer Permutation method: UU Number of permutations Factors Name Location PAIR-WISE TESTS Term 'Lo'	ean distance ype III (partial) o for mixed terms nrestricted permutatio s: 999 Abbrev. Lo	on of raw data Type Fixed	Levels 4		
					Uning						Uninun
e Groups					t	Groups					t
m)					P(per	ereaps					P(perm) perms
perms south west, north east					P(MC)	south west, north east					P(MC) 9,5533E-2
0,1584					1 10						1 16
south west, south west	inner				0,874	south west, south west i	inner				0,93 0,92172
0,31					15						26 0 344
south west, north east i 1.4506	inner				0,275	south west, north east in	nner				0,77235
0,269					7 0,186						14 0,44
north east, south west i	inner				0,925	north east, south west in	nner				1,0162 0,312
82 0,443					14						27 0,331
north east, north east ir 1,2104 0.313	nner				0,354	north east, north east in	iner				0,88192 0,444 16 0,405
south west inner, north	east inner				0,252	south west inner, north	east inner				0,31243 0,785
48					0,204 1						21 0,785
Denominators					8 0,849	Denominators Groups					Denominator Den df
Groups					Deno	south west, north east					1*Res 14
minator					Den.d	south west, south west i	inner				1*Res 12
f south west, north east					1*Res	south west, north east in	nner				1*Res 14
south west, south west	inner				14 1*Res	north east, south west in	nner				1*Res 12
south west, north east i	inner				12 1*Res	north east, north east in	nner				1*Res 14 1*Pos
north east, south west i	inner				1*Res 12	south west limer, north	east miler				12
north east, north east ir	nner				1*Res 14	Average Distance betwee	en/within groups	south west		north east	so
south west inner, north	east inner				1*Res 12	west inner south west		north east inner 3,1071			
Average Distance betwe	en/within groups					north east		2,8125		3,1429	
south west		south west south west inner	r	north east inner		south west inner		2,7083		2,7917	
north east		33.75		38,571		north east inner 2.125		2,5625 2,2143		2,625	
south west inner		30		29,167							
north east inner		18,667 29,375		29,375							
PERMANOVA Permutational MANOVA		15		15,714		PERMANOVA Permutational MANOVA					
Resemblance worksheet Name: leaf number Data type: Distance Selection: All Resemblance: D1 Euclid	t lean distance					Resemblance worksheet Name: PAM Data type: Distance Selection: All Resemblance: D1 Euclide	ean distance				
Sums of squares type: Type III (partial) Fixed effects sum to zero for mixed terms Permutation method: Lunestricted permutation of raw data Number of permutations: 999					Sums or squares type: Ty Fixed effects sum to zer Permutation method: Ur Number of permutations	ype III (partial) o for mixed terms nrestricted permutatio 5: 999	on of raw data				
Factors Name Location	Abbrev.	Type Fixed	Levels			Name Location	Abbrev. Lo	Type Fixed	Levels 4		
PAIR-WISE TESTS			-			PAIR-WISE TESTS					
Term 'Lo'						Term 'Lo'					

south

				l l			
			Uniqu				Unique
e Groups			t Ríper	Groups			t P(porm)
m) perms			P(MC)				perms P(MC)
south west, north east			0,270	south west, north east			0,85511 0,458
0,789			53 0.803	south west south west inner			0,383
south west, south west inner 1,7813 0 116			42				0,512 124 0.519
south west, north east inner			0,093	south west, north east inner			0,69232 0,505
0,095			44 0,097	north east, south west inner			0,493 1,2928
north east, south west inner 1,6124 0,119			53				0,266 138 0,218
north east, north east inner 1.6581			0,14	north east, north east inner			1,4455 0,182 209
0,112			56 0,095	south west inner, north east inner			0,19 0,14673
93			0,595				82 0,889
0,57			31 0,564	Denominators Groups			Denominator
Denominators Groups			_	south west, north east			Den.df 1*Res
minator			Deno Den.d	south west, south west inner			14 1*Res 12
f south west, north east			1*Res	south west, north east inner			1*Res 14 1*Per
south west, south west inner			14 1*Res 12	north east, north east inner			12 1*Res
south west, north east inner			1*Res 14	south west inner, north east inner			14 1*Res
north east, north east inner			12 1*Res	Average Distance between/within groups			12
south west inner, north east inner			14 1*Res 12	west inner south west	south west north east inner 48,321	north east	so
Average Distance between/within groups	south west	north east		north east	60,563	79,821	
south west	south west inner 12,429	north east inner		south west inner 21,733	34,917	53,5	
north east	13,438	16,857		18,958	34,969 21,25	53,594	
south west inner	10,5 3,1333	12,708					
north east inner	10,375 3,25	12,406 4,1071					

south

Appendix 9

Temperature profiles of loggers in buckets and tanks.

No recordings of logger of left tank after July 24th.

Appendix 10

Zostera marina shoots before (left) and after (right) the experiment

CC

CT7

SC

ST7

Control

Fertilized Shoots

Appendix 11

de Varw Accessories	All a series provide the series of the			
Chart Induct. Curve	Light Curve SAT-Chart	Report Memory Batch	Stings	
Chart Induct. Curve Reset #1: DIVIN Measuring Light Int. Int. 8 A T System Parameter Damp. Damp. 2 A T Gain 6 A T F-Offset F-Offset F-Offset Auto-Zero Clock Time 0:30 T	Ight Curve SAT-Chart G-PAM at COM3 - Se SAT-Pulse Int. 8 (*) Width 0.8 (*) Actinic Light Int. 3 (*) PAR 62 Width 0.30 (*) Factor 0.60 (*)	Report Memory Batch rNr: with Comment Act.+Yield Width 0:30 (A)(V) Induct. Curve Delay 0:40 (A)(V) Width 0:20 (A)(V) Light Curve Width 0:10 (A)(V) Int. 2 (A)(V)	Act. Light List 0: 0 1: 4 /: 312 2: 23 8: 420 3: 62 9: 632 4: 170 10: 947 5: 168 11: 1344 6: 220 12: 2448 Read Edit Set / Beeper active	
Model: Diving-PA Status Meas. Light ML- SAT-Pulse Act. Light ML- Goo	Model-Nr.; M F High Basic Pro Act. Int. Clk. Time: ck (0:00)	SerNr.: gram 3 € 7 62 µ 9:30 € 7 Memory: E 2AM ← 0.003 k	SAT-Pulse Chart Online (II) 0.655 TR 0.0 Ft PAR* Temp* Fo, Fm SAT Batt.	24 Depth* 1.1 0

WinControl-3 settings for Heinz Walz GmbH Diving-PAM