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A B S T R A C T   

Precipitation is one of the most relevant fields in atmospheric modeling because of its environmental, social and 
economic implications. However, precipitation validation from weather model outputs presents substantial 
challenges, such as measurement uncertainties, use of gridded datasets vs. direct observations, and the selection 
of statistical goodness-of-fit measures. The main difficulty of working with precipitation is that it can be spatially 
irregular, especially in extreme events. High temporal aggregation smooths the field and reduces verification 
uncertainty. For this reason, validations are usually focused on a daily scale. However, many extreme events 
occur on shorter periods, for which a sub-daily precipitation assessment is required. In this paper, hourly pre
cipitation verification of the Weather Research and Forecasting (WRF) model is explored for 45 extreme pre
cipitation events (EPEs) recorded in northeastern Spain. For this, stations with recorded EPEs were classified 
according to the hourly distribution of precipitation. WRF simulations were established considering three 
microphysics and two planetary boundary layer (PBL) parameterizations. Finally, several statistical goodness-of- 
fit measures and spatial and temporal precipitation distributions were used for evaluating WRF performance. The 
results showed that microphysics were more important than PBL parameterizations. Goddard and Thompson 
together with Mellor-Yamada-Nakanishi and Nino PBL gave better results for most of the analyzed character
istics. However, an optimal combination of parameterizations was not obtained for all EPEs, because event 
characteristics had important effects on model performance.   

1. Introduction 

Precipitation forecasting is one of the most relevant fields in atmo
spheric modeling, owing to its environmental, social and economic 
implications. Numerical weather prediction (NWP) models are currently 
the basic tool on which precipitation forecasts are based (Sun et al., 
2014). Accordingly, the Weather Research and Forecasting (WRF) 
model (Skamarock and Klemp, 2008) has a large worldwide community, 
with widespread use in research (García-Ortega et al., 2017; Karki et al., 
2018; Li et al., 2021; Yang et al., 2021) because it is open-source code in 
the public domain and has a set of realistic and continuously evolving 
physical parameterization schemes. 

Accumulated precipitation analysis under different temporal aggre
gates is of great interest for climate studies. However, when dealing with 
meteorological risks, intense precipitation deserves specific attention. 
Rainfall is the main driver of water resource availability but its 

concentration in time produces extreme precipitation events (EPEs) and 
severe negative effects on society, the environment and economy 
(Jonkman, 2005). In the Mediterranean Sea area, precipitation has 
strong spatiotemporal variability, resulting in a high frequency of EPEs 
(Llasat et al., 2013; Tramblay and Somot, 2018). This characteristic, 
combined with the substantial vulnerability of this densely populated 
area, make it a “hotspot” because of powerful impacts related to climate 
change (Giorgi, 2006). This justifies the interest in EPE studies. 

Given the above, there have been several studies in recent years on 
the characteristics of EPEs, their spatiotemporal distributions (Grazzini 
et al., 2020), trends (Merino et al., 2016), and relationships to large- 
scale patterns (Vicente-Serrano et al., 2009; Mastrantonas et al., 
2021). In addition, several studies have evaluated numerical model 
sensitivity for extreme precipitation event forecasts in the Mediterra
nean area (Romero et al., 2015; Trapero et al., 2013; Vich and Romero, 
2010) and more specifically in the Ebro Valley (García-Ortega et al., 
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2007, 2017). However, accurate forecasting of EPEs remains problem
atic and can even go undetected by operational forecast systems (Carrió 
et al., 2022). The reasons are known: strong spatiotemporal variability 
of precipitation during EPEs, highly localized EPEs triggered by local- 
scale factors, and a lack of full understanding of related physical pro
cesses. EPEs are generally associated with short-term convective pre
cipitation, but mesoscale convective systems or persistent orographic 
precipitation can also produce EPEs of variable duration (Merino et al., 
2021). 

Accurate EPE forecasting remains a basic tool to minimize the 
associated risk, although such forecasts remain uncertain (Xie et al., 
2015; Stegall and Kunkel, 2019). Several studies using climate (Sun and 
Liang, 2020) and weather models (García-Ortega et al., 2017; Comin 
et al., 2018) have investigated model sensitivity to varying physics 
representations and underlying mechanisms, because the most impor
tant uncertainty lies in representing physical processes (Allen and 
Ingram, 2002). Karki et al. (2018) evaluated several microphysics 

parameterization schemes using WRF simulations of EPEs over the 
Central Himalayas, showing the Thompson scheme to have the best 
agreement with observations. Yang et al. (2021) evaluated the perfor
mance a WRF multi-physics ensemble for EPEs in China. The results 
suggest that selection of the cumulus scheme was more important than 
microphysics schemes for the precipitation forecast in the case of low- 
resolution simulations. Another source of uncertainty influences pre
cipitation verification because of the intrinsic nature of observations, e. 
g., errors in measurement systems, available station density, and veri
fication methods. 

To minimize uncertainties, rainfall has usually been studied on a 
daily scale (Douluri and Chakraborty, 2021). However, EPEs can have a 
shorter duration, especially convective events, necessitating sub-daily 
assessment. Model evaluation at sub-daily scale constitutes a major 
challenge because EPEs are characterized by strong spatiotemporal 
variability in the precipitation field. Therefore, it is reasonable to expect 

Table 1 
Ensemble model: microphysics and PBL parameterizations.   

Microphysics PBL 

Combination 1 Goddard MYNN 
Combination 2 Goddard MYJ 
Combination 3 Thompson MYNN 
Combination 4 Thompson MYJ 
Combination 5 Morrison MYNN 
Combination 6 Morrison MYJ  

Fig. 1. Cluster classification of EPEs: red Cl.1; blue CL.2, green Cl.3; orange Cl.4; light blue Cl.5. A) Hourly precipitation (mm h− 1) distribution, thick line shows 
mean cluster; B) monthly distribution; C) EPE distributions by study days and 24-h accumulated precipitation by cluster (colour dots). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Average intensity, duration, and altitude of events by cluster.  

Cluster Max hourly 
intensity (mm) 

Max daily 
intensity (mm) 

Duration 
(hours) 

Altitude 
(m) 

1 12.1 68 14.5 1013 
2 28.3 91.3 10.9 932 
3 13.1 83.5 16 1150 
4 24.3 69.2 8.7 865 
5 9.6 69.3 17.3 1019  
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results substantially worse than for longer temporal aggregates. 
Recently, Kong et al. (2022) examined the sensitivity of hourly precip
itation to cumulus parameterization and radiation schemes using a 
tropical-belt version of WRF. They found greater sensitivity for precip
itation frequency than for amount. Frequencies of greater than moderate 
rate were well reproduced, whereas frequencies of more than light 
drizzle and heavy rates had large deviations. 

Precipitation from grid models and point observations can be 
compared using two approaches. The first interpolates rain gauge ob
servations to the resolution of the grid model and the second compares 
point-to-grid. Both options can lead to uncertainties in the verification 
results. In the first case, grid quality strongly depends on the distribution 
and spatial density of the stations (Merino et al., 2021). In many cases, 
the available observational data do not allow construction of the 
intended grid resolution without considerably increasing uncertainties. 
In the second case, spatial uniformity of the pixel must be assumed. The 
higher the grid resolution and more spatially uniform the field, the less 
inaccuracy. Considering the results of Merino et al. (2021) and Hofstra 
et al. (2008), who questioned the applicability of grid datasets for 
validation studies at grid-cell level (particularly on shorter time scales), 
and considering the high spatial resolutions using in mesoscale models, 
it seems a better option to use the second approach to evaluation. 

The objective of the present work was to appraise the WRF model for 
its hourly precipitation performance for EPEs. First, a WRF ensemble 
was designed with three microphysics and two planetary boundary layer 
(PBL) schemes for each day on which EPEs were recorded. Subsequently, 
for studying the EPEs based on precipitation type, they were classified 
according to the hourly precipitation distribution. Finally, WRF hourly 
precipitation by cluster was investigated using scatter plots, density 
plots, and statistical goodness-of-fit measures. 

This paper is organized as follows. Databases and study area de
scriptions are in Section 2. Section 3 describes the WRF model and 
methods for precipitation validation. Results are summarized in Section 
4, and a discussion and conclusions are found in Section 5. 

2. Data and study area 

The Ebro Basin in northeastern Spain has characteristics making the 
area suitable for precipitation studies: a dense rain gauge network with 
10-min data maintained and calibrated by the Ebro Hydrographic 
Confederation; strong climatic variability and rainfall gradients; a pro
nounced annual precipitation cycle with large regional differences; 
frequent EPEs in all seasons. For this reason, there have been studies 
with distinct approaches in recent years: deep convection and hailstorm 
analysis (García-Ortega et al., 2012; Merino et al., 2013; Marcos et al., 
2021); hailstorm variability (García-Ortega et al., 2014); precipitation 
measurement by remote sensing (Merino et al., 2014; Navarro et al., 
2020); physical scheme validation (García-Ortega et al., 2017); identi
fication of precipitation extremes (Merino et al., 2018); gridded pre
cipitation dataset analysis (Merino et al., 2021). 

In our study, a set of 367 rain gauge (tipping-bucket type) stations 
was used. The stations are distributed throughout the basin, with a 
greater density in the highlands (Fig. 2 and Fig. 1A in Merino et al., 
2021). Hourly and daily precipitation data were retrieved from the 
stations between 2010 and 2018. Quality control (QC) was done using 
the R package reddprec (Serrano-Notivoli et al., 2017). See Merino et al. 
(2021) for more details about the QC results. 

3. Methods 

First, EPEs were selected from precipitation datasets. The EPE defi
nition followed the methodology of Merino et al. (2016), i.e., days on 
which the total precipitation amount exceeded the station-specific 99th 
percentile of daily precipitation on “wet” days (precipitation ≥1 mm). 
Days on which 10 or more stations met the criteria were thereby 
selected, giving 45 cases with 965 stations exceeding the 99th percen
tile. The station number criterion was used to avoid too localized events 
that could not be properly captured by the model resolution. 

Later, hourly precipitation data were retrieved from the 965 stations. 
The objective was to analyze precipitation on a sub-daily scale, because 
EPEs based on daily precipitation include intense precipitation events 
over a few hours and very persistent rainfall events that produce heavy 

Fig. 2. WRF domains. Topographic map of Ebro River basin and rain gauge network (red dots). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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accumulated precipitation over many hours. Both types of event can 
pose considerable hydrologic hazards but the nature of the precipitation 
can be very different. It is therefore interesting to analyze model 
behavior vs. rainfall type. Rainfall type was defined by considering the 
intensity and duration of the precipitation and its spatial and seasonal 
distribution. For this, the 965 stations were classified using non- 
hierarchical k-means clustering (Hartigan and Wong, 1979) and hour
ly precipitation. The objective was to classify stations with similar 

rainfall evolution throughout the day. Euclidean distance was chosen for 
classifying groups of data according to their similarity. One of the 
sources of subjectivity in this method is the requirement that the number 
of final conglomerations (k) is determined ahead of time. The selection 
of k can be done objectively by computing the minimum decrease of 
intragroup distances. Nevertheless, the decision regarding the number 
of groups is not completely objective because there is some subjectivity 
based on researchers’ experience (Gong and Richman, 1995). In the 
present study, the total within-group sums of squared distances were 
computed for k = 2, 3, 4, … 15, showing a minimum decrease for k = 5, 
considered the optimal cluster number. 

Numerical simulations of the 45 study cases were run using the non- 
hydrostatic Advanced Research WRF model version 4.1 (Skamarock and 
Klemp, 2008). Initial and boundary conditions were from the National 
Oceanic and Atmospheric Administration / National Centers for Envi
ronmental Prediction Global Forecasting Model reanalysis with 0.25◦

horizontal grid spacing, providing time-varying lateral boundary con
ditions at 6-h intervals. Following a two-way nesting strategy, three 
domains with horizontal resolutions 27, 9 and 3 km were developed 
(Fig. 2). Each selected case was a 24-h precipitation event, but a 30-h 
simulation was done for the first 6 h as a spin-up period. A total of 50 
vertical sigma levels was defined with progressive spacing, which was 
denser at low levels for better representation of the PBL and convective 
initiation. 

Parameterizations are essential for representing the effects of subgrid 
processes in the atmosphere, such as turbulence, convection, and 
microphysics. Transport phenomena and thermodynamic processes alter 
the population of cloud hydrometeors that is mainly governed by 
microphysics and PBL schemes. In particular, precipitation is very sen
sitive to the choice of microphysics in NWP models (Tapiador et al., 
2019a). According to previous results from the study area (García- 
Ortega et al., 2017), three microphysics schemes were selected 
(Table 1): (I) The Goddard Cumulus Ensemble one-moment bulk 
microphysical scheme (Tao et al., 2016). It includes cold rain processes 
(Rutledge and Hobbs, 1984; McCumber et al., 1991) and a cloud ice-to- 
snow conversion process. (II) The new Thompson scheme (Thomson 
et al., 2004, 2008) with a double-moment scheme for cloud ice and rain. 
In this, graupel is represented by a generalized gamma function (Jankov, 
2011). (III) The Morrison 6-class double moment scheme (Morrison 
et al., 2009), which includes mixing ratios and predicted number con
centrations for liquid and solid phases. Different rates of rain evapora
tion in stratiform and convective regions were considered, as well as 
predicted rain size distributions. 

The poor-accuracy representation of lower-tropospheric thermody
namic and kinematic structures is a source of uncertainty in mesoscale 
models (Jankov et al., 2005; Stensrud, 2007; Cohen et al., 2015), 
particularly regarding severe weather events. The PBL plays a funda
mental role in precipitation-forming processes (Moya-Álvarez et al., 
2020). Turbulent eddies and mixing in the PBL occur on spatiotemporal 
scales smaller than grid scale and must be represented by parameteri
zation schemes. Two local formulation schemes for the PBL were 
considered in our study (Table 1): (I) Mellor-Yamada-Janjic (MYJ; 
Mellor and Yamada, 1982; Janjic, 1994), which uses a 1.5-order (level 
2.5) turbulence closure model. It determines local vertical mixing and 
evaluates the turbulent kinetic energy diffusion outside the mixed layer, 
improving the representation of entrainment. (II) The Mellor-Yamada 
Nakanishi and Nino Level 2.5 scheme (MYNN) that uses liquid water 
potential temperature and total water content. Buoyancy processes are 
considered in diagnosing the pressure covariance terms. This scheme 
deals with the effect of stability on the turbulent length scale. 

In addition, based on the results of other studies, the following were 
selected: Dudhia (1989) for shortwave radiation; the Rapid Radiative 
Transfer Model (Mlawer et al., 1997) for longwave radiation; Eta surface 
layer described by Janjic (1994) and Noah Land Surface Model (Chen 
and Dudhia, 2001); Kain-Fritsch cumulus scheme (Kain, 2004) with 
explicit resolution of cumulus in the inner domain. 

Fig. 3. Example study cases for each cluster. Left: Synoptic environment, 
colored areas represent geopotential height at 500 hPa and contours sea-level 
pressure. Right: 24-h accumulated precipitation (mm). 
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The rain gauges are very unevenly distributed in our study area, so 
the grid building for WRF verification can generate additional un
certainties (Merino et al., 2021). Thus, the verification was performed 
using WRF grid-to-point comparisons. Although this method may also 
lead to uncertainties, considering pixels to be spatially uniform and use 

of the WRF model with high spatial resolution minimizes the impact. 
The hourly precipitation by cluster was evaluated using density plots 

and statistical goodness-of-fit measures. First, the modified Kling-Gupta 
efficiency (KGE; Gupta et al., 2009, Kling et al., 2012) was chosen. This 
index compares observed and modeled precipitation, decomposing total 

Fig. 4. Spatial distribution of 24-h accumulated precipitation (mm) mean ensemble for each study case. Black-filled triangles represent stations exceeding the 
threshold of EPE. 
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performance into three components: linear correlation (r), bias ratio (β), 
and variability ratio (γ). r is the Pearson product-moment correlation 
coefficient, β measures total precipitation compared to ground-based 
observations, indicating the average tendency of the grid precipitation 
to underestimate (β < 1) or overestimate (β > 1), and γ measures the 
relative dispersion between the gridded and ground-based measure
ments. The optimal value for KGE and all its components is one. This 
index has been widely used to evaluate the performance for precipita
tion (e.g., Somos-Valenzuela and Manquehual-Cheuque, 2020; Merino 
et al., 2021). 

Classic performance measures based on pairwise comparison be
tween model and observation have several drawbacks for hourly pre
cipitation. Precipitation is a discontinuous variable with strong 
spatiotemporal variability. For this reason, models are usually validated 
using daily accumulated precipitation. In such a case, hourly precipi
tation data, the temporal precipitation distribution throughout the 
event, and the distance of maximum precipitation between observed and 
model have been evaluated using density plots, which is a smoothed 
version of the histogram. Visual comparison of the distribution is com
plemented by adding the D statistic from the Kolmogorov-Smirnov (K-S) 
test as a measure of deviation between the two distributions. That test 
measures the maximum difference between observed and modeled cu
mulative distributions. The distance statistic of the K-S test and its p- 
value were computed. The null hypothesis assumes that both samples 
come from a population with the same distribution. When that hy
pothesis can be significantly rejected, there is a significant difference 
between the distribution of the two samples. 

4. Results 

WRF precipitation was evaluated considering its hourly distribution 

throughout an event. The strong climate variability of the study area 
facilitates extreme events spanning a large spatiotemporal range. Iso
lated and intense convective episodes producing extreme rainfall over 
limited areas are frequent. Convective events are more common in 
spring and summer but are also possible in winter. On the other hand, 
persistent precipitation events, associated with strong advection and 
orographic lift, produce large accumulations over many hours. These 
events are more frequent in winter and tend to cover extensive areas 
near mountains. (Merino et al., 2016; Merino et al., 2018). 

First, the 965 stations (events) exceeding the 99th percentile were 
classified according to observed hourly precipitation. Five clusters were 
obtained, with different precipitation distributions across the events 
(Fig. 1). The mean hourly precipitation by cluster (Fig. 1A) shows that 
clusters 2 and 4 have heavy precipitation concentrated over a few hours, 
around 12 UTC for cluster 2 and 17 UTC for cluster 4, whereas observed 
precipitation is scarce away from this peak. This behavior is typical of 
convective precipitation, which has small spatiotemporal scales. Thus, 
events belonging to these clusters have been recorded only in summer 
and fall (Fig. 1B). Clusters 1 and 3 represent substantial precipitation 
over several hours (Fig. 1A). The precipitation is concentrated in the 
final hours of the event for cluster 1 and in the first hours for cluster 3. 
These are events midway between short and intense convective events 
and prolonged stratiform events. Finally, in cluster 5, precipitation oc
curs throughout the event, albeit with weak intensity, typical of sus
tained stratiform events. These findings are consistent with the average 
intensity, duration, and altitude of events by cluster (Table 2). Events of 
clusters 2 and 4 had the greatest maximum intensity of hourly precipi
tation and shortest duration. In addition, the stations affected by 
extreme events have a lower average altitude, because convective pre
cipitation can appear throughout the basin. Cluster 5 events had the 
weakest hourly intensity and maximum duration, characteristics of very 

Fig. 5. Density plots for observed hourly precipitation distribution (red line) vs. WRF precipitation (black line). Rows show different WRF combinations and columns 
show clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Density plots for temporal distribution (UTC) of observed hourly precipitation (red line) vs. WRF precipitation (black line). Rows show different WRF 
combinations and columns show clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Density plots for distance distributions (km) between observed and WRF precipitation, by clusters and WRF combination (colors).  
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persistent orographic precipitation, whereas the events of clusters 1 and 
3 had moderate intensity and duration. 

The monthly distribution of the events (Fig. 1B) shows a higher 
frequency in October and November. The influence of the Mediterra
nean Sea, which during these months reaches a high sea surface tem
perature, together with the arrival of baroclinic waves from the polar jet, 
favors extreme precipitation events. The small number of events in 
summer is due to convective events affecting limited areas. When 
stratiform precipitation is observed (cluster 5), there are more stations 
affected by extreme precipitation in each event (Fig. 1C). 

For a deeper analysis of precipitation characteristics in each cluster, 
we analyzed the synoptic environment of the day with the highest fre
quency of stations assigned to each cluster (Fig. 3). The synoptic situa
tion of these paradigmatic days allows further insight into the 
atmospheric mechanisms producing EPEs. The day selected for cluster 1 
shows a dynamic low pressure located northwest of the Iberian Penin
sula, favoring continuous rainfall on the southern face of the Pyrenees. 
The synoptic environment of cluster 2 indicates a cutoff low at mid- 
levels, favoring substantial moisture advection from the Mediterra
nean with very intense precipitation at the eastern end of the Ebro Basin. 
This situation favors the formation of mesoscale convective systems. The 
situation of cluster 3 is similar to that of cluster 1 but with the low 
pressure centered on the Iberian Peninsula, favoring precipitation in the 
northeastern Ebro Basin, owing to the interaction of moist flow with the 
Pyrenees. The selected day of cluster 4 is paradigmatic in terms of 
triggering convection in the middle Ebro Valley, with very irregular 
intense rainfall (García-Ortega et al., 2012). Finally, the cluster 5 day 
shows powerful northwest advection with persistent precipitation 
confined to the highlands of the northwestern Pyrenees. The synoptic 
analysis of these paradigmatic days confirms the rainfall regime in each 
cluster suggested by the previous explorations. 

The 45 selected study cases encompassing the 965 stations with 
extreme precipitation were simulated using the WRF model. Six 
parameterization combinations were used to validate model behavior 
for extreme precipitation events (Table 1). The mean ensemble accu
mulated precipitation for each event (Fig. 4) shows a great variety of 
situations: from events with generalized precipitation throughout the 
study area (2016-11-23; 2016-02-27) to those affecting very small areas 
(2016-01-10; 2015-07-21). The latter have a diverse nature, including 
advective events affecting basin headwaters (2017-02-04; 2015-02-25) 
and localized convective events (2015-07-21; 2018-10-19). In general, 
the heaviest mean accumulations match the areas where extreme pre
cipitation was recorded (black filled triangles), indicating that total 
accumulated precipitation was well simulated by the model. These 

results have been shown in previous studies (García-Ortega et al., 2017). 
However, we now examine the hourly structure of precipitation in these 
events. 

The validation of WRF vs. observation hourly precipitation from 
point to point showed poor results, as expected. In Table 3, the disper
sion between WRF and observed precipitation is clear, as can also be 
seen by the remoteness from the value of one for KGE and its parameters. 
This highlights the difficulty of simulating the hourly precipitation 
distribution in extreme events. Even so, important differences between 
the parameterization combinations and various clusters are evident. 
Better performances of the KGE and parameters can be seen for cluster 5 
and surprisingly for cluster 2. The events classified in cluster 5 are 
essentially stratiform with greater spatial and temporal continuity, so a 
better model performance seems reasonable. However, cluster 2 pre
sents a behavior opposite to cluster 5, with precipitation highly 
concentrated in time. Observing the temporal distribution of cluster 2, 
the events occur during autumn and the hours of greatest surface 
warming, when convection tends to be initiated. These events are 
therefore related to organized convection induced by cutoff lows in the 
western Mediterranean. Thus, these types of precipitating structures, 
despite being also convective, are better represented by the model than 
is isolated convection (cluster 4). 

The choice of parameterizations also had a major impact on model 
performance. Combinations 1 and 3 yielded a better KGE for all clusters 
(Goddard and Thompson with MYNN PBL), whereas Morrison (combi
nations 5 and 6) gave the poorest results. In all cases there was model 
underestimation of hourly precipitation (β < 1), with combination 1 
coming closest to the value of one. The variability of model precipitation 
remained similar to that observed (γ ≈ 1). 

Such poor results may be attributable to verifications based on grid- 
to-point comparisons. This method can produce a biased view in the case 
of strong spatiotemporal variability and/or discontinuous fields. The 
hourly precipitation verification for extreme events did not provide 
satisfactory results because of its strong spatiotemporal irregularity. To 
avoid the drawbacks that traditional indices have in verifying precipi
tation, alternative techniques using density plots were explored, based 
on three precipitation characteristics in EPEs, namely, intensity, tem
poral and spatial distribution. 

Fig. 5 shows the density distribution of observed hourly precipitation 
(red) and WRF precipitation (black), together with the K-S distance and 
p-value by cluster and WRF combination. It should be emphasized that 
in all cases, the observed and predicted distributions have significant 
differences (p-value = 0), largely due to the tendency for WRF to un
derestimate. This can be seen in the rightward shift of the red curve 

Table 3 
Statistical goodness-of-fit measures of observed hourly precipitation vs. WRF precipitation by different WRF combinations and clusters.   

Combinations 1 2 3 4 5 6 

Cluster 1 

KGE 0.223 − 0.084 0.168 − 0.094 − 0.143 − 0.139 
r 0.283 0.067 0.25 0.068 0.076 0.047 
β 0.758 0.583 0.718 0.53 0.519 0.515 
γ 1.178 1.361 1.225 1.326 1.471 1.393 

Cluster 2 

KGE 0.375 0.167 0.391 0.091 0.213 0.09 
r 0.415 0.235 0.446 0.198 0.299 0.153 
β 0.819 0.677 0.755 0.573 0.646 0.667 
γ 0.875 1.064 0.936 1.026 0.946 1.001 

Cluster 3 

KGE 0.112 0.025 0.055 − 0.007 − 0.052 − 0.026 
r 0.21 0.156 0.181 0.147 0.168 0.119 
β 0.625 0.553 0.584 0.53 0.483 0.547 
γ 1.154 1.195 1.223 1.255 1.385 1.267 

Cluster 4 

KGE 0.137 − 0.048 0.235 − 0.093 0.041 − 0.092 
r 0.186 0.104 0.274 0.082 0.136 0.078 
β 0.718 0.457 0.775 0.406 0.589 0.417 
γ 0.949 1.031 0.911 0.988 1.064 1.05 

Cluster 5 

KGE 0.273 0.095 0.233 0.075 0.078 0.044 
r 0.286 0.179 0.254 0.168 0.203 0.164 
β 0.866 0.696 0.853 0.672 0.691 0.684 
γ 1.024 1.232 1.102 1.237 1.345 1.339  
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relative to the black one. However, the K-S distance provides valuable 
information for comparing WRF combinations and clusters. The largest 
K-S distances are associated with the stations of cluster 4, and the 
smallest with cluster 5. This agrees with the precipitation nature of each 
cluster, i.e., convective in the summer and autumn in cluster 4 and 
stratiform in cluster 5. However, the combination of parameterizations 
used in WRF has a substantial influence on the results. Thus, the best 
score for all clusters was obtained with combination 1, except for cluster 
2, which was with combination 2. Both combinations share Goddard 
microphysics, obtaining performances superior to others. Regarding the 
PBL, MYNN achieved slightly better results than MYJ, except for cluster 
2, characterized by very intense precipitation events. 

Fig. 6 shows the hourly precipitation distribution by cluster and WRF 
combination. For EPEs, the models may not be able to accurately 
represent the temporal distribution of precipitation, but short delays or 
advances in precipitation modeling do not make the model useless. The 
first point is a clear smoothing effect of the modeled temporal precipi
tation distribution (black line). That is, the model tends to spread the 
precipitation over a longer time than observed. From the comparison of 
temporal distributions using the K-S test, different behaviors can be seen 
across clusters and WRF combinations. In three cases, the distributions 
cannot be considered different at the 0.05 significance level: cluster 5 for 
combination 1; cluster 3 for combination 2; cluster 2 for combination 3. 

In the case of cluster 5, it is plausible that the distances between 
model and observed temporal distributions are smaller, because the 
precipitation is distributed throughout the day. For combination 1, the 
coincidence between distributions is especially pronounced. The strong 
coincidence between the distributions of cluster 2 for combination 3 is 
surprising, even though the precipitation is intense and short-lived. This 
once again suggests that the precipitation of this cluster, although 
convective, is associated with organized mesoscale structures. However, 
clusters 1 and 4, characterized by convective precipitation associated 
with diurnal heating, show the greatest temporal smoothing. Regarding 
the WRF configurations, there is no single optimal solution, because 
there is a dependence on precipitation behavior. Thompson micro
physics performed better for convective precipitation (clusters 2 and 4) 
and Goddard microphysics for stratiform precipitation (clusters 3 and 
5). MYNN PBL was slightly better than MYJ PBL, except for orographic 
precipitation (cluster 3). 

Finally, we computed the distance between the maximum observed 
precipitation in each event and that in the WRF field. As in the temporal 
analysis, small spatial deviations in the WRF precipitation field does not 
invalidate model use. However, the spatiotemporal deviations of WRF 
precipitation penalize the model greatly when point-to-point compari
sons are used. Fig. 7 shows distance distributions by cluster and WRF 
combination. For cluster 5, the highest frequency is for distances <10 
km, with very few cases in which the distance between observed and 
model precipitation exceeding 20 km. However, in cluster 2, the dis
tance distribution shows larger values, i.e., there is greater spatial de
viation between the modeled and observed precipitation. This is 
unsurprising, because in stratiform rainfall (clusters 5 and 3) there is less 
spatiotemporal dispersion than in convective precipitation (clusters 2 
and 4). Thus, rain type has an important effect on the model temporal 
deviations of precipitation as well as microphysics and PBL settings. Two 
WRF combinations achieved better performance in the spatial location 
of precipitation. Goddard and Thompson and MYNN PBL (Combination 
1 and 3) exhibited shorter distances more frequently than the other 
combinations. Thompson was slightly better than Goddard, except for 
cluster 4. For orographic precipitation (cluster 3), the differences be
tween combinations were smaller, but increased for convective precip
itation (cluster 4). 

5. Discussion and conclusions 

The choice of precipitation as a measure of model performance has 
been questioned in the scientific literature (Tapiador et al., 2019b). The 

reasons derive from the drawbacks of this variable compared to other 
model fields, specifically, spatiotemporal discontinuity and strong 
variability, precipitation dependence on model parameterization, and 
increased propagation of error, generating large uncertainties in the 
reference data. However, precipitation is one of the most important 
fields in weather modeling, given its major implications for the envi
ronment, economic activity, energy resources, and human health. 

NWP models are currently the basic tool on which precipitation 
forecasts are based (Sun et al., 2014). Although spatial and temporal 
model resolution has substantially improved in recent years, the models 
still struggle to accurately forecast local weather systems (such as the 
intensity and shape of a storm) and orographic processes (Kaufmann 
et al., 2003; Richard et al., 2003). This is precisely why many EPEs are 
not well modeled. WRF precipitation has usually been assessed on a 
daily scale (Douluri and Chakraborty, 2021), owing to the difficulty that 
models have with sub-daily precipitation. However, in terms of hydro
logic risk, the same precipitation amount occurring over a very short 
period or several hours has very different implications. Consequently, 
there is a need for model validation on a sub-daily scale and for evalu
ation of their performance for hydrologic risk assessment. 

Our study area has strong climatic variability and rainfall gradients, 
causing EPEs to be frequent and have diverse temporal durations and 
spatial extents, related to the nature of the precipitation (Merino et al., 
2018). Therefore, these events were classified based on the temporal 
distribution of precipitation throughout an event. This information, 
together with the EPE monthly and spatial distribution, allowed us to 
infer precipitation characteristics. In summer, EPEs are convective and 
affect small areas. In autumn, the influence of the Mediterranean Sea 
favors mesoscale convective events affecting larger areas. In winter, 
EPEs are caused by persistent precipitation events associated with strong 
advection and orographic lift. In the present study, we selected 965 
stations where extreme precipitation was recorded, distributed across 45 
case studies. 

In recent years, parameterization schemes have received great 
attention because they are one of the most influential factors in model 
performance. When model resolution increases to smaller than a 10-km 
grid spacing, convection processes should not be parameterized; instead, 
they should be explicitly resolved (García-Ortega et al., 2012; Suhas and 
Zhang, 2015). Moreover, there are some discrepancies between micro
physics and PBL parameterization performances, because results depend 
on the study area, event, and method used (Duzenli et al., 2021; Karki 
et al., 2018). Therefore, comparison between studies is complicated. 

Although the performance of multi-physics ensembles for convective 
precipitation events were already analyzed by García-Ortega et al. 
(2017), in this work we evaluated the hourly distribution of precipita
tion throughout an event. We verified the model by WRF grid-to-point 
comparisons, ruling out the use of grid precipitation because of the 
strong uncertainty for sub-daily precipitation. 

The validation of WRF hourly precipitation vs. observation from 
point to point showed poor results. However, the parametrizations were 
relevant, with the Goddard and Thompson microphysics and MYNN PBL 
performing better. On the contrary, Morrison performed poorly. The 
events best captured by WRF were the stratiform (cluster 5) and meso
scale convective related to Mediterranean cutoff lows (cluster 2). 

To avoid the strong penalty on skill scores based on point-to-point 
comparisons, density plots were explored, evaluating three EPE char
acteristics: precipitation amount distribution, temporal precipitation 
distribution, and the distribution of distance between maximum WRF 
precipitation and maximum observed. In all cases, microphysics were 
more important than the PBL. Goddard and Thompson and MYNN PBL 
gave better results for most of the analyzed characteristics. However, an 
optimal combination of parameterizations was not obtained for all 
events. Goddard was slightly superior to Thompson for the distribution 
of precipitation amount, temporal distribution of stratiform precipita
tion (clusters 3 and 5), and spatial distribution of convective precipita
tion (cluster 4). MYNN PBL performed better than MYF, except for the 
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distribution of precipitation amount in convective situations (cluster 2) 
and temporal distribution of orographic precipitation (cluster 3). Be
sides the aforementioned parameterizations, EPE characteristics influ
enced model performance. EPEs derived from prolonged rainfall (cluster 
5) showed better performance than EPEs very localized in space and 
time (cluster 4). These results are consistent with those from previous 
studies. However, direct comparisons are not desirable because of var
iable methods and study areas. 

The results show that models still have shortcomings in representing 
the temporal and spatial distributions of EPE precipitation. The devel
opment of computing capabilities have facilitated the increase of high- 
resolution numerical models and use of more realistic physics 
schemes. However, further efforts are still needed to improve both 
models and observations. Consequently, achieving accurate EPE fore
casts will be essential for input to hydrologic models in order to reduce 
associated hydrologic risks. 

Code and data availability 

Model data are freely available from UCAR (https://www2.mmm. 
ucar.edu/wrf/users/download/get_sources.html). Precipitation data 
can be downloaded from http://www.saihebro.com/saihebro/. Scripts 
and code are available on request. 
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