LEUKOCYTE FUNCTION AND HEALTH STATUS OF CALVES SUPPLEMENTED WITH VITAMINS A AND E

S. D. Eicher-Pruiett, J. L. Morrill, F. Blecha¹, C. G. Chitko-McKown¹, and N. V. Anderson²

Summary

Forty-four Holstein calves were fed milk replacers with varied concentrations of vitamins A and E from 3 to 45 d of age to determine their effects on concentrations of plasma vitamin A (retinol and retinyl palmitate) and vitamin E (α tocopherol), lymphocyte and neutrophil functions, and health of calves. Plasma α -tocopherol was unaffected by increased vitamin A supplementation. Fecal scores, and eye and nose membrane responses were improved with increased vitamin A and lower vitamin E concentration, whereas the same treatment tended to reduce neutrophil cytotoxic and bactericidal activity by 6 wk of age. Increased supplemental vitamin E tended to enhance neutrophil functions. However, age appeared to have an effect on response to both vitamins.

(Key Words: Calves, Leukocytes, Vitamins, Health.)

Introduction

Previous research has shown improved immune function of lymphocytes with increased vitamin E supplementation to young calves. However, research with other species indicated that absorption of α -tocopherol diminished with increased dietary vitamin A, leading to the hypothesis that increased dietary vitamin A may interfere with absorption of dietary vitamin E in the calf. Therefore, vitamin A may limit availability of vitamin E to enhance immune functions. Many milk replacers contain more than 10 times the NRC requirement of vitamin A and amounts less than or equal to NRC recommendations of vitamin E. This experiment was conducted to determine if 1) increased vitamin A interferes with plasma α -tocopherol concentrations and 2) various concentrations of vitamins A and E in the diet affect lymphocyte and neutrophil functions and other health traits. All concentrations of vitamins that were used reflect concentrations present in milk replacers on the market.

Procedures

Forty-four Holstein calves, blocked by sex and age, were fed colostrum and then transition milk for 3 d. They were then fed experimental milk replacer at 10% of body weight, adjusted weekly. Vitamin A concentrations provided in milk replacers were low (LA; 3,200 IU/lb) or high (HA; 39,900 IU/lb) and vitamin E concentrations were low (LE; 5.1 IU/lb) or high (HE; 25.9 IU/lb). Concentrations of vitamin A and vitamin E reflect those amounts contained in milk replacers. The four experimental milk replacers were designated LA-LE, HA-LE, LA-HE, and HA-HE. Twice daily fecal scores and discharges of eyes and nose were recorded. Calves were weighed weekly. At 0, 3, and 6 wk, blood was sampled for determination of plasma retinol, retinyl palmitate, and α -tocopherol. Blood samples were collected at 3 and 6 wk to determine lymphocyte proliferation and neutrophil cytotoxicity and bactericidal and chemotactic functions (measures of immune health of calves). Concanavalin A was used as the mitogen for lymphocyte proliferation. The cytotoxicity assay was an

¹Department of Anatomy and Physiology.

²Department of Surgery and Medicine.

antibody-dependent cellular-cytotoxicity (ADCC) assay using chicken red blood cells as the target cells. The neutrophil bactericidal assay targeted *Staphylococcus aureus*. Chemotaxis was measured under agarose with zymosan-activated serum as the chemoattractant for directed:random migration.

Results and Discussion

Plasma Vitamin Concentrations

Concentrations of plasma α -tocopherol were not affected adversely by increased supplementation of vitamin A at 6 wk (Table 1) but reflected the supplementation of vitamin E. However, α -tocopherol concentrations tended to increase overall with high vitamin A supplementation and were higher (P<.05) at 3 wk. Plasma retinol and retinyl palmitate did not consistently reflect the increased supplementation of vitamin A. Some of the inconsistencies may have been due to a retinol ester that is formed or because of tissue stores (neither measured in our analysis).

Growth and Health

Gain in body weight was similar between treatments for the total 6-wk period (72, 71, 64, and 66 lb for LA-LE, HA-LE, LA-HE, and HA-HE, respectively). The mean fecal score (1=solid, 4=fluid) for the 6-wk period of the HA-LE calves was lower (P<.10) than the scores of both LA treatment groups. The HA-LE group tended to have the lowest fecal score at 2 to 5 wk (Figure 1). The increase for the LA-HE group at 2 wk may explain the decrease in gain of that group that occurred then. The eye discharges increased, beginning at 2 wk for all treatments and remained high through 5 wk (Figure 2). The discharges observed in this study were clear, probably in response to fly irritation. Therefore, an increased discharge was considered a healthy response of the eye membrane. The HA-LE treatment tended to have the greatest occurrence of eye discharges. Total nasal discharges across weeks were greater for the LA-HE treatment (P<.10; data not shown). These discharges were thick mucous that occurred in few calves and for short periods of time and were considered a sign of infection.

Leukocyte Function

No differences in lymphocyte blastogenesis occurred among treatments at 3 or 6 wk (Table 2). Neutrophil phagocytosis and bactericidal activity tended to be lowest at 6 wk for calves on HA-LE treatment. Significant differences (P<.05) in bactericidal activity occurred between HA-HE and LA-HE treatments at 3 wk. The chemotaxis index indicated a greater response to a chemoattractant at 6 wk for LA-HE-supplemented calves.

Conclusion

Increased supplementation of vitamin A tended to improve responses that rely on a healthy mucous membrane. Simultaneously, the immune functions that utilize vitamin E tended to be improved by increased vitamin E and were inhibited when lower vitamin E and higher vitamin A concentrations were fed. The response of neutrophils to the chemoattractant, although enhanced by HE supplementation, was inhibited when HA was fed simultaneously, indicating possible interference of vitamin A with vitamin E utilization when both are fed at high concentrations. An age effect on vitamin E was seen both in plasma concentrations and leukocyte responses.

	LA-LE	HA-LE	LA-HE	HA-HE	SE		
Vitamin & wk	(µg/dl)						
α-Tococpherol 3 wk 6 wk	266° 285 ^b	255° 297 ^b	298 ^b 439 ^a	354 ^a 452 ^a	7.6 8.4		
Retinol 3 wk 6 wk	101 ^b 72 ^b	95° 191ª	102 ^b 89 ^b	109 ^a 77 ^b	2.2 11.7		
Retinyl Palmitate 3 wk 6 wk	51 ^b 50 ^c	55 ^b 66 ^b	52 ^b 72 ^{ab}	63 ^a 84 ^a	3.1 5.5		

Table 1.Plasma Retinol, Retinyl Palmitate, and α-Tocopherol Concentrations in
Calves Fed Experimental Milk Replacers

^{a,b,c}Means within a row without a common superscript letter differ (P<.05).

Maaaaaa		1				
Measurement		Vitamin supplement				
and Wk	LA-LE	HA-LE	LA-HE	HA-HE	SE	
Lymphocyte Blastogenesis (CPM) 3 wk 6 wk	193244 191916	179062 170630	179798 169899	167536 195659	18715 17076	
ADCC (%Lysis) 3 wk 6 wk	40.1 42.4	42.4 37.5	35.1 44.8	34.5 45.4	4.1 6.1	
<u>S. aureus</u> (% Kill) 3 wk 6 wk	27.1 ^{ab} 24.0	20.5 ^b 18.8	19.7 ^{bd} 25.6	31.7 ^{ac} 26.9	6.3 5.6	
Chemotaxis Index ¹ 3 wk 6 wk	$3.8 \\ 4.2^{ab}$	2.5 5.1 ^{ab}	3.8 7.9ª	3.2 4.0 ^b	.1 .3	

Table 2. Cellular Functions Weeks 3 and 6 of Calves Fed Experimental Milk Rep	placers
---	---------

^{a,b,c,d}Means within row with different superscripts differ (^{ab}P<.10); ^{cd}P<.05).

¹For description of test see test.

Figure 1. Weekly Fecal Scores of Calves Fed Experimental Milk Replacers. Means Within a Week with Different Superscripts Differ (P<.10). 1 =Solid to 4 =Fluid.

Figure 2. Weekly Eye Discharges of Calves Fed Experimental Milk Replacers. Means Within a Week with Different Superscripts Differ (P<.10).