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Abstract

Uncoded space-time labelling diversity (USTLD) is a recent, innovative multi-diversity scheme that

improves the error performance of space-time block codes (STBC) by employing labelling diversity

(LD) to transmit information codewords. LD is achieved by employing mapper designs with different

binary encodings to encode information codewords. Current approaches for designing LD mapper

designs are constrained to high computational costs or dependability on symmetry-based heuristics.

Recently, a Genetic algorithm (GA) solution was proposed to overcome these limitations. GAs are

powerful meta-heuristic tools that are loosely based on the theory of evolution and natural selection.

Primarily, GAs are used when little is known about the solution space or the search space is

unreasonably large. Research interests in GAs are found to be in both its theory and application. On

one side, modifications to the GA parameters and genetic operators allow them to solve problems

faster, more accurately and more reliably. On the other hand, GAs are used to solve complex and

novel optimization problems in new applications.

Due to high computational costs for design LD mappers of size M > 16, where M is the order of

modulation, the first contribution in this dissertation is to apply the GA to high-density M -ary

constellations. Such an application has not been studied in open literature to date. Results show that

for M -QAM systems, the GA produces mapper designs that match, but do not improve upon existing

heuristic designs. The GA had produced mapper designs for M -PSK and M -APSK (symmetric and

asymmetric) constellations that have exhibited diversity gains of ≈ 3dB to ≈ 9dB over existing

heuristic mapper designs and the Alamouti STBC respectively. Additionally, a complexity analysis

was performed on the GA and compared to complexities of exhaustive mapper design techniques.

Analysis shows that the GA, in the worst-case scenario, has a computational complexity of O(M2).

When compared to existing exhaustive mapper design techniques, which have computational

complexities of O(M !) and O(M5), the GA is observed to require significantly less computational

resources. Finally, the GA produces mapper designs that illustrate a close to or equivalent

performance in comparison to exhaustive search approaches.

Motivated by the recent GA innovation the application of new genetic operators to increase genetic

v
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Abstract

diversity are considered. The previous GA applied a single-parent crossover technique, where genetic

diversity comes from mutation making the process rather random. Therefore, it can be classified as a

Genetic-Inspired Algorithm(GIA). The second extension of the application of the GA is applying

two-parent crossover techniques to introduce genetic diversity during both crossover and mutation,

thereby decreasing randomness and increasing genetic diversity. The enhanced GA is studied in the

context of producing close-to-optimal mapper designs and achieving higher values of LD. Analysis

of two-parent crossover techniques show that single-point crossover, multi-point crossover as well as

the Davis ordered crossover 1 and Enhanced ordered crossover 2 conforms to LD mapper design

constraints. The Davis ordered crossover 1 was chosen over the other crossover techniques because

the technique introduced more genetic diversity in offspring chromosomes. The algorithm is tested

on 16-ary (symmetric and asymmetric) constellations only. Results show that for 16QAM and

16PSK, the enhanced-GA produced mapper designs that match but do not improve upon existing GA

and Exhaustive Search mapper designs. However, the enhanced-GA converged to a solution for both

16QAM and 16PSK systems in less than 15 iterations, while the GIA converged to a solution after

more than 100 iterations. The mapper designs produced by the enhanced-GA demonstrated a

diversity gain between ≈ 0.5dB to ≈ 4dB over the GIA mapper designs. A critical comparison

study between the LD GAs had been performed. The enhanced-GA is found to be significantly more

computationally complex (O(M !)) than the GIA (O(M2)) but comes with its added advantages such

as requiring lower mutation rates (less than 10%) and produces LD mapper designs that match or

improve upon existing GA designs. Finally, an observation can be made that the enhanced-GA also

requires a significantly lower amount of time to converge to a local or global optimum solution.

vi
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1. OVERVIEW OF WIRELESS COMMUNICATIONS AND APPLICATION OF ARTIFICIAL
INTELLIGENCE

1 Overview of Wireless Communications and Application of Artificial

Intelligence

Wireless Communications technology has revolutionised the way in which the world connects. More

recently, wireless communications have been more prominent in mobile devices such as smartphones.

In the last decade alone, the need for high speed, reliable and efficient wireless communications have

risen exponentially. The most recent technological advancement in wireless communications include

the fifth generation systems (5G) and the current experimental sixth generation wireless systems

(6G) [1]. The advancements in wireless communications technology usage leads to bottle necking of

data throughput, increased interference, and other destructive shortfalls.

Space-time block coding (STBC) is a recent technique used to achieve reliable, high data rate

wireless communications using multiple-input multiple-output (MIMO) systems [2]. STBCs

leverage its characteristic of sending and receiving multiple copies of a radio signal through multiple

transmit and receive antenna. This mitigates the effects of wireless channel impairments, such as

fading. Alamouti [3] was the first to propose an orthogonal, full diversity STBC scheme, which has

been extended to other reliable schemes that use two or more transmit antenna. The orthogonality of

Alamoutis STBC ensures the decoupling of signals at the receiver of a STBC system with coherent

detection [3].

More recently, the uncoded space-time labelling diversity(USTLD) scheme was proposed as a direct

extension to Alamoutis STBC [3]. The most significant difference between the Alamouti STBC and

the USTLD system is that Alamouti employs only one mapper, while USTLD employs two mappers,

hence leveraging on labelling diversity (LD). LD is achieved by using symbol pairs from

constellations with different binary mappings. The degree to which LD is achieved depends on the

binary mappers used to encode information [4]. The aim of LD mapper design is to position adjacent

symbols on a constellation further apart than in its base constellation. A design metric has been

suggested in [5] that evaluates the extent to which the mapper has achieved LD. The design metric

was of a combinatorial nature, hence too computationally expensive to implement.

LD has been studied in various research, such as in [4]. [4] proposed an algorithmic approach to

solving for the optimal LD mapper design by employing an instance of the quadratic assignment

problem(QAP). [4] reports that optimality had been achieved, but the approach was too

computationally expensive for modulation order M > 16. Other LD work in [6], [7] suggests most

algorithmic approaches are, naturally, computationally expensive. Other limitations of current

mapper design approaches include i) symmetry based heuristics cannot be applied to asymmetric

constellations and ii) heuristics may not produce good quality mapper designs. This prompted
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2. NOTATION

research into applying artificial intelligence(AI) to LD mapper design.

Patel et al [8] proposed the use of a Genetic Algorithm(GA) to solve for near optimal mapper design.

GAs are powerful meta-heuristic tools that leverage a population-iteration based approach to solving

optimization problems. By employing the GA, it is ensured that significantly less computational and

time resources are used when compared to other algorithmic approaches. From [8], the GA is to

designed to produce mapper designs irrespective of constellation size or shape. Hence, both

symmetric, asymmetric and high-density mapper designs can now be produced without any

limitations.

In this dissertation, the authors apply the GA from [8] to high-density M -ary constellations

(symmetrical and asymmetrical) to design LD mappers for two transmit USTLD systems.

Furthermore, a proposed enhancement on the GA is made by the application of two-parent crossover

techniques.

2 Notation

In terms of notation, this dissertation contains the following mathematical notations:

NT and NR are the number of transmit and receive antenna. All vectors and scalars are represented

by Bold Face and italics respectively. ∥ · ∥F represents the Frobenius norm while | · | represents the

absolute value of the euclidean distance between transmitted and estimated received symbol.

argminw represents the minimum argument with respect to w.
(
n
k

)
is the number of combinations

that can be produced from n total number of objects by choosing k number of objects.

3 Diversity Techniques

Due to the fluctuation of signal power in a wireless channel, signal power decreases substantially, at

the point which the channel is said to be fading. Diversity is a technique used in MIMO systems that

makes up for channel impairments by employing wireless link enhancements at a low cost [9].

Diversity is used to reduce depth and duration of the fading experienced by the receiver in a

flat-fading channel [10]. This technique uses multiple inputs at the receiver such that the fading of the

received signals are i.i.d, i.e. the fading channel is uncorrelated. If one signal path undergoes a

significant fade, another signal path may contain a strong signal at the receiver. Hence, information

codewords are transmitted as multiple copies of each other that do not undergo significant

fading [11]. The mean power in each diversity technique branch are approximately equal [11]. The

3
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3. DIVERSITY TECHNIQUES

following types of diversity are discussed with respect to the dissertation.

3.1 Space Diversity

Space diversity is a technique whereby multiple transmit and receive antenna are used to decrease

channel impairments due to physical separation of the antennas by a wavelength size of one half or

more [12]. The actual antenna distance separation decides the channel correlation among branch

signals and the size of mutual coupling between adajcent branch antenna [12]. Spatial diversity is

employed due to its low cost, simplicity and its ease of implementation. Coupled with these

advantages, spatial diversity also provides a gain in error performance without the need of sacrificing

bandwidth of the transmitted power sources.

3.2 Time Diversity

Time diversity utilizes channel coding and interleaving to tackle fading at a cost of added delay and

bandwidth efficiency loss [10]. In this scheme, multiple copies of information codewords are

transmitted over multiple time-slots, providing full diversity privileges [12]. If the time between

transmitted signals are sufficiently spaced out, the sequential amplitude signals will be uncorrelated,

and the time spacing should be at least the reciprocal of the fading bandwidth [13]. Another

technique to achieving time diversity is to introduce redundancy into the transmitted signals in the

temporal domain by using repetition of channel coding.

3.3 Labelling Diversity

The idea of labelling diversity(LD) was first introduced for bit-interleaved(BI) coded systems with

iterative decoding [5]. In these systems, convolutional coding was used, hence higher power

consumptions and higher latencies were experienced. More recently, due to these setbacks, LD was

applied to uncoded systems [4, 6, 7]. In 2014, Xu et el [5] proposed a scheme that was a direct

extension to the Alamouti STBC, called uncoded space-time labelling diversity(USTLD). In USTLD

systems, LD is achieved by employing binary mappers with different binary encodings. The end-goal

of LD mapper design is to place adjacent points on a constellation further apart than in its base

constellation.

4
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4. SPACE-TIME CODING

4 Space-Time Coding

Space-time coding (STC) is a channel code that is widely adopted for MIMO schemes for its power

and spectral efficiency and does not sacrifice diversity gains over wireless channels [13]. The coding

scheme uses a combination of conventional channel coding techniques, modulation schemes and a

MIMO structure within the design criteria [13]. STC schemes introduce spatial and temporal

correlation into signals that are transmitted from different antennas which provide diversity gains at

the receiver [10]. This scheme also provides a coding gain over the uncoded scheme without the need

to sacrifice additional bandwidth resources [12]. The STC scheme also contributes to an improved

error performance rate when compared to uncoded STC schemes [10]. Various forms of STC

schemes are adopted for MIMO techniques. For this dissertation, only the Space-Time Block Code is

considered.

5 Space-Time Block Coding

Space-time block coding (STBC) is a simple technique used in wireless communications that mitigate

the effects of fading channel impairments due to multipath fading, hence, improving link reliability in

MIMO systems. STBC systems make use of redundancy of several transmissions between transmitter

and receiver by sending multiple versions of information signals with a good probability that some

signals are less attenuated than others [14]. At the receiver these signals are combined optimally [3].

Therefore, overall link reliability is improved [3]. A novel transmit diversity scheme using STBC

was proposed by [3], called the Alamouti STBC (ASTBC). The ASTBC employed a NTNR MIMO

system (NT = 2) that transmits information codewords (symbol-pairs) in two time slots. The ASTBC

achieves full-diversity error performance with symbol rate of one [3]. The modulated codewords are

transmitted over multipath fading channels with additive white gaussian noise (AWGN), where fading

is assumed to be constant over the two time slots and assumed different values from one pair of time

slots to another [3]. An assumption is made that perfect channel state information (CSI) is known at

the receiver. From [3], the transmission matrix of the ASTBC is mathematically given as:

Ax =

 x1 x2

−x∗2 x∗1



Where x1 and x2 are symbols from a M -QAM or M -PSK constellation transmitted in time slot 1 and

x∗1 and x∗2 are the complex conjugate symbol pairs that are transmitted in time slot 2 from each

5
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6. UNCODED SPACE-TIME LABELLING DIVERSITY

antenna. The ASTBC is an orthogonally full-rate STBC system, such that

AHA = (|x1|2 + |x2|2)I2 [3], [10]. This is exploited for low complexity (LC) linear decoding.

6 Uncoded Space-Time Labelling Diversity

Uncoded space-time labelling diversity (USTLD) is a recent innovated STBC scheme and is a direct

extension to the Alamouti STBC [8]. USTLD employs a NTNR MIMO structure and implements

labelling diversity (LD) to improve error performance in the presence of multi-path fading. The

USTLD scheme achieves space diversity by employing NT transmit antenna, time diversity by

transmitting symbols over t time slots and LD by employing NT number of binary constellations

which reduce redundancy [5]. USTLD has a lower decoding complexity and offers better energy

efficiency when compared to coded systems such as bit-interleaved space-time coded modulation

(BI-STCM) [8]. The transmission matrix of USTLD systems are not orthogonal, hence a higher

detection complexity is found at the receiver since the maximum likelihood (ML) detector performs

an exhaustive joint symbol pair detection over all possible symbol pairs [13].

7 Labelling or Mapping Diversity

The labelling diversity (LD) problem is stated as "Adjacent symbols on another constellation has to be

spaced further apart than in its consequent base constellation". Samra et al [4] proposed an exhaustive

search approach to designing LD mappers, but was reported to be too computationally expensive for

constellations of size M > 16 , where M is the modulation order, due to the search space. Xu et al [5]

proposed a LD technique for symmetric M -QAM and M -PSK constellations that swapped diagonal

symbol pairs. [7] proposed an innovative matrix technique that ensured adjacent rows and columns in

the constellation are spaced further apart by bit-flipping. In essence, current mapper design techniques

have the following constraints:

• Existing techniques can only be applied to constellations with symmetry

• Are highly computationally expensive for M > 16

6
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8. APPLICATION OF ARTIFICIAL INTELLIGENCE TO THE LABELLING DIVERSITY PROBLEM

8 Application of Artificial Intelligence to the Labelling Diversity

Problem

Recently, Patel et al [8] proposed applying AI in the form of a genetic algorithm(GA) to solve the

constraints surrounding the LD problem. By applying AI, not only do we solve for solutions faster,

we also use fewer computational resources when compared to algorithmic and exhaustive search

approaches. Hence, the next section discusses GAs and applying it to the LD problem.

9 Genetic Algorithms

9.1 Design Optimization and Meta-Heuristics

9.1.1 Design Optimization

An excellent design technique to find optimal solutions to the given LD problem is by employing

design optimization and meta-heuristic algorithms. Design optimization is the problem of selecting a

set of design parameters that will optimize a given objective function [15]. Its interests can be found in

many design problems, especially NP-hard problems. For example, when designing the most optimal

route for a salesman to travel from one city to another, one needs to consider the distances from the

start point to every other point such that each point is only visited once [16]. Design optimization can

be classified into two categories, namely functional and combinatorial optimization [17]. Functional

optimization aims to optimize a given cost function, whereas combinatorial optimization considers

possible, discrete combinations of parameters that form finite states of the problem that affects the

optimization objective is a certain way. Major problems in combinatorial problems are:

• Solution space is exponentially large

• Relationship between design parameters and optimization objectives are not clearly understood,

hence they cannot be solved through analytical methods.

9.1.2 Meta-Heuristics

Meta-heuristic algorithms are efficient tools that solve combinatorial optimization problems. They

can be formally defined as an iterative process that guides a sample heuristic by combining different

concepts for exploration and exploitation of a given search space. Learning methods are used to

structure information such that near optimal solutions can be found efficiently. Meta-heuristic

algorithms are approximate rather than deterministic [17]. Deterministic algorithms always find the

7



i
i

“output” — 2021/10/16 — 15:46 — page 8 — #25 i
i

i
i

i
i

9. GENETIC ALGORITHMS

most optimal solution in a given time-frame for a finite size instance of a problem [17], but lead to

high computational costs and computation times. Approximate algorithms(meta-heuristics), however,

sacrifice the need to find the most optimal solution for finding good solutions in a small amount of

time [16]. Most meta-heuristic algorithms rely on probabilistic decisions to produce good solutions

in a search space. The only difference between a pure random search and a meta-heuristic is that

instead of only relying on randomness, meta-heuristic randomness is not used blindly, but in an

intelligent, biased form. The most common and widely-adopted methodologies of meta-heuristics

include GAs, neural networks (NN) and simulated annealing (SA) [17]. Due to this dissertation being

one of combinatorial optimization, GAs are used for its robustness to produce high-quality solutions

and parse through a search space quickly by relying on biologically inspired operators such as

crossover and mutation.

9.1.3 The Logic of Genetic Algorithms

9.1.3.1 Chromosome Representation

The very first step in a GA is to represent candidate solutions in the form of a chromosome. Each

value within a chromosome is known as genes. Different problems require different representations of

chromosomes. For example, the travelling salesman problem (TSP) requires the use of floating-point

values to represent the distance from the starting point to other points on the map. However, there

is also not one distinct way to represent a chromosome. The TSP problem can also be represented

using key-value pairs that place each city with a corresponding X − Y co-ordinate pair. A typical

chromosome can be represented as:

δ = [m1,m2, · · · ,mi] (1)

Where δ is the chromosome and mi is each gene within the chromosome and i ϵ [0 : S − 1] where S

is the maximum length of the chromosome.

9.1.3.2 Generation of a Population

The population contains all chromosomes in a generation. There is no accepted norm of the population

size per problem instance [17]. Population sizes are chosen based on intuition, either by using small

population sizes or extremely large population sizes that exceed the solution space. Each of these has

its own trade-offs, with the most notable being:

• The larger the population size, the quicker the solution space can be explored.

8
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9. GENETIC ALGORITHMS

• The smaller the population size, convergence is found quicker.

The above two points however, are not confined to either of them. For example, the larger population

size could achieve convergence faster than a smaller population size while the smaller population size

may produce more fit chromosomes.

9.1.3.3 Fitness Function

For a particular problem, the fitness of a chromosome can be arrived at in an infinite number of ways

as there are an infinite number of equivalent representations [15]. For example, the transformation of

a 1−bit representation into a 1 + 1−bit representation can be performed without changing the fitness

function by ignoring the new bit. The most important requirement for a fitness function is as the

population gets closer to a solution, the relative fitness values should be higher. This is very loosely

defined and does not appeal to practicality. The fitness function has to reward chromosomes in an

way that pushes the population to a desired solution.

9.1.3.4 Parent Selection

After chromosomes are placed into the population, chromosomes are selected based on their fitness

to be parents for future generations. In a few cases, the most fit chromosomes from the i-th

generation can be taken over into the i + 1-th generation often referred to as elitism. However, in

other cases, chromosomes are selected based on their contribution to genetic material. There exists

many selection strategies, hence this indicates that there is no agreement into which selection strategy

is the most optimal [16].

9.1.3.5 Crossover Operator

Crossover is a technique by which parent chromosomes that are selected pass on their genetic

material to the chromosomes of the next generation (offspring). The most common type of crossover

is called the K-point crossover. The K-point crossover takes two selected parent chromosomes from

the population, splits each chromosome K number of times, and fragments from each are swapped to

produce two offspring chromosomes. The example in Fig. B.5 further illustrates the use of the

K-point Crossover.

9
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9. GENETIC ALGORITHMS

Fig. 1: K-Point Crossover of two Parent Chromosomes

In addition to the K-point crossover, other crossover techniques such as the Davis ordered crossover

(OX1), partially mapped crossover (PMX) and cycle crossover(CC) can also be applied to increase

genetic diversity. Currently, there is no agreement as to which crossover technique is the most

optimal [17]

9.1.3.6 Mutation Operator

Mutation is a probabilistic event that an offspring chromosome undergoes further change after

crossover. Generally, during each generation, each chromosome in the population will have a very

small probability (typically < 10%) of undergoing further change. Mutation rates do not have an

optimal parameter but can be set with the value that works best with the particular problem at

hand [17]. Actually, it can be easily shown that different mutation rates will allow the GA to

converge more quickly by varying the problem size.

Initially, mutation was inspired by biological evolution rather than practical requirement [17].

Nevertheless, mutation helps a population avoid being stuck in a local optima. In some cases,

pre-mature convergence is found when an entire population converges uniformly to a sub-optimal

solution. Without mutation, populations have no means to further change to a more optimal solution

since all chromosomes in the population would be identical [16].

9.1.3.7 Application and Research

Since the creation of the GA, applications have been found in many areas of research. In the area of

design engineering, [18] used a GA to produce design parameters for manufacturing cells while [19]

10
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9. GENETIC ALGORITHMS

used a GA for the kinematic design of turbine blade fixtures. More recently, [20] used a GA to design

detection strategies for face recognition. In the area of cloud computing, GAs are being used for

Load Balancing strategies for infrastructure.

Due to the GA being non-problem-specific, the application is not confined within problems of the

physical realm, and therefore can be applied to many combinatorial optimization problems in distinct

areas.

9.1.3.8 Computational Complexity

The study of computational complexity aims to classify classes of problems based on the rate of

growth of space, time and other essential units of measure with respect to the size of the input. The

study aims to answer one important question, what problems are computationally controllable in the

sense that the resource requirements do not increase significantly with larger instances [17]. A

complexity analysis, on the other hand, is the method of providing reason behind the advantages and

disadvantages of using a particular approach over other existing or new approaches. To illustrate the

difference between computational complexity and complexity analysis, consider the sort problem

(sorting n number of elements in a pre-defined manner) [21]. If there is only a few elements that are

out of order, the algorithm will converge much quicker than if all elements are out of order [21].

Therefore, an analysis is based on problem instances that is concerned with the features of the

particular instance that causes it to converge slower than others. The computational complexity

analysis, however, is concerned with the complexity of the problem over all possible instances, sizes

and representations [16].

9.2 Research and Objectives

9.2.1 The Original Genetic Algorithm

The Genetic-inspired algorithm(GIA) was proposed by [8] to produce LLD mapper designs

irrespective of constellation shape or size. Initially, the GIA was only applied to 16-, 32- and 64-ary

constellations. Hence the first extension was the application of high-density M -ary constellations to

the GIA. Furthermore, [8] did not perform a thorough computational complexity analysis on the GIA.

Therefore, the second extension to the GIA was to perform an overall computational complexity

analysis and compare it to other existing exhaustive and algorithmic approaches.

11
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9. GENETIC ALGORITHMS

9.2.2 The Enhanced-Genetic Algorithm

The GIA in [8] was proposed as a simple Crossover-Mutation-Evaluation approach, and did not

employ any biological techniques such as a two parent crossover or the carrying over of the most fit

chromosomes(elitism) from each generation. Furthermore, genetic diversity was introduced only

during the mutation stage, thereby being almost purely random. Hence, the following enhancements

were made to improve the Genetic Algorithm’s ability to produce close-to-optimal LD mappers for

M -ary constellations:

The first proposed enhancement to the GIA in this dissertation is to introduce elitism into the GIA.

Elitism is the process that carries over the best chromosomes from the population of the i-th generation

into the i + 1-th generation. By including elitism, not only do we ensure that the best chromosomes

are kept in future generations, we also allow the search to be expanded through other channels as

well, hence producing better offspring. The second enhancement of the GIA is introducing biological

or two-parent crossover techniques, hence increasing diversity among offspring chromosomes. The

crossover technique used in [8] followed a single-parent, virtual second-parent structure imitating the

reproduction of plant organisms. The main advantage of using two-parent crossover techniques is that

randomness is reduced. Again, a computational complexity analysis will be performed and compared

to the GIA.

9.3 Contributions

9.3.1 Chapter A

S. Solwa, A Performance Study of a Genetic Algorithm Based Mapper Design for Uncoded

Space-Time Labelling Diversity. The summary of the chapter is as follows: The extent to which

uncoded space-time labelling diversity (USTLD) mappers achieve labelling diversity (LD) depends

on the binary mappers used to encode information. Current mapper designs, however, are limited and

constrained due to high computational costs and do not extend to larger constellations. The current

works based on designing LD Mappers using the genetic algorithm (GA) has not been exhaustively

tested for higher order and irregular constellations. Due to improved complexity, this chapter tests the

GAs ability to produce LD mappers for higher order constellations as well as irregular constellations

that do not exhibit any symmetry. Additionally, this chapter uses the QAP optimization algorithms

found in previous studies as a benchmark to verify that the GA does indeed have a reduced space

complexity. The algorithm was tested on 128-, 256- and 512-ary QAM, 64-, 128- and 256-ary PSK

and 32-, 64-, 128- and 256-ary APSK and irregular APSK constellations, respectively. The LD

12
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9. GENETIC ALGORITHMS

mappers produced by the GA match the current best heuristic designs for 128QAM, 256QAM and

512QAM. In the case of PSK constellations, the 64PSK, 128PSK and 256PSK constellations

exhibited a gain of ≈ 5dB, ≈ 4dB and ≈ 8dB when compared to the best available heuristic

designs. Next, 128APSK and 256APSK constellations produced showed gains of ≈ 3dB and ≈ 6dB

respectively. Finally, the GA was tested on irregular, non-symmetrical 32APSK, 64APSK, 128APSK

and 256APSK. These constellations exhibited gains of ≈ 5dB, ≈ 17dB, ≈ 5dB and ≈ 5dB over the

Alamouti STBC system respectively. The GA was found to have a computational complexity of

O(M2) which is exponentially less expensive than the exhaustive search and other algorithmic

techniques. Additionally, the GA is able to produce LD mapper designs that match or improve upon

the LD achieved by exhaustive search and algorithmic approaches.

9.3.2 Chapter B

S. Solwa, An Ordered Crossover Approach to Designing Labelling Diversity Mappers. The

summary of the chapter is as follows: Genetic algorithms(GA) is a population-based search

optimization technique that mimic the process of evolution and natural selection. GAs are an

effective way to finding feasible solutions to complex problems. Recently, GAs have been applied to

designing LD mappers, and have shown great promise. However, the approach implemented did not

apply biological processes during ’mating’, and therefore, could not be classified as a GA, but rather

a genetic-inspired algorithm(GIA). Since the GA for designing LD mappers was developed, no

further studies have been produced to suggest any improvement to the system. In reproduction with

two distinct parents, the offspring acquires genetic diversity from the crossover are from the distinct

parent genes. When there is only one parent, genetic diversification is gained only from mutation. In

such a case, evolution becomes a random process rather than one that is guided by parent

propensities; and the promised value of the GA is not realised. This chapter investigated four

biological crossover techniques and two hybrid techniques, namely, single point, multi-point, OX1

and OX2 and cycle and partially mapped crossovers, respectively. The proposed GA with the Davis

ordered (OX1) crossover technique was tested on the 16QAM, 16PSK, 16APSK and three 16APSK

constellations that do not exhibit any diagonal symmetry. In the case of symmetric 16QAM and

16PSK, mapper designs produced by the proposed GA had matched but not improved upon existing

heuristic and the previous GA mapper designs. However, results show that for the Asymmetric

16APSK and Single Symmetry 16APSK constellations, LD values have increased from

ω(µ1, µ
Patel
GA,AS−16APSK) = 0.0981 to ω(µ1, µ

Davis
GA,AS−16APSK) = 0.3008 and

ω(µ1, µ
Patel
GA,SS−16APSK) = 0.4020 to ω(µ1, µ

Davis
GA,SS−16APSK) = 0.4053 respectively, and led to

13
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9. GENETIC ALGORITHMS

≈ 4dB and ≈ 2dB gains respectively when compared to the results of mappers produced by the

GIA. In the cases of the 11+5APSK and 16APSK, even though improvement in the LD of the mapper

design is observed (ω(µ1, µ
Davis
GA,115APSK) = 0.7171 from ω(µ1, µ

Patel
GA,11+5APSK) = 0.6766) for the

11+5APSK constellation and ω(µ1, µ
Patel
GA,16APSK) = 0.3685 to ω(µ1, µ

Davis
GA,16APSK) = 0.5427 for the

16APSK constellation), only a small gain of ≈ 0.5dB was achieved. More significantly, the proposed

GA achieved significant performance improvement in terms of time complexity but used more

computational resources (O(M !)) when compared to the GIA (O(M2)). A test on mutation rates on

the proposed GA was performed, with the objective of utilizing lower mutation rates instead of

relatively high mutation rates used in the GIA. Results have shown that higher mutation rates are

needed for single parent reproduction, and thus the process is purely random. However, the converse

is also true, where two parents produce a set of offspring chromosomes and thus, randomness is

reduced and genetic diversity is increased. The results also showed that a more guided search (mating

of two parents) is more effective at genetic diversity than pure random searches as in the case of

single parent reproduction.

9.4 Structure of the Dissertation

The dissertation work presented has been detailed in chapter A and chapter B and is presented in

Chapter II and Chapter III respectively. Chapter IV concludes the dissertation and provides possible

future research objectives and direction.
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1. ABSTRACT

1 Abstract

The extent to which uncoded space-time labelling diversity (USTLD) mappers achieve labelling

diversity (LD) depends on the binary mappers used to encode information. Current mapper designs,

however, are limited and constrained due to high computational costs and do not extend to larger

constellations. Recently, a genetic algorithm(GA) has been proposed to produce LD mappers

irrespective of size of shape of the constellation. The current works based on designing LD mappers

using the GA has not been exhaustively tested for higher order and irregular constellations. Due to

improved complexity, this chapter tests the GAs ability to produce LD mappers for higher order

constellations as well as irregular constellations that do not exhibit any symmetry. Additionally, this

chapter uses the QAP optimization algorithms found in previous studies as a benchmark to verify that

the GA does indeed have a reduced computational complexity. The algorithm was tested on 128-,

256- and 512-ary QAM, 64-, 128- and 256-ary PSK and 32-, 64-, 128- and 256-ary APSK and

irregular APSK constellations, respectively. The LD mappers produced by the GA match the current

best heuristic designs for 128QAM, 256QAM and 512QAM. In the case of PSK constellations, the

64PSK, 128PSK and 256PSK constellations exhibited a gain of ≈ 5dB, ≈ 4dB and ≈ 8dB when

compared to the best available heuristic designs. Next, 128APSK and 256APSK constellations

produced showed gains of ≈ 3dB and ≈ 6dB respectively. Finally, the GA was tested on irregular,

non-symmetrical 32APSK, 64APSK, 128APSK and 256APSK. These constellations exhibited gains

of ≈ 5dB, ≈ 17dB, ≈ 5dB and ≈ 5dB over the Alamouti STBC system respectively. The GA was

found to have a computational complexity of O(M2) which is exponentially less expensive than the

exhaustive search techniques. Additionally, the GA is able to produce LD mapper designs that match

or improve upon the LD achieved by exhaustive search techniques.

Index Terms - Genetic algorithms, labelling diversity, mapper design, quadratic assignment problem,

complexity, STBC
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2. INTRODUCTION

2 Introduction

Uncoded space-time labelling diversity (USTLD) is a recent innovative multi-diversity scheme

proposed by Xu et al [1], and is a direct extension and improvement upon the Alamouti space-time

block codes (ASTBC). The original work proposed by [2] used a multiple-input multiple-output

(MIMO) structure with two transmit antenna and NR receive antenna. By employing the MIMO

structure and implementing labelling diversity (LD), the bit error rate (BER) is reduced. Initially, LD

was proposed for bit-interleaved(BI) coded systems, which employed convolutional coding. When

compared to BI systems, USTLD has a lower decoding complexity and offers better efficiency [1].

Other areas of the application of LD included decode-and-forward relay systems [3] and hybrid

automatic requests (ARQs) [4]. In order to transmit a single codeword, there exists M possible

symbol pairs that can be transmitted over the two time slots. However, at the receiver, a total of M2

possible symbol pairs could be detected. Therefore, since on M out of the possible M2 symbol pairs

can be detected, the error performance is improved [5].

The extent to which USTLD achieves LD depends on the design of binary mappers Ω1 and Ω2. The

aim of the mapper design for USTLD systems is to place adjacent points on the constellation further

apart in the second constellation than in its base constellation. From literature, for a modulation order

M , there exists M ! possible designs [5]. In the context of USTLD systems with two binary

mappings, there exits (M !)2 possible mapper designs [5]. Due to the large search space, research on

determining mapper optimality remains open [5]. Although the research remains open, both Patel et

al [5] and Quazi et al [6] have recently proposed design metrics to prove optimality for these

mappers.

Xu et al [1] proposed a design metric for these mapping structures, as well as a symmetrical-based

heuristic mapper design for M -ary quadrature amplitude modulation (M -QAM) and M -ary phase

shift keying (M -PSK) constellations. Further work done by Quazi et al [6] exploited the

symmetrical-based design to extend LD for M -ary amplitude phase shift keying (M -APSK)

constellations. Other heuristic-based designs have been proposed in [3] for 16QAM and 64QAM.

Other research that has been done on LD, such as [7], proposed an algorithmic design to achieve a

16QAM and 16PSK constellations for convolutionally coded systems. A more generalised approach

can be found in [4], which can be seen as an instance of the quadratic assignment problem (QAP). [4]

shows that to design x LD mappers, there exists (M !)x possible solutions to the QAP. Due to the

large search space, [4] uses the lower-bound approach that iteratively find x number of optimal LD

mapper solutions one at a time. Although the search space complexity is reduced when compared to

the QAP, [4] reports that the algorithm is too computationally expensive for M > 16. The reliance on
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2. INTRODUCTION

heuristics for mapper designs constrains the constellations that can be applied to USTLD systems [5].

Current limitations for designing LD mappers are as follows; i) symmetry based heuristic mapper

designs cannot be applied to asymmetric constellations. Also, these heuristic mapper designs may not

produce good mappers for symmetrical ones [1, 5], ii) current heuristic and exhaustive algorithms for

designing LD mappers are too computationally expensive and infeasible [4] for M > 16, iii) current

heuristic designs for symmetrical and asymmetrical constellations do not exceed M = 64 and iv) the

current proposed Genetic Algorithm(GA) has not been tested on producing LD mappers for M > 64.

Thus, to overcome these limitations, the aim of this chapter is to design LD mappers using the GA

proposed in [5] for higher order M -ary constellations and perform a complexity study to assess the

work done in [5]. The authors in [2] report that by employing the GA, LD mappers can be produced

unconstrained by the modulation order or symmetry. The use of Higher order modulation schemes

has become very attractive for applications to wireless communications due to its high spectral

efficiency, higher throughput and data rate within a limited bandwidth. Higher order modulation

schemes have recently been investigated and implemented in 5G and in LTE-A based systems [8].

According to Chen et al [9], APSK constellations have the following advantages: i) reduced

sensitivity to carrier synchronization errors due to the small angular separation between constellation

points, ii) channel estimation and complex equalization can be alleviated which simplifies the

receiver, and iii) non-linear (phase and amplitude) distortion caused by the high power amplifier

which has to be operated close to saturation to improve power efficiency is alleviated. An

algorithmic optimization technique carried out by [5] resulted in irregular, asymmetric constellations

that improved on the original APSK constellation by ≈ 1dB for both the 16APSK and 64APSK

modulation schemes. This prompted studies of applying these asymmetric constellations to USTLD

systems as seen in [5].

Patel et al [5] produced a GA based mapper design for USTLD systems but did not assess the

computational complexity of the algorithm. Other heuristic and QAP mapper designs proposed

in [1, 3, 4, 10] are deemed infeasible due to the high computational costs involved O(M5). Hence,

the second contribution of this chapter is to investigate the complexity of different mapper design

techniques. Additionally, the complexity analysis investigates different optimization techniques such

as the QAP solvers found in [4] and [3]. The authors only consider Space Complexity, as Time

Complexity of the GA outperforms the other optimization techniques [11].

The remainder of the chapter is structured as follows: Section 2 describes the system model and

discusses the USTLD system. This section also looks at the possible design metric benchmark

(fitness function) that was extracted from [1]. Section 3 discusses the QAP [12] and the proposed GA

by [5]. In Section 4, analytical results are verified with Monte Carlo simulations. The results were
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3. SYSTEM MODEL

based on the mapper designs produced by the GA and compared to other heuristic designs and the

Alamouti STBC. Section 5 expands and discusses more in detail about performance studies based on

space complexity and compares current heuristic and exhaustive mapper deigns to that of the GA,

thereby assessing the work done in [5]. The final conclusion is discussed in Section 6.

In terms of notation for this chapter, vectors and scalars are in boldface and italics respectively. ∥ · ∥

represents the Frobenius norm of a vector, | · | represents the absolute value of a scalar and (·)!

represents the factorial of a scalar.

3 System Model

Consider a MIMO system with NT = 2 and NR receive antenna. A codeword of length

r = log2(M) is passed through Ω1and Ω2 to produce symbols Ω1(L) and Ω2(L) respectively. The

USTLD system employs a MIMO structure with two transmit antenna and NR receive antenna. The

USTLD system transmits two codewords L(1) and L(2) across two consecutive time slots. When

transmitting information codewords, the binary mapper Ωt in the t− th, t ϵ [1 : 2], time slot is used.

Thus, the NR × 1 received signal vector can be represented as:

yt =

√
ρ

2

[
ht,1Ω1(L(1)) + ht,2Ω2(L(2))

]
+ nt (A.1)

In (A.1),
√

ρ
2 is the average signal-to-noise ratio at each receiver and n is the NR × 1 Additive White

Gaussian Noise vector. Each entry of the vector matrix n follows a complex normal distribution with

zero mean and variance of Es
2 per dimension. The vector h(t,u), t, u ϵ [1 : 2] is the multipath fading

experienced by the symbol that is transmitted from antenna u in time slot t. The fading is assumed to

be frequency flat and follows a Rayleigh amplitude distribution with zero mean and a unit variance.

Over the two time slots, fading can either be fast of quasi-static. The phase distribution of the noise

and fading is assumed to be uniform. At the receiver, the maximum likelihood(ML) detection is used

to estimate the transmitted information codewords. Assuming that perfect channel state information

is available at the receiver, the detection may be formulated as:

L̂(1), L̂(2) = arg min
L(1),L(2)

∥∥∥∥∥yt −
2∑

u=1

√
ρ

2
h(t,u)Ω(L̂(u))

∥∥∥∥∥
2

, t ϵ [1 : 2] (A.2)

In (A.1) and (A.2), the estimated codewords at the receiver is given as L̂(1), L̂(2) and L(1), L(2) Are

the symbols that are being transmitted over the consecutive time slots.
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3. SYSTEM MODEL

3.1 Theoretical Error Performance of USTLD

Based on the model described in the previous section, an analytical union bound was used to derive

the average bit error probability (ABEP) of the USTLD system in [1]. The resulting expression is:

ABEP (ρ) =
1

Mr

M−1∑
L=0

M−1∑
L̂=0

N(L, L̂)P (L → L̂) (A.3)

Where M is the number of points in the constellation, N(L, L̂) is the number of bit errors between

the transmitted and the estimated received symbol. P(L → L̂) is the pairwise error probability of one

symbol being detected perfectly and the other being detected with error. It is shown from [1] that the

PEP can be given as:

P (L → L̂) =
1

4n

2∏
t=1

(
1 +

ρd2t
8

)−NR

+
1

2n

n∑
k=1

2∏
t=1

(
1 +

ρd2t
8sin2(kπ2n )

)−NR

(A.4)

Where n is a large integer, n > 10, and dt =
∣∣∣Ωt(L)− Ωt(L̂)

∣∣∣ , t ϵ [1 : 2] is the Euclidean distance

between the points L and L̂ on the constellation of Ωt. For a detailed derivation, readers are pointed

to the original literature by Xu et al [1][eqn. 1 − 3]. The authors of [1] show that at high SNR,
ρdt
8 >> 1, t ϵ [1 : 2]. At high SNR values, the PEP can be reduced to the following:

P (L → L̂) =
1

4n

(
ρd21
8

ρd22
8

)−NR

+
1

2n

n∑
k=1

(
ρd21

8sin2(kπ2n )

ρd22
8sin2(kπ2n )

)−NR

(A.5)

The result in (A.5) indicates that at high SNR, the ABEP of USTLD systems is dominated by the

product Euclidean distance d1d2. Thus, the minimum product Euclidean distance sets an error floor,

which gives rise to a design metric used to evaluate the extent to which mappers Ω1 and Ω2 achieve

LD. The metric is given as:

ϕ(Ω1,Ω2) = min
L,L̂ ϵ [0:M−1],L̸=L̂

[
2∏

t=1

| Ωt(L)− Ωt(L̂) |

]
(A.6)

Higher values of (A.6) indicate that more LD has been achieved. Therefore, the objective of the

mapper design is to maximise the minimum product Euclidean distance to produce a second mapper

that achieves LD. This process can be described as an instance of the QAP [1, 4].
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4. LABELLING DIVERSITY MAPPER DESIGN

4 labelling Diversity Mapper Design

4.1 Quadratic Assignment Problem

The QAP is a labelling optimization problem that assigns each of M variables to M locations, in order

to optimise a cost function [12]. In the context of mapper design, M -ary constellation variables are

each of the constellation points P, P ϵ [0 : M −1] and their respective locations are the constellation

points. The cost function for optimisation is given in (A.6). For this particular application, the QAP

has M ! complexity which exceeds 1013 for constellations M > 16. In order to decrease computation

complexity, a GA can be applied to find a solution. This GA is described in the next section.

4.2 Genetic Algorithm for labelling Diversity Mapper Design

4.2.1 Genetic Coding

With any GA, the first step is to represent a candidate solution to the problem in the form of a

chromosome, Φ. Each chromosome, Φ, contains information known as Genes. Each gene,

ιi, i ϵ [0 : M − 1], represents a point on the constellation and the information contained in the Gene

is the label associated with it. A single chromosome can be defined as:

Φ = [ι0, ι1, . . . , ιM−1] (A.7)

Each chromosome represents a unique permutation of distinct labels, and therefore, no label can be

duplicated in, or excluded from a chromosome. A set of p chromosomes represents the population

and is denoted by Pt. The initial population, P
(0)
t , contains a set of randomly chosen chromosomes.

Where heuristic and exhaustive search mappers are available, these are encoded as chromosomes and

are added to the initial population. This ensures that the GA will either match or improve on the best

heuristic design available [12]. It is important to note that the terms chromosome and constellation

will be used interchangeably. Each chromosome in the population will take the following form:

Pt = [Φ0,Φ1, . . . ,ΦM−1] (A.8)

4.2.2 Crossover Operator

For developing secondary mappers, Patel et al [5] designed a new crossover technique called the

κ-hyper-sphere swap crossover (κ-HSX). The κ -HSX swaps κ number of points from parent
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4. LABELLING DIVERSITY MAPPER DESIGN

chromosomes to produce offspring chromosomes. From the original work [5], parent chromosomes

are selected at random. A random gene is chosen on the first parent chromosome and the same gene

is chosen on the second parent chromosome. A Hyper-sphere of radius ℜ is then constructed around

the randomly chosen gene such that the Hyper-sphere encloses all adjacent neighbours on both parent

chromosomes. Offspring chromosomes are then produced by swapping genes with the chosen

random gene that fall outside of the Hyper-sphere κ number of times. This ensures that offspring

chromosomes will have different adjacent neighbours when compared to its parent chromosomes,

hence increasing the value of LD achieved. For a detailed study, the authors refer the reader to the

original work, section III-B2 [5].

All combinations of parent chromosomes are crossed over, each producing a pair of offspring

chromosomes. Therefore, the total size of the population after crossover in the i − th iteration after

crossover can be denoted as:

χ(i) = Pt + 2×
(
Pt

2

)
= Pt +

Pt!

(Pt − 2)!
= P 2

t (A.9)

Therefore, at any iteration, i, the total number of chromosomes in the population will always be P 2
t .

4.2.3 Mutation Operator

Mutation in the context of a GA is the probabilistic event that further change occurs in an offspring

chromosome after crossover. For this GA, mutation occurs by swapping any two genes in the

offspring chromosome. This, however, is not dependant on parent chromosomes [2]. The probability

of mutation is denoted by Pm.

4.2.4 Evaluation of Chromosomes

After the crossover and mutation stages, natural selection is imitated. All chromosomes are evaluated

according to a fitness function given in (A.6). The fitness function found in (A.6) was extracted from

Patel et al [5] to use as a comparison benchmark. The best p chromosomes are then selected to form

the next generation, P
(i+1)
t . The authors remind the reader than Ω1 is known, and each solution in t

represents a candidate mapper for Ω2.

4.2.5 Termination of the Genetic Algorithm

Termination of a GA occurs under two conditions, 1) convergence of the population, Pt or 2)

optimality has been reached. As in [2], the GA will terminate at the most optimal solution when all
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5. RESULTS AND DISCUSSION

chromosomes in the populationt converge to the same value, i.e.

ϕ(Ω1,Φa) = ϕ(Ω1,Φb), ∀ Φa,Φb ϵ Pt. In the case of this chapter, however, the GA will terminate

for the following two conditions; 1) A stable, convergent solution had been found, and 2) the GA

would terminate if no optimal, stable or convergent solutions can be found, after which the

chromosome with the highest fitness will be deemed the sub-stable chromosome. The algorithm is

constrained to perform only nmax number of iterations. If the GA does not converge, the

chromosome in Pt with the highest fitness is deemed sub-optimal.It is important to note that setting

nmax ≪ M5 ensures that the GA is less time expensive when compared to the QAP solvers

discussed in [4].

5 Results and Discussion

In this section, the output of the GA used to design the secondary mapper, Ω2
GA, for USTLD systems,

is evaluated. From the work in Xu et al [1], the error performance for 2 × NR USTLD systems are

demonstrated and compared to 2×NR Alamouti STBC systems [13]. This is a fair comparison as both

systems employ the same structure, i.e. 2×NR MIMO configuration and transmission over two time

slots. Due to the similar structure between the Alamouti STBC and USTLD systems, the performance

of the Alamouti STBC can be obtained from (A.3) by setting d1 = d2. For all applications of the

GA, the parameters used are summarized in Table A.1 and set nmax = 106. All binary mappings are

represented by their decimal equivalents for brevity.

Table A.1: Summarized parameter values for the Genetic Algorithm

Constellation Size Population Size (Pt) Mutation Rate (Pm)

64PSK 8 10%

128QAM, 128PSK, 128APSK 10 10%

256QAM, 256PSK, 256APSK 12 15%

512QAM 16 20%

4 + 11 + 17APSK 8 10%

7 + 13 + 19 + 25APSK 10 10%

11 + 18 + 26 + 33 + 40APSK 12 15%

25 + 32 + 39 + 46 + 53 + 61APSK 16 20%

26



i
i

“output” — 2021/10/16 — 15:46 — page 27 — #44 i
i

i
i

i
i

5. RESULTS AND DISCUSSION

5.1 Square Constellations: M -QAM

The GA is tested on large M -QAM constellations where M = 128, 256 and 512. These mappers were

benchmarked against the mapper found using the design in Xu et al [1]. For a design analysis of the

mapper proposed by [1], the reader is referred to the work done in [1]. Evaluating the mappers using

the fitness function found in (A.6), which produced the results ϕ
(
Ω1,Ω

2
Xu,128

)
= 8.0 for 128QAM.

The GA converged to chromosomes with fitness ϕ
(
Ω1,Ω

2
GA,128

)
= 8.0 for 128QAM. As seen, the

GA matches but does not improve upon the existing heuristic design. The GA was then tested for

256QAM and 512QAM, where benchmark mappers are found using the design technique in [1]. The

mappers found in [1] converge to a fitness of ϕ
(
Ω1,Ω

2
Xu,256

)
= 8.0 and ϕ

(
Ω1,Ω

2
Xu,512

)
= 8.0. The

GA converges with chromosomes with a fitness of ϕ
(
Ω1,Ω

2
GA,256

)
= 8.0 and ϕ

(
Ω1,Ω

2
GA,512

)
=

8.0 respectively. Again, the GA design matches but does not improve upon the best existing heuristic

design. The authors suggest a few reasons for the results:

• Larger population sizes mean faster convergence of the GA

• Fitness function used was not robust enough

• Starting population may have had Fitter individuals

In order to mitigate the problem, [14] proposed design metrics that could be used in order to further

evaluate the LD mappers produced by the GA, which will not be used in this chapter but mentioned

for future work for the GA.

5.2 Circular Constellations

5.2.1 M -PSK Constellations

Next, the output of the GA is tested on larger PSK constellations where M = 64, 128 and 256. Again,

since no algorithmic benchmark mappers have been designed, the design found in [1] is employed

as a benchmark mapper. Again, the reader is referred to the original work done in [1]. The 64PSK

mapper designed from [1] has a fitness of ϕ
(
Ω1,Ω

2
Xu,64PSK

)
= 0.019231. The output mapper from

the GA, however, converged to a value of ϕ
(
Ω1,Ω

2
GA,64PSK

)
= 0.057532. The GA was then tested

on the 128PSK and 256PSK. The heuristic based mappers have a fitness of ϕ
(
Ω1,Ω

2
Xu,128PSK

)
=

0.004731 and ϕ
(
Ω1,Ω

2
Xu,256PSK

)
= 0.001201. The output of the GA for 128PSK and 256PSK

converged to chromosomes of fitness ϕ
(
Ω1,Ω

2
GA,128SPK

)
= 0.009628 and ϕ

(
Ω1,Ω

2
GA,256PSK

)
=

0.003615. The curves shown in Fig. A.1 - A.3 show the theoretical performance of these systems in

the fast fading channel. These results are then verified by Monte Carlo simulations using the system
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5. RESULTS AND DISCUSSION

model described in section 2. The results show that there is a significant improvement when compared

to the heuristic mapper. When considering the BER results, 64PSK shows an improvement of ≈ 5dB,

128PSK shows an improvement of ≈ 4dB and 256PSK shows an improvement of ≈ 8dB gains at

BER of 10−5. This is expected as stated in section 2, the higher the fitness, the higher achievement of

LD.
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Fig. A.1: Bit Error Rate Performance of 64PSK Alamouti and USTLD systems
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Fig. A.2: Bit Error Rate Performance of 128PSK Alamouti and USTLD systems
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Fig. A.3: Bit Error Rate Performance of 256PSK Alamouti and USTLD systems

5.2.2 M -APSK Constellations

The GA is now tested with APSK constellations. The work done by Patel et al [5] that for

M = 8, 16, 32 and 64, the GA shows significant improvement when compared to the Alamouti

STBC and the mapper design by [1, 14]. In terms of this chapter, the DVB-s2x modulation has been

employed to design the candidate mappers. Again, no heuristic mappers have been designed for

APSK constellations M > 64. Therefore, the design from [1] is employed for M = 128 and 256.

The heuristic based mapper for 128APSK (DVB-s2x) has a fitness value

ϕ
(
Ω1,Ω

2
Xu,128APSK

)
= 0.0203076. The output of the GA showed a convergence of chromosomes

of fitness ϕ
(
Ω1,Ω

2
GA,128APSK

)
= 0.0545484. It can then be seen from Fig. A.4 that the mapper

designed by the GA has a ≈ 3dB gain over the heuristic mapper design at the BER of 10−6. Next,

the GA is tested with the 256APSK (DVB-s2x) constellation. The heuristic design has a fitness of

ϕ
(
Ω1,Ω

2
Xu,256APSK

)
= 0.001789. The output of the GA shows a convergence fitness value of

ϕ
(
Ω1,Ω

2
GA,256APSK

)
= 0.0119273. From the BER curve in Fig. A.5, it can be seen that the GA

has a ≈ 6dB improvement over the heuristic mapper design at the BER of 10−6.
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Fig. A.4: Bit Error Rate Performance of 128APSK Alamouti and USTLD systems
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Fig. A.5: Bit Error Rate Performance of 256APSK Alamouti and USTLD systems

5.2.3 Irregular Shaped M -APSK Constellations

Finally, the GA is tested with irregular constellations proposed by [9]. No existing mapper designs

for USTLD are available to benchmark. Additionally, due to non-symmetry and irregular design, the

design found in [1] cannot be directly applied to these constellations. The constellations considered

are:

• The optimized 4+11+17APSK constellation

• The optimized 7+13+19+25APSK constellation
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5. RESULTS AND DISCUSSION

• The optimized 11+18+26+33+40APSK constellation

• The optimized 25+32+39+46+53+61APSK constellation

Table A.2: Details of Irregular APSK Constellations and their respective Fitness values

Constellation Arrangement Fitness Convergence

32APSK 4 + 11 + 17 0.4178441 No

64APSK 7 + 13 + 19 + 25 0.0950093 Yes

128APSK 11 + 18 + 26 + 33 + 40 0.0804309 No

256APSK 25 + 32 + 39 + 46 + 53 + 61 0.0559774 Yes

Since no other constellations have been designed using these configurations, the GA is fed with the

pseudo gray binary mapping that is used to generate the secondary mapper to achieve LD. Fig. A.6

- A.7 shows the optimized 4+11+17APSK and 7+13+19+25APSK constellations respectively. The

fitness values for each constellation is given in Table A.2. Again, the USTLD system is compared to

the Alamouti system in order to test its quality. At a BER of 10−6, the 4+11+17APSK constellation

shows a ≈ 5dB gain over the Alamouti system. For the 7+13+19+25APSK constellation, the graph

shows a significant gain of ≈ 17dB gain over its Alamouti comparison at a BER of 10−6. Finally, for

both the 11+18+26+33+40APSK and 25+32+39+46+53+61APSK when compared to the Alamouti

STBC system, the graphs in Fig. A.8 - A.9 show a ≈ 5dB gain at a BER of 10−6. Although the

GA had found the values in Table A.2, the Maximum Euclidean Distance reported in [9] has not been

achieved.
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Fig. A.6: Bit Error Rate Performance of Irregular 32APSK Alamouti and USTLD
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Fig. A.7: Bit Error Rate Performance of Irregular 64APSK Alamouti and USTLD
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Fig. A.9: Bit Error Rate Performance of Irregular 256APSK Alamouti and USTLD

6 Complexity Performance Study

Computational complexity is the study of a problem class based on the rate of change in growth,

time and other fundamental units of measure as a function of a chosen system parameter [15]. Space

complexity is the total quantity of computational resources or memory used with respect to the input

whereas Time Complexity is defined as the total amount of time required for an algorithm to complete

with respect to the chosen system parameter. Complexity studies aim to classify and rank tasks based

on their computational costs over all possible instances and algorithms. Complexity analyses of a

particular algorithm, however, also aims to answer another question, namely are there advantages

or disadvantages in the point of view of a resource over other possible methods?. In the case of

the LD problem, the main question arises Is the GA significantly less computationally expensive

than existing methods mentioned in [4]?. [2] stated that by setting nmax ≪ M5 will ensure that

the GA will always be significantly less computationally expensive than the QAP solvers proposed

in [4]. This assumption is based on Time Complexity of an algorithm, and cannot be compared to the

computational complexity of the algorithms in [4]. Therefore, in order to compare each algorithm, a

computational complexity analysis based on computational resources is performed. For the analysis

of this GA, the author uses the procedures of Computational Complexity analysis from [15, 16].

6.1 Computational Complexity Analysis

The first step of a computational complexity analysis is to outline all basic operations of the GA loop.

From [15], the basic operations of any GA are Fitness Calculation, Selection Operator, Crossover
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6. COMPLEXITY PERFORMANCE STUDY

Operator and Mutation Operator. In GAs, pre-processing functions such as the population

initialization are not considered for analysis [15]. Since no Selection Operator is used in this GA

application, the basic operators are the Fitness function, Crossover Operator, Mutation Operator and

the Evaluation of Chromosomes Function. The second step is to calculate the worst-case

computational complexity for each of the basic operators.

From the fitness function in (A.6), the expression requires a double iteration to compute the

Euclidean distance from point L in mapper Ωt to all other points L̂ in mapper Ωt respectively, where

t ϵ [1 : 2]. Each point L or L̂ represent one of M number of constellation points in Ωt(L) and

Ωt(L̂), where M is the order of modulation. The single constraint on the fitness function in (A.6) is

that all distances from points Ωt(L) and Ωt(L̂) are to be computed except when L = L̂. The authors

remind the reader that Ω1 is known. Since there are M number of constellations points on Ω1 and

Ω2, this requires M(M − 1) number of computations over Ω1 and Ω2 respectively. The fitness

function will compute over all chromosomes in the population, P 2
t given as (A.6). Hence, the total

Computational Complexity of the fitness function, denoted by Sfitness, is given by

Sfitness = P 2
t M (M − 1) (A.10)

where P 2
t is the total number of chromosomes after crossover and M is the order of modulation.

Fig. A.10: Illustration of the κ-Hyper-sphere Swap Crossover technique

The κ-HSX technique proposed by [2] is best described using the diagram in Fig. A.10. Consider

a 16QAM constellation as an example. Let Fig. A.10a be the first parent chromosome Φ1 and Fig.

A.10b as the second parent chromosome Φ2. A random point on Φ1, L1 is chosen. The corresponding

point to L1 from Φ1 in Φ2 is also chosen. A hyper-sphere of radius ℜ is constructed around the chosen

points L1 such that all of its adjacent neighbours N are contained within the hyper-sphere. Next,

another random point L2 is chosen as a candidate to swap with L1. For simplicity, Fig. A.10a and
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6. COMPLEXITY PERFORMANCE STUDY

A.10b show three points A,B and C as candidates for L2. Candidates A and B cannot be chosen as L2

as the point A falls within the hyper-sphere of Φ1 and point B falls within the hyper-sphere of Φ2. The

point C however, falls outside of the hyper-sphere. Hence, point C is chosen as the desired candidate

for L2 and swapped with L1 that produces two offspring chromosomes. [2] stated that performing one

swap does not produce offspring that are sufficiently different to its parent chromosomes. Hence, κ

number of swaps are implemented per crossover. From [2], an arbitrary value for κ was chosen such

that the number of swaps should be less than half that of the number of constellation points, is given

as

κ =
M − 4

2
(A.11)

This crossover operator requires two sets of computations, namely the Euclidean distance calculations

to find all adjacent neighbours, N to L1 and the number of swaps κ candidate constellation points

for L2 such that L1 ̸= L2 and L2 is not found within the hyper-sphere. This requires κ + N =

M−4
2 + N number of computations for a single parent to produce an offspring chromosome. Hence,

for any two parent chromosomes, the crossover operator requires 2
(
M−4
2 +N

)
= M − 4 + 2N

number of computations for both parent chromosomes. From [2], it is stated that the GA produces two

offspring chromosomes per combination of two parent chromosomes, hence making the total number

of chromosomes in the population P 2
t after crossover. Hence, to get the total number of computations,

we subtract the number of chromosomes after crossover from the initial population, P 2
t − Pt. There,

the total computational complexity of the crossover technique, denoted by Scrossover is given by

Scrossover =
(
P 2
t − Pt

)
(M − 4 + 2N) (A.12)

where Pt is the initial number of chromosomes, P 2
t is the total number of chromosomes in the

population after crossover, M is the order of modulation and N is the number of distance

calculations of the adjacent neighbours of L1

Mutation is a probabilistic occurrence in nature such that an offspring chromosome undergoes more

change after crossover. In the context of this GA, mutation will occur when any two genes within an

offspring chromosome are swapped. It is reiterated that the number of offspring chromosomes after

crossover is given as P 2
t − Pt. The number of offspring chromosomes that will undergo mutation,

which depends the mutation rate Pm. Hence, the total computational complexity of the mutation

operator, denoted by SMutation is given as

SMutation = Pm

(
P 2
t − Pt

)
(A.13)

where Pt is the initial number of chromosomes, P 2
t is the number of chromosomes after crossover and

Pm is the probability of mutation.
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In order to generate the population for the next generation, all parent and offspring chromosomes are

added back into the population and evaluated according to the fitness function given in (A.6). The

authors remind the reader that Ω1 is known and each chromosome in the population is a candidate for

Ω2. Hence, the total computational complexity of the Evaluation function, SEval is given as

SEval = P 2
t

(
M2 −M

)
(A.14)

where P 2
t is the total number of chromosomes after crossover and M is the modulation order.

Hence, adding up all the number of computations gives the total complexity of the GA as

SGA = SFit + SCrossover + SMutation + SEval (A.15)

= P 2
t

(
M2 −M

)
+
(
P 2
t − Pt

)
(M − 4 + 2N) + Pm

(
P 2
t − Pt

)
+ P 2

t

(
M2 −M

)
(A.16)

= 2M2P 2
t −MP 2

t + (Pm − 4)P 2
t + 2NP 2

t + (4−M − 2N − Pm)Pt (A.17)

Converting expression (A.17) to big-O notation, we set Pt = 8 and Pm = 0.1 which further reduces

the computational complexity to

SGA = 128M2 − 64M − 249.6 + 128N + 8 (3.9−M − 2N) (A.18)

= 128M2 − 72M + 112N − 218.4 (A.19)

The number of adjacent neighbours, N is a variable that scales with the modulation order M . By

considering one of the four most inner points on an M -ary constellation as seen in Fig. A.10, it can

be noted that for 16−, 32− and 64−ary constellations have the following arithmetic progression for

the maximum number of neighbours

5 21 37 ..... (A.20)

From (A.20), it can be seen that a common difference d = 16 is found. Hence the arithmetic

progression of the number of neighbours is stated as

Nn = a+ (n− 1) d (A.21)

= 5 + (n− 1) (16) (A.22)

= 16n− 11 (A.23)

Where a is the first term in the sequence, n represents the number of bits from an M−ary constellation

such that M = 2n and n = log2(M)
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Therefore, the total computational complexity can be further stated as:

SGA = 128M2 − 72M + 112 (16n− 11)− 218.4 (A.24)

= 128M2 − 72M + 112 (16 log2(M)− 11)− 218.4 (A.25)

Finally, in big-O notation, we consider the most dominating term of the complexity equation in (A.25),

which then leads to the final computational complexity stated as

O (GA) = O
(
M2
)

(A.26)

6.2 Evaluation of the Complexity of LD Mapper Design Techniques

Table A.3: Summary of different Search Optimization Techniques for Comparison

Technique Definition Space Complexity

Genetic

Algorithm

Genetic Algorithms mimic the process of evolution

and natural selection to optimize a given cost

function in an iterative manner.

O
(
M2
)

Quadratic

Assignment

Problem

a labelling optimization problem that assigns each

of M variables to M locations, in order to optimise

a cost function [17].

O (M !) [4]

Quadratic

Assignment

Problem

(Lower Bound)

a labelling optimization problem that assigns each of

M variables to M locations, in order to optimise a

cost function [17], Used to develop mapper designs

for [4]

O
(
M5
)

[4]

nmax = maximum number of iterations, M = modulation order

In order to evaluate the complexity of each technique, authors make use of the big-Omicron (big-O)

notation, which is the widely used standard for measuring complexities and compares the LD mapper

designs produced by each algorithm in terms of fitness values. Table A.3 summarises each

optimization technique and their respective Space Complexities. From the big-O notation in Table

A.3, complexity equations show that the Lower Bound QAP approach uses significantly less

computational resources than the QAP algorithm. The GA, however, is shown to require M3 less

computational resources than the lower bound QAP solver in [4]. Therefore, the GA answers the

main question above, which shows that the GA provides a significant advantage in terms of
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Computational and Time complexity [2] over existing exhaustive search and algorithmic approach

algorithms.

7 Conclusion

Due to high computational complexities and symmetry-based heuristics, USTLD mapper designs are

limited. This chapter employs the GA from the work done by Patel el al [5] to design LD mappers of

a higher modulation order and irregular symmetry. The algorithm was tested on 128,256 and 512-ary

constellations for the QAM modulation, 64,128 and 256-ary constellations for the PSK modulation

and 128 and 256-ary constellations for the APSK modulation. Furthermore, the algorithm was tested

on four irregular APSK constellations, namely 4+11+17APSK, 7+13+19+25APSK,

11+18+26+33+40APSK and 25+32+39+46+53+61APSK respectively. These irregular constellations

were used to prove that the GA can indeed produce a LD mapper irrespective of symmetry. Results

presented in this chapter show that for the M -QAM constellations considered, the GA produced

corresponding LD mappers that match, but do not improve on the best available heuristic design. The

reason for this could be that the fitness function used was not robust enough or the population size

was too large and converged faster. The 64PSK, 128PSK and 256PSK have demonstrated gains of

≈ 5dB, ≈ 4dB and ≈ 8dB respectively. When considering APSK constellations, 128APSK and

256APSK outperformed the best available heuristic mappers by ≈ 3dB and ≈ 6dB respectively.

Finally, the GA was tested on irregular constellations such as 4+11+17APSK, 7+13+19+25APSK,

11+18+26+33+40APSK and 25+32+39+46+53+61APSK, which exhibited gains of ≈ 5dB,

≈ 17dB, ≈ 5dB and ≈ 5dB over the Alamouti STBC respectively. Furthermore, a complexity

comparison between the GA and Exhaustive Search algorithms was done. The GA was shown to

have a much lower complexity when compared to the algorithms proposed in [3, 4], hence, proving

the GA having the lowest space complexity.

Future works in this area include improved crossover and mutator operations, better termination

conditions and employing other metrics for determining the fitness of mappers such as the metrics

found in [14].
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1. ABSTRACT

1 Abstract

Genetic Algorithms(GA) is a population-based search optimization technique that mimic the process

of evolution and natural selection. GAs are an effective way to finding feasible solutions to complex

problems. Recently, GAs have been applied to designing Labelling Diversity mappers and have

shown great promise. However, the approach implemented did not apply biological processes during

mating, and therefore, could not be classified as a GA, but rather a Genetic-Inspired Algorithm (GIA)

. Since the GA for designing Labelling Diversity mappers was developed, no further studies have

been produced to suggest any improvement to the system. In reproduction with two distinct parents,

the offspring acquires genetic diversity from the crossover are from the distinct parent genes. When

there is only one parent, genetic diversification is gained only from mutation. In such a case,

evolution becomes a random process rather than one that is guided by parent propensities; and the

promised value of the GA is not realised. This chapter investigated four biological crossover

techniques and two hybrid techniques, namely, single point, multi-point, OX1 and OX2 and cycle and

partially mapped Crossovers, respectively. The proposed GA with the OX1 crossover technique was

tested on the 16QAM, 16PSK, 16APSK and three 16APSK constellations that do not exhibit any

diagonal symmetry. In the case of symmetric 16QAM and 16PSK, mapper designs produced by the

proposed GA had matched but not improved upon existing heuristic and the previous GA mapper

designs. However, results show that for the Asymmetric 16APSK and Single Symmetry 16APSK

constellations, Labelling Diversity values have increased from ω
(
µ1, µ

Patel
GA,AS−16APSK

)
= 0.0981

to ω
(
µ1, µ

Davis
GA,AS−16APSK

)
= 0.3008 and ω

(
µ1, µ

Patel
GA,SS−16APSK

)
= 0.4020 to

ω
(
µ1, µ

Davis
GA,SS−16APSK

)
= 0.4053 respectively, and led to ≈ 4dB and ≈ 2dB gains respectively

when compared to the results of mappers produced by the previous GA. In the cases of the

11+5APSK and 16APSK, even though improvement in the Labelling Diversity of the mapper design

is observed (ω
(
µ1, µ

Davis
GA,115APSK

)
= 0.7171 from ω

(
µ1, µ

Patel
GA,11+5APSK

)
= 0.6766 for the

11+5APSK constellation and ω
(
µ1, µ

Patel
GA,16APSK

)
= 0.3685 to ω

(
µ1, µ

Davis
GA,16APSK

)
= 0.5427 for

the 16APSK constellation), only a small gain of ≈ 0.5dB was achieved. More significantly, the

proposed GA achieved significant performance improvement in terms of time complexity but used

more computational resources (O(M !)) when compared to the previous GA O(M2). A test on

mutation rates on the proposed GA was performed, with the objective of utilizing lower mutation

rates instead of relatively high mutation rates used in the previous GA. Results have shown that

higher mutation rates are needed for single parent reproduction, and thus the process is purely

random. However, the converse is also true, where two parents produce a set of offspring

chromosomes and thus, randomness is reduced and genetic diversity is increased. The results also
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2. INTRODUCTION

showed that a more guided search (mating of two parents) is more effective at genetic diversity than

pure random searches as in the case of single parent reproduction.

Index Terms - Genetic algorithms, labelling diversity, mapper design, complexity, STBC, mutation

rate

2 Introduction

Evolutionary algorithms (EAs) are adaptive meta-heuristic search algorithms which use techniques

inspired by natural selection and evolution to iteratively and efficiently solve combinatorial

optimization problems. EAs and Evolutionary programming combined provide an excellent approach

to effectively sample large search spaces and produce feasible results [1]. Both exploration and

exploitation are largely responsible for the performance and success of any GA [1]. Exploitation can

be defined as the use of existing knowledge to find possibly better solutions to a problem, while

Exploration refers to finding a solution from an unknown in a search space [1]. Both exploration and

exploitation exist in the mating process of the EA namely the crossover and mutation stages

respectively. Uncoded space-time labelling diversity (USTLD) is a recent innovative, multi-diversity

scheme that was proposed to improve on the performance of space time block coded (STBC)

Systems in the presence of multipath fading. USTLD systems employ a multiple-input

multiple-output (MIMO) configuration consisting of two transmit antenna and NR receive antenna.

USTLD uses the concept of labelling diversity which employs two mapper designs, Ω1 and Ω2,

together with its MIMO configuration to reduce the bit error rate (BER). The extent to which

labelling diversity (LD) is achieved in USTLD systems is based on the design of binary mappers Ω1

and Ω2. The end goal of LD mapper designs is to place adjacent points as far as possible in the

second constellation than in its base constellation. Previous works based on search algorithms and

exhaustive approaches have proven to be too computationally expensive to design LD mappers.

Recently, Patel et al [2] proposed a GA to tackle the LD problem and design LD mappers irrespective

of size or shape. A summary of the GA proposed in [2] is summarized in Section III-B2, and authors

encourage readers to refer to the original paper. Candidate solutions chromosomes that is

represented by θ contain encoded information, known as genes represented by ζi where

i ϵ [0 : M − 1] and M is the order of modulation. Each gene represents a symbol on the M -ary

constellation. A single chromosome can be defined as:

θ = [ζ0, ζ1, · · · , ζM−1)] (B.1)
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2. INTRODUCTION

It is important to note that each chromosome is a unique permutation of distinct symbols (genes), and

therefore, no label can be duplicated in, or excluded from a chromosome.

In [2], we see that new crossover technique being proposed, the κ-Hyper-sphere Swap Crossover κ-

HSX). This crossover technique in summary works on the following principles: i) choose two parent

chromosomes, Y1 and Y2, ii) select a gene from the first parent chromosome, L1, Y1, iii) select the

same gene L1 that is found in the second parent chromosome, L1, Y2, iv) project a hyper-sphere of

radius R around the two genes, L1 and L2 on both parent chromosomes enclosing all adjacent genes

in the hyper-sphere, v) Choose another random point from Y1 and Y2 such that they fall outside of the

hyper-sphere radius, L̂2, Y1 and L̂2, Y2, vi) swap L1, Y1 with L̂2, Y1 and L1, Y2 with L̂2, Y2 and vii)

repeat κ number of times.

The illustration in Fig. B.1 further simplifies the mechanisms of the κ-HSX principle:

Fig. B.1: Simplified Diagram of the κ-Hyper-sphere Swap Crossover [2]. Parent Chromosome Y1 is illustrated on the left

and Y2 on the right

From Fig. B.1, it can be seen that the approach in [2] is not of a genetic (two parent reproduction)

nature, but that of a genetic-inspired (single parent reproduction) nature, thus creating pure

randomness when generating offspring and reducing genetic diversity. This technique has not been

applied to other optimization problems, and therefore no validity to produce optimal results can be

shown. Therefore, in attempting to reduce randomness and increase genetic diversity, the first aim of

this chapter is to introduce two-parent crossover techniques to the LD GA is to apply a two-parent

crossover technique that produces LD mapper designs with higher values of LD with respect to the

problem constraints. Coupled with the aim of applying two-parent crossover techniques, the aim of

the chapter is to gain further insight into achieving a close-to global optimal solution irrespective of
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2. INTRODUCTION

size, shape or modulation. The following crossover operators were considered for the GA [1]:

• Single-Point Crossover One random crossover point is selected, the tails of both parents are

swapped and offspring are produced

• Multi-Point Crossover An extension to the Single-Point Crossover. Multiple crossover points

are selected and swapped between the parents to produce offspring

• Davis Ordered Crossover (OX1) a permutation-based crossover technique used with the

intention of transmitting information about relative order of the offspring

• Ordered Crossover (OX2) extension to the OX1 crossover.

• Cyclic Crossover offspring is created from parents where every position is occupied by a

corresponding element from one of the parents

• Partially Mapped Crossover Two random crossover points are selected on parent

chromosomes creating a segment. One parents segment is mapped onto the other parents

segment, and remaining information is exchanged.

From [3], a complexity analysis of the GA from [2] was performed. The computational complexity of

the GA was shown to be significantly less complex than available algorithmic and exhaustive search

approaches, while producing mapper designs that are equal in fitness. Hence, the second contribution

of this chapter is to investigate the complexity of the proposed GA and compare it to the complexity

of the GA found in [2, 3].

The remainder of the chapter is structured as follows: Section 2 describes the general architecture of

GAs. Section 3 describes the system model and discusses the USTLD system. This section also looks

at the possible design metric benchmark fitness function). Section 4 summarises all current works of

LD mapper design, which includes the GA proposed in [2]. Section 5 contains detailed study of the

proposed GA with crossover study. Sections 6 and 7 contains the experimental setup of the system

and discusses the results of the proposed GA as well as Monte Carlo simulations that illustrate the

improvements that the proposed GA has to offer. Concluding thoughts are mentioned in Section 8.

In terms of notation for this chapter, vectors and scalars are in boldface and italics respectively. ·

represents the Frobenius norm of a vector, |·| represents the absolute value of a scalar and ·)! represents

the factorial of a scalar.
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3. GENETIC ALGORITHMS

3 Genetic Algorithms

GAs are powerful meta-heuristic algorithms that are employed to solve various combinatorial

optimization problems. GAs imitate evolution and natural selection, and apply these concepts to

complex problems. Each solution produced by the GA is treated as a single individual whose fitness

is determined by an objective function. GAs use the concept of survival of the fittest to maintain a

population. A structured, yet randomized information exchange between two individuals (parent

chromosomes) crossover operator give rise to new offspring that could be better performing

individuals, while genetic diversity is also added to the population by changing random genes

mutation operator or bringing in new individuals (immigration operator) [1]. The GA iteratively

applies this process until a feasible local or global minimum/ optimum - is found.

In literature, there have been many proposed methods for implementing GAs, while others have

proposed enhanced GAs by employing local searches to further better the chances of reaching a

global maximum [1]. In this context, there are two types of reproduction systems to consider:

• Generational Reproduction A large number of parent chromosomes are selected and

reproduction occurs typically half the population or more. Population from the previous

generation is replaced by the population of the new generation

• Steady-State Reproduction Two parents a selected, reproduction occurs and two offspring are

produced

For this research study, we have employed a GA that uses a steady-state reproduction system as

opposed to a generational reproduction system, which was not investigated as elitism is introduced.
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3. GENETIC ALGORITHMS

Fig. B.2: Flow Diagram of a General Genetic Algorithm

The most important process in any GA is mating of chromosomes, which consist of the crossover

stage and the mutation stage. The crossover stage by definition uses existing information from parent

chromosomes to produce offspring. This stage is also known as Exploitation. The mutation stage,

however, is the Exploration operator, where a novel and unknown solution is found by randomly

exchanging information within an offspring chromosome. During each iteration, natural selection is

imitated and the best chromosomes are chosen to form the population of the next generation. Natural

Selection is the process whereby each chromosome in the population undergoes evaluation using a

fitness function, after which the best p number of chromosomes are selected to represent the population

in the next generation. The GA will terminate when all chromosomes in the population have converged

to a single fitness value or the algorithm had reached the maximum number of iterations; which is then

said to contain an unstable solution. If a GA converges, the solution is deemed to be locally optimal

(not necessarily globally optimal).
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4 USTLD System Model

The traditional USTLD model considers a MIMO technique with NT = 2 number of transmit

antenna and NR number of receive antenna. Two message information bit streams,

m1 = [m1,1,m1,2, .,m(1,r)] and m2 = [m2,1,m2,2, .,m(2,r)] of length r = log2 (M) are passed

through two binary mappers, µ1 and µ2 which produces symbols µ1(ν) = ν1 and µ2(ν) = ν2. After

symbol mapping, µ1(ν) and µ2(ν) are transmitted over two consecutive time slots. Therefore, the

resultant NR × 1 received signal vector can be represented as:

yt =

√
α

2
[ht,1µ1(ν1) + ht,2µ2(ν2)] + nt (B.2)

From (B.2),
√

α
2 is the average signal-to-noise (SNR) ratio at each receiver antenna and nt is the

NR × 1 additive white gaussian noise (AWGN) vector in time slot t. In the vector matrix nt, each

value follows a complex normal distribution with zero mean and Es
2 variance per dimension, where

Es is the transmit energy per symbol. The ht,u, t, u ϵ [1 : 2] vector is the multipath fading

experienced by the transmitted symbol from antenna u in time slot t. Fading is assumed to be

frequency flat fading and follows a Rayleigh amplitude distribution with zero mean and unit variance.

Fading channels can either be fast or quasi-static fading. The phase distribution of noise and fading is

assumed to be uniform.

At the receiver, to detect transmitted symbols, the maximum likelihood detector is employed to

estimate these transmitted symbols. We assume perfect channel state information (CSI) is available at

the receiver, the detection algorithm can be stated as:

ν̂(1), ν̂(2) = arg min
K(1),K(2)

∥∥∥∥∥∥yt −
2∑

t,u=1

√
ρ

2
ht,uµ1(ν(u))

∥∥∥∥∥∥
2

, t, u ϵ [1 : 2] (B.3)

In (B.3), ν̂(1), ν̂(2) is the estimated codewords at the receive which is detected across two consecutive

time slots.

4.1 Theoretical Error Performance of USTLD

From [4], the base USTLD model used an analytical union bound to derive the average bit error

probability (ABEP) which resulted in the following expression:

ABEP (ρ) =
1

Mr

M−1∑
ν=0

M−1∑
ν̂=0,ν ̸=ν̂

β (ν, ν̂)P (ν → ν̂) (B.4)

In (B.4), M is the modulation order, β(ν, ν̂) is the number of bit errors between transmitted and

received symbols and P (ν → ν̂) is the pairwise error probability (PEP) that one symbol is detected

perfectly and the other symbol is detected with error. From [4], the PEP is derived as:
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P (ν → ν̂) =
1

4n

2∏
t=1

(
1 +

αD2
t

8

)−NR

+
1

2n

n∑
s=1

2∏
t=1

(
1 +

αD2
t

8sin2( sπ2n)

)−NR

(B.5)

Where n is a large integer, n > 10 and Dt = ∥µt(ν)− µt(ν̂)∥ , t ϵ [1 : 2] is the euclidean distance

between the estimated symbol and all other points on the M -ary constellation µt. Authors encourage

the readers to [4] for a detailed derivation. At high SNR, αD2
t

8 >> 1, t ϵ [1 : 2], the PEP can be

approximated as:

P (ν → ν̂) =
1

4n

(
αD2

1

8

αD2
2

8

)−NR

+
1

2n

n∑
s=1

(
αD2

1

8sin2( sπ2n)

αD2
2

8sin2( sπ2n)

)−NR

(B.6)

From (B.6), at high SNR, the PEP is dominated by the product euclidean distance D1D2. Thus, this

sets an error floor and indicates a design metric that can be used to evaluate USTLD mapper designs.

The resultant metric is given as:

ω(µ1, µ2) = min
ν, ν̂ ϵ [0:M−1],ν ̸=ν̂

[
2∏

t=1

∥µt(ν)− µt(ν̂)∥

]
(B.7)

From (B.7), higher values of ω indicates higher values of Labelling Diversity achieved. Hence, the

overall aim of USTLD mapper design is to maximise the minimum product Euclidean distance to

produce a secondary mapper that achieves Labelling Diversity.

5 Current Mapper Design Models

5.1 Algorithmic/ Exhaustive Search Approaches

Samra et al [5] proposed a mapper design solutions for Labelling Diversity by brute-forcing the

quadratic assignment problem QAP). [5] showed that for a system that requires S number of LD

mappers, there are (M !)S possible solutions for the QAP. Due to the high computational complexity

involved, [5] uses a lower-bound approximate approach to solving the QAP. This approach uses an

iterative solver that finds S optimal mapper designs one at a time, therefore reducing the search space

to M ! × S. But, due to the complexity of the algorithm, [5] reported that the algorithm is unfeasible

for larger constellations of order M , where M > 16. Xu et al [4] proposed a simple, yet effective

mapper design solution that swapped diagonal pairs on a constellation. This proved to be equal in

performance to the algorithmic approaches in [5–7]. Although this approach was effective, mapper

designs for constellations found in [4] cannot be applied to this design and larger constellations are

too tedious. Other algorithmic mapper design approaches include Seddik et al [8] which produced

mapper designs for LD constellations by bit-flipping and a more traditional brute-force approach

in [7].
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6. PROPOSED GENETIC ALGORITHM

5.2 Labelling Diversity Genetic Algorithm

Recently, a GA for producing LD mapper designs was proposed by [2]. Candidate mapper design

solutions are encoded as chromosomes, and each value inside the chromosome called genes represent

a single point on the constellation. These chromosomes are encoded and added to a population Pt.

The initial population, P (0)
t contains a set of randomly generated chromosomes as well as heuristic

and exhaustive search mapper designs that have been produced in previous literature this ensures

that the GA will either match or beat the heuristic and exhaustive mapper designs. By keeping in

mind the Labelling Diversity problem Maximise the minimum distance between two points from

its base constellation to its new constellation, [2] proposed a new crossover technique, called the κ-

Hyper-sphere Swap Crossover. This technique utilized two parent chromosomes and selects a single

gene which is found within each parent chromosome. A circle of radius R is projected around the

selected gene in both constellations, thereby encapsulating each of its adjacent points. Another gene

is selected at random such that the new selected point is not found within either circle that encapsulates

each of its adjacent points. These two genes are then swapped in both parent chromosomes and hence

producing offspring chromosomes. This process is performed κ number of times. Mutation in the

context of this GA is a probabilistic event that explores new, unknown solutions by swapping two

randomly selected genes in an offspring chromosome. The objective function in (B.7) was used to

evaluate candidate solutions to carry over to the next generation. Termination of the GA will occur in

either two instances: i) the population converges to a single fitness value and the population is said to

contain a stable solution or ii) the maximum number of iterations had been reached, the population is

said to contain unstable solutions.

6 Proposed Genetic Algorithm

6.1 Genetic Encoding

The very first step of any GA is to represent a candidate solution to the problem in the form of a

chromosome, ϕ. Information encoded into each chromosome is known as genes. Each gene,

ιi, i ϵ [0 : M − 1], represents a point on the constellation and the information contained in the gene

is the label associated with it. A single chromosome can be defined as:

ϕ = [ι1, ι2, · · · , ιM−1] (B.8)

Each chromosome represents a unique permutation of distinct labels, and therefore, no label can be

duplicated in, or excluded from a chromosome.
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6. PROPOSED GENETIC ALGORITHM

6.2 Population and Elitism

A set of p chromosomes represents the population and is denoted by Pt. The initial population, P (0)
t ,

contains a set of randomly chosen chromosomes. All existing heuristic and algorithmic LD mapper

designs are also encoded as chromosomes and are added to the initial population. This ensures that the

GA will either match or improve on the best LD mapper design available [2]. It is important to note

that the terms chromosome and constellation will be used interchangeably. The population Pt can be

represented as

Pt = [ϕ0, ϕ1, · · · , ϕM−1] (B.9)

A simple, yet effective technique Elitism was implemented to find better solutions and convergence

times. Elitism aims to keep the fittest chromosomes from the current generation and carries them over

to the next generation, unaltered. This guarantees that the solution quality obtained by the GA will not

depreciate from one generation to the next.

6.3 The Crossover Operator

Crossover is a genetic operator that introduces genetic diversity into chromosomes from one

generation to the next. During crossover, two parent chromosomes are mated and produce offspring

chromosomes that retain the most desirable properties from parent chromosomes. [2] reports that [9]

investigated various crossover techniques for constellation assignments but were not suitable for LD

mapper design. [2] proposed a new crossover technique called the κ-Hyper-sphere Swap Crossover

(κ-HSX) that used two parents independently to produce offspring chromosomes. When a single

parent is used to produce offspring chromosomes, genetic diversity is only gained by mutation, hence

becoming a purely random process rather than a process that is guided by parent chromosome

properties. The true value of the GAs potential is then not realised. Genetic diversity during

crossover is realised by introducing two-parent crossover techniques which reduces randomness in

offspring chromosomes. The following two-parent crossover operators were investigated [1, 10]: i)

single-point crossover, ii) multi-point crossover, iii) Davis ordered (OX1) crossover, iv) Davis 2

ordered (OX2) crossover, v) cyclic crossover and vi) partially mapped crossover

The crossover operator that was to be chosen for this GA had to conform with the following constraint:

"No duplicate genes in chromosomes"

Firstly, both the cycle and partially mapped crossover techniques are not suitable for the

implementation of this GA as most offspring chromosomes produced contain duplicate genes, hence

violating the constraints. From literature [10], when these operators were applied to the travelling
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6. PROPOSED GENETIC ALGORITHM

salesman problem (TSP), near optimal results for many datasets - such as the Berlin52 dataset have

been achieved. Therefore, the single-point crossover, multi-point crossover and both OX1 and OX2

crossover techniques were considered for application to the system. Initial trial runs in Fig. B.3 -

have shown that the single- point, multi-point and OX2 crossover techniques match but do not

improve upon existing GA mapper designs. However, OX1 had shown the best results in terms of

performance and improvement of mapper designs, as shown in Fig. B.3. Therefore, the Davis

ordered crossover (OX1) had been chosen as the crossover operator for this implementation.

Fig. B.3: Histogram Comparing the final fitness values of the chosen Crossover techniques to be used

The Davis Ordered Crossover (OX1) was proposed by [11] which was used for chromosomes for

permutation encoding [1]. Given two parent chromosomes, two random crossover points are selected

partitioning them into a left, middle and right portion. The ordered two-point crossover behaves in the

following way: The first offspring inherits its left and right section from both parent chromosomes,

and its middle section is determined by first parent. The converse is also true for the second offspring

chromosome.
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6. PROPOSED GENETIC ALGORITHM

Fig. B.4: Simplified Diagram of the Davis Ordered (OX1) Crossover Operator

All possible combinations of parent chromosomes are crossed over, with each pair producing two

offspring. Authors note that the implementation contained a duplicate chromosome remover, and

therefore had less chromosomes in the population. Therefore, the total size of the population after

crossover in the i-th iteration can be denoted as:

P
(i)
t = (Pt + 1)2 (B.10)

where Pt is the total population size

6.4 Mutation

Mutation is a genetic operator used to maintain diversity from one generation of the population to the

next. It is a probabilistic event that further changes offspring chromosomes. In the context of this

GA, mutation will occur of two randomly selected points are swapped. The probability of mutation is

denoted by Pm.

Fig. B.5: Illustration of Mutation that occurs within offspring chromosomes

6.5 Evaluation of Chromosomes

After the process of mating (crossover and mutation), natural selection is imitated. All chromosomes

parent and offspring are put back into the population and are evaluated according to the fitness

function found in (B.7). The best p chromosomes are then selected to form the new generation,

P
(i+1)
t . The authors remind the reader than µ1 is known, and each solution in the population, Pt,

represents a candidate mapper for µ2.
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6. PROPOSED GENETIC ALGORITHM

6.6 Filtering of Illegal Chromosomes

There exists a constraint on labelling diversity mappers, which can be simply stated as "no duplicate

values on a constellation/ chromosome". For this reason, a filter was employed to mitigate this issue.

The filter is illustrated in Fig. B.6:

Fig. B.6: Flow Diagram of the Filter Algorithm
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7. EXPERIMENTAL SETUP

6.7 Termination Conditions

Termination of a GA occurs under two conditions, 1) convergence of the population, or 2) optimality

has been reached. As in [9, 12], the GA will terminate at the most optimal solution when all

chromosomes in the population converge to the same value, i.e.

ω(µ1, ϕa) = ω(µ1, ϕb), ∀ ϕa, ϕb ϵ Pt. In the case of this chapter, however, the GA will terminate

for the following two conditions; 1) a stable, convergent solution had been found, and 2) the GA

would reach the maximum number of iterations and terminate if no optimal, stable or convergent

solutions can be found, after which the chromosome with the highest fitness will be deemed the

sub-stable chromosome. The algorithm is constrained to perform only nmax number of iterations. If

the GA does not converge, the chromosome in Pt with the highest fitness is deemed sub-optimal.

7 Experimental Setup

Designing close-to-optimal LD mappers has been a challenge in recent times, since the only method

of designing these mappers were the brute-force approach. More recently, a GA proposed by [2]

has shown significant improvement for designing such mappers using less computational resources

and reducing time complexity. It is also reported by [2] that only a locally optimal solution has

been achieved, which prompted studies into new methods of improving the GA. As such, the 16-

ary constellations which include 16QAM, 16PSK, 16APSK, 11+5APSK, asymmetric 16ASPK and

single symmetry 16APSK are tested on the proposed system. Since 16QAM and 16PSK systems

already have optimal configurations, Fig. B.7 shows optimal mapper designs for 16QAM and 16PSK

constellations respectively.

Fig. B.7: Optimal Mapper designs for 16QAM and 16PSK Constellations [5]
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7. EXPERIMENTAL SETUP

The values of each parameter used in the proposed GA in this chapter is summarized in Table B.1.

Each parameter had been tested over an arbitrary range of values.

Table B.1: Summary of Variable Values used in the Genetic Algorithm

Modulation Population Size (Pt) Mutation Rate (Pm) Number of Generations

16QAM 10− 100 1%− 9%, 10%− 90% 105

16PSK 10− 100 1%− 9%, 10%− 90% 105

16APSK 10− 100 1%− 9%, 10%− 90% 105

11+5APSK 10− 100 1%− 9%, 10%− 90% 105

Asymmetric 16APSK 10− 100 1%− 9%, 10%− 90% 105

Single Symmetry 16APSK 10− 100 1%− 9%, 10%− 90% 105

From literature, there exists three methods - to the author’s knowledge - for determining good

parameter settings for a GA, namely; i) a meta-genetic algorithm - the use of a GA to determine good

parameter sets [13, 14], ii) sensitivity analysis - the process of comparing results from multiple

analyses of a dataset using variations of an analysis workflow [15, 16] and iii) parameter varying. For

this application, the author has chosen the parameter varying approach to select good parameter

settings for the GA. Parameter varying is a simple approach that changes one parameter value at a

time with respect to the output [17]. The parameter technique can be described as follows:

Λi = [λ0, λ1, · · · , λN−1] (B.11)

where Λ is the i-th, i ϵ [0 : N−1], set of parameters applied to the proposed GA and N is the number

of parameters that tune the GA.

For the application of the proposed GA, the parameter varying technique is represented as:

Λi = [P
(i)
t , P (i)

m ] (B.12)

where i represents the i-th value, i ϵ [0 : N −1] and N is the number of parameters that tune the GA.

The mutation rate Pm must be chosen such that Pm ≤ 10%. When mutation rates are much higher,

offspring chromosomes could be destroyed and may not have a good fitness value [1]. Since the

search space for designing LD mappers depends on the modulation order M , a larger population size

is needed to transverse the search space. For any modulation order M , there exists M ! number of

mapper designs [2, 5]. Due to the large number of producible mapper designs, the range of population

sizes were chosen as Pt ≥ 10.
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8. RESULTS AND DISCUSSION

The programming was done in Python and Matlab on a PC machine with Intel Core TM) i7 2.50GHz

processor and 8GB of RAM with the Windows 10 Operating System.

8 Results and Discussion

In this section, the output of the GA used to design the secondary mapper, µDavis
GA , for USTLD

systems, is evaluated and benchmarked against the GIA solutions found in [2] -denoted as µPatel
GA .

From the work in Xu et al [4], the error performance for 2×NR USTLD systems with 16-ary QAM,

PSK, APSK and asymmetric APSK constellations in a rayleigh fast fading channel are demonstrated.

All parameters and corresponding values are summarized in Table B.1. The authors note that besides

the 16QAM and 16PSK mapper designs, no other constellation studied in this chapter has been

produced using an exhaustive search, hence the term "close-to global optimal" will be used.

All binary mappings are represented by their decimal equivalent. The results of the proposed GA on

the 6 different instances of 16-ary constellations are summarized in Table B.2 and is compared to the

mapper designs produced from [2].

Table B.2: Summary of Results of the Genetic-Inspired Algorithm [2] vs the Proposed Genetic Algorithm

Type Genetic-Inspired Algorithm Proposed Genetic Algorithm

Instance Pt κ Pm µPatel
GA Pt Pm µDavis

GA

16QAM 8 6 10% 8.0 100 7% 8.0

16PSK 8 6 10% 0.5857 100 5% 0.5857

16APSK 8 6 10% 0.3685 100 9% 0.5427

11+5APSK 8 6 10% 0.6766 100 5% 0.7171

Asymmetric 16APSK 8 6 10% 0.0981 100 5% 0.3008

Single Symmetry 16APSK 8 6 10% 0.4020 100 7% 0.4053

From Table B.2, the common parameters and fitness value output from (B.7) of the proposed GA

are being compared to the genetic-inspired algorithm (GIA). The parameters used for the GIA were

kept to the original values that can be found in Patel et al [2], section IV . The parameter κ has been

constrained to κ = M−4
2 while Pt and Pm remained constant.

In the case of the proposed GA, the parameters were chosen after the Parameter Varying process

was conducted, and the most suitable parameters were chosen. A large population size (Pt = 100)

was chosen while the mutation rates chosen were lower than 10%. The author brings to the readers
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8. RESULTS AND DISCUSSION

attention that for a population size Pt > 100, no significant improvements in fitness values are found.

As seen in Table B.2, the proposed GA produced matching and higher LD fitness values for the 16-ary

systems presented when compared to the GA in [2]. In the cases of 16QAM and 16PSK, it can be

seen that no improvements can be found. The authors note that since the proposal by Samra et al [5]

had used an exhaustive search algorithm, 16QAM and 16PSK mapper designs has achieved the best

Labelling Diversity mapper design. Significant improvements in fitness values can be seen for the

16APSK and asymmetric 16APSK constellations. This is attributed to the larger search space being

transversed by the use of a larger population size.

8.1 16QAM and 16PSK

The first two constellations tested on the GA was the 16QAM and 16PSK constellations. Both

constellations were benchmarked against mapper designs found in [4, 5, 8] and the GA mapper

design in [2]. Since [8] had implemented an exhaustive search algorithm, it has been taken as the

most optimal solution as stated in the paper. The mapper designs found in [4, 5, 8] are denoted by

µSamra
2 , µSeddik

2 and µXu
2 respectively. First we consider the 16QAM system. By evaluating these

mapper designs with the equation in (B.7), we arrive at the following fitness values;

ω
(
µ1, µ

Samra
2,16QAM

)
= 8.0, ω

(
µ1, µ

Seddik
2,16QAM

)
= 8.0 and ω

(
µ1, µ

Xu
2,16QAM

)
= 8.0. Furthermore,

µPatel
2,16QAM is also found to have a fitness value of ω

(
µ1, µ

Patel
2,16QAM

)
= 8.0. The proposed GA

converges to ω
(
µ1, µ

Davis
GA,16QAM

)
= 8.0. Thus, the mapper design has matched, but not improved

upon existing GA mapper designs. Next, the 16PSK constellation is tested. µSamra
2,16PSK , µXu

2,16PSK and

µPatel
2,16PSK are both evaluated according to (B.7) and have a fitness value

ω
(
µ1, µ

Samra
2,16PSK

)
= ω

(
µ1, µ

Xu
2,16PSK

)
= ω

(
µ1, µ

Patel
2,16PSK

)
= 0.5857. The proposed GA converges

to a value of ω
(
µ1, µ

Davis
GA,16PSK

)
= 0.5857. Therefore, the mapper design has matched but not

improved upon existing heuristic and GA mapper designs. Since the 16QAM and 16PSK mappers

have been produced by utilizing an exhaustive search [5], these mapper designs are deemed optimal.

Although no improvements can be observed, authors note that from the Fig. B.8, a significant

improvement in the number of generations to reach convergence has been observed for both cases.

Authors note that the reason for this improvement is that since all possible combinations and

permutations are produced with respect to already existing heuristic mappers faster convergence not

pre-mature convergence is achieved.
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8. RESULTS AND DISCUSSION

Fig. B.8: Convergence time comparison off the Proposed Genetic Algorithm and Patel et al [2] Genetic Algorithm

8.2 16APSK

The first circular constellation the proposed GA was tested on is the 16APSK constellation. Quazi et

al [18] had proposed an approach for designing Labelling Diversity mappers for the APSK system.

However, this approach relies on symmetry and tedious when applied to higher order APSK

constellations. Therefore, the 16APSK system (along with the 8APSK, 32APSK and 64APSK)

systems have been passed through the GA in [2]. Since it was reported in [2] that the values obtained

from the GIA were local optimal values, the same system was applied to the proposed GA. The GA

in [2] had converged to a value of ω
(
µ1, µ

Patel
GA,16APSK

)
= 0.4278, while the mapper design produced

by the proposed GA converged to a value of ω
(
µ1, µ

Davis
GA,16APSK

)
= 0.5427. The proposed GA has

produced a mapper design with a higher value of LD being achieved. Hence, a close-to global

optimal solution has been reached. Thus, the objective of producing a mapper design for the 16APSK

with a higher value of LD has been achieved.

The analytical results were validated by a tight fit with the Monte Carlo simulations at high SNR

values. As seen in Fig. B.9, even though an improvement in fitness has been observed, only a small

gain of ≈ 0.5dB at 10−6 has been achieved. Above an SNR value of 6dB, the performance of the

proposed GA system extends away from the existing GA system, hence becoming more efficient.
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Fig. B.9: BER Curve of the 16APSK system - Genetic Algorithm in [2] and Proposed Genetic Algorithm

8.3 11+5APSK

The next system that was tested on the GA is the 11+5APSK constellation that was proposed by [19]

which does not exhibit any diagonal symmetry. The authors note that prior to the GA in [2], there had

been no attempts at designing LD mappers for systems like these. Furthermore, techniques from [4]

and [18] cannot be modified and applied to these constellations due to the asymmetric nature of the

M -APSK constellations. Since no LD mapper designs exist outside the GA produced by [2], pseudo

gray mappers were selected for µ1 and the proposed GA was used to create the secondary mapper,

µDavis
GA,11+5APSK . The GA in [2] had converged to a value of ω(µ1, µ

Patel
GA,11+5APSK) = 0.6766, while

the mapper design produced by the proposed GA converged to a value of ω
(
µ1, µ

Davis
GA,16APSK

)
=

0.7171. Chen et al [19] had only obtained a local minima optimized mapper design for the 11+5APSK

constellation (Maximum Euclidean Distance = 0.5975), while Patel et al [2] had produced a local

optimal mapper design. Hence, a close-to global optimal mapper design has been reached for the

11+5APSK constellation. Thus, the objective of producing a mapper design for the 11+5APSK with

a higher value of LD has been achieved.

Table B.3 summarizes the mapper designs produced (presented in polar co-ordinates). The analytical

results were validated by a tight fit with the Monte Carlo simulations at high SNR values From Fig.

B.10, at a BER of 10−6, again only a small gain of ≈ 0.5dB has been observed. Above the SNR

value of 8dB, the performance of the proposed 11+5APSK system extends away from the existing

11+5APSK system, thus making the proposed system more efficient.
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8. RESULTS AND DISCUSSION

Table B.3: Mapper design comparisons for 11+5APSK system

11+5APSK Mapper Comparison

RADIUS PHASE Mapper 1 Mapper 2 [2] Proposed Mapper

Design

0.5501 0.000 10 7 5

1.2566 13 4 8

2.5133 15 11 13

3.7699 6 0 11

5.0265 8 1 4

1.1476 0.0000 7 13 3

0.5712 3 12 14

1.1424 5 8 12

1.7136 4 2 0

2.28487 11 9 10

2.85607 0 14 1

3.4272 9 3 15

3.9984 14 6 6

4.5696 1 10 2

5.1408 12 5 7

5.7120 2 15 9
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Fig. B.10: BER Curve of the 11+5APSK system - Genetic Algorithm in [2] and Proposed Genetic Algorithm
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8.4 Asymmetric 16APSK

The next system tested on the proposed GA is the asymmetric 16APSK constellation proposed

by [19]. Again, a pseudo gray mapper was used as µ1 and the proposed GA was used to design

µDavis
GA,AS16APSK . Table B.4 summarises the new mapper designs produced presented in polar

co-ordinates). From the fitness equation in (B.7), we see that the GA in [2] had converged to a fitness

of ω
(
µ1, µ

Patel
GA,AS16APSK

)
= 0.0981. However, the proposed GA had converged to a fitness value of

ω
(
µ1, µ

Davis
GA,AS16APSK

)
= 0.3008, hence achieving higher values of LD, and producing a mapper

design that is close-to a global optimum solution. The analytical results were validated by a tight fit

with the Monte Carlo simulations at high SNR values. At a BER of 10−3, we see from the BER curve

illustrated in Fig. B.11 that the proposed GA showed a diversity gain of ≈ 4dB over existing GA

mapper designs. As seen from [2], the GA had reached pre-mature convergence, hence there was still

a lot of room for even higher fitness values and subsequently higher values of LD being achieved.

Table B.4: Mapper design comparisons for Asymmetric 16APSK system

Asymmetric 16APSK Mapper Comparison

RADIUS PHASE Mapper 1 Mapper 2 [2] Proposed Mapper

Design

0.9593 4.7453 1 10 14

3.1109 5 5 10

1.5490 9 14 5

0.4687 13 3 12

1.000 5.0872 0 4 3

4.3400 2 13 7

3.7447 3 1 1

3.4121 4 11 11

2.7071 6 8 15

2.2326 7 6 6

1.8925 8 2 2

1.2567 10 0 9

1.0438 11 7 13

0.7340 12 9 4

0.2205 14 15 0

0.0699 15 12 8
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Fig. B.11: BER Curve of the Asymmetric 16APSK system - Genetic Algorithm in [2] and Proposed Genetic Algorithm

8.5 Single Symmetry 16APSK

The single symmetry 16APSK constellation is quite peculiar, having a horizontal axis of symmetry,

and was proposed by [19]. Furthermore, from the work done by [19], they show that the single

symmetry 16APSK constellation is more optimal than the Asymmetric 16APSK constellation.

Again, a pseudo gray mapper was used as µ1 and the proposed GA was used to design

µDavis
GA,AS16APSK . Table B.5 summarises the new mapper designs produced presented in polar

co-ordinates). From the fitness equation in (B.7), we see that the GA in [2] had converged to a fitness

of ω
(
µ1, µ

Patel
GA,AS16APSK

)
= 0.4020. Again, the proposed GA had converged to a fitness value of

ω
(
µ1, µ

Davis
GA,AS16APSK

)
= 0.4053, which achieved a higher value of Labelling Diversity. This also

indicates that a close-to global optimum solution has been achieved. The analytical results were

validated by a tight fit with the Monte Carlo simulations at high SNR values. The BER curve is

illustrated in Fig. B.12. At the BER of 10−5, the proposed GA produced a mapper design that

improved the systems performance by ≈ 2dB.
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9. PERFORMANCE OF THE GENETIC ALGORITHM

Table B.5: Mapper design comparisons for Single Symmetry 16APSK system

Single Symmetry 16APSK Mapper Comparison

RADIUS PHASE Mapper 1 Mapper 2 [2] Proposed Mapper

Design

0.9627 2.3592 1 4 4

1.2107 5 6 10

−2.3592 9 2 1

−1.2107 13 15 15

1.000 2.5650 0 11 8

2.0128 2 14 6

1.7317 3 1 13

1.4188 4 9 3

0.8849 6 12 12

0.5372 7 3 2

−2.5650 8 13 9

−2.0128 10 8 7

−1.7317 11 7 0

−1.4188 12 0 14

−0.8849 14 5 5

−0.5372 15 10 11
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Fig. B.12: BER Curve of the Single Symmetry 16APSK system - Genetic Algorithm in [2] and Proposed Genetic Algorithm

9 Performance of the Genetic Algorithm
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9.1 Computational Complexity Analysis

From [2, 3], the base GA consisted of four functions, namely fitness function, crossover operator,

mutation operator and evaluation of chromosomes for the next generation. [3] extended the work done

in [2] by performing a computational complexity analysis on the GA from [2]. All common functions

from the GA in [2] fitness function, mutation and evaluation of chromosomes have been applied

to the proposed GA with the exception of the crossover function. Hence, all existing complexities

from [3] are used. All complexities are analysed in terms of the modulation order, M . Authors note

that the proposed GA will achieve convergence faster than the previous GA because it transverses a

much larger search space while producing mapper designs of equal or improved LD.

The common function complexities have been extracted from [3] and are given as:

SFitness = (Pt + 1)2
(
M2 −M

)
(B.13)

SMutation = Pm

(
(Pt + 1)2 − Pt

)
(B.14)

SEval = (Pt + 1)2
(
M2 −M

)
(B.15)

Where Pt is the initial population size, Pm is the mutation rate and M is the order of modulation

Consider two parent chromosomes, P1 and P2 that undergo crossover using the Davis Ordered

Crossover technique and produce two offspring chromosomes C1 and C2 respectively. Two random

crossover points are created in both parent chromosomes, creating a segment. The segment from the

parent chromosome P1 is copied onto offspring chromosome C1 and the segment from parent

chromosome P2 is copied onto offspring chromosome C2. In order to generate the first offspring

chromosome, copy all of the unused genes from P2 into C1. Hence, C1 is produced. C2 is generated

similarly. As stated in section 6.3, the Davis ordered crossover technique in this implementation was

a brute force approach needing computations for all possible permutations and combinations of

offspring chromosomes. The number of permutations requires computations on all possible

arrangements of each offspring chromosome of size M . Hence, this requires M.M ! number of

computations. Since all possible combinations of parent chromosomes produce two offspring

chromosomes and each crossover requires two parent chromosomes, the total computational

complexity of the Davis Ordered Crossover for this implementation is given by

SOrderedCrossover = 2MM !
(
(Pt + 1)2 − Pt

)
(B.16)

Where Pt is the initial population size and M is the order of modulation

Hence, adding up all the complexities gives the total computational complexity of the GA as

SGA = Sfitness + SMutation + SEval + SOrderedCrossover (B.17)
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9. PERFORMANCE OF THE GENETIC ALGORITHM

SGA = (Pt + 1)2
(
M2 −M

)
+Pm

(
(Pt + 1)2 − Pt

)
+(Pt + 1)2

(
M2 −M

)
+2MM !

(
(Pt + 1)2 − Pt

)
(B.18)

Converting expression (B.18) to big-O notation, we set Pt as the largest population size used, hence

Pt = 100 and the average mutation rate Pm = 5% which further reduces the computational

complexity to

SGA = 20402M2 − 20402M + 505.05 + 20202M.M ! (B.19)

Hence, the final big-O notation expression considering the worst-case scenario of all variables is stated

as

O (enhanced−GA) = O (M !) (B.20)

9.2 Computational Complexity Comparison

The general case is that the GA in [2] will always utilize less computation resources
(
O
(
M2
))

and

take less time (nmax ≪ M5) to produce a solution than other algorithmic/ exhaustive approaches

[2, 3]. However, the proposed GA has a much larger computational complexity (O (M !)) compared

to the GA in [2]. This is attributed to the large search space that the GA transverses through to

further improve on the LD of mapper designs produced. Even though the enhanced-GA has a larger

computational complexity, by traversing through a larger search space, improved mapper designs are

produced while taking significantly less time to reach local or global optimum solution.

9.3 Statistical Performance Comparison of the Genetic Algoirthm

Performance studies on algorithms are based on a number of factors that include i) Running Time

The time the algorithm takes to complete one cycle or the time the algorithm takes to completion, ii)

Convergence Time number of generations taken for the algorithm to converge, iii) Variables used in

the algorithm and iv) Space Complexity, denoted by (B.20)

Firstly, we need to analyse the number of parameters needed and the role that they take on when

applied to each system. In the case of the GA in [2], three variables namely; population size, number

of swaps κ) and mutation rate Pm) is needed, while the proposed system in this chapter only requires

two variables namely; population size and mutation rate. The authors note that relatively high mutation

rates were used in [2], while lower mutation rates were used in the proposed system in this chapter.

From [2], it can be shown that the most important parameter is the Number of Swaps κ) while in

the proposed algorithm, the population size had the most influence on the output. The next aspect to

be analysed is the changes made to the base system. When comparing the two algorithms, the only
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9. PERFORMANCE OF THE GENETIC ALGORITHM

change is a new crossover operator OX1) has been applied to the system. In terms of time complexity,

the OX1 technique is said to be the fastest crossover algorithm as it can process more generations over

a given period of time than others [1]. Fig. B.13 illustrates the time comparison for both algorithms

to complete one generation on the 16QAM system. From Fig. B.13, we see that the algorithm in [2]

takes less time to complete a single generation as compared to the OX1 technique. The reason for

this is that less computations are done in the algorithm from [2] whereas the OX1 operator has a more

complex computation and computes much more due to the number of chromosomes after mutation.

But the overall number of generations to convergence using the OX1 operator is decreased immensely

as seen in Fig. B.13.

Fig. B.13: Execution time for a single generation for Patel et al [2] Genetic Algorithm and the Proposed Genetic Algorithm

Fig. B.14 shows the fitness comparison between the proposed GA in this chapter and the GA found

in [2]. The proposed GA performs fairly consistently, beating the mapper designs produced by [2]

across all constellations. This shows a step forward in designing close-to-global optimal solutions for

mapper designs and is in line with the expectations for the GA.
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9. PERFORMANCE OF THE GENETIC ALGORITHM

Fig. B.14: Solution Comparison of Patel’s GA [2] and the Proposed GA

In terms of convergence time as illustrated in Fig. B.15 the proposed algorithm has shown a

decrease in time complexity, as well as a very small convergence time. Highlighted in Fig. B.15, the

convergence time of the GA is an inverse logarithm. This suggests that even for larger constellations,

the algorithm will have a lower running time than that of the GA in [2].

Fig. B.15: Convergence Time Comparison between the Proposed Genetic Algorithm and Patel et al [2] Genetic Algorithm

A study using various mutation rates have been applied to determine the effects on fitness values

produced by the GA. From the parameters settings in [2], it was noted that a relatively high mutation

rate (Pm = 10%) was used. This in some respect contradicts the principles of evolution [20].
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Therefore, when designing the GA in this chapter, the authors aimed for using lower mutation rates,

as seen in section 6, Results and Discussion.

Using the equation in (B.18), we see that by using smaller mutation rates, fewer computations are

needed, and thus the overall complexity of the GA is decreased. This is best shown by example. First

we consider Patel et al [2] algorithm, with population size of Pt = 8 and a mutation rate Pm = 10%.

[2] states that after crossover, there will be P 2
t number of computations before mutation. At a mutation

rate of Pm = 10%, 6 more computations will be needed to carry out the mutation. This equates to a

total of P 2
t +6 number of computations at any given generation after mutation. Consider the proposed

system, with the same population size of Pt = 8, a lower mutation rate of Pm = 1% and the same

architecture of the proposed system in [2] that is after crossover, there will be (Pt + 1)2 number

of computations before mutation, without any additional computations. By using a mutation rate of

Pm < 10%, we ensure that mutation does not occur in some generations, hence decreasing overall

number of computations - hence, complexity - of the system. This can be attributed to lower number

of offspring chromosomes being mutated. In Fig. B.16, the mutation rates used compared two lower

mutation rates (Pm = 5%, 7% and 9%) and compared the fitness scores at convergence to a higher

mutation rate (Pm = 10%, 40%, 60% and 90%). These values were chosen as they exhibited the best

fitness performance of the GA after testing a range of mutation rate values (Pm = 1% − 90%). The

11+5APSK system produced the best results when the mutation rate was set to Pm = 7%, while the

Asymmetric 16APSK system all produced matching fitness values. In the case of the Single Symmetry

16APSK system although the results cannot be seen visually in the figure due to very small changes

in values the mutation rate at Pm = 7% produced the best results.

Fig. B.16: Fitness Values vs Different Mutation Rates for the Proposed Genetic Algorithm

71



i
i

“output” — 2021/10/16 — 15:46 — page 72 — #89 i
i

i
i

i
i

10. CONCLUSION

10 Conclusion

Recently, AI techniques were applied to the LD problem in the form of a GA. By utilizing a GA,

designing LD mappers for constellations M > 64 which were practically impossible to produce

using exhaustive search or symmetry-based heuristics could be produced. From previous research, a

local optima was achieved this is proven by the GAs output of the asymmetric 16APSK constellation

where the fitness of the output mapper design was relatively low as compared to the others. This

prompted studies into biological GA operators that could further produce mapper designs with higher

values of LD. Biologically inspired techniques have been widely applied to GA problems but were

yet to be applied to the LD Problem. Analysis of biological crossover techniques on the TSP hinted

at the possibility of achieving higher values of LD for mapper designs. Finally, the most promising

crossover technique the Davis ordered crossover (OX1) was chosen to further improve on the LD

mapper designs produced. The proposed GA was tested on 16-ary constellations, namely; 16QAM,

16PSK, 16APSK and three 16APSK constellations that do no exhibit diagonal symmetry. In the case

of 16QAM and 16PSK, an optimal mapper design have already been produced in literature, and no

further improvements were made by the GA. In the case of the 16APSK and 11+5APSK

constellations, both have achieved higher values of LD. The 16APSK had achieved a LD of

ω(µ1, µ
Davis
(GA,16APSK)) = 0.5427, while the previous GA produced a mapper design with a LD of

ω(µ1, µ
Patel
(GA,16APSK)) = 0.3685, while the 11+5APSK achieved a LD value of

ω(µ1, µ
Davis
(GA,11+5APSK)) = 0.7171, thereby improving the previous LD value of

ω(µ1, µ
Patel
(GA,11+5APSK)) = 0.6766. However, for both these constellations, only a small gain of

≈ 0.5dB had been observed on the BER curves. In the case of Asymmetric 16APSK, the mapper

design was improved by a magnitude of ≈ 3dB (ω(µ1, µ
Davis
(GA,AS16APSK)) = 0.3008), while showing

gains of ≈ 4dB. This large gain is attributed to the pre-mature convergence

(ω(µ1, µ
Patel
(GA,AS16APSK)) = 0.0981) in the previous GA. In the case of the Single Symmetry

16APSK, a very small improvement was made by the GA ω(µ1, µ
Patel
(GA,SS16APSK)) = 0.4020

compared to ω(µ1, µ
Davis
(GA,SS16APSK)) = 0.4053 -, but a ≈ 2dB gain was observed. Analysis on the

complexity of the proposed GA showed that much more computational resources - O(M !) - are

needed to execute the algorithm, but the time taken to produce mapper designs of equal or improved

LD was significantly less then the previous GA. Furthermore, the proposed GA was seen to have a

more guided search with lower mutation rates, while the previous GA needed higher rates of

mutation making the system purely random.
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10. CONCLUSION

Future works in this area include utilizing a better crossover method, such as the ring crossover,

better mutation operators, better initialization operators for initial populations and a Meta-Parameter

tuning model for optimized parameters for the GA for even faster convergence and more improved

mapper designs.
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1. CONCLUSION

1 Conclusion

In this dissertation, the Genetic Algorithm(GA) mapper design technique has been applied to high

density mappers and enhanced by introducing two-parent crossover to improve genetic diversity. In

addition, each GA is analysed and studied in terms of its computational complexity. Table B.1 provides

a summary of the key results obtained from the research presented. The main research contributions

and outcomes in this dissertation can be summarized as follows

Table B.1: Summary of Key Results

Chapter Results

Chapter II.A
• Application of the GA high density M -ary QAM, PSK and APSK

Constellations.

• For all M -QAM constellations, simulation results obtained show that the

GA was able to match but not improve upon existing heuristic designs.

• Simulation results have shown that the GA produced Labelling Diversity

mapper designs that illustrated diversity gains between ≈ 3dB to ≈ 9dB

over existing heuristic designs for M -PSK and M -APSK constellations.

• The computational complexity of producing LD mappers from the GA

increases as the modulation order M increases and is O(M2)

Chapter II.B
• Introduce two-parent crossover techniques to the GA to achieve higher

values of LD.

• For all 16-ary constellations tested, the proposed enhanced-GA

produced matching or improved Labelling Diversity values.

• The computational complexity of the enhanced-GA was found to be

significantly more complex than the corresponding GIA and is O(M !).

• The enhanced-GA converged to a local or global optimum in under 15

iterations for all constellations tested

• Larger population sizes and reduced mutation rates allowed for the

search space to be explored much faster.
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Paper A extends the application of the GA to high-density mappers for 2 × NR USTLD systems.

The GA had produced matching LD or fitness values for high-density M -QAM mappers, while the

GA produced higher values of LD or fitness for M -PSK, DVB s2X M -APSK and Asymmetric M -

APSK mappers. Monte Carlo simulation results have shown that the GA produced mapper designs that

illustrated diversity gains of ≈ 4dB to ≈ 9dB respectively over heuristic mapper designs. In addition,

the GAs computational complexity was studied and compared to exhaustive search and algorithmic

approaches. Results demonstrated that the GA is significantly less computationally complex (O(M2))

than exhaustive search approaches (O(M !) and O(M5)). Furthermore, the GA was able to produce

mapper designs (close-to)-equivalent in LD to the exhaustive search approaches.

Paper B proposed an enhancement to the genetic-inspired algorithm(GIA) by applying a biological

or two-parent crossover technique to achieve higher values of LD. The enhanced-GA was tested on

16-ary constellations only. Simulations show that the enhanced-GA produced mapper designs that

either matched or improved upon existing exhaustive, heuristic or GA mapper designs. Monte Carlo

simulation results demonstrated an improved error performance when compared to mapper designs

from the Genetic-Inspired Algorithm. Additionally, the computational complexity of the enhanced

GA (O(M !)) was proven to be significantly larger than the Genetic-Inspired Algorithm (O(M2)).

Finally, the enhanced GA was found to converge in less than 15 iterations for all instances of 16−ary

constellations, required mutation rates of PM ≤ 10% and due to large population sizes (Pt ≥ 10), the

search space is explored faster, which in turn produces mappers with higher values of LD.

In conclusion , the dissertation presented provides insight into further applying AI to optimize LD

mappers. Furthermore, by using AI, not only does it produce matching or improved mapper designs,

the computational resources and time taken to produce mapper designs irrespective of constellation

shape or size are reduced significantly. Hence, the aim of producing high density mapper designs as

well as enhancing the GA has been successfully fulfilled.

2 Future Research

The GAs presented in this dissertation can be improved and extended to other areas of AI and wireless

communications. The following areas have been identified as research areas of interest:

2.1 Davis Ordered Crossover for High Density Mappers

The enhanced-GA is one of the contributions of this research to literature. In this dissertation, the

enhanced-GA was applied to 16−ary constellations only. Motivated by achieving higher values of

LD, future research for the enhanced-GA should aim towards applying the enhanced-GA to higher
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order constellations (M > 16) to produce improved mapper designs.

2.2 Application of Neural Networks to Labelling Diversity

Keeping in light with AI, the design of a neural network(NN) to design LD mappers should be

investigated. NNs are able to learn and model non-linear and complex relationships, and therefore

will be the next big topic to investigate.

2.3 Application of Improved Crossover and Mutation Operators

Everyday, researchers are finding new and improved forms of biological diversity in nature. Taking

inspiration from these discoveries, new crossover and mutation techniques can be found and applied

to further improve the optimality of the GA. Furthermore, the application of already existing mutation

operators such as the shuffle mutation technique can be used jointly with diversified crossover methods

to introduce pure randomness and diversity, hence creating offspring that may provide optimality.

2.4 Meta-Parameter Optimization for Genetic Algorithms

Meta-Parameter optimization is a technique whereby an algorithm is trained over different sets of

parameters. This technique selects some of the best parameter sets for the algorithm. The advantage

of using meta-parameter optimization techniques has faster convergence times without pre-mature

convergence, and significantly less computational resources are need.

2.5 Application of the Genetic Algorithm Mapper design to NT × NR USTLD

Systems

As stated in [1], using the GA technique to design LD mappers for 3 × NR USTLD systems should

be investigated in future research. Hence, the GA should be applied to NT × NR USTLD systems

respectively. Furthermore, the GA should be used to design all NT mapper designs as it produces

close-to-optimal LD mappers.

2.6 Application of Optimized Mappers for NT ×NR USTLD and USTPLD Systems

Patel et al [2] proposed a direct extension to the USTLD system by introducing

polarization(USTPLD). Further research should include applying the mapper designs produced by

the GA for a 3×NR USTLD and USPTLD systems respectively.
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