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EXTENDED SUMMARY 

Ethiopia is one of the most food-insecure and famine affected countries. This is mainly due to 

the negative effect of climate related risks, in particular high rainfall variability and severe 

droughts. Anticipated climate change is expected to aggravate some of the existing challenges 

and impose new risks beyond the range expected. Thus, it is important to have a wide range of 

adaptation strategies to overcome the impact of climate change which requires an in-depth 

analysis of climate change sensitivity assessments on crop production.  

Several climate change impact assessment methods have been developed to measure the 

impacts of climate change on crop production. Among these, the use of crop growth models 

together with climate models is one of the most applicable methods in agriculture to the impact 

of climate change on crops, to predict crop yield, and to support field management decisions.  

The simulation of the effect of climate change on crops is based on the downscaling 

method of General Circulation Models (GCMs) output to match the crop model. However, the 

climate model outputs, and crop model inputs are the major sources of uncertainty in the 

assessment of the impact of climate change on crop production. The Agricultural Model 

Intercomparison and Improvement Project (AgMIP) has proven useful for comparing 

consistency among models and quantifying uncertainty in model predictions. They have 

reinforced the benefit of multimodel approaches, to identify sources of uncertainty associated 

with model parameters and model structures.  

The model ensemble mean or median usually resulted as best predictors for crop yield 

under different climates and soils. There is therefore a growing need to use a multimodel 

ensemble approach to quantify model uncertainty to improve crop yield prediction for decision 

making. Therefore, this study aimed to calibrate three well-accepted deterministic crop models, 
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namely APSIM-maize, AquaCrop and DSSAT CERES-maize, to evaluate the performance of 

individual models and their multimodel ensemble for the tropical environment in Ethiopia. To 

address the objectives of the study, crop data such as date of flowering, date of maturity, canopy 

cover and grain yield were collected from experimental field at three different maize growing 

agro-ecologies namely Ambo, Bako and Melkassa in the 2017/2018 growing season. Soil data 

and daily precipitation, maximum and minimum air temperature data from 1995-2017 were used 

to calibrate and evaluate four widely grown maize hybrid varieties. The crop models were 

calibrated using measured data from the Bako and evaluated with independent datasets from the 

Ambo and Melkassa. 

 

The calibration and evaluation result revealed that, the APSIM-maize and DSSAT 

CERES-maize models accurately simulated flowering and maturity date with root mean square 

error (RMSE) values ranging from 1.73-4.09 and 1.66-5.36 days, respectively. The AquaCrop 

model accurately simulated maize canopy cover for all varieties with a RMSE value of less than 

10.8 % and a high (0.95) value for the index of agreement (d). The simulated grain yield agreed 

fairly well with the measured data with normalized RMSE values ranging from 13-19 %, 1-4 % 

and 1-17 % for APSIM, AquaCrop and DSSAT-maize models, respectively. The best 

performance was obtained when an ensemble of all models was considered. The ensemble mean 

reduced the normalized RMSE by 8 % while increasing the d value to more than 0.90. A 

multimodel approach improved the simulation of grain yield by reducing model uncertainty 

compared to the performance of the individual models. The approach could, therefore, provide 

more reliable predictions for maize varieties grown in diverse environments in the tropics. 
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Under- or over- estimations were observed for the simulated parameters by the individual models 

studied showing the need for further research to improve the robustness of the models for 

tropical environments. Under data scarce conditions, simpler models such as AquaCrop can be 

used to simulate maize yield with reasonable accuracy.  

The second objective of the study was to assess the impact of climate change on maize 

yield and to identify possible adaptation options. To achieve this objective, downscaled daily 

precipitation, maximum and minimum air temperature gridded data from seven well-known 

General Circulation Models (GCMs) were used to assess the impact of climate change. 

Although, there is no difference between 4.5 and 8.5 Representative Concentration Pathways 

(RCPs) until the year 2050; the study only used the 8.5 RCP to assess climate change impacts at 

three maize growing areas. Three crop models were also used to simulate the baseline (1995-

2017) and 2030s (2021-2050) maize yields. The result showed that monthly total precipitation 

for the Kiremt season (June to September) was projected to increase by up to 55 % (365 mm) for 

Ambo and 75 % (241 mm) for Bako respectively, whereas a significant decrease in monthly total 

precipitation was projected for Melkassa by 2030. The Belg season (March to May) total 

monthly precipitation was projected to decrease for all study sites. Interestingly, by 2030 the 

total monthly precipitation for the Bega season (October to February) is projected to increase for 

Melkassa particularly for November, December and January while the Bega season total monthly 

precipitation is projected to remain unchanged for Ambo and Bako sites.  

 

With respect to maximum air temperature, projections from the studied GCMs indicated 

that average monthly maximum air temperature in the 2030s could increase by 0.3-1.7 °C, 0.7-



xii 
 

2.2 °C and 0.8-1.8 °C for Ambo, Bako and Melkassa compared to the historical period (1995-

2017) under RCP 8.5 scenario in 2030. Similar increasing changes were projected for monthly 

average minimum air temperature by all models for all sites. The projected increase in monthly 

average minimum air temperature ranges from 0.6-1.7 °C for Ambo, 0.8-2.3 °C Bako and 0.6-2.7 

°C for Melkassa in the near future. The multimodel ensemble mean projected monthly average 

maximum air temperature is expected to reach in the range of 24.0-29.7 °C for Ambo, 25.6-33.1 

°C Bako and 27.8-32.5 °C for Melkassa and the minimum monthly average air temperature 

would be 10.1-13.2 °C for Ambo, 13.2-16.5 °C Bako and 11.6-18.0 °C for Melkassa compared 

to the historical period.  

Climate change would reduce maize yield by an average of 4 % and 16 % for Ambo and 

Melkassa respectively with an increase by 2 % for Bako in 2030 if current maize cultivars were 

grown with the same crop management practices as the baseline under the future climate. At 

higher altitudes, early planting of maize cultivars between 15 May to 01 June would result in 

improved relative yields in the future climate. For Ambo, fertilizer levels between 23-150 kg ha-1 

would result in improved yields for all maize cultivars when combined with early planting. For a 

mid-altitude, planting after 15 May has either no or a negative effect on maize yield. Early 

planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided increased relative 

yields under the future climate. For Bako, delayed planting has a negative influence on maize 

production under the future climate (2030). For lower altitudes, late planting would have lower 

relative yields compared to early planting. Higher fertilizer levels (100-150 kg ha-1) would 

reduce yield reductions under the future climate, but this varied among maize cultivars studied. 

At Melkassa, planting the Jibat cultivar between 15-30 June at increased N levels may reduce 
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severe yield reduction of maize. Generally, future climate is expected to have a negative impact 

on maize yield and changes in crop management practice can alleviate the impacts on yield. 

The third objective of the study was to assess the drought risk in maize (Zea may L.) 

cultivation under the past and future climate change. To this end, historical and future drought 

characteristics were analysed using historically observed data from 1995-2017 and an ensemble 

of seven Global Climate Models (GCMs) in the Coupled Model Intercomparison Project 

(CMIP5) under 8.5 RCP. The widely used Standardized Precipitation Index (SPI) and 

Standardized Precipitation Evapotranspiration Index (SPEI) were used to investigate drought 

characteristics. The results for Ambo indicated that increasing frequency of moderate to 

extremely severe drought with extended drought duration is expected to occur. The 6-month 

SPEI projected that Bako will experience agricultural droughts with greater severity and duration 

in the near future. For Melkassa, both SPI and SPEI projected increasing drought duration at 

short and long timescales. However, the 3- and 6-month SPEI predicted the shorter timescale to 

be more intensive than the longer timescale. The projected moderate to extremely severe drought 

for the study sites under future climate will negatively affect maize production. Therefore, 

developing drought resilient and improved maize varieties that are adaptable to high air 

temperatures and water-limited agro-ecologies is recommended to alleviate the anticipated 

impact of climate change. In addition, much attention needs to be directed on the substitution of 

maize cultivation with more drought tolerant crops, particularly for lower altitudes, is highly 

recommended in the near future. 
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ABSTRACT 

In Ethiopia climate change is expected to have a negative effect on crop production. Adaptation 

to the impact of climate change has a significant role in reducing the negative impacts on crop 

production. This study aimed to assess the impact of climate change on maize (Zea mays L.) and 

identify adaptation options using a set of crop and climate models in Ethiopian tropical 

environments. Field experimental data from three different maize growing agro-ecologies 

namely Ambo, Bako and Melkassa in the 2017/2018 growing season, soil data and daily 

precipitation, maximum and minimum air temperature data from 1995-2017 were used to 

calibrate and evaluate the APSIM-maize, AquaCrop and DSSAT CERES-maize. Downscaled 

daily precipitation, maximum and minimum air temperature gridded data from seven well-known 

General Circulation Models (GCMs) under 8.5 Representative Concentration Pathway (RCP) for 

the year 2021-2050 were used to assess the impact of climate change for the maize growing 

areas. The ensemble of seven GCMs, were employed to investigate the future drought risk in 

maize (Zea may L.) cultivation using drought indices. The calibration and evaluation result 

showed that, the crop models accurately simulated flowering, maturity, canopy cover 

(AquaCrop) and grain yield against measured data. The best performance was obtained when an 

ensemble of all models was considered. The climate change impact assessment result indicated 

monthly total precipitation for the Kiremt season (June to September) was projected to increase 

for Ambo and Bako whereas a significant decrease in monthly total precipitation was projected 

for Melkassa by 2030. The Belg season (March to May) total monthly precipitation was 

projected to decrease for all study sites. By 2030, the Bega season (October to February) is 

projected to increase for Melkassa while the Bega season total monthly precipitation is projected 

to remain unchanged for Ambo and Bako sites. Both average monthly maximum and minimum 
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air temperature projected to increase for the study sites by 2030. Projection of climate change 

scenario showed that maize yield will decrease on average by 4 % and 16 % for Ambo and 

Melkassa respectively with an increase by 2 % for Bako in 2030. Future adaptation options 

indicates that for higher altitudes, early planting of maize cultivars combined with 23-150 kg ha-1 

nitrogen fertilizer levels would result in improved relative yields in the future climate. For a mid-

altitude, early planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided 

increased relative yields under the future climate. For lower altitudes, late planting would have 

lower relative yields compared to early planting. Higher fertilizer levels (100-150 kg ha-1) would 

reduce yield reductions under the future climate, but this varied among maize cultivars studied. 

The findings of this study highlight future climate are expected to have a negative impact on 

maize yield and changes in crop management practice can alleviate the impacts on yield. 

Drought risk analysis based on GCMs ensemble data indicated that an increase in the frequency 

of moderate to extremely severe drought in the future for the study sites. Therefore, this study 

recommended the development of drought resilient and improved maize varieties that are 

adaptable to high air temperatures and water-limited agro-ecologies for the study sites. The 

substitution of maize cultivation with more drought tolerant crops is highly recommended for the 

lower altitudes for the near future. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Rationale and justification for research  

Global climate variability and climate change caused by natural processes as well as 

anthropogenic factors are the major environmental issues that have affected the globe since the 

beginning of the 21st century (IPCC, 2014). For example, anthropogenic greenhouse gases such 

as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have led to global warming and 

changes in climate conditions such as air temperature, precipitation, soil moisture, and sea levels 

(IPCC, 2021; Tian et al., 2015; Kweku et al., 2017). Similarly, climatic changes has had an 

adverse effect on ecological systems, agricultural practices, human welfare, and the economy 

(IPCC, 2007; Müller et al., 2017; Tol, 2018).  

Africa is considered the most vulnerable and excessively affected region in the world in 

terms of climate change due to widespread poverty, recurrent droughts, lowest adaptive capacity, 

and overdependence on rain-fed agriculture (IPCC, 1998; De Souza et al., 2015; Hoogendoorn 

and Fitchett, 2018).  

Ethiopia is one of the largest sub-Saharan Africa countries both in terms of its land area 

of 1.127 million square kilometers (CSA, 2014) and human population of more than 110 million 

(Degu, 2019). Agriculture in Ethiopia is the basis of the economy, contributing 35.8 % of the 

GDP and 70 % of the population are employed in this sector (Degu, 2019). The average share of 

crop production in the total agricultural value is estimated to be about 60 % (CSA, 2014).  

Agriculture in Ethiopia is mainly dependent on rainfall and the World Bank (2010) has 

ranked Ethiopia as one of the most vulnerable countries in the world to the adverse effects of 
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climate change. This vulnerability is mainly due to its high dependence on rain-fed agriculture 

and low adaptive capacity (World Bank, 2010; EPCC, 2015). Due to the erratic nature of rainfall 

coupled with repeated droughts and low level of experience to adapt to climate change impacts, 

Ethiopia experienced a significant loss of crops and the population has been exposed to severe 

food insecurity including famine (Conway and Schipper, 2011). Furthermore, the fourth 

assessment report of the Intergovernmental Panel on Climate Change (IPCC) indicated that the 

tropics of Africa are expected to experience a significant change in the frequency and intensity of 

droughts in the mid to late years of the 21st century (IPCC, 2007). This is a serious concern for 

many developing countries including Ethiopia. Climate change is an additional burden to the 

already existing environmental challenges (Tesfaye et al., 2015). According to Mera (2018), the 

most recent drought that occurred in 2015 negatively affected the seasonal rainfall and resulted 

in widespread failure of seasonal crops, production of pasture and death of animals, and 

widespread hunger among the affected population. The aggravating impact of climate change, on 

the frequency and distribution of seasonal rainfall patterns in Ethiopia, is expected to change in 

the future (Souverijns et al., 2016). However, the impact of climate change on the productivity of 

major crops in Ethiopia varies with crop type, location, and future time span (Tesfaye et al., 

2015). 

Maize (Zea mays L.) is one of the major cereal food crops in Ethiopia, in terms of 

production (CSA, 2014). Maize is a popular crop because of its high value as a food crop as well 

as the growing demand for the stover as animal fodder and that it is a source of fuel for rural 

families. Approximately 88% of maize produced in Ethiopia is consumed as food, both as green 

and dry grain (Abate et al., 2015). Maize is grown under diverse agro-ecological conditions 

typically under rainfed production. The maize cultivating areas in Ethiopia are broadly classified 
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into four ecological zones such as high altitude moist (1800-2400 m), mid-altitude moist (1000-

1800 m), low altitude moist (below 1000 m) and moisture stressed (500-1800 m) (Twumasi-

Afriyie et al., 2002). Due to the wide adaptability of maize in Ethiopia and the potential to 

produce more calories and food per area of land, maize is considered to be part of the national 

food security strategy under the government-led intensive agricultural extension program (Abate 

et al., 2015). However, maize productivity remains far below the potential due to various 

constraints caused by climate change induced problems such as drought, weeds, pests and 

diseases (Ertiro et al., 2017). Climate change impact assessment research using crop models 

together with climate models provide an option to address some of these constraints and increase 

maize production under a changed climate in Ethiopia (Araya et al., 2015).  

Crop models are the primary tools available to assess climate change risks to crop 

productivity and provide a platform to describe cropping systems’ response to key climate 

drivers (Lobell and Asseng, 2017). In recent years, crop modelling has received increasing 

attention and has been used to assess the impact of climate change and to increase crop yield at 

global (White et al., 2011), regional (Abraha and Savage, 2006; Tesfaye et al., 2015; Mbangiwa 

et al., 2019) and national levels (Tesfaye et al., 2018; Babel et al., 2019). However, the 

credibility of these models largely depends on their calibration and evaluation with reliable field 

experimental data within target environments (Ahmed et al., 2016). Different crop models differ 

in the way they simulate the dynamic process, input variables used, parameter set and output 

(White et al., 2011). These significant differences among crop models create large uncertainties 

in the simulation result. This suggests the use of multimodel simulations instead of relying on a 

single-model result (Palosuo et al., 2011). The literature also widely indicates research directions 

linking crop and climate models together with climate change scenarios and crop variety trial 
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data for assessing the impact of future climate change on crop yield (Zhang et al., 2015; Xiao et 

al., 2020). According to Lapin and Melo (2004), there are four basic approaches that are used to 

create climate change scenarios in climate change impact studies: (i) analogue; (ii) weather 

generator; (iii) incremental and (iv) General Circulation Models (GCMs). GCMs are among the 

most advanced tools used for estimating future climate change scenarios in climate change 

studies (e.g., Kassie et al., 2015; Ahmadalipour et al., 2017; Deb et al., 2018; Hernandez-Ochoa 

et al., 2018). According to White et al. (2011), GCMs are considered to be the most popular tool 

in creating climate change scenarios due to their wide range of coverage of the physical 

processes that characterizes the climate system. Also, they have been used to examine the impact 

of increased greenhouse gas concentrations on global climate (White et al., 2011). The IPCC 

(2013) fifth assessment report developed a new set of scenarios called “Representative 

Concentration Pathways (RCPs).” These are a set of greenhouse gas concentrations and 

emissions pathways designed to support research on the impacts of potential policy responses to 

climate change (Moss et al., 2010; Van Vuuren et al., 2011). The RCPs are used as inputs for 

climate model runs and as a basis for assessment of possible climate change impacts and 

adaptation options.  

Climate change impact assessments are subject to uncertainties related to greenhouse gas 

emissions (IPCC, 2007), downscaling techniques (Rötter et al., 2012) and crop models (Wang et 

al., 2017). Impact assessments should, therefore, be based on multimodel climate projections 

with crop model predictions, which are assumed to provide a more representative range of 

climate change impacts than single-model approaches (Meehl et al., 2007; Tao et al., 2009; 

Rosenzweig et al., 2013). The use of both crop and climate multimodel ensemble methods is an 

increasingly common approach for projecting the potential impacts of climate change (Challinor 
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et al., 2013). Ensembles allow for a probability distribution instead of a point prediction (Harris 

et al., 2010). Furthermore, studies indicate that ensemble averages or medians often better 

reproduce observations than even the best individual model (Palosuo et al., 2011; Martre et al., 

2015). It is therefore necessary to use multiple climate and crop models. Together with their 

ensemble approach in impact and adaptation studies, they improve the reliability of impact 

projections and provide an improved scientific basis for decision making in adaptation 

programmes.  

Crop models have been used under diverse climate and soil conditions to create an 

improved understanding of plant-soil interactions across different regions worldwide. Models 

such as the Agricultural Production Systems Simulator (APSIM) (hereafter referred as APSIM-

maize), FAO AquaCrop and the Decision Support System for Agrotechnology Transfer 

(DSSAT) (hereafter referred as DSSAT CERES-maize) are examples of models that have been 

used to simulate yield, development and growth of many different crops (Keating et al., 2003; 

Steduto et al., 2009; Hoogenboom et al., 2010 respectively). The APSIM-maize model is one of 

the various models embedded in APSIM. The model is considered one of the most appropriate 

models for use in tropical environments and crop management (Delve and Probert, 2004). The 

FAO AquaCrop model is a water-driven model that requires few climatic data as an input. The 

model is simple and robust (Steduto et al., 2009). Abi Saab et al. (2015) has shown that 

AquaCrop is comparable to other crop models. The DSSAT CERES-maize is one of the main 

crop simulation models of DSSAT. The model employs a well-developed process-oriented 

system which is capable of simulating crop yield, growth and development under different 

environments (Hoogenboom et al., 2010). 
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The use of multiple crop models and multiple climate models in impact and adaptation 

studies seems a logical approach needed to improve the reliability of impact projections and 

provide an improved scientific basis for decision making in adaptation planning. Previous studies 

on climate change in Ethiopia have often been limited to assess impacts on agricultural 

production without accounting for potential adaptation (Kassie et al., 2015). Only a few studies 

addressed both climate change impacts and adaptation in Ethiopia (e.g., Bryan et al., 2009; 

Kassie et al., 2015 and Tesfaye et al., 2018). Bryan et al. (2009) assessed the impact of climate 

change and adaptation measures based on household survey approaches. Kassie et al. (2015) 

applied two crop models in combination with three climate models to assess the potential 

impacts, adaptation options and uncertainties in climate change impact projections while Tesfaye 

et al. (2018) quantified climate change impacts and its adaptation by using scenarios in future 

climate with a hypothetical decrease in precipitation and increase in air temperatures using the 

DSSAT CERES-maize model. However, this study applied three crop models (APSIM-maize, 

AquaCrop and DSSAT CERES-maize) and seven climate models and their multimodel ensemble 

to assess the impact of climate change and identify possible adaptation options under different 

maize growing agro-ecologies (highland, mid and lowland). Furthermore, their study projected 

future drought on maize growing agro-ecologies using the climate models ensemble prediction. 

Several recent climate change impact assessment studies have based their conclusions on 

ensemble predictors (Asseng et al., 2015; Liu et al., 2016). Therefore, the current research 

extends the work of others and is therefore novel.  
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1.2 Research questions 

This study attempts to answer the following five major research questions:  

• are the APSIM-maize, AquaCrop and DSSAT CERES-maize deterministic crop models 

capable of simulating maize (Zea mays L.) growth and development for different agro-

ecologies, soils, and management practices for Ethiopian tropical environments?  

• can the multimodel ensemble outputs reduce uncertainties and improve maize yield 

simulation as compared to individual model outputs?  

• can climate models be integrated into crop models for climate change assessment and 

adaptation options? If so, can changes in planting date, choice of cultivars and nitrogen 

fertilizer improve maize yield under a changed climate?  

• are climate models capable of projecting drought risks induced by climate change? 

 

1.3 Aims and objectives 

The main aim of this research is to assess the impact of climate change on maize (Zea mays L.) 

yield and identify adaptation options using a set of crop and climate models in Ethiopian tropical 

environments. 

 

     The specific objectives include: 

• the calibration of APSIM-maize, AquaCrop and DSSAT CERES-maize models for 

improved maize varieties and evaluation of the performance of the models and their 

multimodel ensemble in simulating maize yield;  

• the investigation of the impact of future climate on maize yield using climate and crop 

models, and identify adaptation options; 
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• assessment of climate change induced drought risks using a climate model ensemble for 

maize growing areas under past and future scenarios. 

 

1.4 Outline of thesis structure 

The thesis is arranged into six chapters. Chapter 1 presents the background, justification, 

research questions and objectives of the study. This chapter is not structured as a manuscript and 

will not be sent for publication. 

 Chapter 2 presents a review of the related literature. This chapter presents a critical 

review of literature on the concept of model uncertainties, type and source of uncertainties on 

climate change impact assessment studies. The review also includes the role of climate and crop 

models and their multimodel ensemble as a tool to quantify model uncertainties.  

Chapters 3, 4 and 5 present a series of related studies. These chapters are formatted as 

journal articles with an abstract, introduction, literature review, materials and methods, results, 

discussion, conclusions and references.  

Chapter 3 reports on the calibration of APSIM–maize, AquaCrop and DSSAT CERES–

maize models using four improved maize varieties and evaluation of the output of each model 

with the ensemble output of the three models. The advantage of the use of a multimodel 

ensemble approach over the use of single model is also investigated. 

Chapter 4 presents the impact of climate change on maize (Zea mays L.) production using 

seven GCMs and three crop models (APSIM–maize, AquaCrop and DSSAT CERES–maize). 

Precipitation and air temperature changes under future climate and their impact on maize yield 

are presented. Possible adaptation strategies for the impact of climate change on maize yield are 

also presented. 
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Chapter 5 presents the drought risk assessment for the maize growing study areas using 

an ensemble of seven GCMs for the past and future climate conditions. Different types of 

projected drought characteristics under climate change are also investigated. 

Chapter 6 restates the aims and objectives and presents conclusions and 

recommendations of the study. 
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Lead to Chapter 2 

In the previous chapter, the impact of climate change on agriculture was illustrated. The 

significance of incorporating climate and crop modelling with their multimodel ensemble in 

climate change assessment studies has been emphasized. However, climate change impact 

assessments are affected by uncertainties. Chapter 2, therefore, presents a literature review of 

climate and crop models and their multimodel ensemble and how the models quantify 

uncertainties in climate change impact studies. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Climate change is expected to increase the vulnerability of agricultural systems (Rosenzweig et 

al., 2014) by increasing air temperatures, changes in rainfall patterns, and increased frequency of 

extreme weather events such as drought in most parts of the world (IPCC, 2014).  

Increased atmospheric concentrations of greenhouse gases is the main cause of the 

ongoing climate change (IPCC, 2014). Climate change is stressing ecosystems of the earth, 

including water cycles, agricultural and natural products and sea levels (Simonovic, 2017). 

Moreover, the increase in greenhouse gas concentration overstates the extreme weather patterns, 

which in turn increases the magnitude and frequency of drought events (Das and Umamahesh, 

2017). According to Deb et al. (2015), the agricultural sector of any country is highly susceptible 

to climate variability as the physiological processes of plants are directly associated with 

meteorological inputs. Zhao et al. (2017) found that crop yield at a global scale is expected to be 

reduced (e.g., maize by 7.4%, wheat by 6.0%, rice by 3.2% and soybean by 3.1%) for each 1 ºC 

increase in the global mean air temperature. Since agricultural practices are climate-dependent 

and yields vary from year to year depending on climate variability, the agricultural sector is 

particularly exposed to changes in climate (Zhao et al., 2017). 

 

For climate change impact assessment, crop growth models have been widely used to evaluate 

crop responses (development, growth and yield) by combining future climate conditions, 

obtained from General or Regional Circulation Models (GCMs and RCMs respectively) (Long 
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and Ainsworth, 2005; Tao et al., 2008). However, uncertainty associated with the particular crop 

model, GCMs and scenarios should be ascertained while projecting for the future (Das et al., 

2018). In addition, uncertainties associated with such crop and climate models are rarely 

assessed (Li et al., 2015). Höllermann and Evers (2017) noted that uncertainty information 

should be considered for climate change scenarios for improved crop yield prediction and 

decision-making process. Therefore, it is also necessary to examine the uncertainty in the context 

of a rapidly changing climate for improved policy and adaptation measures. Numerous studies 

have adopted different techniques for example, multimodel ensemble mean (Kundzewicz et al., 

2018), Bayesian analysis (Das and Umamahesh, 2018) and sensitivity analysis (Mearns et al., 

1996) to assess the uncertainty of projections in the climate change studies. This uncertainty is 

related to multiple factors including climate model and greenhouse gas emission scenario 

selection, complexities in atmosphere modelling, downscaling methods, incomplete 

understanding of the processes included in climate models and uncertainties in crop models 

(Asseng, 2013; Challinor et al., 2013; Uusitalo et al., 2015; Mason-D’Croz et al., 2016; Amin et 

al., 2017). Quantification of the uncertainty is one of the main steps in identifying the adaptation 

measures for agricultural management in the face of climate change (Hosseinzadehtalaei et al., 

2017).  

 

The construction of model uncertainty is described, focusing on the research that is needed to 

characterize and reduce uncertainties at various points in the climate change impact assessment 

studies. 
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2.2 Definition of uncertainty  

Model uncertainty is usually related to deviations between the real world (observed) and its 

simplified representation (prediction) in models (Nilsen and Aven, 2003). Studies define model 

uncertainty in different ways. For example, Smithson (1989) defines uncertainty is related to the 

inaccurateness of humanly devised models and research tools to describe and represent the 

reality. Funtowicz and Ravetz (1990) describe uncertainty as a situation of inadequate 

information, which can be of inexactness, unreliability, and ignorance. The IPCC (2001) define 

uncertainty as an expression of the degree to which a value such as the future state of the climate 

system or its impact is unknown. In recent decades, uncertainty has played a prominent role in 

global environmental change research, including climate change science and climate change 

impact science. The Fifth Assessment Report of the IPCC (IPCC, 2014) defines uncertainty as a 

lack of complete information, as well as incomplete knowledge or disagreement on what is 

known and knowable. According to Kundzewicz et al. (2018), uncertainty is a lack of certainty 

about something, ranging from small doubts and minor imprecisions to a complete lack of 

definite knowledge. Walker et al. (2003) regard uncertainty as any departure from the 

unachievable ideal of complete determinism. 

 

2.3 Types of uncertainty 

According to Walker et al. (2003), model simulation uncertainty is classified into five types: (1) 

context uncertainty; (2) input uncertainty; (3) model structure uncertainty; (4) parameter 

uncertainty; and (5) modelling technical uncertainty. There are also a number of uncertainties in 

the case of crop simulation and climate change impact assessment when it applied to agricultural 

production. 
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2.3.1 Uncertainty of crop models 

Crop models play an important role in agricultural management decision-making processes and 

they are the main tool for investigating the effects of climate change on crops (IPCC, 2007). 

However, the application of these models generally requires input data related to management, 

soil, and weather conditions as well as crop growth parameters. Numerous studies indicate that 

input data and parameter values are a major source of uncertainties due to the inherent variability 

in natural processes, imperfection in data measurement and spatial and temporal variations 

observed in the inputs required (Yao et al., 2011; Bi et al., 2017). Since a clear methodology is 

lacking, crop model uncertainties are not well addressed in most climate change impact 

assessments on agriculture (Müller, 2011) and climate change impact projection on crop yield 

(Zhang et al., 2015). Therefore, studies suggest that model input data and crop parameters should 

represent a particular agro-ecology and experimental field where observations are undertaken 

(Marin et al., 2017). Quantification of uncertainties in crop growth models cannot improve 

climate change projection rather with crop simulation models. (Zhang et al., 2015). 

 

2.3.2 Uncertainty in climate projection using a climate model  

Reliable information on how regional and local climates have changed in the past, and may 

change in the future, is important for managing climate change risks. While Global Climate 

Models (GCMs) can provide large-scale future climate change projections (IPCC, 2013), 

regional dynamic downscaling for example using Coordinated Regional Climate Downscaling 

Experiment (CORDEX) data (Giorgi and Gutowski, 2015) and statistical downscaling methods 

(Luhunga et al., 2018; Pinto et al., 2018; Ali et al., 2019) can provide spatial and temporal detail 
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to better inform local adaptation to climate change. Nevertheless, one of the principal challenges 

facing the climate modelling community is the removal of systematic or structural errors in 

GCMs which is the bias-correction in a GCM that improve the models (Randall et al., 2007). 

Studies indicated that uncertainty in climate change predictions arise from three distinct sources. 

The first is the uncertainty arising from emission scenario of greenhouse gases such as 

uncertainty in the future radiative force. The second is model structure and parameter uncertainty 

in response to the same radiative force. The third is internal variability of the climate system, that 

is, the natural fluctuations that arise in the absence of any radiative forcing of the planet (Yao et 

al., 2011; Lovenduski et al., 2016). Moreover, the Special Report on the Emission Scenario, 

SRES (Nakicenovic et al., 2000), has reported different Greenhouse Gas (GHG) emission 

scenarios. Besides, there are many GCMs available for predicting climate scenarios, and 

different GCMs use a different representation of the climate system (Flato et al., 2014; 

Teklesadik et al., 2017). Therefore, different GCMs develop different climate projections for a 

single GHG emission scenario. Hence, uncertainties arise in climate projections from GCMs and 

GHG emission scenarios.  

 

2.3.3 Uncertainty in crop models coupled with climate models  

Process-based crop modelling can also be carried out at the scale of the climate model, provided 

that climate is believed to influence crop yield on that scale (Challinor et al., 2003). Climate and 

crop models are a particularly important tool for understanding climate change and its impacts 

(Challinor et al., 2009). Climate model output can be used with crop models either directly or 

through some post-processing. In the latter case, a weather generator can be used, and/or the 

change in climate simulated using a model applied to observed climate. The post-processing can 
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use a grid that is coarse relative to the spatial scale at which field-scale crop models typically 

operate. Climate change impact assessment studies offer a means of quantifying uncertainties 

related to climate risks and provide decision-support for more sustainable crop production. Crop 

model yield predictions based on multiple GCMs and emission scenarios (RCPs) provide more 

reliable climate change impact assessments (Asseng, 2013; Rosenzweig et al., 2013). These 

studies were used to discover and assess the uncertainty in yield predictions and evaluate model 

performance (White et al., 2011; Mason-D’Croz et al., 2016).  

 

Previous studies revealed that GCMs and RCPs are a major source of uncertainties in climate 

change impact quantification due to a limited capacity of GCMs to represent climate extremes 

and interannual climate variations. These uncertainties ultimately affect the crop growth process 

in crop models and lead to a false representation of climate change impacts on crop yield (Araya 

et al., 2015; Kassie et al., 2015). Moreover, future projections are based on alternative RCPs, 

each of them describing a potential future greenhouse gas concentration trajectory during the 

21st century (IPCC, 2014). However, the direct use of climate predictions from GCMs is 

problematic due to their coarse spatial resolution resulting in biases and uncertainties at a local 

scale (Knutti et al., 2010). GCMs that are used to project future climate scenarios provide 

gridded areal average simulations while the occurrence and intensity of extreme events strongly 

depend on local factors (Huang et al., 2016; Ragno et al., 2018). Therefore, climatic models 

should be bias-corrected for climate change impact studies for accurate and reliable climate 

change projections (Hawkins et al., 2013).  
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2.4 Methods to quantify uncertainty  

2.4.1 Model calibration  

Calibration is referred to as tuning in the climate modelling community, a process that has a 

significant influence on the projections made by each modelling centre and by the IPCC (IPCC, 

2013). Model calibration is the process of estimating model parameters by comparing model 

predictions (output) for a given set of assumed conditions with observed data for the same 

conditions (Moriasi et al., 2007). Despite modelers paying increasing attention to analyse and 

manage the different sources of uncertainty affecting model predictions, the impact of the 

uncertainty in the observations used for calibration has been ignored (Confalonieri et al., 2016).  

 

Model calibration is the most important application of uncertainty quantification method for 

estimating model inputs to give the model output. Models are widely used for the design, 

optimization, and assessment of climate systems, that approximately represent the reality in their 

predictions and show a level of discrepancy from experimental measurements (Bi et al., 2017). 

Model uncertainties due to experimental measurements and parameter values can be mitigated 

through the well-known process of model calibration, which improve the agreement between 

predictions and measurements (Doebling, 1996; Farajpour and Atamturktur, 2013). After 

successful calibration, the degree of uncertainty in a parameter estimated using a model would be 

lower than the uncertainty associated with the prior estimate before calibration, and uncertainty 

of outputs related to a model would be reduced (Krysanova et al., 2017, 2018). Reduction of 

uncertainty is measured by relevance of a parameter.  
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2.4.2 Multimodel ensemble approach  

Researchers have argued that the quantification of all aspects of model uncertainty requires 

multimodel ensembles. Many applications, including weather and climate prediction problems, 

have demonstrated that combining models outputs generally increases the skill, reliability and 

consistency of model predictions (Tebaldi and Knutti, 2007). Multimodel approaches can be 

used to estimate a broader uncertainty band so that it is more likely to include the unknown true 

predicted value (Rojas et al., 2010).  

 

A model averaging technique can be used to combine predictions of multiple models. The use of 

the multimodel ensemble mean or median to quantify the uncertainty is nowadays common 

practice, within the climate community (Meehl et al., 2007), as a tool to communicate and 

provide policymakers with information about the uncertainty of the current model (Kundzewicz 

et al., 2018). Researchers have suggested the use of crop and climate multimodel ensembles to 

improve and to give improved estimates of uncertainty (Asseng et al., 2015; Li et al., 2015; 

Pirttioja et al., 2015). Furthermore, to develop climate scenarios, multimodel ensembles of 

GCMs are used to define the uncertainty in projections resulting from structural differences in 

the GCMs, as well as uncertainties in variations of initial conditions or parameterizations 

(Tebaldi and Knutti, 2007; Knutti et al., 2010). 

 

Multiple models can provide more reliable decision support in climate change impact assessment 

and assessments of agricultural system vulnerability (Wilby et al., 2009; Asseng, 2013; 

Rosenzweig et al., 2013). A multimodel ensemble approach is widely used for climate impact 

assessment by global- and continental-scale modelling studies (Dankers et al., 2014; Gosling et 
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al., 2017) and follows the state of the art for ensembles of GCM and RCM projections used by 

the IPCC (IPCC, 2014). Christensen et al. (2010) suggested that a multimodel mean is the best 

approach for RCM projections, because no single model is best for all variables, seasons and 

regions. A study by Gudmundsson et al. (2012) also indicated that a performance of a 

multimodel ensemble (mean or median) should be presented as the output in climate change 

impact studies, despite the large variations in performance of individual models. 

 

2.4.3 Climate model downscaling 

In the climate change impact assessment analysis, there are three steps involved. The first step is 

the selection of climate models and emission scenarios. Multiple climate models and emission 

scenarios have been identified in the 4th assessment (AR4) and the 5th assessment (AR5) reports 

of the IPCC (Stocker et al. 2013). The second step comprises the bias-correction step to modify 

climate model data in order to increase the correlation between model and observed data. Many 

bias correction methods, ranging from simple scaling techniques to more sophisticated 

distribution mapping techniques, have been developed to correct biased RCM outputs 

(Teutschbein and Seibert, 2012). The scaling approach mainly includes linear or nonlinear 

approaches that adjust the climatic factors based on the differences between observed and RCM 

means in a linear or nonlinear formula, such as the linear scaling method and the power 

transformation method (Teutschbein and Seibert, 2012; Crochemore et al., 2016). 

 

Distribution mapping, involving distribution-based and distribution-free quantile-quantile 

mapping methods, matches the statistical distribution of RCM-simulated climatic factors to the 

distribution of observations. Distribution-based quantile-quantile mapping is based on the 
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assumption that climatic factors obey a certain distribution, such as Gamma and Gaussian (White 

and Toumi, 2013), while the distribution-free quantile-quantile mapping technique employs the 

empirical distribution (Chen et al., 2013). Selecting a suitable bias-correction method is 

important for providing reliable inputs for impact analysis of a region.   

 

Studies indicate that the quantile-quantile mapping technique removes the systematic bias in the 

GCM simulations, and it is assumed that biases relative to historical observations will be 

constant in the projection period (Thrasher et al., 2012; Ruiz-Ramos et al., 2016; Dosio and 

Fischer, 2018; Potter et al., 2020).  

 

The third step in the climate change impact assessment analysis is downscaling of the climate 

model projection. Downscaling is a method used to estimate high spatial resolution climate 

information from low spatial resolution GCM output (Clark et al., 2016). Downscaling 

techniques can be broadly classified as statistical and dynamical downscaling. In statistical 

downscaling, a data driven relationship is derived between the predictors (GCM simulated 

climate variable) and predictands (regional scale variable) (Santos et al., 2016). Dynamic 

downscaling makes use of RCMs that transform outputs from GCMs into finer spatial and 

temporal resolution outputs (Dosio et al., 2015; Scinocca et al., 2016). In contrast to statistical 

downscaling, dynamical downscaling capabilities have evolved considerably. However, 

characterizing uncertainty in dynamical downscaling remains challenging (Mearns et al., 2013; 

Done et al., 2014). For agricultural impacts, several studies suggested that dynamical 
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downscaling may improve projections, since the use of RCMs altered modelled crop yields by up 

to 20 % (Mearns et al., 1999, 2001; Adams et al., 2003; Iizumi and Nishimori, 2012). 

 

2.5 Conclusions 

Climate change impact assessment is affected by model output prediction uncertainties. 

Quantifying these uncertainties in agricultural research applications plays a prominent role in 

global environmental change research, including climate change science and climate change 

impact studies. There are many sources of uncertainty in projections for the future discussed in 

the literature. Using ensembles of climatic and crop models may allow for more robust results, 

for a given region. The larger the ensemble size of independent climate models considered, the 

more accurate the quantification of climate change uncertainty. Therefore, the application of 

such ensembles in climate change impact assessment is a worthwhile avenue for future research 

priority. 
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Lead to Chapter 3 

Chapter 2 presented a review of uncertainties in climate change impact assessment studies. 

Different techniques that have been used to quantify model prediction uncertainties were also 

reviewed in Chapter 2. In Chapter 3, calibration of the crop models employed using different 

maize varieties is the focus. Individual models and their multimodel ensembles are evaluated for 

their performance. Chapter 3 mainly argues that multimodel ensembles reduced model 

uncertainty and improved simulation output accuracy compared to the outputs of individual 

models. 
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3.1 Abstract 

Process-based crop models are popular tools to quantify the impact of changes due to climate, 

soil, crop management and genotype interaction. Accurate simulation of crop production for 

different agro-ecological conditions using an individual crop model remains a challenge due to 

different sources of uncertainty. Studies with ensembles of crop models can give valuable 

information about model accuracy and uncertainty, but such studies are limited in tropical 

environments including Ethiopia.  

 
1 Based on the paper: Feleke, H.G., M.J. Savage and K. Tesfaye, 2021. Calibration and validation of APSIM–Maize, 

DSSAT CERES–Maize and AquaCrop models for Ethiopian tropical environments. S. Afr. J. Plant Soil. 38:1, 36-

51, DOI: 10.1080/02571862.2020.1837271. 
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Therefore, the aim of this study was to compare the performance of the outputs of three 

individual crop models and their ensemble mean. Three different crop models, namely, APSIM-

maize, AquaCrop and DSSAT CERES-maize calibrated and evaluated them separately and in a 

multimodel ensemble approach using four maize varieties (BH546, BH661, Jibat and MH140) 

grown under rainfed conditions. Model input data were collected from field experiments 

conducted at three sites (Ambo, Bako and Melkassa) in the 2017/2018 crop growing season. The 

experiments were laid out in a randomized complete block design using a plot size of 10 m x 10 

m. The crop models were calibrated using measured data from the Bako and evaluated with 

independent datasets from the Ambo and Melkassa. The calibration parameters used in each of 

the three crop models studied enabled accurate simulation of flowering, maturity, canopy cover 

(AquaCrop) and grain yield against measured data. Evaluation of the models indicated that 

APSIM-maize and DSSAT CERES-maize accurately simulated days to flowering and maturity 

with root mean square error (RMSE) values ranging from 1.73 – 4.09 and 1.66 – 5.36 days, 

respectively. However, the DSSAT CERES-maize model over-estimated the maturity period of 

late maturing varieties at Ambo. The AquaCrop model accurately simulated maize canopy cover 

for all varieties studied with a RMSE of less than 10.8 % and a high (0.95) index of agreement 

(d). The simulated grain yield agreed fairly well with the measured data with normalized RMSE 

values ranging from 13 – 19 %, 1 – 4 % and 1 – 17 % for APSIM, AquaCrop and DSSAT-maize 

models, respectively. However, the APSIM model underestimated yield for all maize varieties at 

Ambo (RMSE of 1.14 t ha-1 and d value of 0.50). The best performance was obtained when an 

ensemble of all models was considered, which reduced the RMSE values for grain yield to 0.35 t 

ha-1 at Ambo and 0.41 t ha-1 at Melkassa. Furthermore, the ensemble mean reduced the 

normalized RMSE by 8 % while increasing the d value to above 0.90 for both evaluation sites. 
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On the other hand, the ensemble results were quite similar for grain yield simulated using the 

AquaCrop model. It is concluded that model ensembles reduced model uncertainty and improved 

simulation output accuracy compared to the outputs of individual models in tropical 

environments.  

 

Keywords: Ethiopia, model calibration, model evaluation, model inter-comparison, multimodel 

ensemble 

 

3.2 Introduction 

Process-based crop simulation models are useful tools to assess the impact of climate change. 

Many such models consider the interaction between plant-soil-atmosphere continuum and crop 

management versus their effects on crop productivity (Tian et al. 2018). In recent years, many 

models are being applied to study the impacts of climate change and developing adaptation 

strategies (MacRobert and Savage 1998; Abraha and Savage 2006; Araya et al. 2015; Deb et al. 

2015; Ewert et al. 2015; Kassie et al. 2015; Shrestha et al. 2016; Jones et al. 2017; Tesfaye et al. 

2018). Nevertheless, crop model applications devoted to impact assessment studies produce high 

uncertainties related to model structure and parameters (Palosuo et al. 2011) which have become 

a major concern recently in climate impact assessments (Li et al. 2015; Zhang et al. 2015).  

To increase the reliability of model output and to obtain improved estimates of 

uncertainty, the use of crop multimodel ensembles has been suggested (Asseng et al. 2015; Li et 

al. 2015; Pirttioja et al. 2015). Martre et al. (2015) argued that the improvement of models in an 

ensemble, using good quality field-based experimental data, could substantially intensify the 
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range of research questions to be addressed and increase the confidence in simulation results of 

applications under different climatic and management conditions. Furthermore, it has been 

empirically observed in many fields of study that ensemble averages or medians often result in 

improved observations than even the best individual model (Palosuo et al. 2011; Martre et al. 

2015).  

 

Moreover, the use of the multimodel ensemble mean or median to identify the uncertainty is 

nowadays good practice within the climate community as a tool to communicate and provide 

policymakers with information about the uncertainty of current models (Kundzewicz et al. 2018). 

However, the availability of a more detailed dataset with standard measurements, particularly for 

complex models, is a major concern when modelling compared to using simple models (Babel et 

al. 2019). Simple and user-friendly models have limitations due to a simplification of the 

processes involved. Thus, no single model can simulate satisfactorily all the outputs required for 

decision making in agricultural production. This leads to the recommendation of incorporating 

two or more crop models in such a way as to maximize their individual strengths and minimize 

their weaknesses (Kanda et al. 2018).  

 

As a fundamental structural difference, crop simulation models are categorized as carbon-driven, 

solar radiation-driven or water-driven models (Todorovic et al. 2009). Among the different crop 
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simulation models, three models namely, DSSAT-CERES-maize (radiation-driven), APSIM-

maize (radiation-driven) and AquaCrop (water-driven) models were used in this study.  

 

The Decision Support System for Agrotechnology Transfer (DSSAT) model has been adopted in 

a wide range of countries and continents, which indicates its strength in accommodating a wide 

range of climatic and agricultural conditions. For instance, Jalota and Vashish (2016) showed a 

decline in the future production of maize using DSSAT in India. Rezaei et al. (2015) in Iran used 

the DSSAT model to show maize crops could be substituted by pearl millet to counter yield 

reduction in the future, while other studies have shown a change of cultivar would be an option 

to sustain food production in the future (Ahmed et al. 2016; Lana et al. 2016). However, other 

studies show the model limitations indicating that the DSSAT model was not accurate in 

simulating water and nitrate dynamics and therefore needed to be combined with soil water and 

growth models for improved modelling of cropping systems (Kanda et al. 2018).  

 

The Agricultural Production System Simulator (APSIM) model allows for a detailed description 

of farming system, decision, and the simulation of associated soil water and salinity dynamics, 

together with the interactions between maize and other crops (Radanielson et al. 2018). Most 

modelling studies that use APSIM involve maize as the crop. For instance, Ngugi et al. (2015) 

adopted APSIM for a scenario analysis of the effect of soil and water conservation practices on 

grain yield of improved maize varieties in Kenya. The same study indicated that the algorithm in 

APSIM for simulating planting date improved yield by reducing crop failures (Ngugi et al. 
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2015). In addition, Bacon et al. (2016) showed the potential of APSIM in determining the effect 

of spatial plot distribution. However, the model underestimated soil nitrogen and soil organic 

component and underestimation or overestimation of nitrous oxide emissions (Brilli et al. 2017). 

 

The AquaCrop crop water productivity model was developed by the Food and Agriculture 

Organization of the United Nations (FAO) as a tool for irrigation engineers, extension agents, 

agricultural policy officers and researchers that can provide quick but accurate estimates of crop 

production and crop water productivity under various environmental and agronomic conditions 

(Hsiao et al. 2009; Raes et al. 2009; Steduto et al. 2009). The model separates evapotranspiration 

into crop transpiration and soil evaporation for canopy development, biomass formation and final 

yield. This makes the model applicable to different climates (Araya et al. 2010; Wellens et al. 

2013; Babel et al. 2019). However, a weakness of AquaCrop is that it is ineffective in accurately 

predicting crop yield due to its single point simulation and reduced consideration of spatial 

differences on crop, soil and field management (Steduto et al. 2009). 

 

Given the limitations of crop models, drawing a conclusion based on a single crop model can 

generate quite large biases (Asseng et al. 2013) whereas combining models increases the skill, 

reliability and consistency of model predictions, and make the combined result superior than a 

single model (Bellucci et al. 2015). 
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Obviously, a multimodel ensemble approach is mandatory and not an option in order to reduce 

uncertainties and to produce reliable output in crop model simulations (Maiorano et al. 2017). 

Therefore, the need to introduce a multimodel ensemble approach is crucial to farming systems, 

such as those in Ethiopia where maize is grown under diverse environmental and management  

conditions. The use of the multimodel ensemble could lead to a more reliable yield estimation 

and build confidence in using models for decision making in those diverse farming systems. 

 

Therefore, the aims of this study were: (i) to calibrate three crop simulation models for improved 

maize varieties grown under three different agro-ecologies in Ethiopia, and (ii) to evaluate the 

performance of individual models and their multimodel ensemble.  

 

3.3 Materials and methods 

3.3.1 Field experiments 

In Ethiopia, maize experiments were conducted under rainfed conditions at the three agricultural 

research centres namely Ambo (latitude 8° 57' N, longitude 38° 07' E and altitude 2225 m), Bako 

(latitude 9o 12' N, longitude 37o 04' E and altitude 1650 m), and Melkassa (latitude 8o 42' N, 

longitude 39o 32' E and altitude 1550 m) in the 2017/2018 main rain season (Figure 3.1).  
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Figure 3.1: Location of the three experimental sites in Ethiopia 

 

Data collected from Bako were used for model calibration while data from Ambo and Melkassa 

were used for model evaluation. Each experiment was arranged in four randomized complete 

blocks with three replications. The four maize cultivars were replicated three times at the three 

sites. Each plot consisted of 13 rows, each 10 m long, with a spacing of 250 mm between plants 

and 750 mm between rows. The experiments were well managed maintaining optimum 

conditions for plant growth and development including applying fertilizer, good management of 

weeds, diseases and pests as much as possible. Data were collected on crop growth and 
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development, crop management, soil, and weather conditions as required for calibrating the 

cultivar coefficients of new maize varieties. The procedures described in IBSNAT (1988) and 

Hoogenboom et al. (1999) were followed.  

 

The maize hybrid varieties used in all field experiments were BH546, BH661, Jibat and MH140. 

The highland variety Jibat was widely used at Ambo, midland varieties BH546, BH661 at Bako 

and MH140 lowland variety at Melkassa. These cultivars were chosen since they are widely 

grown by farmers in their respective areas and they have a high potential yield (Table 3.1).  

 

Table 3.1: Agro-climate adaptation, physiological maturity and yield potential of the 

selected maize varieties 

Variety  Year of Altitude  Rainfall  Days to  Yield (t ha-1) 

  release (m) (mm) maturity Research 

station  

Farmer's 

field 
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BH546  2013 1000-2000 1000-1500 145 8.5-11.5 6.5-7.5 

BH661  2011 1600-2200 1000-1500 160 9.5-12.0 6.5-8.5 

Jibat  2009 1800-2600 1000-1200 178 8.0-12.0 6.0-8.0 

MH140  2013 1500-1800 800-1200 140 8.5-9.5 6.5-7.5 

Source: Gissa (2016) 

  

 

3.3.2 Crop measurements 

The vegetative phase of the varieties was recorded by counting the leaves’ collar appearance at 

2-day intervals for all experiments. Flowering stage was recorded when silks were visible outside 

the husks on 50% of the plants of each plot. Physiological maturity was determined by regularly 

sampling two cobs per plot to assess the presence of black layers at the base of the grains. 

Above-ground biomass was measured by using destructive methods. Destructive methods were 

used five to six times every two weeks from a 0.75-m2 area in order to obtain above-ground 

biomass. Four plants from each plot were randomly selected with all plant part samples separated 

into stems, leaves, ears and husks, and dried at 70 oC to a constant weight and the final dry 

weight recorded (Soler et al. 2007). Before the destruction process, plant height of the four plants 

was measured at two weeks intervals in order to determine the average plant height. Maximum 

rooting depth was measured destructively every two weeks after planting (DAP). A trench was 

dug to give a vertical profile face 2.0-m deep in each plot, the centre point from four plants in the 
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row were identified and the heights were measured before the top parts were removed for dry 

matter analysis (Cairns et al. 2004).  

 

The leaf area index (LAI) of the plant was estimated by multiplying the plant population by the 

leaf area per plant as described in Kar et al. (2006). First, the leaf area from eighteen plants was 

measured manually using a ruler and counting of plant populations was done manually from a 

64-m2 area. The LAI was calculated using: 

 

          𝐿𝐴𝐼 = 0.75 × 𝜌 × (
∑ ∑ (𝐿𝑖𝑗 × 𝐵𝑖𝑗)𝑛

𝑖=1
𝑚
𝑖=1

𝑚
)                                                                          (3.1) 

 

where ρ is plant density (plants m-2), 𝑚 is the number of measured plants, Lij is leaf length (m), 

Bij is the maximum leaf width (m), 𝑛 is the number of leaves of the 𝑚𝑡ℎ plant, and the factor 0.75 

is leaf area factor (Maddonni et al. 2001; Jin et al. 2014). Maize canopy cover (CC) was 

determined based on Steduto et al. (2009): 

 

    𝐶𝐶 = 1 − 𝑒𝑥𝑝−0.65 × 𝐿𝐴𝐼                                                                                                                  (3.2) 

 

The final harvest was conducted manually for the nine central rows by harvesting 8 m of the row. 

The number of grains per ear was counted in 15 ears per treatment. Grain weight was obtained 

from the average of the weight of 8 groups of 100 grains and then corrected to 0 % of moisture 

and converted to 1-grain weight. Yield was corrected to 0 % of moisture. 
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3.3.3 Weather and soil data 

Daily solar radiation, maximum and minimum air temperature and precipitation for each location 

were obtained from the meteorological station nearest to the experimental site. Grass reference 

evapotranspiration (ETO) was calculated by the FAO Penman-Monteith method (Allen et al. 

1998; Allen et al. 2006; Savage 2018). 

 

The annual total rainfall, average maximum and minimum air temperatures of the growing 

season for the three sites are presented in Table 3.2. During the crop growth period, analysis of 

monthly rainfall data at the calibration site (Bako) indicates the rain starts in April and ends in 

November while for Ambo and Melkassa sites rain starts in May and ends in September (see 

Appendix 1 Supplementary materials Figure SM3a).  

 

The average maximum air temperature and average evapotranspiration decreases during the 

growing season while the average minimum air temperature shows small variation (see Figure 

SM3b). 

 

Initial soil samples taken at the 200-mm depth were analyzed to calculate total nitrogen, 

available phosphorous, texture, pH and organic carbon before planting at the three sites (Table 

3.2). Soil profile data for the three sites were obtained from reports by Liben et al. (2018) and 

Seyoum et al. (2018) and the International Maize and Wheat Improvement Centre (CIMMIT), 

Ethiopia (see Table SM3a).  
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Table 3.2: Weather, soil and field management data for experiments conducted at the three 

sites during the period 2017/2018 cropping season 

Station Ambo Bako Melkassa 

Weather (1995-2017) 
   

Annual total rainfall (mm) 969 1600 848 

Annual mean maximum temperature (oC) 25.3 29.1 29.3 

Annual mean minimum temperature (oC) 10.6 12.7 13.9 

Soil (0-200 mm) 
   

Texture Sandy clay 

loam 

Clay Loam 

Total N (%) 0.11 0.14 0.11 

Available P (ppm) 11 11 17 

Organic carbon (%) 1.83 1.87 1.32 

Organic matter (%) 3.16 3.22 2.28 

pH 7.03 4.77 6.96 

Crop management 
   

Planting (date) 15-Jun 20-Jun 29-Jun 
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Harvesting (date) 15-Jan 19-Dec 06-Dec 

Water management Rainfed Rainfed Rainfed 

 

3.3.4 Overview of models used 

Three crop models were selected based on their different structure, complexity, global 

importance, and mainly their prior performance for estimating maize growth and development 

around the world. 

 

3.3.4.1 APSIM-maize model  

Agricultural Production System Simulator (APSIM) is a farming system model that was 

developed by the Agricultural Production Systems Research Unit (APSRU) to assess risk 

management in agricultural production (Keating et al. 2003; Holzworth et al. 2014). Within 

APSIM there are a series of modules that are grouped together and categorized as crop, 

management, soil, and the environment. The sub-modules communicate with each other via the 

APSIM “engine”. The “engine” passes information between modules according to a standard 

protocol which allows modules to be applied or removed from the “engine” depending on the 

specifications for the simulation task. The simulation engine module in the APSIM simulates 

more than 20 different crops including maize (Wang et al. 2002; Keating et al. 2003). In 

addition, there are also general modules for pasture, weed and forest (Huth et al. 2001; Keating 

et al. 2003).  
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The model simulates the growth and development of crops, soil characteristics, and management 

options by considering the cropping system. APSIM modules require input data including 

climate data (rainfall, solar radiation, maximum and minimum air temperature), soil and crop 

data together with specification of management practices. APSIM was tested against field 

experimental data in a wide range of growing conditions (Keating et al. 2003). APSIM was 

recently used to improve maize production in relation to climate variability and change across 

many areas, for example, in Africa (Corbeels et al. 2018), Asia (Kafatos et al. 2017), China 

(Xiao et al. 2020), Ethiopia (Seyoum et al. 2018), and Europe (Parent et al. 2018). 

 

3.3.4.2 AquaCrop model 

AquaCrop is a FAO (Food and Agriculture Organization of the United Nations) crop model that 

simulates crop and soil response to water stress under various climatic, soil, crop and 

management conditions (Raes et al. 2009; Steduto et al. 2009). It is a water-driven growth model 

with a simple structure that requires limited inputs. The model has different modules: the soil 

module contains the water balance, that makes the AquaCrop model different from other models; 

it separates the soil evaporation from crop transpiration based on the Ritchie’s water balance 

approach (Ritchie 1972). The plant module encompasses crop growth, development, and yield 

processes. The atmosphere module component addresses thermal regime, rainfall, evaporative 

demand and CO2 concentration (Raes et al. 2009).  

 

AquaCrop uses different input files for simulation: daily climate file (minimum and maximum 

air temperature, rainfall, and short-grass reference evaporation (ETO) or climate data from which 

ETo can be calculated using daily data such as solar radiation, air temperature, air humidity, 
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sunshine and wind speed), crop file (time to emergence, maximum canopy cover, time to 

flowering, start of senescence, time to maturity), soil file (soil type, field capacity, permanent 

wilting point, saturation soil water content, saturated hydraulic conductivity), management file 

(field surface practices, application of mulches, effect of soil fertility), irrigation file (no 

irrigation, net irrigation, irrigation schedule), initial conditions (initial soil water content, soil 

salinity, canopy cover and rooting depth); all these inputs are user specific for the AquaCrop 

model. 

 

The AquaCrop model simulates the interaction between crop and soil through considering 

management practices. The model crop file contains different types of crop parameters: (i) 

conservative crop parameters and (ii) non-conservative parameters. Conservative crop 

parameters are crop specific parameters, which do not change materially with time, management, 

geograpical locations, climate and cultivars. Conservative crop parameters are not calibrated and 

are valid for all cultivars and in all environments, while the non-conservative crop parameters are 

cultivar-specific parameters that are affected by planting mode, field management, condition in 

the soil profile and climate. These parameters have to be provided by the end user of the model. 

 

Unlike many models, the AquaCrop model focuses on water, the use of ground canopy cover and 

water productivity values normalized for atmospheric evaporative demand and carbon dioxide 

concentration. The model is therefore applicable to diverse locations and seasons including 

future climate scenarios (Heng et al. 2009; Raes et al. 2009). AquaCrop has effectively simulated 

crop growth and yield for various crops including maize under different soils and environments, 

such as in Ethiopia (Araya et al. 2010), Europe (Yang et al. 2017), India (Babel et al. 2019), 
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Nigeria (Akumaga et al. 2017), South Africa (Mbangiwa et al. 2019), and Vietnam (Lee and 

Dang 2018). 

 

3.3.4.3 DSSAT CERES-maize model 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a crop simulation 

platform that homogenizes inputs and outputs to run several process-based models that share 

common modules (Jones 1986; Jones et al. 2003; Hoogenboom et al. 2012). The DSSAT 

research tool for crop production analysis incorporates crop-soil-weather models, and analysis 

tools, such as uncertainty and economic models. Supportive software such as graphics, weather 

data generator, GIS linkages and spatial variability analyses are used. DSSAT was designed to 

allow users to adapt and evaluate models for their own conditions, incorporate their own data in 

standard formats, provide insight into “what-if” questions about production, profitability and 

stability. Additionally, it assists researchers to understand responses and interactions that occur 

in the field. 

 

The DSSAT CERES-maize model requires detailed input data to simulate plant growth. These 

include field data, soil characteristics, daily weather data, cultivar characteristics and 

management data. The input dataset requirement makes the model more complex and useful in 

drawing attention to filling the gaps in understanding, and interpreting data from field 

experiments in different environments (Monteith 1996). 

 

The DSSAT CERES-maize model is widely applicable to assess the effects of climate change on 

crop production and it can also evaluate the best management options under changed climate 
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scenarios (Ventrella et al. 2012). The model has been successfully used worldwide over the last 

15 years in many different applications, including climate change impacts and adaptation, 

regional climate impact studies, diagnosing problems, such as yield gap analysis, precision 

agriculture and crop management, such as nitrogen fertilization, irrigation and planting or sowing 

date, prescribing spatially variable management, water and irrigation management, soil fertility 

management, yield prediction for crop management, climate variability and risk management, 

soil carbon sequestration, land use change analysis, early warning yield forecasting, biofuel 

production and risk insurance (Jones 1986; Ritchie 1998; Arora et al. 2007; Cabrera et al. 2007; 

Rinaldi and Ubaldo 2007; Xiong et al. 2008; Iqbal et al. 2011; Kassie et al. 2014; Araya et al. 

2015; Kassie et al. 2015; Tesfaye et al. 2018; Babel et al. 2019). 

 

3.3.5 Model calibration  

The APSIM-maize model, version 7.9, AquaCrop model, version 6.0, and DSSAT CERES-

maize model version 4.7 were calibrated using daily climate data, site-specific soil and 

management parameters, and field experimental data for the 2017/2018 cropping season, to 

develop cultivar specific parameters. Two independent datasets from three different sites (Ambo, 

Bako and Melkassa) were used. Bako is one of the major maize growing areas in Ethiopia. The 

collected dataset from this site was used for model calibration. The models were evaluated using 

independent datasets collected from the different environments (Battisti et al., 2017) such as 

Ambo and Melkassa sites for the 2017/2018 cropping season.  

 

For the APSIM-maize model calibration, the input data required daily weather data (maximum 

air temperature, minimum air temperature, solar radiation and rainfall), soil water parameters 
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(bulk density, air dry, drained upper limit, lower limit, saturated soil water content, root water 

extraction coefficient for maize), soil carbon parameters (organic carbon, microbial biomass pool 

- Fbiom, inert fraction - Finert), soil nitrogen parameters (soil pH, nitrate, ammonia) crop 

parameters (potential kernel number per plant, thermal time from emergence to the end of the 

juvenile stage, from the juvenile stage to floral initiation, from the flag leaf stage to flowering, 

flowering to start of grain filling, and from flowering to physiological maturity), management 

data (sowing date, plant density, date of harvest, fertilizer application).  

 

The daily weather data files were converted into the APSIM format (.met), and annual average 

air temperature (tav) and annual amplitude in mean monthly air temperature (amp) were 

computed and incorporated into the dataset. For calibration, the cultivar coefficients were 

obtained step-by-step, first for phenological development and then for grain developmental 

parameters.  

 

The existing cultivars, which had previously been parameterized for use in the APSIM-maize 

model (Keating et al. 2003) were used to simulate flowering and physiological maturity. Four 

hybrids whose phenology, days-to-flowering and days-to-physiological maturity matched well 

with the new hybrids selected for further calibration. The crop coefficients (Table SM3b) for 

simulated cultivars were modified using field-observed data (Table SM3c) to best represent the 

new cultivars and were re-named with the new cultivars. 

 

The calibration of the AquaCrop was through an iterative process in which the values of crop 

specific parameters were used as already specified in the model. The non-conservative 
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parameters (Table SM3d) were calibrated using the measured data of the maize experiment 

conducted during 2017/2018.  

 

Input data required for the AquaCrop model calibration included daily weather data (maximum 

air temperature, minimum air temperature, ETo), cultivar specific parameters (initial canopy 

cover, time to 90% seedling emergence, maximum canopy cover, time to start of flowering, 

duration of flowering, time to beginning of canopy senescence, time to physiological maturity, 

maximum rooting depth, time to reach maximum rooting depth, reference harvest index), soil 

parameters (soil texture, bulk density, field capacity, permanent wilting point, saturated 

hydraulic conductivity, soil water content at saturation). 

 

The initial canopy cover percentage (CCO) was estimated from sowing rate, seed mass, seed 

number and estimated germination rate using the available options in the model. The canopy 

cover is a key component in calculating crop transpiration, which is directly related to LAI and 

estimated using Equation (2). The canopy cover development was determined by the model after 

providing the six parameters: canopy growth coefficient (CGC), canopy decline coefficient 

(CDC), maximum canopy cover (CCx), days to emergence, days to senescence and days to 

maturity (Araya et al. 2010). The CGC governs the rate at which the canopy expands, and the 

CDC governs the rate at which the canopy dies off at the end of the growing season. These 

parameter values were determined using a repeated trial and error approach to fit the canopy 

cover to the measured LAI and CO2 concentration. In the calibration process, the simulated 

canopy cover was compared to the observed canopy cover on different days after planting of the 
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crop. The simulated yield was then compared with the observed yield for the four maize varieties 

at the three sites.  

 

The calibration of the DSSAT CERES-maize model was used for the cultivar specific 

observation. The cultivar-specific observations were used for genetic coefficient determination. 

The genetic coefficients required for the DSSAT CERES-maize model are presented in Table 

SM2. The input data for model calibration included weather data (daily maximum and minimum 

air temperature, daily rainfall, daily solar radiation), soil surface information (slope, colour, 

drainage, presence of stones in the surface), soil profile information as a function of depth (bulk 

density, drained upper limit, lower limit, total nitrogen, available phosphorus, soil organic 

matter, cation exchange capacity, soil pH, soil texture, level of root abundance across depth), 

crop data (date of emergence, date of flowering, date of physiological maturity, total number of 

leaves per plant, maximum LAI, total above ground biomass, yield), growth parameters (dry 

biomass of leaves, stem and grain), crop management data (specification of previous crop 

harvested, initial soil moisture content before planting, plant density, planting date, plant 

population per m2, date of harvest), fertilizer (type of fertilizer, date of application, amount 

applied, method of application) and type of land preparation (tillage) for the four varieties (Jibat, 

BH661, BH546 and MH140) at the three sites. Genetic coefficients were determined by using the 

Generalized Likelihood Uncertainty Estimation (GLUE), developed for estimating cultivar 

specific parameters for CERES maize (He et al. 2010). The GLUE software was run 6000 times 

for the parameters of each cultivar and then manual adjustment was applied following Boote 

(1999) using the same phenology and growth variables data described until an acceptable 

simulation fit was observed. 
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3.3.6 Model evaluation  

The models were evaluated using flowering, maturity, canopy cover (for AquaCrop) and yield 

data obtained from the Ambo and Melkassa experimental sites. Maize yield from each plot and 

site was uased for model evaluation. As for each calibration process, a visual graphic comparison 

was conducted. For the three models, the goodness of fit between the simulated and observed 

values was evaluated by using different statistical indices, such as root mean square error 

(RMSE) (Ahmed et al. 2016), normalized root mean square error (NRMSE) (Ahmed et al. 2016), 

the prediction error (%E), d-index (Willmott 1981) and coefficient of determination (R2): 

 

  𝑅𝑀𝑆𝐸 =  [∑
(𝑃𝑖 − 𝑂𝑖)2

n

n

𝑖=1

]

0.5

                                                                                     (3.3)      

 

     NRMSE = [∑
(𝑃𝑖 − 𝑂𝑖)2

n

n

𝑖=1

]

0.5

×  
100

�̅�
                                                                              (3.4)                

 

           %𝐸 =
(𝑃𝑖 − 𝑂𝑖)

𝑂𝑖
× 100                                                                                            (3.5)      

  

𝑑 = 1 −
∑ [(𝑃𝑖 − �̅�) − (𝑃𝑖 − �̅�)2]𝑛

𝑖=1

∑ [(|𝑃𝑖 − �̅�|) − (|𝑃𝑖 − �̅�|)2]𝑛
𝑖=1

                                                                          (3.6)         

 

where Oi and Pi refer to observed and predicted values respectively for all studied variables, �̅� is 

the mean of the observed variable and n is the number of observations. 
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3.3.7 Multimodel ensemble 

With all models calibrated and validated, a multimodel analysis was performed by using the 

average of the estimated maize yields of the three models. For this analysis, the simulated yields 

(ensemble) were evaluated by the same statistical indices.  

 

3.4 Results  

3.4.1 Model calibration  

3.4.1.1 APSIM-maize 

The crop genetic coefficients for each cultivar cannot be used as constants since they are specific 

to the agro-ecology of the area (Ahmed et al. 2016). The crop genetic coefficients calibrated for 

the APSIM maize model for the newly released varieties are presented in Table 3.3.  

 

Table 3.3: Genetic coefficients fitted for APSIM-maize and DSSAT CERES-maize models 

APSIM-maize Cultivar  

Parameter BH546 BH661 Jibat MH140 

est_days_endjuv_to_init (day) 20 25 20 20 

Potential kernel number per plant 460 475 378 390 

Grain growth rate (mg grain-1day-1)  9.3 8.0 9.4 9.6 

tt_end of juvenile stage to floral initiation (oC day)  0 0 0 0 

Photoperiod critical 1 (h) 12.5 12.5 12.5 12.5 

Photoperiod critical 2 (h) 24 24 24 24 
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Photoperiod slope (oC h-1)  30 30 10 23 

tt_emergence to end of juvenile (oC day) 270 250 256 242 

tt_flag leaf to flowering (oC day)  10 80 10 10 

tt_ flowering to start of grain filling (oC day)  170 170 170 80 

tt_flowering to maturity (oC day) 897 885 910 926 

tt_maturity to ripening (oC day) 1 1 1 1 

Canopy height (mm)  2550 2900 2700 2700 

Stem mass (g stem-1)  80 80 80 80 

DSSAT CERES-maize 
    

P1  253.0 265.0 165.9 226.7 

P2   0.700 0.750 0.970 0.700 

P5 945.0 930.0 930.0 900.6 

G2 490.5 447.0 609.8 863.0 

G3 12.70 12.75 6.65 9.60 

PHINT 49.00 48.00 75.00 53.00 

 

The performance of the calibrated APSIM-maize model is shown in Table 3.4. The simulated 

dates of flowering and maturity agreed with that observed in the calibration dataset, with RMSE 

less than 2 days across all varieties at Bako. The NRMSE of flowering and maturity dates for all 

varieties was less than 3 %. This indicated that the APSIM-maize model could simulate well 

crop phenology variables for the different varieties across the different agro-environments.  
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The model also predicted maize yield accurately with the RMSE and NRMSE values of 0.2 t ha-1 

and 3 % respectively. There was generally reasonable agreement between simulated and 

observed flowering date, maturity date and yield with the error very low (< 4.6 %) for all 

varieties at Bako (Table 3.4).   
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Table 3.4: Calibration results for APSIM-maize model for the four maize varieties using 

experimental data for the 2017/2018 maize cropping season 

 

Cultivar 

Flowering date  

(DAP) 

Physiological maturity  

(DAP) 

Maize yield  

(t ha-1) 

 

Observed 

  

Simulated 

 Error  

 (%) 

   

Observed 

  

Simulated 

 Error  

 (%) 

  

Observed 

  

Simulated 

 Error  

 (%) 

BH546 83 86 3.7 154 155 0.6 5.923 6.197 4.6 

BH661 87 87 0.0 159 157 -1.3 5.399 5.421 0.4 

Jibat 78 79 1.2 151 150 -0.7 5.293 5.492 3.8 

MH140 77 78 1.2 151 150 -0.7 6.263 6.244 -0.3 

RMSE 1.7     1.3     0.2     

NRMSE 

(%) 

2.0     0.9     3.0     

d 0.96     0.96     0.95     

R2 0.93     0.89     0.91     

The negative sign represents an underestimation; DAP: days after planting  

 

3.4.1.2 AquaCrop 

Calibrated crop parameters used in AquaCrop model are presented in Table 3.5. The crop 

parameters obtained from the model calibration (Table 3.5) were used in the evaluation 

simulation. 
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Table 3.5: AquaCrop calibration parameters and their respective values for four maize 

varieties 

Parameters Cultivar 

BH546 BH661 Jibat MH140 

Base temperature (oC) 10 10 10 10 

Upper temperature (oC)  30 30 30 30 

Plant density (plants m-2)  5.3 5.3 5.3 5.3 

Initial percentage canopy cover CCo (%) 0.26 0.26 0.26 0.26 

Maximum percentage canopy cover CCx (%)   90 90 85 85 

Canopy growth coefficient CGC (% day) 7.54 8.29 7.42 8.75 

Canopy decline coefficient CDC (% day) 0.13 0.12 0.08 0.06 

Normalized water productivity WP (g m-2)  32.0 32.0 32.0 32.0 

Time to maximum canopy cover (day)   116 107 116 101 

Time to flowering (day)  82 86 77 76 

Length of the flowering stage (day)  56 42 78 54 

Time to start senescence (day)  122 122 122 122 

Time to maturity (day) 154 159 151 151 

Maximum rooting depth (m) 1.8 1.8 1.9 1.9 

Minimum effective rooting depth (m)  0.3 0.3 0.3 0.3 

Reference harvest index (%)  22 20 22 24 

 





71 
 

Bako. The RMSE, d and R2 value of the simulated and measured CC in Bako site were 3.6 – 8.8 

%, 0.98 – 0.99 and 0.96 – 0.99 respectively for all varieties (Table 3.6).  

 

Table 3.6:  Performance of the AquaCrop model in simulating the green canopy cover (CC) 

of four maize varieties grown at Bako for the 2017/2018 cropping season 

Cultivar       RMSE (%) d R2 

BH546 7.7 0.99 0.98 

BH661 5.7 0.99 0.99 

Jibat 3.6 0.99 0.99 

MH140 8.8 0.98 0.96 

 

Table 3.7 shows that the AquaCrop model successfully predicts maize yield at Bako. 

 

Table 3.7: Performance of the AquaCrop model in simulating the grain yield (t ha-1) of four 

maize varieties grown at Bako for the 2017/2018 cropping season 

Cultivar Observed 

(t ha-1) 

Simulated 

(t ha-1) 

Error 

(%) 

BH546 5.923 5.939 0.3 

BH661 5.399 5.380 -0.4 
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Jibat 5.293 5.233 -1.1 

MH140 6.263 6.340 1.2 

RMSE (t ha-1) 0.05 
  

NRMSE (%) 0.88 
  

d 0.99 
  

R2 1.00 
  

 

3.4.1.3 DSSAT CERES-maize 

The seven genetic coefficients for cultivars BH546, BH661, Jibat and MH140, which are 

calculated in this study, are presented in Table 3.3. The calibration result revealed that the model 

predicted maize flowering, maturity and yield well as the R2 between simulated and observed 

values was found to be 0.87, 0.80 and 0.99 and the d value was 0.92, 0.93 and 0.99 respectively 

(Table 3.8). This implies that the model was successfully calibrated for all four maize cultivars. 

There was generally good agreement between observed and simulated flowering date and 

physiological maturity as the difference was < 3 days for all varieties. The differences in 

simulating yield for all four varieties were ≤ 1 t ha-1 (Table 3.8).  
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Table 3.8: Calibration results for DSSAT CERES-maize model for all four maize varieties using experimental data for the 

2017/2018 maize cropping season 

Cultivar Flowering date 

 (DAP) 

Physiological maturity  

(DAP) 

Maize yield  

(t ha-1) 

Observed Simulated 

 Error      

(%) Observed Simulated 

Error 

(%) Observed Simulated 

Error 

(%) 

BH546 83 82 -1.2 154 157 1.9 5.923 5.956 0.6 

BH661 87 84 -3.4 158 158 0.0 5.399 5.402 0.1 

Jibat 78 77 -1.3 151 152 0.7 5.293 5.299 0.1 

MH140 77 79  2.6 151 151 0.0 6.263 6.190 -1.2 

RMSE 1.94     1.66     0.04     

NRMSE 

(%) 2.40     1.10     0.70     

d 0.92     0.93     0.99     

R2 0.87     0.80     0.99     

The negative sign represents an underestimation; DAP: days after planting          
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3.4.2 Model evaluation 

3.4.2.1 APSIM-maize  

Compared to the calibration, the model slightly overestimated maturity date during evaluation. 

The RMSE for maturity dates ranged from 1 to 5 days, with the largest RMSE for cultivar 

BH661 at Ambo (Table 3.9). The simulation of flowering date was well predicted with an 

average RMSE value of < 3 days for the four varieties at the model evaluation sites (Table 3.9). 

 

Table 3.9: Performance of the APSIM-maize model in simulating the flowering and 

physiological maturity dates (DAP) of four maize varieties grown at Ambo and Melkassa 

for the 2017/2018 cropping season 

 

Site 

 

Cultivar 

Flowering date  

 (DAP) 

Physiological  

maturity  (DAP) 

Observed Simulated Observed Simulated   

Ambo 

(high altitude) BH546 112 108 190 194   

  BH661 107 108 184 193   

  Jibat 97 99 183 186   

  MH140 99 97 183 186   

  RMSE (day) 2.50 

 

5.36 

 

  

  d 0.95 

 

0.53 

 

  

  R2 0.85 

 

0.56 

 

  

 

  

    

  

Melkassa 
BH546 74 75 141 140   
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Figure 3.4: Performance of the AquaCrop model in simulating the green canopy cover 

(CC) of the four maize varieties grown at Ambo and Melkassa for the 2017/2018 cropping 

season 

 

The RMSE, d and R2 values of CC in the evaluation data sets ranged from 4.7 - 10.8 %, 0.97 – 

0.99 and 0.96 - 0.99 respectively. The larger RMSE was found for Ambo for the Jibat variety. 

The smaller values of RMSE and the high values of d indicate an overall good agreement 

between the simulated and observed canopy cover (Table 3.10). 

 

Table 3.10: Performance statistical indices of the Aquacrop model in simulating the green 

canopy cover (CC) of four maize varieties grown at Ambo and Melkassa for the 2017/2018 

cropping season 

Cultivar 
Ambo (high altitude) Melkassa (low altitude) 

      RMSE (%)       d R2       RMSE (%)       d R2 

BH546 9.8 0.98 0.96 10.0 0.98 0.99 

BH661 4.7 0.99 0.99 9.4 0.98 0.99 

Jibat 10.8 0.97 0.96 7.0 0.99 0.98 

MH140 10.0 0.98 0.97 9.8 0.98 0.97 

 

The comparison between measured and simulated values for Ambo and Melkassa indicates that 

AquaCrop did simulate the yield well. This is also indicated by the high values of R2 and d and 

low values of RMSE for all four varieties at all four sites (Figure 3.5). 
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Table 3.11: Performance of the DSSAT CERES-maize model in simulating the flowering 

and physiological maturity dates (DAP) of four maize varieties grown at Ambo and 

Melkassa for the 2017/2018 cropping season 

 

Site 

 

Cultivar 

Flowering date  

(DAP) 

Physiological maturity 

(DAP) 

Observed Simulated Observed Simulated 

   Ambo  

(high altitude) BH546 112 105 190 208 

 

BH661 107 107 184 208 

 

  Jibat 97 100 183 202 

 

MH140 99 102 183 200 

 

RMSE 

(day) 4.09 

 

19.68 

 

 

d 0.77 

 

0.07 

 

 

R2 0.70 

 

0.45 

 

      
  Melkassa  

 (low altitude) BH546 74 74 141 146 

 

BH661 78 76 138 147 

 

   Jibat 72 70 139 141 

 

MH140 73 71 135 137 

 

RMSE 1.73 

 

5.33 
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DAP: days after planting 

 

The DSSAT model performs well in estimating maize yield while the RMSE was found to be 

0.78 t ha-1 and 0.58 t ha-1 with d values 0.79 and 0.84 for Ambo and Melkassa respectively 

(Figure 3.6). This comparison shows that the model has the potential to simulate maize yield for 

an independent dataset from the sites. 

 

Figure 3.6: Performance of the DSSAT CERES-maize model in simulating the grain yield 

of four maize varieties grown at Ambo and Melkassa for the 2017/2018 cropping season 
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3.4.2.4 The multimodel ensemble approach 

The performance of the multimodel ensemble for simulating maize yield in the evaluation phases 

is shown in Figure 3.7. The ensemble of the models led to improved prediction of maize yield in 

the evaluation phase with RMSE minimized and increased accuracy of d and R2 values. As 

presented in Figure 3.7, the ensemble of the three models improved maize yield prediction at 

Ambo site with RMSE (0.35 t ha-1), d (0.91) and R2 (0.95) and at Melkassa site with RMSE 

(0.41 t ha-1), d (0.93) and R2 (0.90). The models’ ensemble results were quite close to the grain 

yield simulated using the AquaCrop model (Figure 3.5). In general, the result shows that 

predicting maize yield with model ensemble reduces the uncertainty of yield prediction 

compared with any of the individual models.  
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Figure 3.7: Performance of the ensemble of APSIM-maize, AquaCrop and DSSAT 

CERES-maize models to estimate maize yield (t ha-1) during the evaluation phase at (a) 

Ambo and (b) Melkassa sites for the 2017/2018 cropping season 

 

3.5 Discussion 

In this study, field experiments were conducted for three different agro-ecology (highland, 

midland and lowland) sites in Ethiopia. Predominantly grown maize varieties were chosen and 

planted at each site with different planting dates. Detailed data were collected on growth and 

development of maize varieties to calibrate and evaluate the APSIM-maize, AquaCrop and 

DSSAT CERES-maize models. Calibration results show an accurate correspondence between 

measured values and those simulated by the models (Tables 3.4, 3.6, 3.7 and 3.8).  
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The results for the APSIM-maize model show that the model was able to capture a large part of 

the variation of the phenology of the individual varieties across the three sites of the study. 

Simulation of flowering dates was in agreement with the observed values and simulations of 

maturity dates were reasonable for all sites when compared to the DSSAT CERES-maize model. 

This indicated that the APSIM-maize model performed well for the three agro-ecologies in 

Ethiopia (Seyoum et al. 2018). Further, the evaluation indices for flowering and maturity dates 

confirmed the versatility of APSIM-maize to simulate phenology of maize in different 

environments.  

 

On the other hand, the DSSAT CERES-maize model simulated flowering date close to the 

observed values in all agro-ecologies. However, the model did not accurately simulate maturity 

date at higher altitude areas like Ambo (late maturing varieties). The DSSAT CERES-maize 

model calculates maturity date based on the photoperiod (thermal time from seedling emergence 

to the end of the juvenile) and therefore, the model is sensitive to photoperiod estimation 

(Rezzoug et al. 2008). This emphasizes the need to quantify adjustments on coefficients of 

photoperiod sensitivity for such long-maturing varieties. This result reinforces the suggestion by 

Akinseye et al. (2017) that further improvement of CERES models in DSSAT is required to 

capture the correct photoperiod for the late maturing varieties. On the other hand, the model 

simulates maturity date reasonably well for Melkassa (low altitude). Overall, both the APSIM-

maize and DSSAT CERES-maize models showed good performance in simulating the 

phenological stage of maize (Araya et al. 2015; Hammad et al. 2018) because of the use of 

thermal time and photoperiod sensitivity coefficients for calculating crop development rates 

(Specht et al. 2001). 
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The AquaCrop model successfully simulated canopy cover of the maize varieties studied. The 

crop parameters were adjusted to estimate canopy cover under different planting dates. The 

adjustments were made to obtain improved agreement between simulated and observed values. 

The results showed that the model calibration datasets (Bako) were consistent with the model 

evaluation datasets (Ambo and Melkassa). Good relationships were obtained between the 

simulated and observed canopy cover values. This indicated that the model can be used to 

simulate canopy cover of maize for different planting dates and environments (Greaves and 

Wang 2016). 

 

The simulated grain yield agreed well with the observed data for the four maize varieties at 

Ambo DSSAT (d = 0.79), AquaCrop (d = 0.99) and Melkassa DSSAT (d = 0.84), APSIM (d = 

0.75) and AquaCrop (d = 0.99). However, the APSIM-maize model underestimated maize yield 

at Ambo. The model evaluation indices RMSE, d-index and R2 (Figures 5 and 6) confirmed the 

robustness of DSSAT CERES and AquaCrop models in simulating yield at higher altitudes 

compared to the APSIM model. This result is consistent with Babel et al. (2019). 

Underestimation of grain yield of maize using the APSIM-maize model at Ambo site might be 

caused by the fact that APSIM underestimated N uptake for maize under extended growing 

conditions. Another reason could be the underestimated radiation use efficiency associated with 

those default parameter values used in the APSIM-maize model (Archontoulis et al. 2014; Yang 

et al. 2018). 
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 Unlike APSIM-maize and DSSAT CERES-maize, the FAO AquaCrop model evaluation indices 

for canopy cover and grain yield are satisfactory for all varieties in the three agro-ecologies with 

a low RMSE value, high d and R2 values (Tables 3.6, 3.7 and 3.10; Figure 3.5). This indicated 

that AquaCrop can be used to simulate the yield of maize with improved accuracy in a tropical 

environment (Stricevic et al. 2011) than the other models. Some studies that focused on 

comparison of the performance of different crop models in predicting crop phenology (Porter et 

al. 1993) and grain yield (Cerrato and Blackmer 1990) revealed that some models performed 

better than others. However, since crop models vary in their structure of processing simulation 

(Asseng et al. 2013), their ensemble results are improved compared to a single model (Martre et 

al. 2015). In addition, different crop models have different descriptions for the simulation of crop 

growth under different soil, environment and management conditions. An individual model may 

have adequate capability to simulate a crop characteristic, nonetheless it is almost not possible to 

address the complexity of entire crop production systems (Huang et al. 2017). Hence, 

multimodel methods take advantage of the complementary strengths of individual models to 

generate more reliable ensemble results and minimize random errors.  

 

Therefore, this study also considered comparing the ensemble simulated yield of the three 

models with the individual model simulation yield outputs. The results indicated that the 

performance of the models improved significantly when the multimodel approach was 

considered. The RMSE values were reduced and the simulation accuracy (d index) and precision 

(R2) increased (Figure 3.7). This implies the need to use a multimodel ensemble approach to 

obtain reliable simulated maize yields under tropical environments which reduces the 

uncertainties associated with individual models while enhancing their synergy. In addition, 
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calibration is also the most important application for quantifying model uncertainty by estimating 

model inputs to give the model output. So, in this study all the crop models are calibrated and 

evaluated before application. Hence, the calibrated models together with their ensemble result in 

reduction of uncertainty. 

 

3.6 Conclusions 

The APSIM-maize, DSSAT CERES-maize and AquaCrop models could reasonably simulate 

maize phenology, canopy cover (AquaCrop) and yield for different maturity maize varieties for 

different planting dates for three agro-ecologies under rainfed conditions in Ethiopia. These 

models showed their suitability for simulating the phenology and yield of maize in the tropical 

sites studied. However, under- or-over estimations were observed for the simulated parameters 

by the individual models studied showing the need for further work to improve the robustness of 

the models in tropical environments. A multimodel approach improved the simulation of grain 

yield by reducing model uncertainty when it was compared with the performance of the 

individual models studied. This approach could, therefore, provide more reliable predictions for 

maize varieties grown in diverse environments in the tropics. Under data scarce conditions, 

simpler models such as AquaCrop can be used to simulate maize yield with reasonable accuracy.  
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Appendix 1:  

Supplementary material (SM) 

Table SM3a: Main soil properties for the study areas used in model calibration and 

simulation 

Site Depth  

(m) 

  Silt 

   % 

  Clay  

    % 

   BD 

  (kg m-3) 

 DUL 

 (m3 m-3) 

   LL 

(m3 m-3) 

Saturation 

soil water 

content 

(m3 m-3) 

pH 

Ambo (high 

altitude) 

0.0-0.13 12.00 22.70 1360 0.189 0.092 0.449 6.20 

  0.13-0.45 12.00 26.70 1330 0.148 0.077 0.467 6.50 

  0.45-0.78 6.00 30.70 1370 0.163 0.084 0.457 6.80 

  0.78-1.10 8.00 32.70 1480 0.177 0.088 0.418 6.80 

  1.10-1.53 8.00 20.70 1560 0.157 0.085 0.39 7.10 

  1.53-1.87 6.00 28.70 1590 0.155 0.109 0.379 7.20 

Bako (mid-

altitude) 

0.0-0.15 24.40 40.90 1130 0.371 0.244 0.446 5.60 

  0.15-0.30 23.40 43.50 1160 0.385 0.259 0.445 5.70 
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  0.30-0.60 22.30 45.80 1210 0.399 0.272 0.463 5.90 

  0.60-1.00 21.60 45.90 1270 0.399 0.273 0.462 6.00 

  1.00-2.00 21.30 44.40 1320 0.389 0.264 0.455 6.20 

Melkassa 

(low altitude) 

0.0-0.15 45.20 20.10 1190 0.343 0.094 0.393 7.30 

  0.15-0.30 47.10 19.40 1230 0.337 0.188 0.387 7.50 

  0.30-0.60 49.30 19.20 1240 0.348 0.162 0.398 7.60 

  0.60-1.00 51.30 18.30 1250 0.352 0.186 0.401 7.80 

  1.00-2.00 51.10 18.50 1240 0.378 0.209 0.428 7.90 

BD refers to soil bulk density (kg m-3), drained upper limit (DUL) (m3 m-3), lower limit (LL) (m3 

m-3), saturation soil water content (m3 m-3) and pH (1:5 water) 

 

Table SM3b: Definition of the cultivar coefficients of APSIM-maize and DSSAT CERES-

maize model that determine maize growth, development and yield 

APSIM-maize     

Coefficient Definition Unit 

est_days_endjuv_to_init Days from end of juvenile stage to floral 

initiation 

day 

Potential kernel number per plant   
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Grain growth rate      mg grain-1day-1 

tt_end of juvenile stage to floral 

initiation 

Thermal time - end of juvenile stage to floral 

initiation 

oC day 

Photoperiod critical 1   h 

Photoperiod critical 2   h 

Photoperiod slope   oC h-1 

tt_emergence to end of juvenile Thermal time - emergence to end of  

juvenile  

oC day 

tt_flag leaf to flowering Thermal time - flag leaf to flowering oC day 

tt_flowering to start of grain 

filling 

Thermal time - flowering to start of  

grain filling 

oC day 

tt_flowering to maturity Thermal time - flowering to maturity                                 oC day 

tt_maturity to ripening Thermal time - maturity to ripening oC day 

Canopy height        mm 

Stem mass        g stem-1 

DSSAT CERES-maize   
 

P1 Thermal time from seedling emergence to the 

end of the juvenile phase 

oC day 

P2 Extent to which development is delayed for 

each hour increase in photoperiod above the 

longest photoperiod at which development 

proceeds at maximum rate 

day 
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P5 Thermal time from silking to physiological 

maturity 

oC day 

G2 Maximum possible number of kernels per 

plant 

 

G3 Kernel filling rate during the linear grain 

filling stage and under optimum conditions 

mg day-1 

PHINT Phylochron interval; the interval in thermal 

time between successive leaf tip appearances 

oC day 

 

Table SM3c: Observed experimental data for phenology and grain yield of four maize 

varieties at the three sites for the 2017/2018 cropping season  

Site Cultivar Emergence Flowering Maturity Grain yield (t ha-1) 

Ambo (high altitude)  BH546 26-Jun 04-Oct 21-Dec 5.23     

  BH661 25-Jun 29-Sep 15-Dec 4.34     

  Jibat 25-Jun 19-Sep 14-Dec 3.86     

  MH140 26-Jun 21-Sep 14-Dec 4.46     

Bako (mid-altitude) BH546 26-Jun 10-Sep 20-Nov 5.29     

  BH661 26-Jun 04-Sep 25-Nov 5.40     

  Jibat 26-Jun 05-Sep 17-Nov 5.29     

  MH140 26-Jun 04-Sep 17-Nov 6.26     

Melkassa (low BH546 08-Jul 10-Sep 16-Nov 6.65     
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altitude) 

  BH661 08-Jul 14-Sep 13-Nov 4.15     

  Jibat 08-Jul 08-Sep 14-Nov 4.89     

  MH140 08-Jul 09-Sep 10-Nov 5.36   

 

Table SM3d: Conservative and non-conservative parameters used in AquaCrop model 

calibration for maize crop 

Parameter description Unit 

Conservative   

Base temperature oC 

Upper temperature oC 

Canopy growth coefficient CGC % day-1 

Canopy decline coefficient CDC % day-1 

Normalized water productivity WP g m-2 

Nonconservative    

Plant density plants m-2 

Initial canopy cover percentage CCo % 

Maximum canopy cover percentage CCx % 

Time to maximum canopy cover day 

Time to flowering day 

Length of the flowering stage day 

Time to start senescence day 
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Time to maturity day 

Maximum rooting depth m 

Minimum effective rooting depth m 

Reference harvest index % 
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Lead to Chapter 4 

Genetic coefficients of improved maize cultivars were produced through crop models calibration 

process and the calibrated individual model and their ensembles were evaluated in Chapter 3. In 

Chapter 4, climate change impact on maize yield using crop models are assessed. The daily 

downscaled output of General Circulation Models under 8.5 Representative Concentration 

Pathway scenario are used to assess the future climate change impacts. Possible adaptation 

measures are explored to offset the changed climate.  
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CHAPTER 4: THE ROLE OF CROP MANAGEMENT PRACTICES AND 

ADAPTATION OPTIONS TO MINIMIZE THE IMPACT OF CLIMATE 

CHANGE ON MAIZE (ZEA MAYS L.) PRODUCTION IN TROPICAL 

ENVIRONMENTS 

 

Hirut Getachew Feleke 1*, M.J. Savage 1 and Kindie Tesfaye 2 

 

1Agrometeorology Discipline, Soil-Plant-Atmosphere Continuum Research Unit, School of 

Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 

South Africa 

2International Maize and Wheat Improvement Centre (CIMMIT), Addis Ababa, Ethiopia  

 

*Corresponding author, email: hirut_ge@yahoo.com 

 

4.1 Abstract 

Climate change impact assessment along with adaptation measures are key factors for reducing 

the impact of climate change on crop production. The impact of current and future climate 

change on maize production is investigated and evaluated the adaptation role of shifting planting 

dates, different level of nitrogen fertilizer rates and choice of maize cultivar as possible climate 

change adaptation strategies in the Ethiopian tropical environments. Future climate data were 

obtained from seven General Circulation Models (GCMs), namely: CanESM2, CNRM-CM5, 

CSIRO-MK3-6-0, EC-EARTH, HadGEM2-ES, IPSL-CM5A-MR and MIROC5 for the highest 
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(8.5) Representative Concentration Pathway (RCP). GCMs were bias-corrected at site level 

using a quantile-quantile mapping method. APSIM, AquaCrop and DSSAT models were used to 

simulate the baseline (1995-2017) and 2030s (2021-2050) maize yields. The result indicated that 

average monthly maximum air temperature in the 2030s could increase by 0.3-1.7 °C, 0.7-2.2 °C 

and 0.8-1.8 °C in Ambo, Bako and Melkassa, respectively. For the same sites, the projected 

increase in average monthly minimum air temperature was 0.6-1.7 °C, 0.8-2.3 °C and 0.6-2.7 °C 

in that order. While monthly total precipitation for the Kiremt season (June to September) 

projected to increase by up to 55 % (365 mm) for Ambo and 75 % (241 mm) for Bako 

respectively, whereas a significant decrease in monthly total precipitation is projected for 

Melkassa by 2030. Climate change would reduce maize yield by an average of 4 % and 16 % for 

Ambo and Melkassa respectively, while would increase by 2 % for Bako in 2030 if current 

maize cultivars were grown with the same crop management practice as the baseline under the 

future climate. At higher altitudes, early planting of maize cultivars between 15 May to 01 June 

would result in improved relative yields in the future climate. Fertilizer levels between 23-150 kg 

ha-1 would result in improved yields for all maize cultivars when combined with early planting 

for Ambo. For a mid-altitude, planting after 15 May has either no or negative effect on maize 

yield. Early planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided higher 

relative yields under the future climate. Delayed planting has a negative influence on maize 

production for Bako under the future climate (2030). For lower altitudes, late planting would 

have lower relative yields compared to early planting. Higher fertilizer levels (100-150 kg ha-1) 

would reduce yield reductions under the future climate, but this varied among maize cultivars 

studied. Generally, future climate is expected to have a negative impact on maize yield and 

changes in crop management practice can alleviate the impacts on yield. 
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Keywords: Adaptation options, Crop models, GCMs, Multimodel ensemble, Representative 

Concentration Pathway  

 

4.2 Introduction 

Climate change has become the major environmental and socio-economic threat to the world. 

Past climate change studies in Ethiopia have shown significant changes in air temperature 

(NMA, 2007; McSweeney et al., 2008) and precipitation patterns (Cheung et al., 2008; Williams 

et al., 2012) in the past decades. Climate change projection studies based on different emission 

scenarios indicate air temperature increases over the country (Yimer et al., 2009; Setegn et al., 

2011) by the year 2050. Similarly, mean annual rainfall is expected to increase, with high 

uncertainty, in amount and intensity (NMA, 2007; Conway and Schipper, 2011). Climate change 

influences agriculture through affecting the crop physiological processes. The change in amount 

and distribution of precipitation and air temperature affect crop water balance by increasing 

evapotranspiration which in turn affects yields (Asseng et al., 2011). 

 

Agriculture is a fundamental part of the economy in Ethiopia. With a population of more 

than 110 million (Alemu and Carlson, 2020), Ethiopia is the second highly populated country in 

Africa. Over 70 % of the population are engaged in subsistence farming (Degu, 2019). 

Agriculture accounts for almost one-third of the change in Gross Value Added per capita as 

compared to industrial sector, which contributed about 22.2 %. Agriculture in Ethiopia is the 

basis of the economy, contributing 35.8 % of the GDP (Degu, 2019). Despite its importance to 
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the economy, agriculture in Ethiopia is highly affected by rainfall variability and recurrent 

drought, resulting in severe food insecurity (Alemu and Mengistu, 2019). Moreover, climate 

change seriously impacts agricultural productivity and the loss of human life and livestock 

(Mera, 2019). According to Viste et al. (2013), the frequency of drought and irregular 

precipitation occurrences has increased in recent decades and continue to increase with increased 

impacts under future climate change (Deressa and Hassan, 2009; Mideksa, 2010; Field et al., 

2012). There is no doubt that Ethiopia’s agriculture is already extremely vulnerable to climate 

change and consequential crop failure. It is thus very important to assess the impacts of future 

climate for proper adaptation mechanisms. 

 

Maize (Zea mays L.) is one of the dominant cereal food crops second to tef (Eragrostis tef) in 

terms of production and area coverage. In the 2019/2020 production season, 2.3 million ha of 

land is under maize cultivation at the national level from which 9635735-ton ha-1 of yield was 

produced by more than 11.4 million smallholder farmers (CSA, 2020). About 88 % of maize 

production in the country is consumed as food, both as green and dry grain (Abate et al., 2015). 

However, the production of maize is seriously limited due to abiotic and biotic factors, such as 

drought, low soil fertility, insufficient improved varieties, pests and diseases (CSA, 2010; 

Shiferaw et al., 2011; Araya et al., 2015). In addition to abiotic and biotic factors, maize yield 

reduction in Ethiopia is exacerbated by climate change (Tesfaye et al., 2015). Recent climate 

projections indicate that in the near (2035) and mid future (2055), there will be an increase of air 

temperature in most parts of Ethiopia resulting in an average decrease of maize yield for the 

coming years (Tomas et al., 2019).  
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Adaptation is a key factor in agriculture to reduce the impacts of climate change (Yin et al., 

2016; Belay et al., 2017; Tripathi and Mishra, 2017). Tomas et al. (2019) emphasized that 

alternative agronomic practices, such as fertilizer use, shifting planting dates, and change in 

cultivars as measures, are possible counters to the negative impacts of climate change with 

improvements to maize production in Ethiopia. Studies also revealed that adaptation options 

should be site-specific and need to be addressed for the various agroecological zone (Bryan et 

al., 2009; Tao and Zhang, 2010). 

 

Process-based crop simulation models (hereafter referred as crop models) are commonly applied 

tools for multiple areas to assess the impact of climate variability and change on agricultural 

production (Challinor et al., 2010; Rosenzweig and Wilbanks, 2010; Rötter et al., 2011; White et 

al., 2011; Kassie et al., 2013; Deb et al., 2015). The coupling of crop models to climate models 

has been a common method for analysing the potential impact of climate change on crop 

production to evaluate adaptation options (Bao, 2017).  

 

In Ethiopia, various climate change impact assessment studies have been conducted using crop 

models to simulate maize yield under different environments and field conditions (Kelbore, 

2012; Araya et al., 2015; Kassie et al., 2015; Tesfaye et al., 2015, 2018; Tomas et al., 2019). The 

purpose of most of these studies was limited to climate change impacts, yield variability, and 

yield gap estimation of maize and did not consider the adaptation aspect. Only a few studies 

addressed both climate change impacts and adaptation options on maize productivity in Ethiopia, 

such as Kassie et al. (2015) and Tesfaye et al. (2018). Nevertheless, both studies used one or two 

crop model(s) to simulate maize yield which is still inadequate for a detailed analysis of crop 
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model uncertainty. Araya et al. (2015) also recommended the multi-crop model approach and 

multi-GCM ensemble projections for more in depth analysis and reliable climate change 

sensitive assessments. In addition, there is insufficient research devoted to adaptation strategies 

developed based on climate change scenarios in Ethiopia (IPCC, 2014). Hence, there is a need to 

design climate change adaptation strategies using multiple crop and climate models under the 

future climate.  

 

Therefore, the objectives of this study are to: (1) assess the impact of climate change on maize 

yield and to (2) identify possible adaptation mechanisms at three sites representing different 

agroecological zones in Ethiopia. 

 

4.3 Materials and methods 

4.3.1 The study sites 

The sites used in this study are located in Central Ethiopia (Ambo), south-western Ethiopia 

(Bako) and Central Rift Valley of Ethiopia (Melkassa). They have different soil and climatic 

characteristics and hence maize cultivars that differ in their maturity period are grown across the 

study sites. The soils range from sandy clay loam to clay texture. The seasonal rainfall and 

reference evapotranspiration ranged from 587 to 1206 mm and 431 to 770 mm, respectively. The 

mean maximum and minimum air temperature ranges from 24.0 to 28.4 °C and 10.3 to 14.5 °C 

during the maize growing season in the study sites (Table 4.1). Maize field experiments were 

conducted under rainfed conditions for the sites. The detailed information is found in Feleke et 

al. (2021) (Chapter 3). 
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Table 4.1: Characteristics of the study sites in Ethiopia 

Location 

Ambo Bako Melkassa 

      

Latitude (o) 8.57 9.12 8.42 

Longitude (o) 38.07 37.04 39.32 

Altitude (m) 2225 1650 1550 

Soil characteristics       

Soil type Eutric regoSol Nitosol Vitric andosols 

Soil texture 

sandy clay 

loam clay loam 

Baseline climate (1995-2017)       

Seasonal total precipitation (mm) 718 1206 587 

Seasonal ETo (mm)* 543 431 770 

Mean max. air temperature (°C) 24.0 24.0 28.4 

Mean min. air temperature (°C) 10.3 14.5 13.9 

* ETo: grass reference evapotranspiration.       
 

 

4.3.2 Data collection 

4.3.2.1 Weather and soil data 

Historical weather and soil data are the main input data sources used in the crop models, in 

addition to crop management practices such as planting date, plant density, row spacing and 

fertilization. For Ambo, Bako and Melkassa the daily rainfall, maximum and minimum air 

temperature and solar radiation data for the study sites were obtained from meteorological 

stations at the experimental sites and/or from the national meteorological agency where the study 

sites are located. Daily grass reference evapotranspiration (ETo) were computed by the FAO 

Penman-Monteith method (Allen et al., 1998; Allen, 2006; Savage, 2018). For the Weather data 

quality control measures were undertaken and patching of missing values utilized using Allen et 

al. (1998) for all the study sites. The soil profile data were obtained from Liben et al. (2018), 
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Seyoum et al. (2018), and the International Maize and Wheat Improvement Center (CIMMIT) in 

Ethiopia and field measurements.  

 

4.3.2.2 Crop data 

Four improved and most widely grown hybrid maize cultivars were used for this study. The 

hybrid maize cultivars were Jibat, BH661, BH546 and MH140. The choice of maize cultivars 

were based on farmers preferences. These cultivars were calibrated and evaluated for the 

DSSAT, APSIM and AquaCrop models (Feleke et al., 2021; Chapter 3).  

 

4.3.3 Crop simulation models 

Maize yield was simulated using three crop simulation models, namely Agricultural Production 

Systems Simulator (APSIM)-maize v 7.9 (Keating et al., 2003), FAO - AquaCrop v. 7.9 (Steduto 

et al., 2009) and Decision Support System for Agrotechnology Transfer (DSSAT) – CERES – 

maize v 4.7 (Hoogenboom et al., 2019) (hereafter, the crop models are referred to as APSIM, 

AquaCrop and DSSAT). These crop models have been used widely and provide a realistic 

simulation of maize yield across the world (Bassu et al., 2014; Muluneh et al., 2017; Zhao et al., 

2017) under both current and future climate change conditions. The input data to run the models 

are daily total solar radiation, daily minimum and maximum air temperatures, and daily 

precipitation. Additional inputs necessary to run the crop models are soil type, cultivar type and 

crop management. These crop models were calibrated and validated for four maize cultivars 

(Jibat, BH661, BH546 and MH140) using data from field trials conducted in the 2017/18 

cropping season in Ethiopia (Feleke et al., 2021). 
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4.3.4 Climate change projections 

The daily climate data downscaled from seven Global Circulation Models (GCMs), namely, 

CanESM2, CNRM-CM5, CSIRO-MK3-6-0, EC-EARTH, HadGEM2-ES, IPSL-CM5A-MR and 

MIROC5 from the Coupled Model Intercomparison project phase 5 (CMIP5) were used to 

simulate maize yield in this study. The GCMs used in this study are listed in Table 4.2 together 

with the institutions which developed them, their country and references. 

 

Table 4.2: Description of the global climate models (GCMs) used 

GCM name Institute Country References 

CanESM2 CCCma: Canadian Centre for Climate 

Modelling and Analysis 

Canada      CCCma (2017b) 

 
  

 

CNRM-CM5 CERFACS: Centre Européen de Recherche  France    Voldoire et al. (2013) 

 et de Formation Avancée en Calcul 

Scientifique 

  
 

CSIRO-MK3-6-0 CSIRO: Commonwealth Scientific and 

Industrial Research Organization 

Australia Jeffrey et al. (2013) 

 
  

 

EC-EARTH ICHEC: Consortium of European research  Europe    Hazeleger et al. (2010) 

institutions and researchers   
 

HadGEM2-ES MOHC: Met Office Hadley Centre United 

Kingdom 

Collins et al. (2011) 

IPSL-CM5A-MR IPSL: Institut Pierre Simon Laplace  France   Dufresne et al. (2013) 

MIROC5 AORI: Atmospheric and Ocean Research 

Institute 

Japan   Watanabe et al. (2010) 

 

The data were downscaled using the Regional Climate Model (RCM)- RCA4 (Samuelsson et al., 

2011). The RCM-RCA4 simulation covers the Coordinated Regional Climate Downscaling 

Experiment (CORDEX)-Africa domain at a 44-km horizontal resolution in Africa for the 1951-
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2100 periods which is divided into two: historical (1951-2005) and scenario (2006–2100) 

periods. The CORDEX initiative sets a standard grid, domain size experiment protocols, and data 

format allowing for direct comparison of the model outputs (Giorgi et al., 2009; Nikulin et al., 

2012). The main reason for using CORDEX (44 km grid) for this study is that resources are more 

available with a minimum horizontal grid spacing of around 44 km was recommended (Giorgi et 

al., 2009). Within this framework, only models which were widely available and provide 

projections for the Representative Concentration Pathway (RCP) 8.5 were selected as this is 

deemed the highest level expected to assess future climate change impact and responses. There is 

no difference between RCP 4.5 and RCP 8.5 until the year 2050 (Arnell, 2004; Levy et al., 

2004). The difference between the two becomes clear after 2050. Therefore, the study were used 

RCP 8.5 for all future climate analysis. 

 

The data were bias-corrected using the quantile-quantile mapping procedure (Ngai et al., 2017). 

Atmospheric CO2 concentrations specified for each period according to the Intergovernmental 

Panel on Climate Change Special Report on Emission Scenarios IPCC SRES (2014) were used: 

380 L L-1 for the baseline (1995-2017) and 450 L L-1 for future (2021-2050) period. In this 

study, downscaled precipitation, maximum and minimum air temperature data from seven GCMs 

for the three study sites (Ambo, Bako and Melkassa) were evaluated. The baseline data at a daily 

scale (1995-2017) were used for evaluating CORDEX-Africa precipitation, maximum and 

minimum air temperature for future climate scenarios. The comparison between GCM’s 

historical runs and observations was performed using average monthly values of precipitation, 

maximum and minimum air temperature for the reference period of 1995-2005. The performance 
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of GCMs in simulating the observed precipitation, maximum and minimum air temperature data 

were evaluated statistically and presented graphically. The statistical measurements include root 

mean square error (RMSE) and correlation coefficient (R2) calculated using the following 

equations: 

 

𝑅2 =
∑ 𝑆𝑖 × 𝑂𝑖 − ∑ 𝑆𝑖 × ∑ 𝑂𝑖

√∑ 𝑆𝑖
2

− (∑ 𝑆𝑖)
2

× √∑ 𝑂𝑖
2

− (∑ 𝑂𝑖)
2

                                                            (4.1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑖 − 𝑂𝑖)2 

𝑛

𝑖=1
                                                                                       (4.2) 

where Si and Oi represent the simulated and the observed values of the variables respectively. 

 

4.3.5 Crop management practices for climate change adaptation 

The study considered three agronomic management options: planting date shift, nitrogen 

fertilizer levels and maize cultivars with different maturity length. To assess the impact of 

climate change on maize yield the study considered the recommended planting date, nitrogen 

fertilizer level and cultivar for each site studied as a control treatment for the baseline period. 

The control treatments are planting date: 15 June for Ambo and Bako and 30 June for Melkassa. 

Nitrogen fertilizer: 100 kg ha-1 used for all sites. Maize cultivars: late maturing (Jibat) for Ambo, 

late (BH661) and medium (BH546) maturing for Bako and early maturing (MH140) for 

Melkassa. These treatments are the baseline practices used by farmers and agricultural research 

centres in the respective study sites. The control treatments were simulated for the baseline 

(1995-2017) and for future 2021-2050 (2030 s) climate. The relative yield reduction was used as 
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a measure of climate change impact. To assess the adaptation options for the baseline and for 

future period, shifting planting date within the planting window (15 May to 15 July) was used. 

The normal planting periods 15 May to 15 June is for Ambo and Bako and 1 June to 15 July is 

for Melkassa (Seyoum et al., 2017).  

 

Optimum planting dates, which provided the highest yield, were determined from simulations of 

the baseline and the climate change scenarios using sowing dates of two weeks intervals around 

the earliest and latest possible sowing date within the planting window. Hence, we adopted four 

different planting dates: 15 May, 1 June, 15 June and 30 June for Ambo and Bako, and 1 June, 

15 June, 30 June and 15 July for Melkassa. Different nitrogen fertilizer levels below and above 

the recommended level (0, 23, 100, 150 and 200 kg ha-1) were used with 50 % nitrogen at 

planting and 50 % of nitrogen at 30 days after planting. Four different maize cultivars: BH546, 

BH661, Jibat and MH140 under three maize agro-ecology zones were also used as future 

adaptation options. Maize yield was simulated for a baseline period (1995-2017) and future 

2021-2050 (2030s) climatic conditions. The 2030’s represents the average between 2021 and 

2050. The potential impact of climate change under the RCP8.5 scenario was estimated by 

calculating changes in maize yield between baseline and future climates for each treatment as 

follows: 

∆ 𝑌 =
(𝑌 𝑓𝑖 − 𝑌 𝑏)

𝑌𝑏
                                                                                                                          (4.3) 

 

where ∆ 𝑌 is change of yield, 𝑌𝑓𝑖 is yield under future climate i and 𝑌𝑏 is yield under the baseline 

climate.  



122 
 

 

The variability of yield (uncertainty) due to temporal variation, model or location in the climate 

change impact assessment were calculated based on the method described in Asseng et al. (2015) 

method. 

 

4.4 Results 

Monthly total precipitation and mean monthly maximum and minimum air temperatures were 

simulated using the seven GCMs CORDEX historical data for 1995-2005 to evaluate the model 

performance. The GCM models projected monthly mean maximum and minimum air 

temperatures very well with R2 > 0.99 and RMSE ≤ 0.17 °C at all sites. In the case of monthly 

total precipitation, the R2 and the RMSE range from 0.50-0.95 and 25.62-76.07 mm for Ambo, 

0.67-0.97 and 54.45-75.05 mm for Bako and 0.50-0.80 and 46.35-86.24 mm for Melkassa, 

respectively (Appendix 2 Supplementary materials (SM) Table SM4a).  

 

4.4.1 Changes in precipitation and maximum and minimum air temperatures in 2030 

4.4.1.1 Precipitation 

Projections using RCP 8.5 at Ambo, Bako and Melkassa sites clearly showed changes in monthly 

precipitation amount by 2030. Relative to the baseline period (1995-2017), the percentage 

changes in monthly total precipitation by 2030 varied among GCMs and sites. The monthly total 

precipitation for the most relevant months from the point of view of rainfed crop production (i.e., 

June to September- Kiremt season) projected to increase by up to 55 % (365 mm) for Ambo and 

75 % (241 mm) for Bako respectively, whereas a significant decrease in monthly total 
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4.4.1.3 Minimum air temperature 

The results of projections for monthly average minimum air temperature are shown in Figure 4.5. 

The projection shows that the monthly average minimum air temperatures are projected to 

continue to increase by comparison to the historical period. Likewise, the monthly average 

minimum air temperature is projected to increase in the range of 0.6-1.7 °C for Ambo, 0.8-2.3 °C 

Bako and 0.6-2.7 °C for Melkassa in 2030 (Figure 4.5). This is greater than the 2 °C limit 

specified by the IPCC as the point beyond which ecological systems may become severely 

disrupted (IPCC, 2014). The result also clearly shows that the future average monthly minimum 

air temperature increases are similar to the results shown for average monthly maximum air 

temperature changes. In addition, the Kiremt season will experience the highest monthly average 

minimum air temperatures in June at Ambo for the near future. Similarly, the Bega season will 

have the greatest monthly average minimum air temperature in December and October at Bako 

and Melkassa respectively in 2030. Overall, for the period of 2030, there will be a clear increase 

in the average monthly minimum air temperature compared to the maximum air temperature 

change, due to climate change impacts.  
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Figure 4.6: Multimodel ensemble average monthly minimum air temperature projected for 

2030 compared to that observed (1995-2017) period for (a) Ambo (high altitude), (b) Bako 

(mid altitude)  and (c) Melkassa (low altitude) 

 

4.4.2 Yield simulation for the baseline (1995-2017) climate 

Yield simulations for the baseline period using the observed climate data indicated higher yields 

at mid altitude yields for Bako (Figure 4.7). Simulation of yield by all crop models suggests 

increased nitrogen (N) application produces an increased yield for all maize cultivars on all sites. 

The simulated maize yield for Ambo ranges between 2.0 and 6.7 t ha-1. 2.0 and 15.5 t ha-1 for 

Bako and 2.9 and 13.1 t ha-1 for Melkassa for the baseline 1995-2017 period. The average of the 

three models provides an increased yield (up to 12.5 t ha-1) as compared to the measured maize 

yield values (up to 6.7 t ha-1) across all cultivar and sites.  

(a) Ambo 
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                                                                             (b) Bako 
 

 
                                                                                     

                                                                            (c) Melkassa 
 

 
Figure 4.7: Maize yield (t ha-1) with observed climate data for the baseline period (1995–

2017) as simulated with APSIM, AquaCrop and DSSAT models using different planting 
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dates, cultivars and nitrogen fertilizer levels for (a) Ambo (high altitude), (b) Bako (mid- 

altitude) and (c) Melkassa (low altitude). Error bars show the standard deviation of maize 

yield simulated by the crop models 

 

4.4.3 Impact of projected climate on maize yield 

Figure 4.8 presents the impact of future climate on maize yield if the existing agronomic 

practices used by farmers continue in 2030 in the study sites. Relative to the baseline, all the crop 

models showed either an increase or a decrease in maize yield depending on treatment level. 

However, the simulation results of the three ensemble crop models show that, mean maize yield 

will decrease by 4 % and 16 % for Ambo and Melkassa by 2030 respectively, while mean maize 

yield could increase by 2 % for Bako by 2030 if the current maize cultivars were grown with the 

same agronomic practice as the baseline under the future climate (Figure 4.8).  

(a) Ambo 
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(b) Bako 
 

 
 

 

                                                                  (c)  Melkassa 
 

 
Figure 4.8: Percentage yield change in 2030 relative to the baseline control treatments as 

simulated with APSIM, AquaCrop and DSSAT crop models for (a) Ambo (high altitude), 
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(b) Bako (mid-altitude) and (c) Melkassa (low altitude). Error bars show the standard 

deviation of the change of maize yield simulated for multiple GCM projections 

 

4.4.4 Crop management practices as adaptation options 

According to Figure 4.9, the result indicated that for Ambo model differences in predicting 

maize yield are small. Planting between 15 May to 01 June would give improved relative yields 

for all cultivars. Fertilizer levels between 23-150 kg ha-1 result in increased yields for all cultivars 

when combined with early planting at Ambo in 2030. 

 

For Bako, there are differences amongst the models in the relative yield of maize. Early planting 

increased maize yield for all cultivars under the future climate. Planting after 15 May has either 

no or negative effect on maize yield. All cultivars studied responded the same way to planting 

date shifts. Early planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided 

increased relative yields under the future climate. Delayed planting has a negative influence on 

maize production for Bako under the future climate (2030). 

 

For Melkassa, all models responded similarly to planting dates, fertilizer and cultivar levels. All 

planting dates considered resulted in negative relative yield. However, late planting had reduced 

relative yields compared to early planting. Higher fertilizer levels (100-150 kg ha-1) seem to 

reduce yield reductions under the future climate, but this varied among maize cultivars studied. 
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Planting the Jibat cultivar between 15-30 June at higher N levels may reduce severe yield 

reduction of maize at Melkassa (Figure 4.9). 

                                                                                    (a) Ambo 

 
 

(b) Bako 
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(c) Melkassa 
 

 
Figure 4.9: Effects of planting dates on mean maize yield under future climate change 

scenarios relative to the baseline for (a) Ambo (high altitude), (b) Bako (mid-altitude) and 

(c) Melkassa (low altitude) as simulated using the APSIM, AquaCrop and DSSAT models. 

Error bars show the standard deviation of the change of maize yield simulated for multiple 

GCM projections 

 

4.4.5 Crop model uncertainty in yield simulation 

Predicted yield differences amongst the models were noted for the higher altitude (Ambo), mid 

(Bako) and lower altitude (Melkassa) sites. The impact of the crop models in predicting yield 

varied from -38 to 38 % for Ambo, from -4 to 65 % for Bako and -12 to -36 % for Melkassa 

(Figure 4.10). The crop model yields were inconsistent even for the simulated mean yield change 

under the same climate projection. The DSSAT model projected a large mean yield reduction 
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whereas the AquaCrop model projected a high mean yield increase for Ambo and Bako for most 

climate projections. The APSIM model projected both the lowest and the highest yield reduction 

for Melkassa for most of the climate projections (Figure 4.10). The differences in the simulated 

mean yield changes could to some extent be attributed to the different responses of these crop 

models to the projected climate conditions. Maize yield simulated using AquaCrop was generally 

greater than that simulated with APSIM and DSSAT. 

 

(a) Ambo 
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(b) Bako 

 
 

(c) Melkassa 

 
 

Figure 4.10: Crop model uncertainty in simulated mean maize yield for different planting 

dates and nitrogen fertilizer levels for (a) Ambo (high altitude), (b) Bako (mid-altitude) and 
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(c) Melkassa (low altitude). Error bars show the standard deviation of the change of maize 

yield simulated by the individual GCM projections 

 

4.4.6 Climate model uncertainty in yield simulation 

The simulated mean maize yield changes for different climate projections were quite different. 

For example, using the IPSL-CM5A resulted in the highest mean yield increase for both Ambo 

and Bako, whereas data for HadGEM2-ES and CSIRO-Mk3-6-0 models resulted in the lowest 

mean yield for Ambo and Bako respectively. Both the HadGEM2-ES and CSIRO-Mk3-6-0 

models projected the lowest and the highest decrease in mean yield, respectively for Melkassa 

(Figure 4.11). Overall, the impact of the choice of GCM on yield varied from -52 to 78 % for 

Ambo, -5 to 41 % for Bako and -4 to -62 % for Melkassa (Figure 4.11). This result demonstrated 

that the yield uncertainty is greater among GCMs than crop models. 

                                                                  (a) Ambo 
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(b) Bako 

 

(c) Melkassa 

 

Figure 4.11: Climate model uncertainty in simulated mean maize yield for different 

planting dates and nitrogen fertilizer levels for (a) Ambo (high altitude), (b) Bako (mid-
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altitude) and Melkassa (low altitude). Error bars show the standard deviation of maize 

yield change simulated for multiple GCM projections 

 

4.5 Discussion 

4.5.1 Climate change projections and impacts 

Maize production is very likely to be negatively affected by climate change in Ethiopia (Kassie 

et al., 2015, Tesfaye et al., 2018) and there is an urgent need to develop strategies that adapt to 

the changing climate. Therefore, this study investigated the potential impact of climate change 

on maize yield for three sites (Ambo, Bako and Melkassa) in tropical environments of Ethiopia 

in 2030 under RCP 8.5 scenario using downscaled CORDEX-Africa domain precipitation and air 

temperature data. The study results indicated that both the individual GCM models and their 

ensemble mean projected an increase for the Kiremt season total monthly precipitation for Ambo 

and Bako while a decrease total monthly precipitation for Melkassa by 2030 as compared to the 

baseline period. A projected precipitation increase up to 55% (365 mm) for the Kiremt season at 

Ambo can be explained since Ambo has a highland agro-ecology and received more 

precipitation as compared to the mid- and low- land areas. Also, the Kiremt season is the main 

rainy season which receives most of the annual precipitation. Hence, the future climate might 

favour the site during this season. A future increase of the Kiremt total monthly precipitation at 

Ambo and Bako may have a positive impact on maize production though this might be changed 

due to an increase in air temperature for the sites that leads to an increase in evapotranspiration 

(Conway and Schipper, 2011).  
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The result from the GCMs model showed that the Belg season total monthly precipitation was 

projected to decrease for Ambo and Melkassa while projected to increase for Bako by 2030. 

However, the GCMs ensemble clearly indicates that the Belg season total monthly precipitation 

expected to decrease by 2030 for all sites. The decrease in the Belg season precipitation agrees 

with Muluneh et al. (2015) who investigated the impact of predicted changes in precipitation and 

atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia.  

 

By contrast, despite some differences in the magnitude of changes, the total monthly 

precipitation is projected to increase for the Bega season (November, December and January) for 

Melkassa by 2030. Even though, some of the GCMs indicated an increase of the Bega season 

total monthly precipitation for Ambo and Bako, the GCMs ensemble evidently illustrated that the 

total monthly precipitation would remain almost the same as the baseline for Ambo and Bako by 

2030. Overall, the projected increase and decrease in precipitation for the Bako and Melkassa 

sites respectively is in agreement with Araya et al. (2015) and Kassie et al. (2015). Under normal 

conditions, the Bega season is a time for harvesting particularly for the lower altitude areas 

(Asfaw et al., 2018). Hence, the anticipated increase in monthly total precipitation mainly for 

November and December might affect the agricultural operation such as harvesting at Melkassa. 

Therefore, harvesting time should be adjusted accordingly for this site.  

 

The projected air temperature result showed that the study region will get warmer under the 

future climate compared to the historical period although the magnitude of change may vary 

depending on the site. Across the study sites, the average monthly maximum air temperature may 
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increase by between 0.3 and 1.7, 0.7 and 2.2 and 0.8 and 1.8 °C for Ambo, Bako and Melkassa 

respectively during 2030 compared to the historical period (Figure 4.3). The expected increase in 

monthly average maximum air temperature by 2030 is greater for Bako compared to the other 

sites. This agrees with previous reports that indicated future warming for the study sites (Araya 

et al., 2015 and Kassie et al., 2015). Similarly, the average monthly minimum air temperature 

may change by between 0.6 and 1.7, 0.8 and 2.3 and 0.6 and 2.7 °C for the corresponding sites 

for the near future (Figure 4.5). The increase in minimum air temperature is expected to be 

higher at lower altitude (Melkassa) compared to those in mid and higher altitudes.  

 

Rising maximum and minimum air temperatures played a crucial role in maize yield reduction 

which negatively impacts on maize growth and development. For instance, increased air 

temperature may lead to shortening the reproductive phases and reducing the available time for 

radiation interception and carbon assimilation as previously reported (Wang et al., 2011; Lobell 

et al., 2013; Tesfaye et al., 2017). Wang et al. (2011) projected a reduced period by 10 to 30 days 

for the grain-filling phase and a decrease in maize yield. Lobell et al. (2013) illustrated that for 

maize in the USA there would be a decrease in days to flowering by 17 days and a yield loss of 

13 % if air temperature increased by 2 °C. Similarly, for the March, June, and November 

planting season in South Asia, Tesfaye et al. (2017) projected that an increase in maximum and 

minimum air temperatures by 1 °C caused a yield reduction of 55, 13 and 32 % respectively 

while an increase by 5 °C caused a reduction of 98, 64 and 75 % for the respective months. 
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The GCMs ensemble mean also indicated that the average monthly maximum air temperature for 

the 2030 will increase to between 24.0 and 29.7, 25.6 and 33.1 and 27.8 and 32.5 °C for Ambo, 

Bako and Melkassa respectively. Similarly, the average monthly minimum air temperature 

increase by between 10.1 and 13.2, 13.2 and 16.5 and 11.6 and 18.0 °C for the corresponding 

sites by 2030. In addition, the GCMs ensemble mean clearly indicate that the increase in monthly 

average maximum air temperature in the 2030 will be less during the main rainy season (Kiremt) 

than that for the small rainy season (Belg) and the dry season (Bega) for all sites. The lower 

increase in average monthly air temperature during the main rainy season (Kiremt) may lead to 

reduced evaporation followed by reduced drying of the surface. Furthermore, by 2030 the 

monthly average minimum air temperature is expected to be higher during the Belg season for 

Ambo. Likewise, the monthly average minimum air temperature is anticipated to increase for 

both Belg and Kiremt seasons for Bako and Melkassa compared to the Bega season in 2030. The 

increase in maximum and minimum air temperatures for the study sites in agreement with Araya 

et al. (2015) and Kassie et al. (2015). 

 

4.5.2 Impact of climate change on maize yield 

If the existing agronomic practices by farmers are not improved and/or continue in the near 

future, the simulated mean yield indicates that maize yields are likely to be negatively impacted 

by climate change at Melkassa and Ambo as compared to Bako by 2030. The impact was 

greatest for Melkassa (low altitude) where air temperature is naturally high and precipitation is 

low. The projected increase in air temperature and decrease in precipitation particularly during 

the main rainy season (Kiremt) might cause a maize yield reduction. The result is consistent with 
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other studies (Kassie et al., 2015; Tesfaye et al., 2018). Previous studies also indicated an 

increase in air temperature will cause to increase in maize development rate and a decrease in the 

total growth duration. This decrease limits the available time for the anthesis stage, and leads to a 

depletion of kernels per plant which subsequently reduced the simulated yield in comparison to 

the baseline conditions (Abraha and Savage, 2006). Tachie-Obeng et al. (2013) reported that 

further increases in air temperature may shorten crop life cycles and accelerate crop development 

rates, implying increased respiration losses, reduced biomass accumulation and reduced crop 

yields. Meza et al. (2008) also found that climate change will cause crops to complete their 

growth in a shorter period of time and this will result in a 10 to 30 % reduction in yield in the 

future. 

 

Climate change is likely to reduce maize yield at Ambo by an average of 4 % in 2030 if the 

current varieties are grown under the existing agronomic practice in the near future. This could 

be associated with the decrease in precipitation and the increase in air temperature during the 

short rainy season (Belg) lead to yield reduction. Low maize yields have a direct impact on food 

security for the study areas. Rapid changes in basic crop management practices are necessary for 

the study areas and if not, farmers will be at risk to future climate shocks. Thus, improved crop 

management practice is needed for the maize cropping system to be more resilient to the 

changing environmental conditions (Cairns et al., 2013). 
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On the contrary, future maize yield was projected to increase slightly relative to the baseline 

yield for Bako. This could be attributed to the increase in precipitation in the main rainy season 

(Kiremt) and the increase in air temperature which seemed to remain favorable for maize yield 

for this study site. This finding agreed with Araya et al. (2015), who showed that future maize 

yield was slightly higher than baseline yield at Bako. 

 

4.5.3 Crop management practices as adaptation options 

The challenge to produce enough food for the fast-growing population in Ethiopia will be greater 

under the changing climate unless the farming systems used involve adaptation strategies and/or 

new technological advancements are achieved. Since rainfed maize production is vital for food 

security in Ethiopia (Abate et al., 2015), adapting this cropping system to a drier and warmer 

future climatic condition is important. In the future climate, maize would have a reduced time to 

flowering and to maturity due to the projected high maximum and minimum air temperature for 

the study sites. The suitability of early, medium, and late maturing cultivars for low- and high-

rainfall environments differ. Therefore, adjusting planting date, nitrogen application level and 

choosing the appropriate cultivar could be considered three agronomic approaches which can be 

used to minimize the impact of climate change on maize and to increase yield.  

 

Under future climate early planting between 15 May to 01 June resulted an improved relative 

yields for all maize cultivars for Ambo. The result is supported by Abraha and Savage (2006) 

who reported that early planting allows the maize crop to escape the hot weather of a future 
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environment and increase yield compared to that for the local and late planting dates in the 

midlands of KwaZulu-Natal, South Africa. The increased N fertilizer level from 23-150 kg ha-1 

resulted improved yields for all cultivars when combined with early planting at Ambo. Nitrogen 

fertilizer is a key nutrient for crop growth to achieve the yield potential of new cultivars (Foulkes 

et al., 2011). 

 

Nitrogen management together with a shift in planting date were one of the most important 

adaptation strategies tested, in terms of yield impact for Bako. For example, early planting 

combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided higher relative yields under 

the future climate. Delayed planting has a negative influence on maize production under the 

future climate. Our results differed from Abera et al. (2018) who suggested that combining high 

fertilizer levels with late planting resulted increased yields for Bako. The results from the current 

study suggests that improvements in crop management practices could lead to increased yields.  

 

All planting dates considered resulted in negative relative yields for Melkassa. However, late 

planting had reduced relative yields compared to early planting. Higher fertilizer levels (100-150 

kg ha-1) seem to reduce yield reductions under the future climate, but this varied among maize 

cultivars studied. Planting the Jibat cultivar between 15 and 30 June at higher N levels may 

reduce severe yield reductions of maize at Melkassa. The result agrees with Challinor et al. 

(2014) who showed long-season cultivar can compensate for the reduced growth duration 

resulting from future increased air temperatures.  
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4.5.4 Crop and climate models uncertainty in yield simulation 

The AquaCrop (water-driven) model over-predicted maize yield in most cases during the 

simulation period for the study sites (Figure 4.10a-b and see Appendix 2, Figure SM4b-c). This 

might be due to the simplification of complex processes in AquaCrop (Araya et al., 2017a, b) as 

compared to DSSAT and APSIM (radiation-driven) models. In addition, the AquaCrop model 

has high extrapolative capability by allowing the normalized water productivity to account for 

climatic condition and yield simulation (Kanda et al., 2018). Furthermore, there are several 

factors such as biotic and abiotic stresses (Gariby et al., 2019) as well as pedo-climatic 

conditions (Brilli et al., 2017) that are not accounted for in the models used and could have 

attributed toward the over-prediction of crop yield. On the other hand, DSSAT (radiation-driven) 

model underestimated maize yield for some cultivars for the study sites. This is explained by the 

performance of DSSAT model varied amongst locations and cultivars (Sharda et al., 2021). For 

this study, compared to crop models, GCM uncertainty in predicted future maize yield is 

relatively larger. These results are consistent with other studies of climate change impact 

quantification on maize crop (Kassie et al., 2015; Zhang et al., 2015). However, the result is in 

contrast to the findings of another study reporting that uncertainty from crop models were higher 

than those from GCMs (Asseng et al., 2013; Yang et al., 2014; Araya et al., 2015). 
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4.5.4 Conclusions 

This study quantifies the impact of climate change on maize production in tropical environments 

of Ethiopia and the role of crop management practices as an adaptation mechanism under future 

climate. The analysis of climate change scenarios of seven GCM models and RCP 8.5 indicates 

compromised climatic conditions for maize growth. The results indicate that both average 

monthly maximum and minimum air temperature will increase in the study areas by 2030. 

GCMs ensemble show that the monthly average maximum air temperature will increase during 

the Belg and the Bega seasons rather than the Kiremt season in 2030. The monthly average 

minimum air temperature may increase during the Belg season at all sites. 

Monthly total precipitation will remain almost the same as the baseline while the Belg 

season monthly total precipitation will decrease at Ambo under the future climate. The Kiremt 

season monthly total precipitation, on the other hand, may significantly increase at Bako in 2030. 

However, future monthly total precipitation will reduce considerably for the Belg and Kiremt 

seasons at Melkassa in 2030. These would result in a mean maize yield reduction of 4 and 16 % 

at Ambo and Melkassa respectively, and a mean maize yield increase of 2 % at Bako in 2030. 

The projected climate change, with increasing air temperatures and changes in 

precipitation, will become a threat to Ethiopian food production unless adaptation strategies are 

applied. In the higher altitude (Ambo), early planting of maize cultivars between 15 May to 01 

June would result in improved relative yields in the future climate. Generally, combining early 

planting with an increase fertilizer levels between 23-150 kg ha-1 will result in improved yields 

for all maize cultivars in Ambo. For the mid altitude (Bako), planting after 15 May has either no 

or negative effect on maize yield. However, early planting combined with a nitrogen fertilizer 
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level of 23-100 kg ha-1 provided higher relative yields under the future climate in Bako. Delayed 

planting has a negative influence on maize production for Bako under the future climate (2030). 

For the lower altitude (Melkassa), all planting dates considered resulted in a negative relative 

yield. However, late planting would have lower relative yields compared to early planting. 

Higher fertilizer levels (100-150 kg ha-1) seem to reduce yield reductions under the future 

climate, but this varied among maize cultivars studied. Planting the Jibat cultivar between 15-30 

June at higher N levels may reduce severe yield reduction of maize at Melkassa. The output of 

this study is importance, since it can assist farmers to change their crop management practices 

and agricultural policy makers at the regional level for sustainable maize production in the study 

region. 
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Appendix 2 

Supplementary materials (SM) 

Table SM4a: Evaluation of GCMs outputs in simulating monthly total precipitation and 

mean monthly maximum and minimum air temperatures at Ambo, Bako and Melkassa for 

1995- 2005 period 

  

Monthly total 

precipitation 

Monthly mean 

maximum 

Monthly mean 

minimum    

    air temperature air temperature   

  R2 RMSE  R2 RMSE R2     RMSE   

    (mm)   (°C)         (°C) 

Ambo (high altitude)               

CanESM2 0.66 73.80 0.99 0.09 0.99 0.03   

CNRM-CM5 0.81 48.30 0.99 0.09 0.99 0.03   

CSIRO-Mk3-6-0 0.87 39.64 0.99 0.10 0.99 0.03   

EC-EARTH 0.95 25.62 0.99 0.09 0.99 0.03   

HadGEM2-ES 0.90 39.87 0.99 0.10 0.99 0.03   

IPSL-CM5A-MR 0.50 76.07 0.99 0.10 0.99 0.03   

MIROC5 0.88 34.51 0.99 0.09 0.99 0.03   

Bako (mid altitude)               

CanESM2 0.85 56.43 0.99 0.17 1.00 0.00   

CNRM-CM5 0.92 54.45 0.99 0.17 1.00 0.00   

CSIRO-Mk3-6-0 0.97 65.84 0.99 0.17 1.00 0.00   

EC-EARTH 0.97 64.96 0.99 0.17 1.00 0.00   

HadGEM2-ES 0.94 59.67 0.99 0.17 1.00 0.00   

IPSL-CM5A-MR 0.67 75.05 0.99 0.17 1.00 0.00   

MIROC5 0.91 59.06 0.99 0.17 1.00 0.00   

Melkassa (low altitude)               

CanESM2 0.79 75.51 1.00 0.02 1.00 0.00   

CNRM-CM5 0.05 86.24 1.00 0.02 1.00 0.01   

CSIRO-Mk3-6-0 0.80 48.11 1.00 0.02 1.00 0.01   

EC-EARTH 0.56 49.65 1.00 0.01 1.00 0.01   

HadGEM2-ES 0.79 46.35 1.00 0.02 1.00 0.01   

IPSL-CM5A-MR 0.50 67.34 1.00 0.02 1.00 0.01   

MIROC5 0.74 57.53 1.00 0.02 1.00 0.01   
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(c) Melkassa 

 

 

 
 

Figure SM4a: Percentage yield differences in 2030 relative to the baseline period as 

simulated with APSIM, AquaCrop and DSSAT crop models at different planting dates and 

nitrogen fertilizer levels across cultivars for (a) Ambo (high altitude), (b) Bako (mid-

altitude)  and (c) Melkassa (low altitude). Error bars show the standard deviation of maize 

yield change simulated by multiple GCMs 
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(c) DSSAT 

 

(d) Ensemble 

 

Figure SM4b: Relative mean maize yield change (%) as compared to the baseline as 

simulated using (a) APSIM, (b) AquaCrop, (c) DSSAT and (d) ensemble based on seven 

GCMs under RCP8.5 for near future (2030) for Ambo 
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 Bako 

(a) APSIM 

 

(b) AquaCrop 
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(c) DSSAT 

 

                                                         (d) Ensemble 

 

Figure SM4c: Relative mean maize yield change (%) as compared to the baseline as 

simulated using (a) APSIM, (b) AquaCrop, (c) DSSAT and (d) ensemble based on seven 

GCMs under RCP8.5 for near future (2030) for Bako 
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   Melkassa 

(a) APSIM 

 

(b) AquaCrop 
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(c) DSSAT 

 

                                                       (d) Ensemble 

 

 

Figure SM4d: Relative mean maize yield change (%) as compared to the baseline as 

simulated using (a) APSIM, (b) AquaCrop, (c) DSSAT and (d) ensemble based on seven 

GCMs under RCP8.5 for near future (2030) for Melkassa  
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Lead to Chapter 5 

Chapter 4 mainly focused on the impact assessment of climate change on future precipitation and 

air temperature and their effect on maize yield. Possible adaptation measures were also explored, 

to counteract the future climate. In Chapter 5, historical drought events and projected future 

climate change impacts on drought for the study sites are presented. The observed precipitation 

and air temperature data are used to assess the past drought events. Also, projected precipitation 

and air temperature data from the ensemble of seven GCMs are used to analyze future drought 

characteristics.   
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5.1 Abstract 

Droughts negatively impact agricultural production. Thus, drought projections are vital for the 

development of future drought mitigation strategies. This study aimed to assess historical and 

future drought characteristics using historical observed data for 1995-2017 and an ensemble of 

seven Global Climate Models (GCMs) from Coupled Model Intercomparison Project (CMIP5) 

for maize growing areas of Ethiopia. Future drought characteristics were investigated under 8.5 

Representative Concentration Pathway (RCP). The widely known Standardized Precipitation 

Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were used to 

investigate drought characteristics. The results indicate that compared to the SPI-based analysis, 

the SPEI suggests more severe drought conditions over the maize-growing study sites in the 
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future indicating potential effects of increasing air temperatures on drought risks. The SPI and 

SPEI at all timescales projected the driest years in the future climate as 2027, 2039, 2042, 2048 

and 2049 for Ambo, 2022, 2023, 2042, 2048 and 2049 for Bako, and 2021, 2036, 2044, 2047 and 

2048 for Melkassa. SPI and SPEI showed strong correlation (R > 0.9) on the direction of change 

but the effect on drought condition was different. Increasing frequency of moderate to extremely 

severe drought with extended drought duration was found to occur for Ambo in the future. 

According to the 6-month SPEI, Bako will experience agricultural droughts with greater severity 

and duration in the future. Both SPI and SPEI projected increasing drought duration at short and 

long timescales for Melkassa. However, the 3- and 6-month SPEI predicted the shorter timescale 

to be more intensive than the longer timescale. The projected moderate to extremely severe 

drought under future climate will negatively affect maize production for the study sites. 

Therefore, the development of resilient-improved maize varieties for high air temperature, crop 

diversification, soil and water conservation, drought tolerance crops for water-limited 

environments are highly recommended as risk-reducing management options to offset some of 

the maize yield losses caused by severe drought due to climate change. 

 

Keywords: Ensemble, Global climate models, Representative concentration pathway, SPEI, SPI 

 

5.2 Introduction 

Drought is a complex natural hazard that severely affects agriculture (Wang et al., 2014) and the 

ecosystem (Van Loon, 2015). Its complexity is due to the fact that it is spatially and temporally 

variable, region-specific and context dependent. Also, drought occurs with varying degrees of 
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intensity, while its cumulative effect makes it difficult to detect its onset and cessation period 

(Tirivarombo et al., 2018). 

 

Ethiopia is the second highly populated country in Africa, next to Nigeria. The country’s 

population was estimated to be more than 110 million (Alemu and Carlson, 2020). The 

livelihood of 85 % of its population, depends on agricultural production. The farming system in 

the country is traditional and affected by climate related hazards including drought. Drought is 

considered to be the main limiting factor of food security and national sustainable development 

(Mera, 2018). In recent years, drought has occurred more frequently due to climate change, and 

this trend remains unchanged and could worsen in the future (Robinson, 2013). Therefore, 

increased attention to the drought risk and its future potential changes can assist with adaptation 

to climate change and agricultural production, especially in rain-fed agricultural regions. 

 

Drought is a major climate related natural disaster occasionally affecting Ethiopia. About one 

hundred years ago, drought frequency occurrence in the country was once every 10 years 

(Eshetie et al., 2016). However, almost half of rural households in Ethiopia were affected by 

drought in a five-year period from the year 1999 to 2004 (Dercon et al., 2005). Presently, the 

drought cycle has become more frequent and occurred in three successive years (Mera, 2018). 

For example, the 2015 El Niño-induced drought caused food insecurity among 10.2 million 

people and was one of the most intense droughts in history (FAO, 2016). In most cases, 

Ethiopian droughts were associated with a failure of major rains (Kiremt, June to September) that 

account for 65–95% of the total annual rainfall, depending on the location (Suryabhagavan, 

2017).  
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Drought is a phenomenon that exists when there is a prolonged water deficit in the atmosphere, 

soil and rivers (Touma et al., 2015). Drought can be classified as meteorological, agricultural, 

hydrological, socio-economic drought (Van Loon, 2015; Zhao et al., 2017) and ecological 

drought (Crausbay et al., 2017). Meteorological drought is characterized by a prolonged deficit 

of precipitation combined with increased potential evapotranspiration extending over a large area 

for a long period of time. Agricultural drought is characterized by deficits of total soil moisture 

and results mainly from the shortage of precipitation. Hydrological drought is related to a 

shortage of precipitation and/or subsurface water supply (i.e., stream flow, reservoir and lake 

levels, and groundwater). Socioeconomic drought is associated with the impacts of 

meteorological, agricultural, and hydrological droughts on the socioeconomic sectors (Van Loon, 

2015). Ecological drought is an episodic deficit in water availability that drives ecosystems 

beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedbacks in natural 

and/or human systems (Crausbay et al., 2017). 

 

In previous studies, drought indices have been identified using several methods (Heim, 2002). 

However, so far, the most commonly used drought index is the Palmer Drought Severity Index 

(PDSI) (Palmer, 1965) and the Standardized Precipitation Index (SPI) (Mckee et al., 1993). The 

PDSI index lacks the effectiveness of spatial and temporal comparisons while, the SPI index 

ignores the effect of evapotranspiration changes caused by air temperature increases (Wang et 

al., 2019). The PDSI is based on the water balance and incorporates precipitation, runoff, 

moisture supply and evaporation as input parameters. On the other hand, the SPI quantifies the 

impact of precipitation deficit on water sources using standardized precipitation. With SPI, there 
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is the assumption that other climate variables such as air temperature remain stationary (Vicente-

Serrano et al., 2010). The fundamental strength of SPI over other indices is that it is able to 

detect drought at different time scales (1, 3, 6, 12 and 24 months) implying that various types of 

drought (meteorological, agricultural, and hydrological) can be monitored. However, in assessing 

the influence of climate change on drought, it is vital to incorporate both precipitation and air 

temperature (Vicente-Serrano et al., 2010). Several studies have also shown the role of air 

temperature in drought (Diffenbaugh et al., 2015; Shukla et al., 2015; Williams et al., 2016; 

Ahmadalipour et al., 2017). To more understand the impact of global warming on drought, it is 

recommended that air temperature be introduced (Jeong et al., 2014; Sun et al., 2016). For the 

SPI calculation air temperature is not considered, in spite of it being important for a warming 

climate (Liu et al., 2016). Increased air temperature leads to increased evapotranspiration (King 

et al., 2015). Therefore, for a projected climate, it is important to use drought indices which also 

account for air temperature in its formulation. For this reason, the Standardized Precipitation 

Evapotranspiration Index (SPEI), a newly conceptualized drought index that is similar to SPI but 

includes air temperature variability, was recently developed (Vicente-Serrano et al., 2010). 

Compared to other indices, the SPEI more reflects the impacts of drought on agriculture (Guo et 

al., 2019). However, the use of SPEI and SPI on the impact of drought on maize growing agro-

ecologies has not been conducted in Ethiopia. Therefore, there is a critical need to more 

accurately predict droughts caused by climate change to assist in developing effective strategies 

on agricultural loss and to respond to socioeconomical crises. 
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Global climate models (GCMs) are valuable tools for understanding the climate process under 

different Representative Concentration Pathways (RCPs), increasing the reliability of drought 

predictions. Haile et al. (2020) investigated future drought changes using an ensemble of five 

GCMs in the coupled Model Intercomparison project (CMIP5) under RCPs 2.6, 4.5, and 8.5 

scenarios using SPI and SPEI over East Africa. Yao et al. (2020) projected drought 

characteristics using SPEI and multiple GCMs under RCPs 4.5 and 8.5 scenarios in mainland 

China. Venkataraman et al. (2016) evaluated the performance of the ensemble of CMIP5 GCMs 

on drought characteristics under 2.6, 4.5 and 8.5 RCP scenarios using the SPI and SPEI in Texas.  

 

Considering the increasing trend in global air temperatures and the impact on local climate, it has 

been shown that climate change may alter the frequency and severity of extreme events such as 

droughts (IPCC, 2013). Therefore, drought analysis with respect to the effect of climate change 

has received more attention over recent years in Ethiopia (Kim and Kaluarachchi, 2009; Enyew 

et al., 2014; Funk et al., 2016; Taye et al., 2018). However, these studies focused only on climate 

change impact on water resources and El Niño-associated drought impact assessment. Few 

studies assessed future drought (e.g., Abrha and Hagos, 2019) using a multimodel approach 

under climate change in the Hintalo Wejerat district of Ethiopia which is different from the 

current study region and not agro-ecologies of different maize growing areas. Hence, to the best 

of our knowledge, this is the first study that uses the SPEI and SPI indices under the 8.5 RCP 

scenario for drought analysis across the study areas. 
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The main objective of this study is firstly, to assess historical drought using observed data from 

1995-2017. The second objective is to project future climate change impact on drought risk 

based on the ensemble mean of seven GCMs for the period of 2021-2050 under the RCP 8.5 

scenario. SPI and SPEI were used to identify drought through the use of the ensemble mean 

monthly precipitation and air temperature data.  

 

5.3 Materials and methods 

5.3.1 Study area 

Three agricultural research centres were selected to represent maize growing areas of Ethiopia: 

Ambo (latitude 8° 57' N, longitude 38° 07' E and altitude of 2225 m) in the central highland of 

Ethiopia, Bako (9o 12' N, 37o 04' E and 1650 m) in the western part of Ethiopia and Melkassa 

(8o 42' N, 39o 32' E and 1550 m) in the central rift valley of Ethiopia. These are the most 

important agricultural research centres in Ethiopia, playing key roles in the country’s food 

security. Ambo has a temperate (intermediate highland) agro-ecology. The maize growing 

season lasts from May to December depending on the variety. Bako has a mid-altitude agro-

ecology with hot humid weather. The maize growing season ranges from May to November. 

Melkassa has an arid to semi-arid agro-ecology. The maize growing season ranges from June to 

November.  

 

5.3.2 Datasets 

The observation data series used in the present study includes daily precipitation, and minimum 

and maximum air temperature records for the period of 1995–2017 (baseline). These data were 

collected from the meteorological station nearest to the three agricultural research centres and/or 
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from national meteorological agency where the study sites are located. Data from the time 

periods of 2021–2050 (near future) were extracted from seven GCMs namely, CNRM-CM5, 

CSIRO-MK3-6-0, ICHEC-EC-EARTH, IPSL-CM5A-MR, MIROC5, HadGEM2-ES and 

CanESM2 (Table 5.1) using the Regional Climate Model (RCM)- RCA4 (Samuelsson et al., 

2011). The RCM-RCA4 simulation covers the Coordinated Regional Climate Downscaling 

Experiment (CORDEX)-Africa domain with a spatial resolution of 0.44o and were bias-corrected 

using a quantile-quantile mapping approach (Ngai et al., 2017). The GCMs' ensemble mean was 

used to detect drought events in the near future. The RCP 8.5 (highest emissions) (Moss et al., 

2010) was considered so as to analyze the projected changes in drought due to climate change. 

This climate scenario was designed to represent a business-as-usual scenario assuming the 

continuation of current trends and projected drought for the future climate in Ethiopia. 

 

Table 5.1: List of GCMs used for this study 

GCM name Institute References 

CanESM2 CCCma: Canadian Centre for Climate Modelling  CCCma (2017b) 

 and Analysis  

CNRM-CM5 CERFACS: Centre Européen de Recherche  Voldoire et al. (2013) 

   et de Formation Avancée en Calcul Scientifique   

CSIRO-MK3-6-0 CSIRO: Commonwealth Scientific and Industrial  Jeffrey et al. (2013) 

  Research Organization   

EC-EARTH ICHEC: Consortium of European research  Hazeleger et al. (2010) 

  institutions and researchers   

HadGEM2-ES MOHC: Met Office Hadley Centre Collins et al. (2011) 

IPSL-CM5A-MR IPSL: Institut Pierre Simon Laplace  Dufresne et al. (2013) 

MIROC5 AORI: Atmospheric and Ocean Research Institute Watanabe et al. (2010) 
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5.3.3 Assessment of drought condition using the SPI and SPEI 

A comparative analysis of SPI and SPEI is carried out in order to establish whether potential 

evapotranspiration, used in obtaining SPEI, has an impact on the drought index. The analyses 

were performed at different time scales for the baseline period 1995–2017 and for the near future 

2021-2050. The different time scales (3, 6 and 12 months) were computed to capture both the 

short-term and long-term drought. The SPI and SPEI were generated using the SPEI package 

(Beguería et al., 2014) found in the R software package which is free software available at 

http://sac.csic.es/spei. 

 

5.3.3.1 SPI 

The SPI (McKee et al., 1993) is one of the most popular indices to assess drought conditions 

based on probability distribution of long-term precipitation using the gamma function. 

Precipitation is transformed into normalized numerical values and the SPI is given as the number 

of standard deviations by which the observed precipitation deviates from the long-term mean 

(Eq. 5.1). The index gives a reliable estimate of the magnitude, severity and temporal extent of 

droughts. An index of zero indicates the median precipitation amount, a negative index a drought 

awareness, and a positive index wet conditions. As the dry or wet conditions become more 

severe, SPI becomes more negative or positive respectively. The index is calculated as follows: 

𝑆𝑃𝐼 =
𝑥𝑖− �̅�

𝜎
                                                                                                                                               (5.1)                                                                                                                 

where xi is the precipitation of the selected period during the year i, �̅� is the long term mean 

precipitation and 𝜎 is precipitation standard deviation for the selected period. 
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5.3.3.2 SPEI 

 

The SPEI is considered an improved drought index of the SPI that is especially suited to analyse 

the effect of global warming on drought conditions (Beguería et al., 2014). The calculation of the 

SPEI in this study follows the method by Vicente-Serrano et al. (2010). The SPEI is based on a 

climatic water balance which is determined by the difference between monthly precipitation (P) 

and potential evapotranspiration (PET). For this study, PET was calculated using the Hargreaves- 

Samani equation (Hargreaves and Samani, 1985). The Hargreaves–Samani equation has been 

evaluated across different climate regions (Hargreaves and Samani, 1985; Hargreaves, 1989; 

Hess et al., 2001; Droogers and Allen, 2002; Hargreaves and Allen, 2003) and has been used in 

SPEI calculations by Rhee and Cho (2016). In addition, the Food and Agriculture Organization 

of the United Nations (FAO) recommends the use of the Hargreaves–Samani equation, when 

meteorological data are lacking, to compute the potential evapotranspiration using the Penman–

Monteith equation. Therefore, in the present study, SPEI was adopted with potential 

evapotranspiration estimated using the Hargreaves–Samani equation. The Hargreaves–Samani 

(HS) equation is given as: 

𝐸𝑇𝐻𝑆 = 0.0135 × 𝐾𝑇 × (𝑇𝑎𝑣 + 17.8) × (𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛)2  × 𝑅𝑎 × 0.408 × 𝑑      (5.2) 

where 𝐸𝑇𝐻𝑆 is evapotranspiration in mm decade-1, 𝐾𝑇 is an empirical coefficient, 𝑇𝑎𝑣 the average 

daily air temperature (°C), 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 are the decadal mean, maximum, and minimum air 

temperatures (°C), 𝑅𝑎 is extraterrestrial radiation (MJ m−2) and 𝑑 is the number of days within 

the decade (Guo et al., 2019). The surplus accumulation of a climate water balance is calculated 

as the difference between the precipitation P and PET for the month i, which means deficit Di, is 

calculated using: 
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              𝐷𝑖 = 𝑃𝑖 −  𝑃𝐸𝑇𝑖                                                                                                               (5.3)                                                                                                               

The calculated 𝐷𝑖 values are aggregated at different time scales as follows: 

 𝐷𝑛
𝑘  =   ∑(𝑃𝑛−1 − 𝑃𝐸𝑇𝑛−1

𝑘−1

𝑖=0

)                                                                                      (5.4) 

where k is the timescale (months) of the aggregation and n is the calculation month. 

The probability density function of a log-logistic distribution is given as: 

         𝑓(𝑥) =   
𝛽

𝛼
 (

𝑥−𝛾

𝛼
)

𝛽−1

 (1 + (
𝑥−𝛾

𝛼
)

𝛽
)

−2

                                                                          (5.5)            

where α, β and γ are scale, shape and origin parameters respectively for γ > D < ∞ (Vicente-

Serrano et al., 2010). The probability distribution function for the D series is then given as:   

         𝑓(𝑥) = [1 + (
𝛼

𝑥−𝛾
)

𝛽
]

−1

                                                                                            (5.6) 

Using  f(x), the SPEI can be obtained as the standardized values of f(x) according to the method 

of Abramowitz et al. (1965): 

𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶0 +  𝐶1  𝑊 + 𝐶2𝑊2

1 + 𝑑1 𝑊 + 𝑑2 𝑊2 + 𝑑3𝑊3
                                                               (5.7) 

where  𝑊 = √−2 𝐼𝑛 𝑃 for P ≤ 0.5                                                                                  (5.8)   

where P is the probability, as a fraction, of exceeding a determined 𝐷𝑖 value and is given as:  

P = 1 – f (x).  

The constants of Eq. (5.7) are: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 

1.432788, d2 = 0.189269, and d3 = 0.001308. Positive values of SPEI indicate above-average 

moisture conditions while negative values indicate drier conditions. A drought event is defined 

when the SPEI value is less than or equal to −1 in a certain period. The drought categories 

according to the SPI and SPEI values are presented in Table 5.2. 
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Table 5.2: Categorization of drought severity using SPI/SPEI drought indices 

Drought severity level SPI, SPEI value 

No drought SPI, SPEI > -1 

Moderate drought -1.5 < SPI, SPEI ≤ -1 

Severe drought -2.0 < SPI, SPEI ≤ -1.5 

Extreme drought SPI, SPEI ≤ -2.0 

Source: Haile et al., 2020 

 

5.3.4 Analysis of drought duration, severity, intensity and frequency  

Drought characteristics include various drought conditions, such as frequency, duration, severity, 

and intensity (Lee et al., 2017). In the current study, drought indicators SPI and SPEI were used 

and calculated for the different timescales 3, 6 and 12 months. To measure the duration of 

drought and magnitude of drought severity, a threshold value must be defined. A threshold value 

of −1 is usually used to identify the availability of drought conditions for the SPI and SPEI 

drought indices. The drought duration (D) is the period length for which the SPI and SPEI are 

continuously negative, starting from when the SPI and SPEI values equal to -1 and ends when 

the SPI and SPEI values are positive (Adhyani et al., 2017). The drought severity (S) is the 

cumulated SPI or SPEI values within the drought duration, and is defined by: 

 𝑆 = − ∑ 𝑆𝑃𝐸𝐼𝑖         
𝐷
𝑖=1                                                                                                                   (5.9)  

The intensity of drought is the ratio of severity of drought to its duration. Furthermore, droughts 

were evaluated using drought frequency F (%) given as: 
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𝐹 =
𝑛𝑚

𝑁𝑚
 × 100                                                                                                                           (5.10)        

where 𝑛𝑚 is the number of drought months and 𝑁𝑚 the total number of months. The comparison 

of SPI and SPEI, that determines if both indices show the same pattern (irrespective of their 

magnitude), is assessed using the Pearson correlation coefficient, r, which measures the strength 

of the linear relationship between the SPI and SPEI. This coefficient establishes whether a linear 

relationship exists between the indices at the 95% confidence. The relationship coefficient (r) 

takes values between 1 (positive relationship ) and −1 (negative relationship). An r value ≥ 0.5 is 

deemed to be a strong correlation (Taylor, 1990) and is calculated as follows: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2  (𝑦𝑖 − �̅�)2𝑛
𝑖=1

                                                                                       (5.11)          

where: n is the number of observations. For this study x and y represent the SPEI and SPI values, 

respectively. 

 

5.4 Results 

5.4.1 Assessment of historical drought conditions using the SPI and SPEI 

The time series (1995–2017) of the drought indices were produced for the three study sites. To 

demonstrate the temporal variation of drought at different time scales (3, 6 and 12 months) for 

Ambo, Bako and Melkassa, the SPIs and SPEIs historic drought events were generated and are 

presented in Figures 5.1 - 5.3. In general, and for all the sites, both indices show the same pattern 

of variability for each timescale, but they differ in the duration, magnitude, and intensity of the 

drought. Variability in the droughts can be attributed to the fact that the study sites experienced 

high interannual variability in climate. Moreover, the frequency of occurrence of the droughts is 
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greater for the shorter timescale compared to the longer timescale. This implies that a shorter 

timescale (3-6-months) of an existing dry condition leads to agricultural drought, which has high 

temporal variability for the study sites, whereas at a longer timescale (12-month), the frequency 

of dry spells considerably decreased. Hence, the agricultural droughts (3-6-month timescale) 

show the highest frequency of occurrence. However, at the longer timescales, the drought lasts 

longer, and their magnitude increases. Several drought periods occurred across the study sites 

during the period 1995–2017. Investigations of the historical drought conditions confirmed that 

four to five significant drought periods occurred for all study sites. According to SPI and SPEI 

(3-, 6- and 12-month) timescale drought events which have a duration of more than two months 

occurred in 1999-2000, 2002, 2009 and 2015-2016 for Ambo (Figure 5.1) while for Bako and 

Melkassa in 1996, 2002-2003, 2008-2009, 2012-2013 and 2015; and 1999, 2002, 2009 and 2015-

2016 respectively (Figures 5.2 and 5.3).  
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Figure 5.1: SPI and SPEI at different timescales for Ambo for 1995-2017 
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Table 5.4 shows the summary results of duration, severity, and intensity for each site for the 

timescales 3-, 6- and 12- months. The result indicates the 6- and 12-month SPEI for 2015 was 

the longest (12-month drought duration) and most intense (-20.061 index value) for Ambo (Table 

5.4). Similarly, 2015 was  the longest and the most severe drought year for Bako as indicated by 

the SPI and SPEI 12-month timescale. Likewise, the SPI and SPEI 12-month timescale for 

Melkassa showed that 2002 was the longest drought year with a duration of 7 months and the 

highest severity with an SPI of -15.045 (extremely dry). This result indicates that droughts 

identified using the SPEI were also identified as droughts with the SPI which could also detect a 

drought condition that was identified with SPEI within the same historical period. The magnitude 

of the drought intensity in one period has a high severity and a short duration. For SPI-6, the 

highest intensity that occurred for Ambo was -3.055 for May to September 2009 with a severity 

of -15.277 for a five-month duration while the highest intensity for SPI-6 was recorded in Bako 

of about -1.974 with severity of -17.762 and duration of nine months which occurred in March to 

November 2015. On the other hand, SPI-3 gives the results that Melkassa had the highest 

intensity of about -2.515 in February to April 2015 with a value of severity of -7.546 for a three-

month duration.  
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Table 5.4: The longest, strongest, and highest drought events for SPI and SPEI for 

timescales of 3, 6 and 12 months for the period 1995-2017 for Ambo, Bako and Melkassa 

Site Time          Longest Strongest      Highest 

  Scale         Year Duration Year Severity Year Intensity 

Ambo SPEI 3 2015 7 2009 -9.807 2009 -1.961 

  SPEI 6 2015 12 2015 -17.787 2009 -1.943 

  SPEI 12 2015 12 2015 -20.061 2010 -1.801 

  SPI 3 2008 - 2009 5 2009 -9.429 2009 -1.886 

  SPI 6 2015 7 2009 -15.277 2009 -3.055 

  SPI 12 2015 8 2015 -15.293 2015 -1.912 

Bako SPEI 3 2015 10 2015 -16.879 2015 -1.688 

  SPEI 6 2015 10 2015 -17.203 2003 -1.841 

  SPEI 12 2015 12 2015 -19.825 2015 -1.652 

  SPI 3 2015 6 2015 -11.606 2015 -1.934 

  SPI 6 2015 9 2015 -17.762 2015 -1.974 

  SPI 12 2015 12 2015 -22.466 2012 -1.914 

Melkassa SPEI 3 1999 6 1999 -9.362 2015 -1.712 

  SPEI 6 2002 and 2015 6 2015 -10.520 2015 -1.753 

  SPEI 12 2002 7 2002 -10.798 2015 -1.775 

  SPI 3 2002 5 2002 -9.845 2015 -2.515 

  SPI 6 2002 and 2015 6 2002 -13.108 1999 -2.258 

  SPI 12 2002 7 2002 -15.045 2016 -2.288 

 

The drought frequency for 1995-2017 was analyzed. According to SPEI-3 and SPEI-12 month 

drought indices, during the past period, the frequency of occurrence of moderate drought was 

very high (14.9 %) for Ambo as compared to Bako (11.6 %) and Melkassa (12 %). On the other 

hand, the frequency of occurrence of severe drought was 8 % at Melkassa while it was 6.2 % for 

Ambo and Bako indicated by SPEI-6 and SPEI-12. However, the frequency of extreme drought 

occurrence is relatively reduced. SPI-3 and SPI-12 values revealed that the frequency of extreme 

drought occurrence was 4.7 % for Bako and Melkassa while SPEI-6 indicated 2.5 % at Ambo 

(Table 5.5). The result shows that SPI indicated more extreme drought than SPEI. 
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Table 5.5: Drought frequency of SPI and SPEI for 1995-2017 and under future climate (2021-2050) for 3- 6- 12-month 

timescales for Ambo, Bako and Melkassa 

Time 

series 

  Ambo Bako Melkassa 

  Drought frequency (%) 

  Moderate Severe Extreme 

 

Moderate 

 

Severe Extreme 

 

Moderate 

 

Severe 

 

Extreme 

1995-2017 SPEI-3 14.9 1.8 0.7 11.6 5.8 0.4 10.5 6.2 0.4 

  SPI-3 10.5 3.6 0.4 10.1 4.7 1.4 7.6 3.3 4.7 

  SPEI-6 9.4 4.0 2.5 10.9 6.2 0.4 10.9 6.5 0.0 

  SPI-6 9.4 2.9 1.4 7.6 5.1 3.3 7.6 4.7 2.5 

  SPEI-12 7.6 6.2 1.4 10.5 5.1 0.7 12.0 8.0 0.0 

  SPI-12 5.4 5.4 2.2 7.6 4.3 4.7 5.8 5.8 2.5 

2021-2050 SPEI-3 14.2 3.9 0.6 11.1 6.1 0.6 15.8 2.5 0.8 

  SPI-3 10.6 2.8 1.9 9.4 5.3 1.4 13.1 1.7 0.6 

  SPEI-6 13.6 4.4 0.8 9.4 0.1 0.6 9.4 5.8 1.1 

  SPI-6 8.6 2.5 1.9 8.3 5.3 0.8 10.3 5.0 0.0 

  SPEI-12 12.8 5.0 0.8 11.1 7.2 0.0 10.8 6.1 0.0 

  SPI-12 6.9 1.4 3.3 10.8 5.3 1.1 10.0 4.2 0.0 
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5.4.3 Projection of drought under future climate using SPI and SPEI 

Figures 5.4, 5.5 and 5.6 show the projected SPI and SPEI time series drought values under 8.5 

RCP scenario for climate of the three sites for the future period (2021–2050). With respect to the 

projected SPI and SPEI 3-, 6- and 12-month patterns under the RCP 8.5 scenario, it is observed 

that drought is expected to increase during the future period for all timescales for all sites 

compared to that for the historical period. The SPEI projection from the ensemble means of the 

seven GCMs shows a consistent projection of more drought years than the SPI which may be due 

to increased air temperature in the future. Both the SPEI and SPI indicated that the short- to long-

term drought conditions will be less severe for Ambo and Melkassa than for Bako compared to 

the historical period. The drying values fluctuated between -2 and -3 at Ambo, -2 and -4 at Bako 

and -1 and -3 at Melkassa. As with the historical period, there is a downward trend towards the 

value of -4 at shorter timescales (3-month) at Bako indicating there will be a severe dry period in 

the near future (Figure 5.6). According to the index SPI and SPEI 3- and 6- month, all study sites 

show two distinct severe dry periods during the near future, at the beginning of 2020s, and late 

2040s. It is noticeable that the seven GCMs ensemble mean provides a clear dry period at the end 

of the near future period. It starts after 2045 and it becomes gradually more intense in time. On 

the other hand, indices with a longer timescale (12-month) are not influenced by frequent 

drought resulting foreseeable less drought occurrence with longer duration. 



205 
 

 

 

 

 

 

 

        Figure 5.5: SPI and SPEI at different timescales for Ambo for 2021-2050 
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Figure 5.6: SPI and SPEI at different timescales for Bako for 2021-2050 
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Figure 5.7: SPI and SPEI at different timescales for Melkassa for 2021-2050 

 

5.4.4 Projected drought events, frequency duration, severity, and intensity  

Analysis of drought frequency under future climate was undertaken to further understand how 

frequently drought is likely to occur for the study sites. Changes in frequency of projected 

drought provides meaningful measurement criterion to understand the influence of climate 

change on future drought for the study sites. To address this issue, the study compares the 

number of future projected drought events for a 50-year period with the number of counterpart 

events during the historical period (Table 5.5). The increasing frequency of future drought events 

is found for the Ambo and Bako sites under the RCP 8.5 scenario (Table 5.5). Except for the 6-

month SPI, the frequency occurrence of moderate to extremely severe drought is expected to 

increase at Ambo for all-timescales under future climate. Similarly, an increasing frequency (5.3-

11.1 %) of moderate to severe drought is projected to occur in Bako for SPI-6, SPEI and SPI 12-

month. Surprisingly, the SPI and SPEI projected a much reduced severe to extreme drought 

frequency percentage at Melkassa compared to the historical period. The SPI and SPEI short and 

long-timescales only projected increasing moderate drought frequency by 10-15.8 % at 

Melkassa.  
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The drought duration, severity and intensity for the future periods was also investigated for the 

study sites. Table 5.6 presents projected future longest, strongest, and highest drought years for 

2021-2050. The duration of the drought is the lifespan of droughts in months under climate 

change. According to the SPEI-6 and SPI-12, the longest droughts (12 months) are predicted to 

occur for Ambo in 2027, 2047 and 2048 while the longest dry year (2048) is projected for Bako. 

In the case of Melkassa, SPEI-12 projected the longest drought event for 2036. Among all 

categories of drought, moderate to severe droughts are projected across the study sites in most 

cases. Average-term droughts (3-6 months) are considered as agricultural droughts. According to 

SPEI and SPI 3-, 6-, and 12-month for future climate, both indices for all sites projected the five 

strongest and highest intensity drought years to occur in 2027, 2039, 2042, 2048 and 2049 for 

Ambo, 2022, 2023, 2042, 2048 and 2049 for Bako, and 2021, 2036, 2044, 2047 and 2048 for 

Melkassa. SPI 6- and 12-month projected the most severe (-21.457) and the highest drought 

intensity (-2.308) to occur in 2027 for Ambo. 

 

On the other hand, SPI 6- and SPEI 12-month projected the highest intensity (-2.130) and the 

strongest drought with severe index (-20.436) expected to occur in 2023 and 2048 respectively 

for Bako. In the case of Melkassa, SPEI 3- and 12-month projected the strongest drought with a 

severity index value of -16.998 and highest intensity -2.130 anticipated to occur in 2036 and 

2048 respectively (Table 5.6).   
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Table 5.6: Future longest, strongest and highest drought characteristics projected to occur 

under RCP 8.5 scenario for the period 2021-2050 for Ambo, Bako and Melkassa sites 

Site Time          Longest Strongest      Highest 

  Scale Year Duration Year Severity Year Intensity 

Ambo SPEI 3 2042 7 2042 -10.359 2039 -1.573 

  SPEI 6 2047 10 2027 -13.643 2049 -1.756 

  SPEI 12 2047-2048 12 2047 -16.466 2027 -1.849 

  SPI 3 2027 6 2027 -9.976 2027 -1.663 

  SPI 6 2027 12 2027 -21.457 2049 -1.798 

  SPI 12 2027 8 2027 -18.464 2027 -2.308 

Bako SPEI 3 2048 8 2048 -10.837 2022 -1.674 

  SPEI 6 2048 12 2048 -18.296 2049 -1.596 

  SPEI 12 2048 12 2048 -20.436 2048 -1.703 

  SPI 3 2042 5 2042 -7.994 2022 -1.945 

  SPI 6 2042, 2046 and 2048 6 2042 -9.455 2023 -2.130 

  SPI 12 2048 12 2048 -20.093 2049 -1.686 

Melkassa SPEI 3 2047 7 2047 -8.603 2048 -2.130 

  SPEI 6 2047 7 2044 -12.709 2036 -1.802 

  SPEI 12 2036 12 2036 -16.998 2048 -1.623 

  SPI 3 2021 and 2044 6 2021 -7.546 2036 -1.887 

  SPI 6 2044 9 2044 -12.288 2036 -1.6803 

  SPI 12 2048 7 2044 -9.938 2044 -1.656 

 

Table 5.7 presents the temporal future drought events (2021–2050) including the number of 

droughts per year and the drought categories for Ambo, Bako and Melkassa. Under RCP 8.5, the 

most common agricultural drought projected by SPEI and SPI are 2022-2023, 2026-2028, 2034, 

2038, 2042 and 2047-2050 for Ambo, 2022, 2027, 2038, 2044 and 2046-2049 for Bako and 

2021, 2027, 2030, 2035-2036, 2041-2042, 2044-2045, 2047-2048 and 2050 for Melkassa.  

 

Table 5.7 also shows that SPEI projected more droughts than SPI under the moderate to severe 

drought categories for all sites and for all timescales. The results show that even though reduced 
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precipitation is the major driver of droughts, the effect of air temperature through evaporative 

water demand has a role to play in the determination of droughts. On the other hand, SPI 

projected more extreme drought as compared to SPEI at all timescales for Ambo and Bako. This 

indicates that considering precipitation alone, more droughts are classified as extreme compared 

to when including potential evapotranspiration. Overall, Table 5.7 shows that, Melkassa will 

experience the highest number of droughts for the 3-month timescale while Ambo and Bako will 

experience 6- and 12-month timescale droughts, respectively. 
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5.5 Discussion 

This study investigated the temporal variation of drought characteristics, at different timescales 

(3-, 6- and 12 months) for Ambo, Bako and Melkassa. Long maturing cultivars especially in the 

mid and highland areas benefited from Bega season moisture the study explored also the drought 

characterstics for the three agricultural seasons for the sites. The results of SPEI and SPI drought 

indices compared well for the historical period (1995-2017) and under future climate (2021-

2050). Future climate data were based on the outputs of an ensemble mean of seven GCMs also 

used by the Coupled Model Intercomparison Project (CMIP5) using RCP 8.5. The data were 

downscaled using a quantile-quantile mapping bias correction procedure (Ngai et al., 2017). 

  

According to the SPEI and SPI values, the major dry periods for 1995-2017 were 2002, 2009 and 

2015-2016, among which 2015 had the longest and most severe drought for all study sites. The 

result agrees with the finding from various studies (Legesse and Suryabhagavana, 2014; Hundera 

et al., 2016; Mere, 2018) confirming that the years mentioned experienced extreme droughts.  

These prolonged droughts had adverse effects on the agricultural and water resource sectors 

across the country. Moreover, droughts have threatened widespread cropping areas. For example, 

drought in 2002 was very severe and in this cropping season, nearly all areas experienced 

agricultural drought, and agricultural yield was reduced by 80 % (Legesse and Suryabhagavana, 

2014). Mere (2018) reported that successive droughts occurred in Ethiopia in 2015 and 2016. 

According to this report, the number of districts that required lifesaving food aid in the 

2015/2016 drought increased from 192 to 228 (30 % of the country). Hundera et al. (2016) 

reported 2009 was a drought period based on SPI. However, a severe drought was experienced in 
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2015 and caused hunger for about 10 million people. The Food and Agricultural Organization 

(FAO, 2016) reported that an El Niño event occurred in 2015. Drought in Ethiopia and much of 

the Horn of Africa is usually associated with the occurrence of a warm sea surface temperature 

(SST) observed in the equatorial pacific east. This in turn leads to El Niño-induced droughts 

causing excessive dryness and major rainfall failures in many parts of the country (Korecha et 

al., 2007).  

 

The different timescales of the SPI and SPEI demonstrated differences in magnitude and 

duration of droughts. Shorter timescales showed a reduced severity and shorter duration of 

droughts than the longer timescales. As compared to the historical period, the SPEI projects more 

drought events than the SPI at all timescales at all sites suggesting an increase in PET as 

compared to precipitation in the future. Moreover, the results also highlight the inability of the 

SPI to capture air temperature-controlled droughts. This finding is supported by Vicente-Serrano 

et al. (2011) who stated that a crucial advantage of the SPEI was its multi-scalar characteristics 

and comprehensiveness, which enable identification of different drought types and effects in the 

context of global warming. Under global warming conditions, differences were found between 

the SPEI and the SPI for the three sites where air temperature increased over the analysis period 

(Tirivarombo et al., 2018). This indicated that air temperature is the main explanatory variable 

for droughts. Therefore, under the future climate conditions, the inclusion of air temperature as a 

variable to quantify potential evapotranspiration (PET) in the SPEI does provide much additional 

information. However, SPI projected more extreme drought under future climate particularly for 

Ambo and Bako. As compared to Bako, Ambo would experience more extreme drought 

conditions in the future (Table 5.7). Based on the SPI and SPEI time series, the drought duration, 
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frequency, severity, and intensity were analyzed. Both SPI and SPEI at all timescales projected 

longer drought duration (7-12 months) for Melkassa than Ambo and Bako while SPI and SPEI 6-

month timescale projected longer duration on mid-timescales for Ambo and Bako compared to 

the historical period (Tables 5.4 and 5.6).  

 

The different timescales of the SPI and SPEI demonstrated differences in magnitude and 

duration of droughts. Longer timescales (12-months) showed a greater severity and longer 

duration of droughts than the short timescales (3-6 months). In addition, compared to historical 

drought, the future drought frequency is shown to increase in the shorter timescale as compared 

to longer timescales. Although there are differences in the drought periods for each drought 

index, the longest and most extreme drought predicted by both drought indices is for the mid and 

end of the 2050s. In general, the SPI and SPEI 3- and 6-month timescale drought projection at all 

sites indicated that the further into the future, the more frequently droughts with great intensity 

will occur in the near future. The projected longer droughts for the study sites, would adversely 

affect the stability of agricultural production, for example the growth rate of maize, the low 

water levels of rivers and water provision (Potopová et al., 2018).  

 

With respect to drought frequency, both SPI and SPEI revealed that moderate to extremely 

severe drought frequency can be expected to increase for Ambo and Bako while only moderate 

drought can be expected to increase for Malkassa. According to SPI and SPEI projected values, 

the lower altitudes such as Melkassa tend to show relatively decreasing severe drought frequency 

compared to the mid (Bako) and the higher altitude (Ambo) under future climate. Changes in 

drought characteristics for the lower altitude can therefore be explained by increasing drought 
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duration and frequency of moderate drought occurrences under future climate (Tables 5.5 and 

5.6).  

 

Drought severity increased for all study sites. The SPEI 6- and 12-month for Bako and Melkassa 

and SPI 6- and 12-month for Ambo showed that the severity of six-month droughts in future 

climate will be greater compared to the historical period (Tables 5.4 and 5.6). Severe drought 

reduces the yield of rainfed crops, in particular the anthesis-silking stage for maize, the jointing-

booting stage for sorghum, the flowering-podding stage for soybean, and the sowing-milking 

stage for millet (Chen et al., 2016). Furthermore, a sustained drought of 10 to 40 days at the 

seedling stage has a negative impact on maize grain filling and eventually leads to a decline in 

yield. A long duration of a drought prolongs the filling period, which causes serious yield 

reduction (Zhang et al., 2015). This has been used to study the frequency and duration of drought 

spell during the maize growing period (Kassie et al., 2014). Moreover, for maize, depending on 

the severity of drought and stage of occurrence, yield reduction was 10-76 % due to drought 

(Windhausen et al., 2012; Cairns et al., 2013). Therefore, development of improved drought 

tolerant maize varieties together with supplementary irrigation are critical for future climate for 

the study sites.  

 

Drought intensity for all timescales was also investigated for the three study sites. The 12-month 

timescale for both SPI and SPEI  show Ambo will experience an increased drought intensity (-

1.8 to -2.3 index value) under future climate than Bako and Melkassa. On the other hand, there 

would be high intensity droughts expected at both short and long timescales for Bako, but it will 

not be as intense as that for Ambo. The SPEI -3 and -6 revealed that Melkassa will experience 
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high intensity drought at shorter timescale (agricultural drought) (Table 5.6).  Intensity of 

drought is consistent with the duration and frequency of droughts (Tables 5.5 and 5.6) where the 

study sites that will receive higher and frequent drought are likely to experience a higher 

intensity of drought. Thus, it is essential to understand how intensified drought is persisting in a 

specific area for a given period. 

 

The correlation between the SPI and the SPEI was good at shorter timescales (3 months) and 

decreased at longer timescales (12-month) for 1995-2017. This indicates that precipitation is a 

dominant driver of drought conditions. For 2021-2050, the correlation between the SPEI and SPI 

shows positive high correlation at 6 months and relatively close correlation at 3 months and a 

decreasing correlation at the longer timescale. The positively correlated indices at 3- and 6-

month explains the occurrence of agricultural drought for the future period in the study areas. 

Overall, the correlation results demonstrated that changes in precipitation were not the only 

dominant driver causing the long-term drought variations but increasing air temperatures in 

terms of PET are also responsible for drought severities. Even though the SPI is recommended 

by the World Meteorological Organization (Hayes et al., 2011) as a universal index, a single 

indicator may be inadequate to characterize a complicated drought (Hao and Singh, 2015). 

 

5.6 Conclusions 

Drought risk assessment indices relative to the aspects of drought duration, severity, intensity 

and frequency are used to assess the maize growing period drought risk during 1995–2017 and 

predictions for 2021–2050. Change in drought duration, severity, intensity and frequency 
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patterns, caused by climate change, will increase the likelihood of maize crop failure and long-

term production declines in the near future. It is anticipated that climate change will increase 

water scarcity in the coming decades in maize growing areas investigated. The study assessed 

both historical and future droughts for three sites namely Ambo (high altitude), Bako (mid- 

altitude) and Melkassa (low altitude) in Ethiopia. The study used weather data for 1995-2017 as 

the reference, and ensemble mean of seven GCMs downscaled from CORDEX-Africa data from 

2021-2050 under the RCP 8.5 scenario. The Standardized Precipitation Index (SPI) and the 

Standardized Precipitation Evapotranspiration Index (SPEI) with potential evapotranspiration 

estimated using the Hargreaves–Samani equation.  

 

The SPEI showed for the study sites, more drought conditions in the future were noted when 

using the SPEI when compared to the SPI. Thus, in the context of global warming future drought 

risks can be accurately estimated by incorporating PET data in drought quantification rather than 

using only precipitation. The drought event, frequency, duration, severity and intensity have 

shown that the frequency and duration of moderate to extremely severe drought would increase 

for the higher altitude (Ambo) in the future. In addition to the frequent occurrence of moderate to 

severe drought SPEI-6 showed that the severity and duration of six-month droughts in future will 

be high for the mid-altitude site (Bako). In particular, for drought duration identified by SPEI 

and SPI at all timescales, the lower altitude site (Melkassa) will experience long drought duration 

in the future compared to the historical period. However, SPEI -3 and -6 projected the short 

timescale drought to be more intensive than the long timescales. Therefore, in addition to causing 

more severe and frequent drought, climate change will also result in longer duration droughts for 

the study sites.  
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The short-term drought at Bako and Melkassa and long-term drought at Ambo will be more 

influenced by climate change. Overall, the lower altitude site (Melkassa) will be the most 

affected site in the future compared to the other two sites due to the longer anticipated drought 

duration (7-12 month) together with high intensity drought. Therefore, decision makers should 

pay attention to the severe problems that are anticipated for the study areas in the future. 

Furthermore, irrigation, the development of improved and drought tolerance maize cultivars for 

increased air temperatures and water-limited environments are risk-reducing management 

options that might have the potential to offset some of the maize yield losses caused by severe 

drought due to climate change. Much attention needs to be directed to the substitution of maize 

cultivation with more drought tolerant crops, particularly for the lower altitude site, is highly 

recommended in the near future.  
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Lead to Chapter 6 

Previous Chapters (1 and 2) presented the importance of climate-crop modelling with their 

multimodel ensemble and uncertainties in climate change assessment studies. Chapters (3 and 4) 

mainly focused on crop models calibration, evaluation and climate change impact and adaptation 

options. Chapter 5 presented historical and future drought events for the study sites. Chapter 6 

provides conclusions and recommendations of the previous chapters for further research.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

 

6.1 Introduction 

Maize growing smallholder farmers in Ethiopia are vulnerable to the impact of climate change 

due to local weather variability, the rainfed nature of the farming system and their low adaptive 

capacity. Maize production is highly dependent on precipitation. Small changes in precipitation 

distribution or amount could potentially affect maize productivity under future climate. In 

Ethiopia, it is expected that climate change has already and will further increase climatic 

variability and the frequency and severity of extreme weather events. With the increasing climate 

persuaded risks, rainfed agriculture in most places particularly in maize growing regions of 

Ethiopia, is projected to become further constrained. Thus, climate change impact assessments 

are needed to investigate the potential impacts of climate change on crop production. 

Identification and evaluation of different on-farm adaptation strategies that might minimize the 

climate change risk on the impacts on crop phenology and grain yield are also needed. Although 

previous research on climate change impact on maize production has been conducted, most 

studies focused on economic aspects, yield variability and yield gap of maize. In addition, 

previous researches of climate change’s impact on crop yield were investigated by setting a 

hypothetical decrease in precipitation and an increase in air temperatures in the future climate. 

However, due to the complex interactions among weather variables and radiative forcing of the 

climate system, the temporal pattern and variability of the current climate will not be the same as 
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that for the future climate. Therefore, climate change data from global climate models (GCMs) is 

an important approach for use as an input for process-based crop models for climate change 

impact assessment investigations on crop yield. However, due to the uncertainty in different 

emission scenarios, and individual model structure, the use of a single model can result in under- 

or over-estimation of climate variables and crop yield at regional scales in the future climate. 

Thus, the use of multiple climate and crop models, together with their ensemble, may provide an 

improved result in projecting future climate.  

 

The main motivation for this research is to have an improved understanding of the impact of 

climate change on future maize yield and to explore ways of improving maize production by 

developing suitable adaptation strategies for future climate. 

 

6.2 Revisiting the research question, aims and objectives 

The overall aim of the research undertaken was to assess the impact of past and future climate on 

maize (Zea mays L.) production and identify adaptation options using a set of crop and climate 

models in Ethiopian tropical environments. As such, several research questions were developed. 

 

Research questions included: 

1. Are the APSIM-maize, AquaCrop and DSSAT CERES-maize deterministic crop models 

capable of simulating maize (Zea mays L.) growth and development for different agro-

ecologies, soils, and management practices in Ethiopian tropical environments? 
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2. Can the multimodel ensemble outputs reduce uncertainties and improve maize yield 

simulation when compared to the use of individual model outputs? 

3. Can climate models be integrated into crop models for climate change assessment and 

adaptation options? Yes, it can be integrated. Can changes in planting date, choice of 

cultivars and nitrogen fertilizer improve maize yield under a changed climate? 

4. Are climate models capable of projecting drought risks? 

 

The specific objectives were to: 

 

• calibrate APSIM-maize, AquaCrop and DSSAT CERES-maize models and evaluate the 

performance of the models and their multimodel ensemble in simulating maize yield;  

•  investigate the impact of future climate on maize yield using climate and crop models, 

and identify adaptation options; 

•  assessment of climate change induced drought risks using a climate model ensemble for 

maize growing areas under past and future scenarios. 

 

6.3 Study findings 

Calibrating the APSIM-maize, AquaCrop and DSSAT CERES-maize models and the evaluation 

of the performance of the models and their multimodel ensemble in simulating maize yield 

addressed the first two research questions. Using daily climate data, site-specific soil and 

management parameters, and field experimental data, the APSIM-maize, AquaCrop and DSSAT 

CERES-maize models were calibrated for the newly released maize varieties. Results indicated 

that each of the three crop models used enabled accurate simulation of flowering, maturity, 
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canopy cover (AquaCrop) and grain yield against measured data. Evaluation of the models 

indicated that APSIM-maize and DSSAT CERES-maize accurately simulated days to flowering 

and maturity with a root mean square error (RMSE) values ranging from 1.73 – 4.09 and 1.66 – 

5.36 days, respectively. However, the DSSAT CERES-maize model over-estimated the maturity 

period of late maturing varieties at Ambo. The AquaCrop model accurately simulated maize 

canopy cover for all varieties studied with a RMSE of less than 10.8 % and a high (0.95) value of 

index of agreement (d). The simulated grain yield agreed reasonably well with the measured data 

with normalized RMSE values ranging from 13 – 19 %, 1 – 4 % and 1 – 17 % for APSIM, 

AquaCrop and DSSAT maize models, respectively. However, the APSIM model underestimated 

yield for all maize varieties for Ambo (RMSE of 1.14 t ha-1 and d value of 0.50). The best 

performance was obtained when an ensemble of all models was considered, which reduced the 

RMSE values for grain yield to 0.35 t ha-1 for Ambo and 0.41 t ha-1 for Melkassa. Furthermore, 

the ensemble mean reduced the normalized RMSE by 8 % while increasing the d value to above 

0.90 for both evaluation sites. Model ensembles reduced model uncertainty and improved 

simulation output accuracy compared to the outputs of individual models in tropical 

environments.  

 

The impact of future climate on maize yield was investigated using climate and crop models and 

adaptation options identified.  
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This study, addressing the third research question, utilized downscaled precipitation and air 

temperature data from seven bias-corrected GCMs (CanESM2, CNRM-CM5, CSIRO-MK3-6-0, 

EC-EARTH, HadGEM2-ES, IPSL-CM5A-MR and MIROC5) under the RCP8.5 scenario. The 

result of climate change impact assessments indicated that in 2030, the average monthly 

maximum air temperature may increase by 0.3-1.7 °C, 0.7-2.2 °C and 0.8-1.8 °C for Ambo, 

Bako and Melkassa respectively. GCMs revealed the increase in average monthly minimum air 

temperature by 0.6-1.7 °C, 0.8-2.3 °C and 0.6-2.7 °C for the corresponding sites for 2030. 

Similarly, monthly total precipitation for Kiremt season (June to September) projected to 

increase by up to 55 % (365 mm) for Ambo and 75 % (241 mm) for Bako respectively, whereas 

a significant decrease in monthly total precipitation is projected for Melkassa by 2030. The Belg 

season (March to May) total monthly precipitation is projected to decrease for all study sites. 

Interestingly, by 2030 the total monthly precipitation for the Bega season (October to February) 

is projected to increase for Melkassa particularly for November, December and January while 

Bega season total monthly precipitation will remain unchanged for Ambo and Bako compared to 

the baseline period.  

 

Climate change could reduce maize yield by an average of 4 % and 16 % for Ambo and 

Melkassa respectively, while maize yield is projected to increase by 2 % for Bako in 2030 if 

farmers continue employing the existing agronomic practice with the current maize cultivars for 

future climate (2030). The climate change adaptation result using a shift in planting date, 

nitrogen fertilizer application and a change in cultivar revealed that for the higher altitude site 

(Ambo), early planting of maize cultivars between 15 May to 01 June would result in improved 
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relative yields in the future climate. Fertilizer levels between 23-150 kg ha-1 would result in 

improved yields for all maize cultivars when combined with early planting for Ambo. For a mid-

altitude (Bako), planting after 15 May has either no or negative effect on maize yield. Early 

planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided an increased 

relative yields under the future climate. Delayed planting has a negative influence on maize 

production for Bako under the future climate (2030). For lower altitudes (Melkassa), late 

planting would have lower relative yields compared to early planting. Higher fertilizer levels 

(100-150 kg ha-1) would reduce yield reductions under the future climate, but this varied among 

maize cultivars studied. Planting the Jibat cultivar between 15-30 June at higher N levels may 

reduce severe yield reduction of maize at Melkassa. Generally, future climate is expected to have 

a negative impact on maize yield and changes in crop management practice for the near future 

can alleviate the impacts on maize yield. 

 

Historical and future drought characteristics using historical observed data from 1995-2017 and 

an ensemble of seven Global Climate Models (GCMs) in the Coupled Model Intercomparison 

Project (CMIP5) for maize growing areas of Ethiopia were assessed. This study addressed the 

fourth research question. The widely known Standardized Precipitation Index (SPI) and 

Standardized Precipitation Evapotranspiration Index (SPEI) were used to investigate drought 

characteristics. The results indicate that compared to the SPI-based analysis, use of the SPEI 

suggests more drought conditions for the maize-growing study sites in the future indicating 

potential effects of increasing air temperatures on drought risks. The SPI and SPEI at all 

timescales projected 2027, 2039, 2042, 2048 and 2049 for Ambo, 2022, 2023, 2042, 2048 and 
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2049 for Bako, and 2021, 2036, 2044, 2047 and 2048 for Melkassa as the driest years in the 

future climate. SPI and SPEI have a strong correlation (R > 0.9) on the direction of change but 

the effect on the drought condition was different. Increasing frequency of moderate to extremely 

severe drought with extended drought duration is expected to occur for Ambo in the future. 

According to the 6-month SPEI, Bako will experience agricultural droughts with greater severity 

and duration in the future. Both SPI and SPEI projected increasing drought duration at short and 

long timescales for the Melkassa site. However, the 3- and 6-month SPEI predicted the shorter 

timescale droughts to be more intense than the longer timescale.  

 

6.4 Contributions to new knowledge 

The specific contributions of this research to new knowledge are listed below: 

1. This research provided the first insights on using three different deterministic crop 

growth simulation models to simulate maize yield in Ethiopian tropical environments. 

This is one of the innovative features of the methodology used in this thesis. Previous 

research efforts on modelling crop-climate interactions in Ethiopia used a maximum of 

two crop models with limited regions (usually Central Rift valley and other lowland 

areas) to simulate crop growth and yield processes. These previous studies therefore do 

not provide an in-depth analysis to produce more comprehensive and reliable climate 

change sensitivity assessments. The study also contributed towards new knowledge in 

providing insights on the use of a multmodel ensemble approach in reducing model 

uncertainty and improved simulation output accuracy compared to the outputs of 

individual models for a tropical environment. This could provide important lessons to 
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other researchers on the added value of using multimodel ensemble in simulation studies. 

The study also developed new genetic coefficients for new local maize cultivars through 

a calibration process of the APSIM-maize, AquaCrop and DSSAT CERES-maize models 

and the crop models were evaluated for local conditions. 

 

2. While climate change impact assessments have for decades been studied, very few 

studies have actively quantified the adaptation strategies in Ethiopia. The research 

presented here is the first of its kind to quantify both impacts and adaptation strategies of 

climate change in the maize growing agroecology of Ethiopia using multiple crop-climate 

models and their ensembles. The study illustrated that the seven GCMs could model 

future changes in precipitation and air temperature under RCP 8.5 scenario for the three 

sites in Ethiopia. The study findings also demonstrated that there will be a clear increase 

of average monthly minimum air temperature compared to the maximum air temperature 

change, suggesting that minimum air temperatures will experience the greatest impact 

from climate change in the period of 2030 for the study sites. Furthermore, the study also 

contributed towards new knowledge in providing insights into the impact of climate 

change on maize yield for the study sites in the near future, and thus also provides 

insights on scientifically based effective adaptation options for farmers and policymakers 

to mitigate the adverse effects of future climate change. In addition, adaptation 

recommendations are site specific, not general. Several adaptation studies have been 

undertaken for Ethiopia but these studies did not use the methodologies used in this 

research. The study contributed agro-ecological climate change adaptation mechanism 
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with multiple crop, climate models and their ensemble outputs which most studies lack in 

Ethiopia. 

 

3. As with current climate research, research aiming to analyze drought risks has been 

focused on specific regions and/or the whole country at a wider scale and has somewhat 

neglected agroecological aspects of maize growing areas. Using the ensemble of seven 

GCMs the study provided new information describing the impact of RCP8.5 climate 

scenarios on drought on maize growing areas, a study that has never been conducted for 

Ethiopia until now. 

 

6.5 Challenges and research limitations encountered 

Crop-climate modelling is an effective and advanced method of understanding crop-soil-climate 

interactions and evaluating various agronomic adaptation strategies. However, the success of 

such approaches depends on the quality of input data used. For this research, acquiring high 

quality long-term daily meteorological data proved to be the greatest challenge. While data were 

available for several stations in Ethiopia, the quality of the data came into question. Missing and 

unlikely values within the datasets are likely attributed to a failure to maintain meteorological 

instruments and a lack of close supervision of the stations. Though, missing values required 

extensive and time-consuming gap filling, patching of missing values utilizing accepted methods 

proved to be accurate. 
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Limited access to climate data is another challenge for climate research. At present, there are 

difficulties in obtaining climate data due to constraining data use policies. The observed data 

obtained for this study were from the National Meteorological Agency of Ethiopia through long 

administrative processes. Climate data need to be considered as a public good provided that it is 

used for research purpose. 

 

For obvious reasons, COVID-19 was a great challenge to the academic community and 

researchers all over the world, including myself.  

 

It has become standard practice to use several climate models to characterize uncertainty in 

future climate. This study is only use a multimodel ensemble approach to quantify uncertainty 

then it is necessary to use additional uncertainty quantifying methods. In addition, until 2050 at 

least there is relatively little or no difference in climate change between the different RCP 

emissions scenarios. It is therefore a reasonable approach to apply climate changes with other 

future socio-economic aspects in order to characterise the full range of possible future impacts of 

climate change. 

 

6.6 Recommendations  

• Based on the study results, a multimodel approach improved the simulation estimates of 

maize yield by reducing model uncertainty when compared to the result when  individual 
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models were applied. This approach could, therefore, provide more reliable predictions 

for maize cultivars grown in diverse environments in the tropics. 

 

• Increasing air temperature in the future for the study sites would demand the use of new 

cultivars with more heat tolerant traits. Hence breeders need to consider robustness to 

climate change in their programs. 

 

• A combination of different planting dates and increased N fertilizer levels with different 

maturity date of maize varieties is strongly recommended for the study sites to offset the 

adverse effects of future climate change on maize yield. 

 

• Changing the planting date is one of the suitable adaptation strategies for future climate 

for the study sites. However, changing the planting date is site- and variety-specific and 

its effectiveness may vary from site to site. Different GCMs and emission pathways may 

also respond differently. Therefore, it should be tested for each specific site using an 

ensemble mean of multiple GCMs to increase the certainty of shifting in planting date 

strategy. 

 

• The projected moderate to extremely severe drought under future climate will negatively 

affect maize production for the study sites. Therefore, the development of resilient 

improved maize varieties for increased air temperature, crop diversification, food reserve, 

crop insurance, soil and water conservation, drought tolerance for water-limited 
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environments are highly recommended as risk-reducing management options to offset 

some of the maize yield losses caused by severe drought due to climate change. 

 

• The anticipated longer drought durations together with high intensity droughts for a lower 

altitude needs increased attention on the substitution of maize cultivation with more 

drought tolerant crops such as sorghum and millet in the near future. 

 

• Comparision of several crop models with more scenarios are recommended for further 

research in the study sites. 

 

6.7 Future research opportunities 

The results of this study have shown that the APSIM-maize, AquaCrop and DSSAT CERES-

maize deterministic crop models are suitable for simulating the phenology and yield of maize for 

the tropical sites studied. However, under-or over-estimations were observed for the simulated 

parameters by the individual models studied. There is a need for future research to improve the 

robustness of models used in tropical environments. 

 

Although the research presented in this thesis provides a useful insight into the impacts of 

climate change and its adaptation on maize production in Ethiopia, further research is needed. 

Adaptation options such as nitrogen fertilization may include significant expenses and will 

require additional feasibility concerning economics aspects and sustainability assessments. 
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Future research is necessary to include the socio-economic impacts of the different adaptation 

management options. 

 

Future research should also be undertaken by breeders on developing new drought and heat 

tolerant cultivars for lowland maize growing areas in order to compensate for future climate 

change impacts. 

 

6.8 Final comments and summary conclusions 

Generally, the findings of the study highlight the impacts and adaptations of climate change on 

maize growing areas of Ethiopia. The results of the study conclude that: 

➢ Based on the findings of crop model calibration and validation, the APSIM-maize, 

DSSAT CERES-maize and AquaCrop models could reasonably simulate maize 

phenology, canopy cover (AquaCrop) and yield for different maturity maize varieties for 

three agro-ecologies under rainfed conditions in Ethiopia; 

 

➢  The multimodel approach employed improved the simulation of grain yield by reducing 

model uncertainty when it was compared to the performance of the individual models 

studied. 

 

➢ Under data scarce conditions, simpler models such as AquaCrop could be used to 

simulate maize yield with reasonable accuracy. 
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➢ A significant projected decrease in monthly total precipitation, during the main rainy 

season (Kiremt) for Melkassa. However, an increase in monthly total precipitation was 

projected for Ambo and Bako relative to the baseline for 2030s. 

 

➢ Total monthly precipitation for the short rainy season (Belg ) is projected to decrease for 

all study sites by 2030. 

 

➢ The total monthly precipitation for the dry season (Bega) would expect to increase for 

Melkassa particularly for November, December, and January while Bega season total 

monthly precipitation will remain unchanged for Ambo and Bako by 2030 compared to 

the baseline period. 

 

➢ An increasing trend in average monthly maximum and minimum air temperature was 

observed in all sites for the future time period. Minimum air temperatures will cause the 

greatest impact from climate change in the study sites. 

 

➢ Simulation of the mean yield for current maize cultivars under future air temperature and 

precipitation conditions in 2030 indicates that maize yield will increase by 2 % for Bako 

while, maize yield is projected to decrease by 4 % and 16 % for Ambo and Melkassa 

respectively relative to the baseline.  
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➢ Early planting of maize cultivars between 15 May to 01 June would result in improved 

relative yields in the future climate. Fertilizer levels between 23-150 kg ha-1 would give 

improved yields for all maize cultivars when combined with early planting for Ambo. 

 

➢ Planting after 15 May has either no or negative effect on maize yield for Bako. Early 

planting combined with a nitrogen fertilizer level of 23-100 kg ha-1 provided increased 

relative yields under the future climate. Delayed planting had a negative influence on 

maize production for Bako under the future climate (2030). 

 

➢ Late planting would have lower relative yields compared to early planting at Melkassa. 

Higher fertilizer levels (100-150 kg ha-1) would reduce yield reductions under the future 

climate, but this varied among maize cultivars studied. Planting the Jibat cultivar between 

15-30 June at higher N levels may reduce severe yield reduction of maize at Melkassa. 

 

➢ In the prediction of maize yield GCMs uncertainty is relatively higher than the 

corresponding crop models uncertainty. 




