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Abstract

We generate the Einstein-Gauss-Bonnet field equations in five dimensions for a spheri-

cally symmetric static spacetime. The matter distributions considered are both neutral

and charged. The introduction of a coordinate transformation brings the condition of

isotropic pressure to a single master ordinary di↵erential equation that is an Abel equa-

tion of the second kind. We demonstrate that the master equation can be reduced to

a first order nonlinear canonical di↵erential equation. Firstly, we consider uncharged

gravitating matter. Several new classes of exact solutions are found in explicit and

implicit forms. One of the potentials is determined completely. The second potential

satisfies a constraint equation. Secondly, we study charged gravitating matter with

Maxwell’s equations. We find new classes of exact charged solutions in explicit and im-

plicit forms using two approaches. In the first approach, we can find new exact models

without integration. In the second approach the Abelian pressure isotropy equation has

to be integrated, which we demonstrate is possible in a number of cases. The inclusion

of the electromagnetic field provides an extra degree of freedom that leads to viable

exact solutions. An interesting feature characterising the new models is that a general

relativity limit does not exist. Our new solutions exist only in Einstein-Gauss-Bonnet

gravity. In addition, we have considered the dynamics of a shear-free fluid in Einstein

gravity in higher dimensions with nonvanishing heat flux in a spherically symmetric

manifold. This endeavour generates new exact models, being a generalisation of models

developed in earlier treatments.
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Chapter 1

Introduction

General relativity is currently the most successful and widely accepted theory describ-

ing gravity, viz., the curving of spacetime rather than an invisible force that attracts

objects to one another. Simply put, in the words of John Wheeler, general relativ-

ity explains the unique marriage between matter and curvature for which matter tells

spacetime how to bend and spacetime tells matter how to move. Therefore, one can-

not merely associate the notion of gravity to that of a force but rather to a more

transcendent, mathematical structure that is spacetime: a four-dimensional separa-

ble time-oriented, Hausdor↵, paracompact, C1 pseudo-Riemannian manifold with a

Lorentzian signature (Hawking and Ellis 1973). Moreover, this theory provides us with

the foundation for analysing the dynamics of stellar objects, structures and regions of

space containing stars, galaxies, black holes and dark matter because general relativity

describes the interactions of bodies in the Universe as a result of their gravitational

fields. Observational evidence for general relativity is supported by many factors in-

cluding the perihelion precession of Mercury, the gravitational redshift and the bending

of light. As such it is widely used to model compact objects that include neutron stars

(like pulsars or magnetars), white dwarfs and black holes on the astrophysical frontier,

and it is supported by the existence of gravitational waves in the cosmological context.
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Furthermore, general relativity couples the geometric properties of gravity (curva-

ture of spacetime) to the energy and momentum of a physical system in the form of

the Einstein field equations. Spherically symmetric manifolds and the Einstein field

equations form the basis for studying relativistic stellar models in astrophysics and

cosmology in the presence of a gravitational field. In general, it is di�cult solve the

field equations as they comprise a system of ten nonlinear coupled, partial di↵erential

equations. Particular solutions can be generated using a number of di↵erent tech-

niques. These include methods such as the geometric Lie analysis, harmonic analysis,

imposing an equation of state, the use of conformal symmetries and ad hoc approaches

restricting the matter variables or gravitational potentials. We also require that exact

solutions be mathematically feasible and physically acceptable, and they must be used

in conjunction with other fundamental theories such as thermodynamics and electro-

magnetism in order to determine the associated physical features so as to provide a

deeper insight into the behaviour of the gravitational field.

Consequently, several exact solutions for static spherically symmetric manifolds

have been found. The first and most well known solutions are the Schwarzschild ex-

terior and interior solutions (Schwarzschild 1916a, 1916b). The Schwarzschild exterior

solution represents a vacuum solution that describes the gravitational field outside

a spherically symmetric uncharged body, that is static and asymptotically flat. The

Schwarzschild interior solution describes the interior of the body where the mass density

is constant. The Reissner-Nordström solution describes the gravitational field outside

a spherical, non-rotating, charged object and reduces to the Schwarzschild exterior so-

lution when the electromagnetic field vanishes (Reissner 1916, Weyl 1917, Nordström

1918, Je↵rey 1921). It has been 105 years since Albert Einstein formulated this beau-

tiful geometric theory which generalised the theory of special relativity and refined

Newton’s law of universal gravitation, yet it continues to be a central paradigm of

physics today.

A shortcoming of general relativity, despite modelling relativistic matter success-
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fully, is that it cannot fully explain certain recent observed phenomena, in particular

the late time expansion of the universe which has been found in astronomical obser-

vations and reported in the Wilkinson Microwave Anisotropy Probe (WMAP) data.

Hence the notion of modified theories of gravity is required. One such approach to

modify conventional gravity is to introduce higher order curvature terms. Some ex-

amples of such theories are f(R) gravity, scalar-tensor theories, Lovelock gravity, and

a special case, namely Einstein-Gauss-Bonnet (hereafter EGB) gravity. EGB gravity

is the most widely studied of the higher dimensional curvature theories, and belongs

to a class of second order polynomials discovered by Lovelock (1971) where the corre-

sponding action principle is a modification of the Einstein-Hilbert action. EGB gravity

arises in the low energy limit in string theories. The Gauss-Bonnet action is composed

of quadratic forms of the Riemann tensor, Ricci tensor and Ricci scalar. As a result,

the field equations appear as second order quasilinear di↵erential equations with these

higher order quantities having no impact in four dimensions, and in the absence of such

terms Einstein gravity is regained. The advantage of EGB gravity over other higher

order curvature theories is that it avoids the problem of ghost terms. For the above

reasons, EGB gravity is a promising theory of modified gravity.

A significant amount of research in this framework of gravity have been conducted

in the context of compact stars, gravitational collapse and static spherically symmetric

models. Some exterior solutions for EGB gravity have been found, these include mod-

els by Boulware and Deser (1985), and Anabalon et al (2009). Boulware and Deser

(1985) obtained higher dimensional vacuum solutions analogous to the Schwarzchild

exterior spacetime from general relativity. Similarly, Anabalon et al (2009) constructed

a vacuum solution for the Kerr-Schild model in five dimensions. Nevertheless, finding

exact interior solutions for such a regime is a di↵erent research problem in its entirety,

because of curvature corrections and as such has not been extensively studied. Thus

far, a substantially small number of interior static solutions in EGB gravity have been

reported. For example, Maharaj et al (2015) obtained an interior exact solution by
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specifying a form for one gravitational potential in order to find the second poten-

tial, and with the use of the Frobenius method built a class of models that admit an

equation of state. A similar approach was adopted by Chilambwe et al (2015).

The concept of higher dimensions was first brought forward by Kaluza and Klein,

independently, who wanted to unify gravity with the electromagnetic field by the in-

troduction of an extra dimension (Kaluza 1921, Klein 1926). This notion of higher

dimensions provides us with a platform to understand the nature of the early universe

and plays a crucial role in describing the gravitational dynamics of stellar objects not

only in conventional general relativity but also in modified gravity theories such as

Lovelock gravity and string theories. As a consequence, a number of studies in the

higher dimensional regime have been reported in the literature. For example, Tangher-

lini (1963) investigated the Schwarzschild spacetime in higher dimensions. Myers and

Perry (1986) examined black hole solutions to the Einstein’s equations and generalised

the Reissner and Nordström, and Kerr spacetimes to higher dimensions. Furthermore,

Iyer and Vishweshwara (1989), and Chatterjee et al (1990) generalised the Vaidya

metric and presented a model for a radiating star in the uncharged and charged case

respectively. In the framework of Lovelock gravity, Brassel et al (2018) investigated

the continual gravitational collapse of a spherically symmetric radiation shell in five

dimensional EGB gravity and found that the final fate of such a collapse is an ex-

tended and weak curvature conical singularity at the centre, which was initially naked

for a time before being covered by an apparent horizon. Brassel et al (2019) analysed

higher dimensional radiating black holes in EGB gravity and established that collapse

terminates with a strong curvature singularity which could be naked; the gravitational

dynamics are a↵ected by the presence of higher dimensions. Many authors have studied

the implications of higher dimensions on the Einstein field equations. These include

some works developed by Chatterjee (1990), Sil and Chatterjee (1994) and Ghosh and

Deshkar (2007).

In light of the above, it is interesting to investigate spherically symmetric radiating
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spacetimes with vanishing shear in higher dimensional general relativity. These space-

times are important for applications in astrophysics and cosmology, and have been

widely studied to model relativistic stars which dissipate null radiation in the form

of a radial heat flow. Heat flux is a necessary component in modelling a complete

description of radiating relativistic stars, and it is crucial for astrophysical applications

involving gravitational collapse, singularities in manifolds and black hole physics, as

pointed out by Kransinski (1997). Several exact solutions for shear-free relativistic

fluid models with nonvanishing heat flux were obtained. These include some earlier

works by Bergmann (1981), Maiti (1982) and Modak (1984) in a cosmological setting,

and by Govender and Thirukkanesh (2009) and Maharaj et al (2011), in the field of

astrophysics. On similar grounds Msomi et al (2011) found a five-parameter family

of transformations that mapped existing solutions into new ones using the Lie group

theoretic approach. Banerjee et al (1989) obtained conformally flat radiating solutions.

Investigations involving the process of gravitational collapse for such heat flow models

are contained in the seminal works of de Oliveira et al (1985), Glass (1990) and Deng

and Mannheim (1990) in dimensions of four, and by Bhui et al (1995) and Banerjee

and Chatterjee (2005) in the context of higher dimensional cosmological models. In

addition to this, Nyonyi et al (2013) considered the contributions of an electromag-

netic field and provided analytical solutions using the Lie analysis. Nyonyi et al (2014)

extended this endeavour to higher dimensional manifolds.

The number of spacetime dimensions has been shown to influence certain features

of astronomical objects. In particular the mass-radius ratio depends on the number

of dimensions. Examples of this nature include some pioneering works by Ponce de

Leon and Cruz (2000), and by Paul (2001) who determined specific bounds for the

mass-radius relationship in general relativity. Hence it is important to make use of the

correct value of the gravitational coupling constant (N), which is defined in terms of

arbitrary dimensions (N), and directly influences the Einstein field equations. Addi-

tionally, the surface area (AN�2), which is also a function of the spacetime dimensions,
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becomes important when considering the e↵ects of an electromagnetic field. The gen-

eral definition for the coupling constant and surface area was investigated by Mansouri

and Nayeri (1998).

In this thesis we aim to seek new classes of exact solutions to the EGB field equa-

tions in a five dimensional regime for spherically symmetric gravitational fluids (neutral

and charged) which are applicable to stellar objects in relativistic astrophysics. We also

investigate models with vanishing shear and nonzero heat flux in higher dimensional

general relativity. New families of exact solutions are found by transforming the con-

dition of pressure isotropy equation to canonical form.
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Chapter 2

Fundamental concepts in general

relativity

2.1 Introduction

Einstein’s theory of general relativity is a remarkable theory of gravity and serves as the

backbone for relativistic astrophysics and cosmology. Therefore, in this chapter we will

provide the background theory and fundamental concepts of di↵erential geometry that

is essential in generating a spherically symmetric model for stellar objects or gravitating

systems. In section 2.2, we introduce the concept of a di↵erentiable manifold and its

associated elements as well as the important components of di↵erential geometry such

as the Riemann tensor, Ricci tensor, Ricci scalar and the Einstein tensor. In section

2.3, we provide an outline of the matter distribution and a special case of the energy

momentum tensor. In section 2.4, the expressions of the Einstein field equations are

given for both the uncharged and charged cases respectively. Finally in section 2.5, we

introduce the constituents for a special case of Lovelock gravity, that is EGB gravity.
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2.2 Di↵erential geometry

Spacetime in general relativity is modelled by a N dimensional (N � 1 dimensional

space and one dimensional time), di↵erentiable, pseudo-Riemannian manifold M on

which a metric tensor field g is imposed. This tensor field is described to be symmetric

and nondegenerate and entails the dynamics associated with the gravitational field.

Individual points in a N dimensional manifold are labelled by a system of N real

coordinates as

(xa) =
�
x
0
, x

1
, x

2
, ......, x

N�1
�
, (2.2.1)

where x0 = ct (c is the speed of light in a vacuum taken to be unity) represents the time-

like coordinate and
�
x
1
, x

2
, ......, x

N�1
�
are the spacelike coordinates. Furthermore, the

infinitesimal distance between two neighbouring points on a N dimensional manifold

is denoted by the line element

ds
2 = gabdx

a
dx

b
. (2.2.2)

In the above gab is the metric tensor.

The metric connection coe�cient � is defined in terms of the metric tensor g and

its derivatives with coe�cients

�a
bc =

1

2
g
ad (gcd,b + gdb,c � gbc,d) , (2.2.3)

where commas denote partial di↵erentiation. These coe�cients are also known as

Christo↵el symbols of the second kind which are symmetric in their lower indices.

The spacetime curvature is contained in the Riemann tensor Rd
abc which is defined

by

R
d
abc = �d

ac,b � �d
ab,c + �d

eb�
e
ac � �d

ec�
e
ab. (2.2.4)

Contraction of (2.2.4) leads to the Ricci tensor given by

Rab = R
c
acb

= �c
ab,c � �c

ac,b + �c
dc�

d
ab � �c

db�
d
ac. (2.2.5)

8



We note that the Ricci tensor is symmetric and upon contraction, we acquire the Ricci

scalar which is written as

R = R
a
a

= g
ab
Rab. (2.2.6)

The Einstein tensor G is then constructed with the definitions of the Ricci tensor

(2.2.5), Ricci scalar (2.2.6) and the metric tensor g to give

Gab = Rab �
1

2
Rgab, (2.2.7)

which is symmetric by definition with zero divergence

G
ab

;b = 0. (2.2.8)

2.3 Matter

The matter content of spacetime can be described by a relativistic fluid, and it is

expressed by the total energy momentum tensor T (Total) that contains contributions

from charged matter and neutral barotropic fluids.

2.3.1 Uncharged matter

The energy momentum tensor for uncharged matter is defined by the symmetric tensor

Tab = (⇢+ p)uaub + pgab + qaub + qbua + ⇡ab, (2.3.1)

where ⇢ is the energy density, p is the isotropic pressure, qa is the heat flux vector

and ⇡ab is the anisotropic pressure (stress) tensor. All these quantities are measured

relative to a comoving fluid velocity u which is unit and timelike (ua
ua = �1). In

addition, we note that qaua = 0 and ⇡ab
ua = ⇡

a
a = 0. In perfect fluids, the heat flux

and anisotropic stress are absent (qa = 0 and ⇡ab = 0). Hence the energy momentum

tensor becomes

Tab = (⇢+ p)uaub + pgab, (2.3.2)
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for a perfect fluid.

We can introduce the radial pressure pk and tangential pressure p? by defining

p =
1

N � 1

�
pk + (N � 2) p?

�
, (2.3.3)

in N dimensions. In four dimensions p = 1
3

�
pk + 2p?

�
for the isotropic pressure.

Important results about the energy momentum tensor and energy conditions in N

dimensions are contained in the works of Maharaj and Brassel (2021) and Brassel et

al (2021).

2.3.2 Charged matter

When the matter distribution contains electric charge, we must consider the contribu-

tion of the electromagnetic field to the total energy momentum tensor T (Total). The

electromagnetic field tensor F , also known as the Faraday tensor, is defined in terms

of the electromagnetic potential A by

Fab = Ab;a � Aa;b. (2.3.4)

We note that this tensor Fab is skew-symmetric.

The electromagnetic matter tensor E is composed of the Faraday tensor and is

written as

Eab =
1

AN�2

✓
FacFb

c � 1

4
gabFcdF

cd

◆
, (2.3.5)

where AN�2 is the surface area of an N � 2 sphere denoted by

AN�2 =
2⇡

N�1
2

�
�
N�1
2

� . (2.3.6)

In the above �(...) is the gamma function. In four dimensions, the surface area becomes

A2 = 4⇡. (2.3.7)

The electromagnetic field is governed by Maxwell’s equations. These fundamental

10



equations are expressed covariantly as

Fab;c + Fbc;a + Fca;b = 0, (2.3.8a)

F
ab

;b = AN�2J
a
. (2.3.8b)

In the above J
a is the current density defined by

J
a = �u

a
, (2.3.9)

for a non-conducting fluid, and � is the proper charge density.

Thus the total energy momentum tensor T (Total) is given by

T (Total)
ab

= Tab + Eab, (2.3.10)

and it is divergence free

T ab
;b = 0,

�
T

ab + E
ab
�
;b

= 0. (2.3.11)

2.4 Field equations

The Einstein field equations in the absence of charge are given by

Gab = NTab, (2.4.1)

where N is the coupling constant defined by

N =
2 (N � 2) ⇡

N�1
2 G

c4 (N � 3)
�
N�1
2 � 1

�
!
. (2.4.2)

Equation (2.4.1) governs the nature and dynamical interaction between the matter

distribution and curvature. In four dimensions the coupling constant evaluates to

4(= ) = 8⇡. (2.4.3)

Note that we use geometrized units for which the gravitational constant and the speed

of light are unity (G = c = 1). This is the procedure followed in subsequent chapters.
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The Einstein-Maxwell system of equations can be generated with the use of the

Einstein tensor (2.2.7), the total energy momentum tensor (2.3.10), the electromagnetic

tensor (2.3.5) along with Maxwell’s equations (2.3.8) in the form

Gab = N (Tab + Eab) , (2.4.4a)

Fab;c + Fbc;a + Fca;b = 0, (2.4.4b)

F
ab

;b = AN�2J
a
. (2.4.4c)

2.5 Einstein-Gauss-Bonnet (EGB) gravity

An action will generate field equations in any gravity theory. The Einstein-Hilbert

action generates the well known Einstein field equations in any dimensions; a modifica-

tion of this very action results in the Gauss-Bonnet action that is required to produce

the EGB field equations. The Gauss-Bonnet action in N dimensions has the form

S =

Z p
�g


1

2
(R� 2⇤+ ↵LGB)

�
d
N
x+ Smatter, (2.5.1)

where the parameter ↵ represents the Gauss-Bonnet coupling constant, g is the deter-

minant of the metric tensor g , R is the Ricci scalar, ⇤ is the cosmological constant

and LGB is the Lovelock term. An interesting feature of this action is that the field

equations appear as second order di↵erential equations which are quasilinear in the

highest derivative. In addition, the action is valid in arbitrary spacetime dimensions

but the Gauss-Bonnet term makes no contribution in dimensions of four or less.

Varying the action (2.5.1), the EGB field equations for uncharged matter are derived

in the form

Gab �
↵

2
Hab = NTab. (2.5.2)

In the above Tab is the energy momentum tensor for neutral matter and Hab is the

Gauss-Bonnet tensor which reads as

Hab = gabLGB � 4RRab + 8RacR
c
b + 8Rcd

Racbd � 4Ra
cde

Rbcde, (2.5.3)
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and the Lovelock term is written as

LGB = R
2 +RabcdR

abcd � 4RcdR
cd
. (2.5.4)

Note that (2.5.4) is quadratic in the Riemann tensor, Ricci tensor and the Ricci scalar.

The field equations (2.5.2) are highly nonlinear. We note that negative values for ↵

leads to unphysical behaviour; thus it is essential to work with ↵ being greater than

zero. It is also important to note that a variety of other actions exist, e.g. in f(R)

gravity the gravitational action is a well defined function of the Ricci scalar as described

by Capozziello and De Laurentis (2011) and Goswami et al (2015).

Furthermore equation (2.5.2) can be extended to charged matter for which the

system of charged EGB field equations are defined by

Gab �
↵

2
Hab = N (Tab + Eab) , (2.5.5a)

Fab;c + Fbc;a + Fca;b = 0, (2.5.5b)

F
ab

;b = AN�2J
a
. (2.5.5c)

When ↵ = 0 we regain the N dimensional field equations of general relativity given by

(2.4.4).
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Chapter 3

Static spacetimes

3.1 Introduction

Spherically symmetric static spacetimes have been widely studied in the modelling of

relativistic compact objects. Some well known early examples of this nature include

the models developed by Schwarzchild (1916) for neutral fluids, and by Reissner and

Nordström (1917, 1918) for charged matter. Several families of exact solutions have

been subsequently found which may be used to model dense stars with strong gravita-

tional fields. Therefore, in this chapter we provide the interior spacetime metrics for

describing spherically symmetric static spacetimes. In section 3.2, we present the Ein-

stein field equations in four dimensions and the components of the Christo↵el symbols,

the Ricci tensor and Ricci scalar. We also extend this to include the electromagnetic

field to generate the Einstein-Maxwell field equations. Furthermore, we consider the

N dimensional metric for general relativity and generate the respective field equations

in section 3.3. We provide the EGB and charged EGB field equations, sections 3.4

and 3.5 respectively, in dimensions of five and six. This chapter is thus a basis for the

research undertaken in the proceeding chapters.
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3.2 General relativity

The line element for a spherically symmetric static spacetime in four dimensions with

metric signature (�+++) is given by

ds
2 = �e

2⌫(r)
dt

2 + e
2�(r)

dr
2 + r

2(d✓2 + sin2
✓d�

2), (3.2.1)

where ⌫(r) and �(r) are arbitrary functions of r and represent gravitational potentials.

We use spacetime coordinates (xa) = (t, r, ✓,�). With the use of equation (2.2.3), we

can obtain the nonzero Christo↵el symbols for the metric element (3.2.1) as

�0
01 = ⌫

0 �1
11 = �

0

�1
33 = �re

�2� sin2
✓ �2

33 = � sin ✓ cos ✓

�1
00 = ⌫

0
e
2(⌫��) �2

12 = �3
13 =

1
r

�1
22 = �re

�2� �3
23 = cot ✓.

Note that primes denote di↵erentiation with respect to the radial coordinate r.

Substituting these quantities in the definition (2.2.5) we obtain the nonvanishing

components of the Ricci tensor as

R
0
0 = �1

r

⇥
e
�2�
�
r⌫

00 + r(⌫ 0)2 � r⌫
0
�
0 + 2⌫ 0

�⇤
, (3.2.2a)

R
1
1 = �1

r

⇥
e
�2�
�
r⌫

00 + r(⌫ 0)2 � r⌫
0
�
0 � 2�0

�⇤
, (3.2.2b)

R
2
2 =

1

r2

⇥
�re

�2�
⌫
0 + r�

0
e
�2� + 1� e

�2�
⇤
, (3.2.2c)

R
3
3 = R

2
2. (3.2.2d)

Using system (3.2.2), we can generate the Ricci scalar using (2.2.6) as

R = 2


1

r2
� e

�2�

✓
⌫
00 + ⌫

02 � �
0
⌫
0 � 2

r
�
0 +

2

r
⌫
0 +

1

r2

◆�
. (3.2.3)

Then using (3.2.2) and (3.2.3) in (2.2.7), the nonvanishing Einstein tensor components
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can be generated. These are given by

G
0
0 =

1

r2
e
�2� � 2�0

r
e
�2� � 1

r2
, (3.2.4a)

G
1
1 =

1

r2
e
�2� +

2⌫ 0

r
e
�2� � 1

r2
, (3.2.4b)

G
2
2 = e

�2�


⌫
00 + ⌫

02 +
⌫
0

r
� �

0

r
� ⌫

0
�
0
�
, (3.2.4c)

G
3
3 = G

2
2. (3.2.4d)

For the static spherically symmetric spacetime (3.2.1), the fluid four-velocity is

defined by u
a = e

�⌫
�
a
0. The nonzero matter components of the energy momentum

tensor for a neutral fluid (2.3.2) are then

T
0
0 = �⇢, (3.2.5a)

T
1
1 = pk, (3.2.5b)

T
2
2 = p?, (3.2.5c)

T
3
3 = T

2
2, (3.2.5d)

where ⇢ is the energy density, pk is the radial pressure and p? is the tangential pressure.

Equating the nonvanishing components of the Einstein tensor (3.2.4) to the nonvan-

ishing components of the energy momentum tensor (3.2.5), the Einstein field equations

are obtained as

⇢ =
1

8⇡


� 1

r2
e
�2� +

2�0

r
e
�2� +

1

r2

�
, (3.2.6a)

pk =
1

8⇡


1

r2
e
�2� +

2⌫ 0

r
e
�2� � 1

r2

�
, (3.2.6b)

p? =
1

8⇡
e
�2�


⌫
00 + ⌫

02 +
⌫
0

r
� �

0

r
� ⌫

0
�
0
�
. (3.2.6c)

In the above we have a set of three equations with five unknowns being ⇢, pk, p?, ⌫

and �. This system is underdetermined and solutions can be obtained by postulating

one variable in order to determine the remaining two. Another approach is to specify

an equation of state.
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In addition we can extend the above equations to include charged matter. Compo-

nents of the four-potential A are chosen as

Aa = (�(r), 0, 0, 0) . (3.2.7)

Use of (3.2.7) in equation (2.3.4) yields only one nonzero component of the Faraday

tensor and it is given by

F01 = ��0(r). (3.2.8)

The contravariant component of the Faraday tensor then has the form

F
01 = e

�2(⌫+�)�0(r) = e
�(⌫+�)

E(r), (3.2.9)

where the quantity E(r) is the electrostatic field intensity defined in terms of the

gravitational potentials ⌫ and �, and the electric potential � by

E(r) = e
�(⌫+�)�0(r). (3.2.10)

Substituting the above quantities in definition (2.3.5), we can obtain the nonzero com-

ponents of the electromagnetic tensor as

E
a
b = diag

✓
� 1

8⇡
E

2
,� 1

8⇡
E

2
,
1

8⇡
E

2
,
1

8⇡
E

2

◆
. (3.2.11)

Thus the Einstein-Maxwell field equations, (2.4.4), may now be expressed as

8⇡

✓
⇢+

E
2

8⇡

◆
= � 1

r2
e
�2� +

2�0

r
e
�2� +

1

r2
, (3.2.12a)

8⇡

✓
pk �

E
2

8⇡

◆
=

1

r2
e
�2� +

2⌫ 0

r
e
�2� � 1

r2
, (3.2.12b)

8⇡

✓
p? +

E
2

8⇡

◆
= e

�2�


⌫
00 + ⌫

02 +
⌫
0

r
� �

0

r
� ⌫

0
�
0
�
, (3.2.12c)

e
��
⇥
r
2
E
⇤0

= 4⇡�r2. (3.2.12d)

Equations (3.2.12) reduce to (3.2.6) for neutral matter.
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3.3 N dimensional general relativity

The line element for a spherically symmetric static spacetime in N dimensions is given

by

ds
2 = �e

2⌫(r)
dt

2 + e
2�(r)

dr
2 + r

2
d⌦2

N�2, (3.3.1)

where the (N � 2)-sphere is denoted by

d⌦2
N�2 = d✓

2
1 + sin2(✓1)d✓

2
2 + sin2(✓1) sin

2(✓2)d✓
2
3

+ · · ·+ sin2(✓1) sin
2(✓2) sin

2(✓3) · · · sin2(✓N�3)d✓
2
N�2

=
N�2X

i=1

"
i�1Y

j=1

sin2(✓j)

#
(d✓i)

2
. (3.3.2)

The nonvanishing Ricci components for the metric in (3.3.1) read as

R
0
0 = e

�2�


⌫
0
�
0 � (⌫ 0)2 � ⌫

00 � (N � 2) ⌫ 0

r

�
, (3.3.3a)

R
1
1 = e

�2�


⌫
0
�
0 � (⌫ 0)2 � ⌫

00 +
(N � 2)�0

r

�
, (3.3.3b)

R
2
2 = e

�2�


�
0

r
� ⌫

0

r
� (N � 3)

r2

�
+

N � 3

r2
, (3.3.3c)

R
N�1

N�1 = R
N�2

N�2 = · · · = R
2
2. (3.3.3d)

Using system (3.3.3) the resulting Ricci scalar becomes

R = 2


(N � 2) (N � 3)

2r2
� e

�2�

✓
⌫
00 + ⌫

02 � �
0
⌫
0

�(N � 2)�0

r
+

(N � 2) ⌫ 0

r
+

(N � 3) (N � 2)

2r2

◆�
. (3.3.4)

Therefore the nonzero Einstein tensor components in N dimensions are generated as

G
0
0 = (N � 2)


(N � 3) e�2�

2r2
� e

�2�
�
0

r
� (N � 3)

2r2

�
, (3.3.5a)

G
1
1 = (N � 2)


(N � 3) e�2�

2r2
+

e
�2�

⌫
0

r
� (N � 3)

2r2

�
, (3.3.5b)

G
2
2 = e

�2�


⌫
00 + ⌫

02 +
(N � 3) ⌫ 0

r
� (N � 3)�0

r
� ⌫

0
�
0

+
(N � 4) (N � 3)

2r2

�
� (N � 4) (N � 3)

2r2
, (3.3.5c)

G
N�1

N�1 = G
N�2

N�2 = · · · = G
2
2. (3.3.5d)
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The nonzero matter components for a neutral fluid are expressed by

diag (T a
b) =

�
�⇢, pk, p?, p?, ..., p?

�
, (3.3.6)

in the absence of anisotropic pressure and heat. As a result the higher dimensional

Einstein field equations read as

⇢ =
(N � 2)

N


e
�2�

�
0

r
+

(N � 3)

2r2
� (N � 3) e�2�

2r2

�
, (3.3.7a)

pk =
(N � 2)

N


(N � 3) e�2�

2r2
+

e
�2�

⌫
0

r
� (N � 3)

2r2

�
, (3.3.7b)

p? =
1

N

✓
e
�2�


⌫
00 + ⌫

02 +
(N � 3) ⌫ 0

r
� (N � 3)�0

r
� ⌫

0
�
0

+
(N � 4) (N � 3)

2r2

�
� (N � 4) (N � 3)

2r2

◆
. (3.3.7c)

This applies for uncharged matter. When N = 4, equations (3.3.7) reduce to (3.2.6).

We can extend the above to include a charged matter distribution. We find that

the Einstein-Maxwell system of equations in N dimensions becomes

N

✓
⇢+

E
2

2AN�2

◆
=

(N � 2) e�2�
�
0

r
+

(N � 2) (N � 3)

2r2

�(N � 2) (N � 3) e�2�

2r2
, (3.3.8a)

N

✓
p� E

2

2AN�2

◆
=

(N � 2) (N � 3) e�2�

2r2
+

(N � 2) e�2�
⌫
0

r

�(N � 2) (N � 3)

2r2
, (3.3.8b)

N

✓
p+

E
2

2AN�2

◆
= e

�2�


⌫
00 + ⌫

02 +
(N � 3) ⌫ 0

r
� (N � 3)�0

r

�⌫ 0�0 + (N � 4) (N � 3)

2r2

�
� (N � 4) (N � 3)

2r2
, (3.3.8c)

e
��
⇥
r
(N�2)

E
⇤0

= AN�2�r
(N�2)

. (3.3.8d)

With N = 4, 4 = 8⇡ and A2 = 4⇡ we find that equations (3.3.8) reduce to (3.2.12).
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3.4 EGB gravity in 5D

Five and six spacetime dimensions are the critical dimensions in EGB gravity. A

pioneering work in this direction was conducted by Wiltshire (1986). We first consider

EGB gravity in five dimensions as this reflects the gravitational behaviour in odd

spacetime dimensions. The line element for a spherically symmetric static spacetime

in five dimensions with metric signature (�++++) is given by

ds
2 = �e

2⌫(r)
dt

2 + e
2�(r)

dr
2 + r

2(d✓2 + sin2
✓d�

2 + sin2
✓ sin2

�d 
2), (3.4.1)

where ⌫(r) and �(r) are arbitrary functions of r that represent gravitational potentials.

We use spacetime coordinates (xa) = (t, r, ✓,�, ). The nonzero Christo↵el symbols

for the above metric are

�0
01 = ⌫

0 �1
11 = �

0

�1
33 = �re

�2� sin2
✓ �2

33 = � sin ✓ cos ✓

�1
00 = ⌫

0
e
2(⌫��) �2

12 = �3
13 = �4

14 =
1
r

�1
22 = �re

�2� �3
23 = �4

24 = cot ✓

�1
44 = �re

�2� sin2
✓ sin2

� �2
44 = � sin ✓ cos ✓ sin2

�

�4
34 = cot� �3

44 = � sin� cos�.

Using equation (2.2.5), the nonvanishing Ricci tensor components can be obtained

as

R
0
0 = �1

r

⇥
e
�2�(�r⌫

0
�
0 + r(⌫ 0)2 + r⌫

00 + 3⌫ 0)
⇤
, (3.4.2a)

R
1
1 = �1

r

⇥
e
�2�(�r⌫

0
�
0 + r(⌫ 0)2 + r⌫

00 � 3�0)
⇤
, (3.4.2b)

R
2
2 = � 1

r2

⇥
re

�2�
⌫
0 � re

�2�
�
0 � 2 + 2e�2�

⇤
, (3.4.2c)

R
3
3 = R

4
4 = R

2
2, (3.4.2d)

where once again primes represent di↵erentiation with respect to r.
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The Ricci scalar reads

R = � 1

r2

⇥
2
�
�r

2
e
�2�

�
0
⌫
0 + r

2
e
�2�

⌫
02 + r

2
e
�2�

⌫
00 � 3re�2�

�
0

+3re�2�
⌫
0 + 3e�2� � 3

�⇤
. (3.4.3)

Then using (3.4.2) and (3.4.3) in (2.2.7), the nonvanishing Einstein tensor components

are given by

G
0
0 =

3

r2
e
�2� � 3�0

r
e
�2� � 3

r2
, (3.4.4a)

G
1
1 =

3

r2
e
�2� +

3⌫ 0

r
e
�2� � 3

r2
, (3.4.4b)

G
2
2 = e

�2�
⌫
00 + e

�2�
⌫
02 +

2⌫ 0

r
e
�2� � 2�0

r
e
�2�

�e
�2�

⌫
0
�
0 +

e
�2�

r2
� 1

r2
, (3.4.4c)

G
3
3 = G

4
4 = G

2
2. (3.4.4d)

Equation (2.5.3) yields the nonzero components of the Gauss-Bonnet tensor as

H
0
0 =

�24e�2⌫
�
0 �
e
�4�+2⌫ � e

�2�+2⌫
�

r3
, (3.4.5a)

H
1
1 =

24e�2�
⌫
0 �
e
�2� � 1

�

r3
, (3.4.5b)

H
2
2 =

1

r2

⇥
8e�2�

�
� 3e�2�

�
0
⌫
0 + e

�2�
⌫
02

+e
�2�

⌫
00 + ⌫

0
�
0 � ⌫

02 � ⌫
00�⇤

, (3.4.5c)

H
3
3 = H

4
4 = H

2
2, (3.4.5d)

for the line element (3.4.1). Then (3.4.4) and (3.4.5) give the three independent com-

ponents

G
0
0 �

↵

2
H

0
0 =

3

r2
e
�2� � 3�0

r
e
�2� � 3

r2

�↵
2

"
�24e�2⌫

�
0 �
e
�4�+2⌫ � e

�2�+2⌫
�

r3

#
, (3.4.6a)

G
1
1 �

↵

2
H

1
1 =

3

r2
e
�2� +

3⌫ 0

r
e
�2� � 3

r2

�↵
2

"
24e�2�

⌫
0 �
e
�2� � 1

�

r3

#
, (3.4.6b)
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G
2
2 �

↵

2
H

2
2 = e

�2�
⌫
00 + e

�2�
⌫
02 +

2⌫ 0

r
e
�2� � 2�0

r
e
�2�

�e
�2�

⌫
0
�
0 +

e
�2�

r2
� 1

r2

�↵
2


1

r2

⇥
8e�2�(�3e�2�

�
0
⌫
0 + e

�2�
⌫
02

+e
�2�

⌫
00 + ⌫

0
�
0 � ⌫

02 � ⌫
00)
⇤�

, (3.4.6c)

which gives the curvature part of the field equations.

The fluid five-velocity is described by u
a = e

�⌫
�
a
0 for the line element (3.4.1).

Therefore the nonzero components of the energy momentum tensor for uncharged mat-

ter can be obtained using definition (2.3.2). These read as

diag (T a
b) =

�
�⇢, pk, p?, p?, p?

�
, (3.4.7)

giving

T
0
0 = �⇢, (3.4.8a)

T
1
1 = pk, (3.4.8b)

T
2
2 = p?, (3.4.8c)

for the independent neutral matter components.

We now equate equations (3.4.6) and (3.4.8) to generate the EGB field equations

⇢ =
1

3⇡2


3

e4�r3

✓
r
2
�
0
e
2� + re

4� � 4↵�0 + 4↵�0e2� � re
2�

◆�
, (3.4.9a)

pk =
1

3⇡2


3

e4�r3

✓
r
2
⌫
0
e
2� � re

4� � 4↵⌫ 0 + 4↵⌫ 0e2� + re
2�

◆�
, (3.4.9b)

p? =
1

3⇡2


1

e4�r2

✓
�e

4� � 4↵⌫ 00 � 4↵⌫ 02 + 12↵⌫ 0�0
◆

+
1

e2�r2

✓
1� r

2
�
0
⌫
0 + r

2
⌫
02 + r

2
⌫
00 � 4↵⌫ 0�0

+4↵⌫ 02 + 4↵⌫ 00 + 2r⌫ 0 � 2r�0
◆�

, (3.4.9c)

where we determined the value of the coupling constant N in five dimensions as

5 = 3⇡2. Equations (3.4.9) are a system of three equations with five unknowns ⇢,
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pk, p?, ⌫ and �. These equations are highly nonlinear, and the addition of the Gauss-

Bonnet terms increases the complexity of the system. To find a solution to the system

we can impose an equation of state on physical grounds.

We regain the Einstein version for gravitating spherically symmetric perfect fluids

in a five-dimensional static spacetime when ↵ = 0. The field equations in this limit

become

⇢ =
1

3⇡2


3

e4�r3

✓
�
0
e
2�
r
2 + e

4�
r � re

2�

◆�
, (3.4.10a)

pk =
1

3⇡2


3

e4�r3

✓
⌫
0
e
2�
r
2 � e

4�
r + re

2�

◆�
, (3.4.10b)

p? =
1

3⇡2


1

e2�r2

✓
1� r

2
�
0
⌫
0 + ⌫

02
r
2 + ⌫

00
r
2 + 2r⌫ 0 � 2r�0

◆

� 1

r2

�
, (3.4.10c)

which has been widely studied in the past.

We now extend the above results to the charged case. Components of the five-

potential A are chosen as

Aa = (�(r), 0, 0, 0, 0) . (3.4.11)

Use of equation (2.3.4) yields only one nonzero component of the Faraday tensor in

this five dimensional regime, and it is given by

F01 = ��0(r). (3.4.12)

The contravariant component becomes

F
01 = e

�2(⌫+�)�0(r) = e
�(⌫+�)

E(r), (3.4.13)

where the electrostatic field intensity is defined by

E(r) = e
�(⌫+�)�0(r). (3.4.14)

The surface area in five dimensions evaluates to A3 = 2⇡2, and using (3.4.12) and

(3.4.13) in the definition (2.3.5), the nonzero components of the electromagnetic field
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tensor can be generated. These are given by

diag(Ea
b) =

✓
� 1

4⇡2
E

2
,� 1

4⇡2
E

2
,

1

4⇡2
E

2
,

1

4⇡2
E

2
,

1

4⇡2
E

2

◆
. (3.4.15)

System (2.5.5) yields the field equations as

3⇡2

✓
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4⇡2
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e4�r3

�
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4� � 4↵�0
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, (3.4.16a)
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r
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0
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�
, (3.4.16b)
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✓
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1

4⇡2
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2

◆
=

1

e4�r2

�
�e

4� � 4↵⌫ 00 � 4↵⌫ 02 + 12↵⌫ 0�0
�

+
1

e2�r2

�
1� r

2
�
0
⌫
0 + r

2
⌫
02 + r

2
⌫
00 + 4↵⌫ 02

�4↵⌫ 0�0 + 4↵⌫ 00 + 2r⌫ 0 � 2r�0) , (3.4.16c)

e
��
⇥
r
3
E
⇤0

= 2⇡2
r
3
�, (3.4.16d)

which is the charged version of (3.4.9).

3.5 EGB gravity in 6D

Six spacetime dimensions is the second critical dimension in EGB gravity. We now

consider EGB gravity in six dimensions as it reflects gravitational behaviour in even

dimensions. The line element for a spherically symmetric static spacetime in six di-

mensions with metric signature (�+++++) is described by

ds
2 = �e

2⌫(r)
dt

2 + e
2�(r)

dr
2 + r

2
�
d✓

2 + sin2
✓d�

2 + sin2
✓ sin2

�d 
2

+sin2
✓ sin2

� sin2
 d'

2
�
, (3.5.1)

where ⌫(r) and �(r) are arbitrary functions of r that represent gravitational potentials.

We use spacetime coordinates (xa) = (t, r, ✓,�, ,'). The nonzero Christo↵el symbols

for the above metric are
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�0
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 �2

55 = � sin ✓ cos ✓ sin2
� sin2

 

�3
55 = � sin� cos� sin2

 �4
55 = � sin cos 

�5
45 = cot�.

Using (2.2.5) we obtain the nonvanishing Ricci tensor components as

R
0
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r

⇥
e
�2�
�
� r⌫

0
�
0 + r(⌫ 0)2 + r⌫
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, (3.5.2a)
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⇥
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, (3.5.2b)

R
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0
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⇤
, (3.5.2c)

R
3
3 = R

4
4 = R

5
5 = R

2
2. (3.5.2d)

The Ricci scalar reads as

R = � 1

r2
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2
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�2�
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00 � 4re�2�

�
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+4re�2�
⌫
0 + 6e�2� � 6

�⇤
. (3.5.3)

Then using (3.5.2) and (3.5.3) in (2.2.7), the nonvanishing Einstein tensor components

are given by

G
0
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e
�2� � 4�0

r
e
�2� � 6

r2
, (3.5.4a)

G
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r
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, (3.5.4b)

G
2
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r
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r
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� 3
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, (3.5.4c)

G
3
3 = G

4
4 = G

5
5 = G

2
2. (3.5.4d)
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With the use of equation (2.5.3), we can obtain the nonzero components of the Gauss-

Bonnet tensor as

H
0
0 =

24

r3


1

r

�
e
�4� � 2e�2� + 1

�
+ 4�0e�2�

�
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Then system (3.5.4) and (3.5.5) provide the three independent components as
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The fluid six-velocity is described by ua = e
�⌫
�
a
0 for the line element (3.5.1). There-

fore the nonzero components of the energy momentum tensor for uncharged matter can

be obtained using definition (2.3.1). In the absence of heat and anisotropic stress, these

read as

diag (T a
b) =

�
�⇢, pk, p?, p?, p?, p?

�
, (3.5.7)

giving

T
0
0 = �⇢, (3.5.8a)
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T
1
1 = pk, (3.5.8b)

T
2
2 = p?, (3.5.8c)

for the independent neutral matter components.

The coupling constant in six dimensions is given by 6 =
32⇡2

9 , and equating systems

(3.5.6) and (3.5.8) provides the EGB field equations as
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for neutral matter.

We now include the e↵ects of the electromagnetic field. Components of the six-

potential A are chosen as

Aa = (�(r), 0, 0, 0, 0, 0) . (3.5.10)

Use of equation (2.3.4) yields only one nonzero component of the Faraday tensor in

this six dimensional regime, and it is given by

F01 = ��0(r). (3.5.11)

The contravariant component reads as

F
01 = e

�2(⌫+�)�0(r) = e
�(⌫+�)

E(r), (3.5.12)

where the electrostatic field intensity is defined by

E(r) = e
�(⌫+�)�0(r). (3.5.13)
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The surface area in six dimensions evaluates to A4 = 8
3⇡

2, and thus the nonzero

components of the electromagnetic tensor are given by

diag(Ea
b) =
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◆
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Then system (2.5.5) yields the charged EGB field equations as
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e
��
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3
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2
r
4
�. (3.5.15d)

for the line element (3.5.1). When E = 0 we regain the uncharged EGB field equations

(3.5.9).
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Chapter 4

Spherical EGB models

4.1 Introduction

Several exact solutions in general relativity are known for static interiors of spherical

stars. However, little is known about the interiors of compact objects in EGB gravity.

Recent investigations (Maharaj et al 2015, Chilambwe et al 2015, Hansraj et al 2015)

have reported new solutions to the EGB field equations in five dimensions for a static

spherically symmetric interior of a perfect fluid. These models have a simple form

and are expressable in terms of elementary functions. Some other exact solutions have

been found in the presence of charge in five dimensional EGB gravity and for the case

of neutral fluids in six dimensional EGB. Two recent examples are given by Hansraj

(2017) and Hansraj and Mkhize (2020).

4.2 Isotropic pressure condition equation

The spacetime of spherically symmetric static models in five dimensions is represented

by

ds
2 = �e

2⌫(r)
dt

2 + e
2�(r)

dr
2 + r

2(d✓2 + sin2
✓d�

2 + sin2
✓ sin2

�d 
2). (4.2.1)

as noted before in chapter 3.
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We now equate equations (3.4.9b) and (3.4.9c) with pk = p? = p to generate the

condition of pressure isotropy. This gives the result

1

e4�r3

⇥
12↵⌫ 0 � 4↵r⌫ 00 � 4↵r⌫ 02 + 12↵r⌫ 0�0

⇤

+
1

e2�r2

⇥
r
2
⌫
00 + 4↵⌫ 00 + 4↵⌫ 02 + r

2
⌫
02 � r

2
�
0
⌫
0 + 2e2�

�2� 4↵⌫ 0�0 � r⌫
0 � 2r�0] = 0, (4.2.2)

in canonical coordinates.

In order to simplify system (3.4.9), we apply the transformation

e
2⌫(r) = y

2(x), e
�2�(r) = Z(x), x = r

2
, (4.2.3)

first introduced by Durgapal and Bannerji (1983) in general relativity. The EGB field

equations with isotropic pressure can then be written as

⇢ =
1

3⇡2


3

x
(1� Z)

⇣
1� 4↵Ż

⌘
� 3Ż

�
, (4.2.4a)

p =
1

3⇡2


3

x
(Z � 1)

✓
1� 8↵ẏZ
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◆
+ 6Z

ẏ

y

�
, (4.2.4b)

p =
1

3⇡2


2Ż +

Z � 1

x
� 4↵ẏZ (Z � 1)
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�4↵

y
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4ÿZ2 + 6ẏŻZ � 4ÿZ � 2ẏŻ

⌘

+
1

y

⇣
4xÿZ + 2xŻẏ + 6Zẏ

⌘�
, (4.2.4c)

where dots denote di↵erentiation with respect to x. Equating (4.2.4b) and (4.2.4c)

yields

ÿ


2xZ (4↵(1� Z) + x)

�
+ ẏ

h
x
2
Ż � 2↵

⇣
4Z � 4Z2 � 2xŻ + 6xŻZ

⌘i

+y

h
1� Z + xŻ

i
= 0, (4.2.5)

which is equivalent to the consistency condition of isotropic pressure (4.2.2), now in

terms of new variables y, Z and x. Equation (4.2.5) is the master equation for the

system. It is a second order linear di↵erential equation in y if Z is specified. We can
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rearrange equation (4.2.5) to obtain a first order nonlinear di↵erential equation in Z,

which is an equivalent form of the master equation. We get

�
�12↵xẏZ + 4↵xẏ + x

2
ẏ + xy

�
Ż � 8↵ (xÿ � ẏ)Z2

+
�
2x2

ÿ + 8↵xÿ � 8↵ẏ � y
�
Z + y = 0. (4.2.6)

Here we observe that the above equation is an Abelian di↵erential equation in Z.

To study the dynamics of the model we need to find exact solutions of (4.2.5) or its

transformed versions.

In the remainder of this chapter we consider some known exact solutions of the

EGB field equations with neutral matter.

4.3 Exact models

We present known solutions to the master equations (4.2.5) and (4.2.6). These have

been studied by Chilambwe et al (2015), Hansraj et al (2015) and Maharaj et al (2015).

We follow their notation.

4.3.1 y
2 = A

2

We set y to be constant

y
2 = A

2
, (4.3.1)

so then equation (4.2.6) becomes

xŻ � Z + 1 = 0. (4.3.2)

Equation (4.3.2) is identified as a first order linear ordinary di↵erential equation in Z

which has the solution

Z = C1x+ 1. (4.3.3)
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This solution is characterized by the equation of state

⇢ = 4⇡2
↵p

2 � 2p, (4.3.4)

relating the energy density ⇢ and isotropic pressure p.

4.3.2 y = a+ kx

We take a linear form of y given by

y = a+ kx. (4.3.5)

Equation (4.2.6) becomes

⇥
2kx2 + ax� 4↵kx (3Z � 1)

⇤
Ż + 8↵kZ2 � [8↵k + a+ kx]Z

+a+ kx = 0. (4.3.6)

Here we observe that equation (4.3.6) is a nonlinear Abelian di↵erential equation of

the second kind in Z. Despite its complexity an exact solution can be found and, it is

given by

Z =
1

3�k
[(1 + 2Q)k� ± (a+ 2kx)(1�Q)], (4.3.7)

where

� = 4↵, (4.3.8)

Q =
(80C2
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(80C2
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p
5C1x

i 1
3
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(80C2

1x
2 � F )

1
2 � 4

p
5C1x

⌘ 2
3 � F

1
3

� , (4.3.9)

and

F = a
3 � 6a2k� + 12ak2

�
2 � 8k3

�
3 + 6k(a2 + 4k2

�
2 � 4ak�)x

+12k2(a� 2k�)x2 + 8k3
x
3
. (4.3.10)

Thus we see that the metric function Z has a complicated form but can be expressed

in terms of elementary functions.
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4.3.3 xÿ � ẏ = 0

Setting the coe�cient of Z2 to zero in equation (4.2.6) gives

xÿ � ẏ = 0. (4.3.11)

This equation is a second order linear di↵erential equation in y which can be integrated

to obtain

y =
1

2
C1x

2 + C2, (4.3.12)

where C1 and C2 are constants of integration. We now insert (4.3.12) into (4.2.6) to

get

✓
3

2
C1x

3 + 4↵C1x
2 + C2x� 12↵C1x

2
Z

◆
Ż

+

✓
3

2
C1x

2 � C2

◆
Z +

1

2
C1x

2 + C2 = 0. (4.3.13)

Here we note that this equation is a simpler form of (4.2.6). However the use of (4.3.12)

does not remove its nonlinearity. Equation (4.3.13) is a first order nonlinear ordinary

di↵erential equation which can be written in the form

�
3✏x3 + 8�✏x2 + 2x� 24�✏x2

Z
�
Ż

+
�
3✏x2 � 2

�
Z + ✏x

2 + 2 = 0, (4.3.14)

where

� = ↵, (4.3.15)

✏ =
C1

C2
. (4.3.16)

A solution to equation (4.3.14) can be found by testing the exactness of the di↵erential

equation. Thus, we let

M̃(x, Z) =
�
3✏x2 � 2

�
Z + ✏x

2 + 2, (4.3.17)

H̃(x, Z) = 3✏x3 + 8�✏x2 + 2x� 24�✏x2
Z. (4.3.18)
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It can be seen that @M̃(x,Z)
@Z

6= @H̃(x,Z)
@x

, therefore (4.3.13) is an inexact di↵erential equa-

tion. However, an integrating factor, K̃(x) can be found such that

K̃
�
3✏x3 + 8�✏x2 + 2x� 24�✏x2

Z
�
Ż

+K̃
⇥�
3✏x2 � 2

�
Z + ✏x

2 + 2
⇤
= 0, (4.3.19)

becomes an exact di↵erential equation. This yields the condition

@(K̃(x)M̃(x, Z))

@Z
=

@(K̃(x)H̃(x, Z))

@x
,

K̃(x)
�
3C1x

2 � 2C2

�
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dK̃

dx
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Z
�

+K̃(x)
�
9✏x2 + 16�✏x+ 2� 48�✏xZ

�
. (4.3.20)

As a result, the integrating factor takes on the form

K̃(x) =
1

x2
. (4.3.21)

Using the above equation in (4.3.19) yields

✏+ 3✏Z � 2 (Z � 1)

x2
+

✓
2

x
+ 3✏x+ 8�✏ (�3Z + 1)

◆
Ż = 0. (4.3.22)

Thus we have transformed the inexact di↵erential equation (4.3.14) to an exact ordinary

di↵erential equation. The solution to equation (4.3.22) is then expressed as

✏x (3Z + 1) +
2 (Z � 1)

x
+ 8�✏Z

✓
1� 3Z

2

◆
= C3. (4.3.23)

Therefore, the solution to equation (4.3.13) is given by

Z =
3✏x2 + 8�✏x+ 2±⌥

24�✏x
, (4.3.24)

where

⌥ =
⇥
4(1� 16�✏x) + 4✏(16�2

✏+ 3� 12�C3)x
2

+3✏2(3x4 + 32�x3)
⇤ 1

2 , (4.3.25)

for which C3 is a constant. This class of solution is expressible in terms of elementary

functions.
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4.3.4 Z = a

If we take the form

Z = a, (4.3.26)

where a is constant, then equation (4.2.5) reduces to

⇥
8↵x� 8↵ax+ 2x2

⇤
ÿ + [8↵ (a� 1)] ẏ +

✓
1� a

a

◆
y = 0. (4.3.27)

This equation can be transformed to

z(z � 1)
d
2
y

dz2
� dy

dz
+By = 0, (4.3.28)

where we have set

z =
x+ A

A
, A = 4↵(1� a), B =

1� a

2a
. (4.3.29)

The gravitational behaviour for this category of models is governed by the well known

hypergeometric di↵erential equation. The solutions of (4.3.28) are given in terms of

hypergeometric functions in general. Maharaj et al (2015) showed that

y = C1

" 1X

n=1

2a0(�1)n

An

1

n!(n+ 2)!

nY

j=1

(j(j + 1) + B)xn+2

#

+C2

"
µ

 1X

n=1

2a0(�1)n

An

1

n!(n+ 2)!

nY

j=1

(j(j + 1) + B)xn+2

!
ln x

+
1X

n=0

bnx
n

#
, n � 1, (4.3.30)

which is a series solution. In the above the symbol
Q

denotes multiplication and a0,

A, µ and B are all constants. For B = �m, an integer, we obtain the particular case

y = C1

"
mX

n=1

2a0
An

1

n!(n+ 2)!

nY

j=1

(m� j(j + 1))xn+2

#

+C2

"
µ

 
mX

n=1

2a0
An

1

n!(n+ 2)!

nY

j=1

(m� j(j + 1))xn+2

!
ln x

+
1X

n=0

bnx
n

#
. (4.3.31)

Here the hypergeometric series in (4.3.31) terminates when C2 = 0 and we obtain a

solution in terms of simple polynomial functions.
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Chapter 5

New models in EGB gravity:

neutral matter

5.1 Introduction

Particular solutions in EGB gravity have been reported in the literature. For example,

Bhawal (1990) studied the higher dimensional analogue of the Boulware and Deser

spacetime metric in geodesic motion. These results were then compared to the geometry

of the higher dimensional Schwarszchild spacetime. E↵orts have been made by Ghosh

et al (2014) to study, in dimensions of five, the gravitational contraction of a spherical

cloud that is made up of inhomogeneous dust. Cai (2002) discussed the thermodynamic

properties and phase structures of black hole solutions in Einstein gravity with a Gauss-

Bonnet term. Moreover, Dadhich et al (2010) established that the gravitational field

inside a uniform density fluid sphere is independent of the spacetime dimensions not

only in Einstein gravity but also in EGB gravity, enabling the universality of the

Schwarszchild solution in EGB theory. These endeavours show that EGB gravity has

been studied and applied to many aspects of relativistic astrophysics. However little is

known about the interiors of static spherically symmetric stellar objects in this regime

of gravity. Therefore, in this chapter we aim to seek out new static interior solutions for
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spherically symmetric compact bodies. In section 5.2, we make use of a substitution to

analyse the pressure isotropy condition. This is a new approach and is not contained

in earlier works. In sections 5.3, 5.4, 5.5 and 5.6 we present new classes of models for

the gravitational potentials.

5.2 Abel equations

Particular solutions to (4.2.6) have been derived in the past using arbitrary approaches.

We show that this equation may be studied systematically. In spite of its complexity

it may be reduced to a canonical di↵erential equation. We first note that the master

equation (4.2.6) is classified as an Abel di↵erential equation of the second kind. It can

be written in the form

✓
Z � 1

3
� x

12↵
� y

12↵ẏ

◆
Ż =

2

3

✓
1

x
� ÿ

ẏ

◆
Z

2

+

✓
2ÿ

3ẏ
+

ÿx

6↵ẏ
� 2

3x
� y

12↵ẏx

◆
Z +

y

12↵xẏ
. (5.2.1)

This equation is a first order nonlinear ordinary di↵erential equation in Z. It can be

simplified by applying a transformation as suggested in Zaitsev and Polyanin (1994).

We introduce the new variable

w =

✓
Z � 1

3
� x

12↵
� y

12↵ẏ

◆✓
ẏ

x

◆ 2
3

, (5.2.2)

where ẏ 6= 0 and ↵ 6= 0. Substituting (5.2.2) into (5.2.1) we have

wẇ = w

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�

+

✓
ẏ

x

◆ 4
3


y

432↵2ẏ
� y

2
ÿ

216↵2ẏ3
+

ÿ

ẏ

✓
4

27
+

2x

27↵
+

x
2

108↵2

◆
� 1

54↵

+
y

27↵xẏ
� 4

27x
+

x

216↵2
+

xyÿ

216↵2ẏ2
� y

2

432↵2xẏ2
+

yÿ

54↵ẏ2

�
. (5.2.3)

This can be written in the form

wẇ = wF1 + F0, (5.2.4)
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where w = w(x) and we have introduced the new functions F1 and F0 which depend

on the potential y. They have the form

F1 =

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
, (5.2.5)

F0 =

✓
ẏ

x

◆ 4
3
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y

432↵2ẏ
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2
ÿ

216↵2ẏ3
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ÿ

ẏ
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27
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27↵
+

x
2

108↵2

◆
� 1
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+
y
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� 4

27x
+

x

216↵2
+

xyÿ

216↵2ẏ2
� y

2

432↵2xẏ2
+

yÿ

54↵ẏ2

�
. (5.2.6)

It is necessary to integrate (5.2.4) and find w = w(x).

We have shown that equation (4.2.6) is reducible to the more elegant and standard

form given in equation (5.2.4). Further, we can make the transformation

q =

Z
F1dx, (5.2.7)

and define the parameterized function

R(q) =
F0

F1
. (5.2.8)

Then (5.2.4) can be written as

wqw = w +R(q), (5.2.9)

where w is a function of q. We note that expression (5.2.9) is the original master

equation (4.2.6) reduced to canonical form. It is di�cult to solve the canonical form,

equation (5.2.9), for w = w(q) and regain the function w = w(x) in general. Therefore,

we are only concerned with (5.2.4) which is a first order nonlinear di↵erential equation

in w. Since F1 and F0 both depend on an arbitrary function of y in a complicated

manner, it won’t be possible to solve (5.2.4) in general. However, we note that there

are special cases for which we are able to obtain w explicitly.

We now show that it is possible to integrate (5.2.4) in particular cases by restricting

the functions F1 and F0.
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5.3 Case I: F0 = 0

We set

F0 = 0, (5.3.1)

so that
✓
ẏ

x

◆ 4
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

y
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� y

2
ÿ

216↵2ẏ3
+

ÿ

ẏ

✓
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x
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◆
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y
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� 4

27x
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x

216↵2
+
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216↵2ẏ2
� y

2
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yÿ

54↵ẏ2

�
= 0. (5.3.2)

This is written as

2x2
ẏ
3 + 16↵yẏ2 � 2xy2ÿ + 64↵2

xẏ
2
ÿ + 4x3

ẏ
2
ÿ + 32↵x2

ẏ
2
ÿ

�64↵2
ẏ
3 + xyẏ

2 + 2x2
yẏÿ � 8↵xẏ3 � y

2
ẏ + 8↵xyẏÿ = 0. (5.3.3)

Equation (5.2.4) is now written as

wẇ = wF1, (5.3.4)

which can be identified as a separable di↵erential equation. We integrate equation

(5.3.4) to obtain

w =

Z
F1dx

=

Z ✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
dx

+ C, (5.3.5)

where C is a constant of integration.

Substituting for w from (5.3.5) in equation (5.2.2) and isolating Z we acquire

Z =

 Z ✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2
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�
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!

⇥
✓
x

ẏ

◆ 2
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+
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3
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+

y

12↵ẏ
. (5.3.6)

Therefore the metric function Z (and therefore the gravitational potential �(r)) can be

found explicitly for this class of models. Note that this case is subject to the condition

that y satisfies equation (5.3.3).
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5.4 Case II: F1 = 0

We now let

F1 = 0, (5.4.1)

which yields the following constraint

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
= 0. (5.4.2)

This can be simplified to the form

�8↵ẏ2 + xẏÿ (8↵ + 2x)� 2xẏ2 � xyÿ + yẏ = 0. (5.4.3)

This is a highly nonlinear ordinary di↵erential equation that can be simplified to the

form

(�2xẏ � 8↵ẏ + y) (xÿ � ẏ) = 0. (5.4.4)

In the above equation, we observe that it is a product of a first order and second order

linear ordinary di↵erential equation. As a result, we can obtain two solutions for the

variable y(x).

It remains to find Z if the condition (5.4.1) holds. Equation (5.2.4) becomes

wẇ = F0, (5.4.5)

which is again a separable equation. Integrating we obtain the solution

w =

✓
2

Z
F0 dx+ C

◆ 1
2

, (5.4.6)
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◆
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The use of equation (5.2.2) and (5.4.7) then yields

Z =

" 
2
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yÿ

54↵ẏ2
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12↵ẏ
. (5.4.8)

Here, Z and consequently the metric potential �(r), are defined explicitly in terms

of variables x and y. An analytic form for y must satisfy the constraint provided in

equation (5.4.4): we show that this equation can be integrated in general.

5.4.1 Case A: �2xẏ � 8↵ẏ + y = 0

From (5.4.4) we get

(2x+ 8↵) ẏ � y = 0. (5.4.9)

Equation (5.4.9) is a first order linear ordinary di↵erential equation for which we can

obtain the solution as

y = Q̃
p
x+ 4↵, (5.4.10)

where Q̃ is an integration constant.

The solution of (5.4.8) for Z in Case A is given by

Z = C
1
2

 
2x

Q̃ (x+ 4↵)�
1
2

! 2
3

+ 1 +
x

4↵
. (5.4.11)

Therefore we have found a solution for Z in terms of elementary functions.

5.4.2 Case B : xÿ � ẏ = 0

In this case, from (5.4.4) we obtain

xÿ � ẏ = 0, (5.4.12)
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which is a second order linear ordinary di↵erential equation. The solution to (5.4.12)

can be easily expressed by

y =
C1x

2

2
+ C2, (5.4.13)

where C1 and C2 are constants of integration.

The solution of (5.4.8), for this case, is expressed by

Z =

" 
(C1)

4
3

↵

!
x
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64↵
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(C2)2

144↵(C1)2x2
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� C2

C19x
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+ C

# 1
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1

C1

◆ 2
3

+
1

3
+

x

8↵
+

C2

12↵C1x
. (5.4.14)

Thus we have obtained a solution for the potential Z in terms of elementary functions.

In this class of models we are able to obtain two possible analytic forms for the

function y in terms of elementary functions. The constraint equation in (5.4.3) is

satisfied. The solution of y obtained from Case A is not contained in earlier models

and the potential Z is represented by elementary functions. It is a new solution. In

Case B we are able to obtain a result, with the use of the substitution (5.2.2), for

the potential y similar to that given in section 4.3.3 by equation (4.3.12). However

the functional form of Z in (5.4.14) di↵ers from the form presented by (4.3.24). In

(4.3.24) we observe that the potential Z contains algebraic functions of x and powers

of the variable x. In (5.4.14) the potential Z contains only the powers of the variable x.

Hence the solution in Case B is also a new solution. We believe that the new solutions

arise because of the transformation (5.2.2) introduced in our analysis to transform the

condition of pressure isotropy to canonical form. It is also important to note that

these two classes of new solutions exist only in EGB gravity. They do not have a

5-dimensional Einstein limit as ↵ 6= 0.
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5.5 Case III: F1 = KF0

We choose F1 to be proportional to F0 where K is some constant. This gives the

condition

F1 = KF0. (5.5.1)

We find that (5.5.1) can be written explicitly as

96↵2
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Then substituting (5.5.1) into equation (5.2.4) yields

wẇ = F0 (K w + 1) . (5.5.3)

Integrating equation (5.5.3) we obtain

w

K
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This solution must satisfy the constraint equation (5.5.2). In this case the quantity Z,

and consequently the gravitational potential �(r), are given implicitly.
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5.6 Case IV: F1 = Q1 and F0 = Q2

We now set F1 and F0 to be arbitrary constants

F1 = Q1, (5.6.1)

F0 = Q2, (5.6.2)

such that
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� y

2

432↵2xẏ2
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Equation (5.2.4) is now written as

wẇ = wQ1 +Q2, (5.6.5)

which can be easily integrated to obtain the solution

w

Q1
� Q2 ln (wQ1 +Q2)

Q
2
1

= x+ C. (5.6.6)

The use of equation (5.2.2) then produces

⇣
Z � 1
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The quantity Z and the gravitational potential �(r) are found implicitly once again for

the above solution for which analytic forms of y must satisfy the additional conditions

in equations (5.6.3) and (5.6.4) simultaneously. It is unlikely that this case will lead to

viable exact solutions.
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Chapter 6

New models in EGB gravity:

charged matter

6.1 Introduction

Charged fluid distributions are important in relativistic astrophysics as the presence of

charge counteracts the process of gravitational collapse by the Coulombic repulsive force

along with the pressure gradient. As a result, stellar models with the inclusion of an

electromagnetic field have been analysed extensively in the literature. These models can

be studied by finding static spherically symmetric interior solutions to the the Einstein-

Maxwell field equations. Several investigations in this direction have been conducted.

These include the works of Tikekar (1990), Maharaj and Leach (1996), and Komathiraj

and Maharaj (2007) in general relativity, who found exact charged gravitating solutions

that model neutron stars. Other charged treatments include the results of Maharaj

and Thirukkanesh (2009), Varela et al (2010) and Hansraj et al (2013). In light of this,

it is interesting to examine charged compact objects in modified gravity theories. Not

many static interior solutions for charged spheres in EGB gravity are known. One such

endeavour was conducted by Hansraj (2017) in five dimensions. Furthermore, Wiltshire

(1988) derived the exterior metric for EGB gravity in the presence of charge. This is
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analogous to the Boulware and Deser exterior spacetime for neutral fluids. Therefore

in this chapter we analyse the condition of pressure isotropy with an electromagnetic

field. We then seek out new solutions to the transformed Abelian di↵erential equation

in the presence of charge.

6.2 Abel equations

We now equate equations (3.4.16b) and (3.4.16c) with pk = p? = p to produce the

pressure isotropy condition with the inclusion of charge E as

1
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2
E

2 = 0, (6.2.1)

in terms of canonical coordinates.

In order to analyse system (3.4.16) and seek out exact solutions, we apply the

Durgapal and Bannerji (1983) transformation

e
2⌫(r) = y

2(x), e
�2�(r) = Z(x), x = r

2
. (6.2.2)

The charged EGB field equations (3.4.16) from earlier with isotropic pressure (pk =

p? = p) can then be written as

3⇡2

✓
⇢+

1

4⇡2
E

2

◆
=

3

x
(1� Z)

⇣
1� 4↵Ż
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� 8↵ẏZ (Z � 1)

xy

�4↵

y

⇣
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where dots denote di↵erentiation with respect to x.

Equating (6.2.3b) and (6.2.3c) yields

ÿ
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2
x

�
= 0, (6.2.4)

which is the condition of pressure isotropy. Equation (6.2.4) represents the master

equation for this system now with the inclusion of an electric field. It is still a second

order linear di↵erential equation with the variables y, Z and E. If y and Z are specified

then the electric field E is generated without integration. It is interesting to observe

that we can then obtain a general solution for the matter variables, electric field and

proper charge density in terms of y and Z with the use of equation (6.2.4). These are

written as follows
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◆�� 1
2

⇥

1

3

 
2Z̈ � 2

x2
� 2Ż
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for the system (6.2.3).

A choice of the potentials y and Z may lead to a model with unphysical behaviour.

Consequently in many investigations a choice for the electric field is made on physical

grounds. For recent examples of this approach see the treatments of Mathias et al

(2021), Lighuda et al (2021) and Mafa Takisa et al (2019). If the electric field E is

specified then the condition of pressure isotropy, an Abelian di↵erential equation, has to

be integrated. We rearrange equation (6.2.4) to obtain a first order nonlinear di↵erential

equation in Z to get

�
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ẏ + 2xy
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2
xyE

2 = 0. (6.2.9)

This equation is classified as an Abel di↵erential equation of the second kind in Z and

the addition of the electric field does not remove its complex nonlinear nature. We

rewrite (6.2.9) as
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We once again make use of the transformation suggested by Zaitsev and Polyanin

(1994) given by (5.2.2) in Chapter 5

w =
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where ẏ 6= 0 and ↵ 6= 0. Using (6.2.11) in (6.2.10) we obtain

wẇ = w
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+

xÿ
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ÿ

ẏ
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This can be written in the form

wẇ = wF1 + F0, (6.2.13)

where w = w(x) and functions F1 and F0 now depend on the potential y and the

electric field intensity E. They have the forms

F1 =

✓
ẏ
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In order to find a solution for w = w(x), we must integrate (6.2.13) and make appro-

priate choices for E. Since F1 and F0 both depend on an arbitrary function of y in a

complex manner and F0 contains contributions from the electromagnetic field, it will

not be possible to find a solution to (6.2.13) in general. As a result we restrict the

functions F1 and F0 in specific cases where a solution for w(x) is possible. These cases

are provided below.

6.3 Case I: F0 = 0

We set

F0 = 0, (6.3.1)

so that
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� 4

27x
+

x

216↵2
+

xyÿ
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which can be rewritten as
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From equation (6.3.3) we can obtain a general form for the electric field intensity E as

E =
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27↵ẏ
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Equation (6.2.13) is now written as

wẇ = wF1, (6.3.5)

which is a separable di↵erential equation. We integrate equation (6.3.5) to obtain
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where C is a constant of integration. This yields the potential
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+

xÿ
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in terms of the function y.

Hence we have solved the charged condition of pressure isotropy when F0 = 0.

Any choice of the potential y leads to an exact solution of the system of charged EGB

field equations (6.2.3). Note that this property arises because of the presence of the
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electromagnetic field. For neutral matter considered in Chapter 5, section 5.3, there is

an additional constraint given by (5.3.3) that has to be satisfied.

To demonstrate an explicit exact solution we choose y in the form

y = ax
n + l, (6.3.8)

where a, l and n are real numbers. Then the potential Z and the charge E are given

by

Z =
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which are expressed in terms of elementary functions.

6.4 Case II: F1 = 0

This case is similar to the uncharged EGB solutions considered in section 5.4. We now

let

F1 = 0, (6.4.1)

which yields the following constraint
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The above equation can be written as

ẏÿ
�
8↵x+ 2x2

�
� 8↵ẏ2 � 2xẏ2 � xyÿ + yẏ = 0. (6.4.3)

This is a highly nonlinear ordinary di↵erential equation that can be simplified to the

form

(�2xẏ � 8↵ẏ + y) (xÿ � ẏ) = 0. (6.4.4)
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In the above equation, we observe that it is a product of a first order and second order

linear ordinary di↵erential equation. As a result, we can thus obtain two functional

forms for the variable y(x).

With F1 = 0 we have to solve

wẇ = F0, (6.4.5)

which is a separable equation. Integrating we obtain
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ÿ

216↵2ẏ3
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which contains the electric field intensity E. When E = 0 we regain equation (5.4.7)

considered in section 5.4. In terms of Z we have
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Here, Z and consequently the metric potential �(r), are defined explicitly in terms of

variables x and y. The solution to Z can only be found in terms of elementary functions

if the electric field E is specified.

6.4.1 Case A: �2xẏ � 8↵ẏ + y = 0

From (6.4.4) we get

(2x+ 8↵) ẏ � y = 0. (6.4.8)
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Equation (6.4.8) is a first order linear ordinary di↵erential equation for which we can

obtain the solution as

y = Q̃
p
x+ 4↵, (6.4.9)

where Q̃ is an integration constant.

For this form of y we can find the potential Z as
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6.4.2 Case B : xÿ � ẏ = 0

In this case from (6.4.4) we obtain

xÿ � ẏ = 0, (6.4.11)

which is a second order linear ordinary di↵erential equation. Its solution can be easily

expressed by

y =
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where C1 and C2 are constants of integration.

For the potential y given above we obtain the potential Z as
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Observe that when E = 0 then (6.4.7), (6.4.10) and (6.4.13) for the potential Z

reduces to the uncharged cases considered in section 5.4. The expressions (6.4.7),
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(6.4.10) and (6.4.13) are a charged generalisation. Any choice of the electric field E

generates a new exact solution for this class of models. Clearly the choice made for the

electric field should satisfy the physical criteria for a compact spherically symmetric

star (Mafa Takisa et al 2019). We note that these two new classes of charged solutions

exist only in EGB gravity. Since ↵ 6= 0 we cannot regain the Einstein limit.

6.5 Case III: F1 = KF0

We choose F1 to be proportional to F0 where K is some constant. This gives the

condition

F1 = KF0. (6.5.1)

We find that (6.5.1) can be written explicitly as
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From (6.5.2) we obtain
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+

4ÿ
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which gives the electric field intensity.

Then substituting (6.5.1) into equation (6.2.13) yields

wẇ = F0 (K w + 1) . (6.5.4)

This equation can be written as

1

K
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which is a separable equation. Integrating equation (6.5.5) we obtain
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and in terms of potential Z, we acquire
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ẏ

x

� 2
3

⌘i

K2

=

Z ✓
ẏ
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Thus we have solved the charged condition of pressure isotropy when F1 = KF0. The

integration in (6.5.7) can be completed once a functional form for y is known. Any

choice of the potential y results in an exact solution of the system of charged EGB field

equations (6.2.3). This arises from the fact that we have now included the presence

of an electric field while in the uncharged case, given in section 5.5, an additional

constraint equation, (5.5.2) must be satisfied to produce exact solutions in closed form.

To illustrate an explicit exact solution we choose an analytic form of y as done in

section 6.3. This is given by

y = ax
n + l, (6.5.8)

where a, l and n are real numbers. As a result the potential Z in (6.5.7) is given

implicitly as
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Inserting (6.5.8) in equation (6.5.3) we get
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for the electric field intensity.

6.6 Case IV: F1 = Q1 and F0 = Q2

We now set F1 and F0 to be arbitrary constants

F1 = Q1, (6.6.1)

F0 = Q2, (6.6.2)

such that

Q1 =

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
, (6.6.3)
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ẏ

x

◆ 4
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y

432↵2ẏ
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216↵2ẏ3
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ÿ

ẏ
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27
+
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27↵
+

x
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108↵2
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27x
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216↵2
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xyÿ
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2

432↵2xẏ2
� 1

54↵

+
yÿ

54↵ẏ2
� yE

2

16↵ẏ

�
. (6.6.4)

Equation (6.2.13) is now written as

wẇ = wQ1 +Q2, (6.6.5)

and upon integration, we obtain the solution

w

Q1
� Q2 ln (wQ1 +Q2)

Q
2
1

= x+ C. (6.6.6)
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The use of equation (6.2.11) then produces
⇣
Z � 1

3 �
x

12↵ � y

12↵ẏ

⌘ �
ẏ

x

� 2
3

Q1
�

Q2 ln
⇣h⇣

Z � 1
3 �

x

12↵ � y

12↵ẏ

⌘ �
ẏ

x

� 2
3

i
Q1 +Q2

⌘

Q
2
1

= x+ C. (6.6.7)

The quantity Z and the corresponding gravitational potential � can be found implic-

itly for this particular case, provided that the potential y satisfies the constraints in

equations (6.6.3) and (6.6.4) simultaneously.

6.7 Other exact models

Several other families of exact solutions are possible to the condition of pressure isotropy

for charged matter. In the remainder of this chapter, we present certain solutions to

the master equation given by equation (6.2.4) by transforming it to an equivalent form.

To demonstrate this we make the choice

Z = a, (6.7.1)

where a is constant. Then equation (6.2.4) reduces to

[4ax (4↵ (1� a) + x)] ÿ + [16↵a (a� 1)] ẏ +


2� 2a� 3

2
E

2
x

�
y = 0. (6.7.2)

This equation can be transformed to

z(z � 1)
d
2
y

dz2
� dy

dz
+


4� 4a� 3E2

A (z � 1)

8a

�
y = 0, (6.7.3)

where we have set

z =
x+ A

A
, A = 4↵ (1� a) . (6.7.4)

Equation (6.7.3) can be solved if E
2 is specified in particular cases. Below we

present three families of exact solutions which have a simple analytic form. Clearly

other choices of E2 can be made, and this will be dictated by the physical requirements

for a well behaved gravitating sphere in EGB gravity.
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6.7.1 Case I

The isotropic pressure condition (6.7.3) for this case has the form

z (z � 1)
d
2
y

dz2
� dy

dz
= 0. (6.7.5)

This equation is classified as a second order linear ordinary di↵erential equation. It

can be solved by reducing the order of the equation, i.e. if we substitute

T̃ (z) =
dy

dz
. (6.7.6)

where T̃ (z) is a function of z. Then (6.7.5) now takes on the form

dT̃ (z)

dz
=

T̃ (z)

z (z � 1)
. (6.7.7)

Equation (6.7.7) is identified as a separable ordinary di↵erential equation and can be

integrated with the use of partial fractions. This equation can then be written as

dT̃ (z)

T̃ (z)
=

Z ✓
�1

z
+

1

z � 1

◆
dz. (6.7.8)

The electric field intensity is given by

E
2 =


4 (1� a)

12↵(1� a) (z � 1)

�
. (6.7.9)

The potentials are expressed as

y = D2 +D1 (z � ln z) , (6.7.10)

Z = a. (6.7.11)

6.7.2 Case II

The isotropic pressure condition (6.7.3) becomes

z (z � 1)
d
2
y

dz2
� dy

dz
+ B̃y = 0. (6.7.12)

Electric field intensity reads as

E
2 =

2

4
4
⇣
1� a� 2aB̃

⌘

12↵ (1� a) (z � 1)

3

5 . (6.7.13)
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The potentials in this case can be written as

y = C1

" 1X

n=1

2a0(�1)n

An

1

n!(n+ 2)!

nY

j=1

⇣
j (j + 1) + B̃
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#

+C2

"
µ

 1X

n=1

2a0(�1)n

An

1

n!(n+ 2)!

nY

j=1

⇣
j (j + 1) + B̃

⌘
(A (z � 1))n+2

!

⇥ ln
�
A (z � 1)

�
+

1X

n=0

bn

�
A (z � 1)

�n
#
, n � 1, (6.7.14)

Z = a. (6.7.15)

Here the potential y is a series solution. In the above a0, A, µ and B̃ are all constants.

We can make the observation that by setting the electric field to zero, that is E = 0,

then the constant B̃ = B as expected for neutral matter in section 4.3.4. If B̃ = �m,

an integer then with C2 = 0 the series (6.7.14) terminates and we obtain polynomial

functions.

6.7.3 Case III

The isotropy condition equation takes on the form

�M +
Mz + g

4a


2� 2a� 3

2
E

2
A (z � 1)

�
= 0, (6.7.16)

where M and g represent constants. The electric field intensity is found to be

E
2 =

✓
2

3
(2� 2a)� 8Ma

3 (Mz + g)

◆
1

A (z � 1)

�
. (6.7.17)

The metric potentials y and Z are presented by

y = Mz + g, (6.7.18)

Z = a. (6.7.19)
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Chapter 7

Shear-free fluids in higher

dimensions

7.1 Introduction

Shear-free radiating spacetimes are important in the modelling process for the interior

of relativistic stars. The heat flows outward from the hot centre to the surface of the

star. Models containing heat flow in the field of astrophysics are applied to problems

of gravitational collapse, thermodynamic processes at the stellar surface, and the for-

mation of singularities. Investigations of shear-free stellar models in the presence of

heat flux were conducted by Deng (1989), Wagh et al (2001), Herrera et al (2006)

and Abebe et al (2015), to name a few. In an earlier treatment Kolassis et al (1988)

obtained the first exact solution for a radiating star with the e↵ects of dissipation,

zero shear and nonzero heat that travels along geodesics. Deng (1989) developed a

general method to determine solutions to the Einstein field equations with heat flux

and obtained new classes of solutions in the process. On similar grounds, Wagh et

al (2001) reported solutions by imposing a barotropic equation of state. Herrera et

al (2006) generated analytical solutions to Einstein’s equations describing spherically

radiating collapsing spheres in the di↵usion approximation with zero shear. Abebe et
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al (2015) performed an analysis on the junction condition, relating the radial pressure

with heat flow of a shear-free radiating model with anisotropic pressure, using the Lie

group theoretic approach, and presented several new exact solutions. Higher dimen-

sions also play a role in astrophysical processes as shown by Brassel et al (2021) and

Maharaj and Brassel (2021). It is therefore important to study shear-free relativistic

fluids in a higher dimensional setting in general relativity. In section 7.2 we present

the Einstein field equations in N dimensions. We consider the matter distribution to

be a shear-free heat conducting fluid. In section 7.3 we show that the works of Brassel

et al (2015) can be extended to arbitrary dimensions. In section 7.4 a generalisation

of the study developed by Govender et al (2018) is presented.

7.2 Radiating spacetime

The line element for a spherically symmetric spacetime in the absence of shear in N

dimensions reads as

ds
2 = �A

2
dt

2 +B
2
�
dr

2 + r
2
d⌦2

N�2

�
, (7.2.1)

where A = A(r, t) and B = B(r, t) represent the metric functions. The (N �2)-sphere,

as before, is denoted by

d⌦2
N�2 = d✓

2
1 + sin2(✓1)d✓

2
2 + sin2(✓1) sin

2(✓2)d✓
2
3

+ · · ·+ sin2(✓1) sin
2(✓2) sin

2(✓3) · · · sin2(✓N�3)d✓
2
N�2

=
N�2X

i=1

"
i�1Y

j=1
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#
(d✓i)

2
. (7.2.2)

The nonzero Ricci components for the spacetime (7.2.1) are given by

R
0
0 =

1

AB

"
(N � 1) B̈

A
� (N � 1) ȦḂ

A2
� A

00

B
� (N � 3)A0

B
0

B2

�(N � 2)A0
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�
, (7.2.3a)

R
0
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(N � 2)

AB

"
Ḃ

0

A
� ḂA

0

A2
� ḂB

0

AB

#
, (7.2.3b)
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R
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N�1 = R
N�2

N�2 = · · · = R
2
2, (7.2.3e)

where dots represent di↵erentiation with respect to the time coordinate t and the

primes represent di↵erentiation with respect to radial coordinate r. The Ricci scalar

is written as

R = 2
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. (7.2.4)

As a result, the nonvanishing Einstein tensor components are generated as
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AB

#
, (7.2.5d)
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G
N�1

N�1 = G
N�2

N�2 = · · · = G
2
2. (7.2.5e)

The matter distribution is described by a shear-free imperfect fluid and the fluid

N -velocity is given by u
a = 1

A
�
a
0. The heat flux q satisfies the condition u

a
qa = 0 so

that qa = 1
B
q�

a
1. The nonzero matter components read

T
0
0 = �⇢, (7.2.6a)

T
0
1 =

qB

A
, (7.2.6b)

T
1
1 = pk, (7.2.6c)

T
2
2 = p?, (7.2.6d)

T
N�1

N�1 = T
N�2

N�2 = · · · = T
2
2. (7.2.6e)

We now equate the matter components and curvature components to obtain the field

equations in N dimensions in the form
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Nq =
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Ḃ
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� ḂB
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B2

#
. (7.2.7d)

These equations are a system of highly nonlinear coupled partial di↵erential equations

that describe the dynamics and evolution of shear-free gravitating fluids with heat flow.

When N = 4 we obtain the equations considered by Brassel et al (2015) and Govender
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et al (2018). We can also observe that the dimension N a↵ects the curvature and

dynamics quite profoundly. The appearance of the (N � 5) and (N � 6) terms implies

that certain terms in the field equations vanish in dimensions five and six.

The assumption of isotropic pressure (pk = p? = p) gives the rise to the condition

A
00

A
+

B
00

B
=

✓
2B0

B
+

1

r

◆✓
A

0

A
+ (N � 3)

B
0

B

◆
, (7.2.8)

where we have equated (7.2.7b) and (7.2.7c). This equation governs the gravitational

behaviour of shear-free fluids with nonvanishing heat in a radiating spacetime of N

dimensions. It necessary to solve this equation and find exact solutions in order to

study the dynamics of the model.

In general it is di�cult to solve equation (7.2.8) due to its nonlinear nature. There-

fore we should reduce it to a simpler form, or an alternative form, that could lead to

exact solutions. Interestingly it contains derivatives with respect to the radial coordi-

nate r only, and there is no explicit dependence on the time coordinate t so equation

(7.2.8) can be treated as an ordinary di↵erential equation. It is thus suitable to intro-

duce the new variable

x = r
2
. (7.2.9)

The isotropic pressure condition (7.2.8) can now be expressed as

✓
1

B

◆
Axx + 2Ax

✓
1

B

◆

x

� (N � 3)A

✓
1

B

◆

xx

= 0, (7.2.10)

where subscripts represent di↵erentiation with respect to the variable x. This equation

is our master equation and is a very useful form of the isotropic pressure condition

because we can make appropriate choices for one potential in order to determine the

other. We observe that equation (7.2.10) is a linear ordinary di↵erential equation in A

if we specify a form for the variable 1
B
and vice versa. When N = 4 we regain the four

dimensional pressure isotropy equation as found by Brassel et al (2015) and Govender

et al (2018).
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7.3 BMG solutions in N dimensions

In this section we present several exact solutions to the isotropic pressure condition

equation (7.2.10). These solutions extend the Brassel et al (2015) models to a higher

dimensional regime.

7.3.1 Solution I: B = ↵x
�n

We let the potential B take the form

B(x, t) = ↵x
�n
, (7.3.1)

where ↵ = ↵(t), � = �(t) and n 2 R, for which equation (7.2.10) becomes

x
2
Axx � (2�n)xAx � (N � 3)�n(�n+ 1)A = 0. (7.3.2)

We identify this equation as a second order Euler-Cauchy di↵erential equation in the

variable A.

It can be solved using the standard procedure of setting A = x
m. We then obtain

the characteristic equation

m
2 � (2�n+ 1)m� (N � 3)

�
�
2
n
2 + �n

�
= 0, (7.3.3)

that has roots

m =
1

2

h
(2�n+ 1)±

p
1 + (4N � 8) (�2n2 + �n)

i
. (7.3.4)

Hence the solution to (7.3.2) is given by

A(x, t) = ⌧(t)x
1
2

h
(2�n+1)+

p
1+(4N�8)(�2n2+�n)

i

+�(t)x
1
2

h
(2�n+1)�

p
1+(4N�8)(�2n2+�n)

i

, (7.3.5)

where ⌧(t) and �(t) are functions of integration. In terms of the original variable r, we

get

A(r, t) = ⌧(t)r(2�n+1)+
p

1+(4N�8)(�2n2+�n)
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+�(t)r(2�n+1)�
p

1+(4N�8)(�2n2+�n)
, (7.3.6)

for the potential A.

7.3.2 Solution II: B�1 = ↵k
�x+�

We now choose an exponential form for potential B such that

1

B
= ↵k

�x+�
, (7.3.7)

where ↵ = ↵(t), � = �(t), � = �(t) and k ✏ R. Then (7.2.10) reduces to

Axx + 2� (ln k)Ax � (N � 3) �2 (ln k)2 A = 0, (7.3.8)

which is a second order linear ordinary di↵erential equation with constant coe�cients.

The corresponding characteristic equation is then expressed as

m
2 + 2 (ln k) �m� (N � 3) (ln k)2�2 = 0. (7.3.9)

It has roots

m = ��(ln k)± � ln(k)
p
N � 2. (7.3.10)

As a result, the general solution to equation (7.3.8) is given by

A(x, t) = ⌫(t)k�(t)[�1�
p
N�2]x + (t)k�(t)[�1+

p
N�2]x

. (7.3.11)

Note that ⌫(t) and (t) are functions of integration. In terms of the original variables

(7.3.11) is written as

A(r, t) = ⌫(t)k�(t)[�1�
p
N�2]r2 + (t)k�(t)[�1+

p
N�2]r2

. (7.3.12)
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7.3.3 Solution III: Rational function

In this case we make a rational functional choice for potential 1/B given by

1

B
=

↵x
2

�x+ 1
, (7.3.13)

where ↵ = ↵(t), � = �(t). Equation (7.2.10) now becomes

x
2 (�x+ 1)2 Axx + 2x (�x+ 1) (�x+ 2)Ax � 2(N � 3)A = 0. (7.3.14)

Equation (7.3.14) is classified as a second order linear ordinary di↵erential equation

with variable coe�cients. It is still a nontrivial task to produce solutions to this

equation as it is not obvious to find a transformation that could reduce it to a standard

form.

We proceed to solve this equation by utilising the following transformation

⌦ = i

p
2 [ln(x)� ln(�x+ 1)] , (7.3.15)

where i =
p
�1. Equation (7.3.14) is written as

e
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⌘
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i⌦p
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⌘3Ax � 2A(N � 3) = 0. (7.3.16)

With the use of the chain rule and after some calculations, equation (7.3.16) reduces

to

�2A⌦⌦ + 3i
p
2A⌦ � 2A(N � 3) = 0. (7.3.17)

We can observe that this equation is a second order linear ordinary di↵erential equation

with constants as coe�cients. It can be solved easily. The corresponding characteristic

equation is given by

2m2 � 3i
p
2m+ 2(N � 3) = 0, (7.3.18)

with roots

m =
3i

2
p
2
± i

2

p
8N � 15. (7.3.19)
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Equation (7.3.17) then has the solution

A(⌦) = �e

⇣
3i

2
p
2
+ i

2

p
8N�15

⌘
⌦
+ 'e
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⌦
. (7.3.20)

Therefore the general solution to equation (7.3.14) is expressed by

A(x, t) = �(t)
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+'(t)
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, (7.3.21)

in which we substituted for ⌦ from (7.3.15). Note that �(t) and '(t) are integration

functions that depend on time. We also make the observation that a singularity exists

when x = 0. In terms of original variables we obtain

A(r, t) = �(t)

✓
r
2

�(t)r2 + 1
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✓
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p
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. (7.3.22)

A remarkable and interesting feature of this case is that the use of a complex transfor-

mation given by (7.3.15) leads to the output of a real exact solution for the potential

A. This is due to the fact that the complex quantity i has the property that its mul-

tiplicative inverse is its additive inverse and the fact that its square is a real number.

The metric functions are expressed in terms of real functions only. If we set N = 4, we

regain the potential A that was found by Brassel et al (2015).

7.3.4 Solution IV: B�1 = ↵(t)A�(t)

We now consider the dependence of the metric potentials by coupling A and B together

(as done by Brassel (2014)) such that

1

B
= ↵(t)A�(t)

. (7.3.23)

Equation (7.2.10) becomes

(1� � (N � 3))AAxx + (2� � (N � 3) � (� � 1))A2
x

= 0. (7.3.24)
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This equation only contains the potential A and its derivatives with respect to x. It

is a highly nonlinear second order ordinary di↵erential equation. However it can be

rewritten as

dA
2
x

A2
x

=
2 ((N � 3) � (� � 1)� 2�)

(1� � (N � 3))

dA

A
, (7.3.25)

The above equation is now a separable di↵erential equation. Integrating we get

dA

dx
= ⌘A

((N�3)�(��1)�2�)
(1��(N�3)) . (7.3.26)

We observe that equation (7.3.24) now reduces to a first order linear ordinary di↵er-

ential equation with the solution

A(x, t) =


(N � 3) �(t)2 � 2� � 1

((N � 3) �(t)� 1)
(⇠(t)x+ ⌧(t))

� ((N�3)�(t)�1)

(N�3)�(t)2�2��1

, (7.3.27)

where ⇠(t) and ⌧(t) are integration functions with dependence on time.

It is interesting to note that when N = 4, we obtain four dimensional solutions as

described by Brassel (2014).

7.4 GBM solutions in N dimensions

In this section we present a particular type of solution for the choice of the potential

B. This extends the Govender et al (2018) models to N dimensions. We generate

a solution for A in higher dimensions for three di↵erent cases and if we set N = 4,

the four dimensional case, we obtain the potentials A as described in Govender et al

(2018).

7.4.1 Solution V: 1/B = ↵(a+ bx)k

We set

1

B
= ↵ (a+ bx)k , (7.4.1)
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where a, b 6= 0, ↵ is a function of time and k 6= 0 is a real parameter. As a result

equation (7.2.10) now reduces to

(a+ bx)2 Axx + 2bk (a+ bx)Ax � b
2
k (k � 1) (N � 3)A = 0. (7.4.2)

We introduce the new dependent variable

z = a+ bx. (7.4.3)

Therefore, equation (7.4.2) can be written as

z
2
Ãzz + 2kzÃz � k (k � 1) (N � 3) Ã = 0, (7.4.4)

where Ã = Ã(z, t). We can identify this equation as a second order Euler-Cauchy

ordinary di↵erential equation.

It can be solved by making the substitution

Ã = z
m
. (7.4.5)

The associated characteristic equation then reads

m
2 + (2k � 1)m�

�
k
2 � k

�
(N � 3) = 0, (7.4.6)

with roots

m =
(1� 2k)

2
±
p
8k � 8k2 + 1 + 4kN (k � 1)

2
. (7.4.7)

We obtain three cases of solutions depending on 8k�8k2+1+4kN (k � 1) which could

be positive, negative or zero.

Case I: Repeated roots

We acquire repeated roots if

8k � 8k2 + 1 + 4kN (k � 1) = 0, (7.4.8)
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with values of k being

k =
1

2
±

p
6� 5N +N2

2 (N � 2)
, (7.4.9)

for N � 4. Consequently we get

m1 = m2 =
1

2
� k. (7.4.10)

The solution that satisfies equation (7.4.4) is thus

Ã = [c+ d ln z] z
(1�2k)

2 . (7.4.11)

In terms of the variable x we obtain

A(x, t) = [c(t) + d(t) ln (a+ bx)] (a+ bx)
(1�2k)

2 , (7.4.12)

where c(t) and d(t) are integration functions of time. It is interesting to note that this

potential contains no dependence on dimensions N .

Case II: Real distinct roots

If k lies within the range

1

2
+

p
6� 5N +N2

2 (N � 2)
< k <

1

2
�

p
6� 5N +N2

2 (N � 2)
, (7.4.13)

we obtain distinct and real roots to equation (7.4.6). Thus, the solution to equation

(7.4.4) is

Ã(z) = cz

h
(1�2k)+

p
8k�8k2+1+4kN(k�1)

i
/2

+dz

h
(1�2k)�

p
8k�8k2+1+4kN(k�1)

i
/2
. (7.4.14)

In terms of the original variables

A(x, t) = c(t) (a+ bx)
h
(1�2k)+

p
8k�8k2+1+4kN(k�1)

i
/2

+d(t) (a+ bx)
h
(1�2k)�

p
8k�8k2+1+4kN(k�1)

i
/2
. (7.4.15)

Note that the range of k in (7.4.13) corrects the mistake in Govender et al (2018) when

N = 4.
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Case III: Complex roots

If k lies in the range

1

2
�

p
6� 5N +N2

2 (N � 2)
< k <

1

2
+

p
6� 5N +N2

2 (N � 2)
, (7.4.16)

then we obtain complex roots for m. The general solution to (7.4.4) is then written as

Ã = z
(1�2k)

2


c cos

✓⇣p
8k2 � 8k � 1� 4kN (k � 1)

⌘✓ ln z

2

◆◆

+d sin

✓⇣p
8k2 � 8k � 1� 4kN (k � 1)

⌘✓ ln z

2

◆◆�
, (7.4.17)

where c and d are integration functions that depend on time and in terms of original

variables x we get

A(x, t) = (a+ bx)
(1�2k)

2

h
c(t) cos

⇣⇣p
8k2 � 8k � 1� 4kN (k � 1)

⌘

⇥
✓
ln (a+ bx)

2

◆◆
+ d(t) sin

⇣⇣p
8k2 � 8k � 1� 4kN (k � 1)

⌘

⇥
✓
ln (a+ bx)

2

◆◆�
. (7.4.18)

Note that this potential A and (7.4.16) corrects the mistakes in Govender et al (2018).
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Chapter 8

Conclusion

In this project we have studied spherically symmetric models in general relativity and

EGB gravity. We investigated a perfect fluid with isotropic pressure in a five dimen-

sional static spacetime in EGB gravity. This analysis was done for both neutral and

charged fluid distributions. The EGB field equations for such matter distributions were

generated. We showed that the EGB field equations in standard coordinates are highly

nonlinear due to the addition of higher order curvature corrections. The consistency

condition arising from the isotropy of fluid pressure, for the potentials y and Z, was

analysed. We showed that it is an Abelian di↵erential equation of the second kind.

A coordinate transformation was introduced to reduce this di↵erential equation to a

simpler form. Three classes of new solutions were determined for the potential Z. Each

model has to satisfy an additional constraint equation for the potential y. Remarkably,

when a charged matter distribution is considered, an additional constraint equation

for y is not required, and any form of y can generate an exact solution. Further-

more we have studied a shear-free imperfect fluid distribution with nonzero heat flux

in higher dimensional general relativity. The Einstein field equations in this regime

were generated. As a result dimensions play a significant role on the curvature and

dynamics of these equations. We have found several new exact classes of solutions to

the transformed isotropic pressure condition equation. These results contain the four
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dimensional known exact solutions.

We now provide an overview of what has been investigated:

• In chapter 2, we briefly introduced the relevant aspects and definitions in di↵er-

ential geometry and general relativity required for subsequent chapters. A description

for relativistic fluids in both neutral and charged cases were provided. We also pro-

vided the general definitions required for studying models in EGB gravity. The field

equations in general relativity and EGB gravity were developed.

• In chapter 3 we generated the field equations for four dimensional and N di-

mensional Einstein gravity in static spherically symmetric spacetimes. Furthermore

we evaluated the five and six dimensional interior spacetime metrics in EGB gravity.

The associated field equations were also produced.

• In chapter 4, an analysis on the five dimensional EGB field equations for neutral

matter was provided. The isotropic pressure condition for such matter is given by

�
�12↵xẏZ + 4↵xẏ + x

2
ẏ + xy

�
Ż � 8↵ (xÿ � ẏ)Z2

+
�
2x2

ÿ + 8↵xÿ � 8↵ẏ � y
�
Z + y = 0. (8.0.1)

This equation is classified as an Abelian ordinary di↵erential equation of the second

kind in Z. We showed that this equation may be transformed to a canonical di↵erential

equation represented by

wẇ = wF1 + F0, (8.0.2)

where the functions F1 and F0 depend on y and have the form

F1 =

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
, (8.0.3)

F0 =

✓
ẏ

x

◆ 4
3


y

432↵2ẏ
� y

2
ÿ

216↵2ẏ3
+

ÿ

ẏ

✓
4

27
+

2x

27↵
+

x
2

108↵2

◆
� 1

54↵

+
y

27↵xẏ
� 4

27x
+

x

216↵2
+

xyÿ

216↵2ẏ2
� y

2

432↵2xẏ2
+

yÿ

54↵ẏ2

�
. (8.0.4)

Furthermore a review of known solutions to (8.0.1) and its equivalent forms were also

presented.
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• In chapter 5, new solutions to equation (8.0.2) were generated by placing restric-

tions on the functions F1 and F0. The following constraints were imposed

(i) F0 = 0,

(ii) F1 = 0,

(iii) F1 = KF0,

(iv) F1 = Q1 and F0 = Q2.

In case (i) the solution to the gravitational potential Z was found explicitly in the

form of quadrature. In case (iii) the potential Z was given implicitly. These solutions

are subject to a constraint on the metric function y. Interestingly case (ii) yielded two

forms of the potential Z in closed form. The constraint equation in this class of models

generated analytic forms of the function y. These are given by

y = Q̃
p
x+ 4↵, (8.0.5)

y =
C1x

2

2
+ C2. (8.0.6)

As a result the solution to Z is given in terms of elementary functions for each solution

of y. We demonstrated that this method leads to new classes of solutions. Moreover

the fourth case leads to no viable exact solutions. It is important to note that ↵ 6= 0

and the general relativity limit cannot be regained; our classes of exact solutions always

contain the higher order curvature corrections due to the Gauss-Bonnet terms.

• Chapter 6 follows the approach of chapter 5 but now with the inclusion of charge.

The e↵ects of the electromagnetic field were considered. The isotropic pressure condi-

tion with charge reads as

�
�24↵xẏZ + 8↵xẏ + 2x2

ẏ + 2xy
�
Ż � 16↵ (xÿ � ẏ)Z2

+
�
4x2

ÿ + 16↵xÿ � 16↵ẏ � 2y
�
Z + 2y � 3

2
xyE

2 = 0. (8.0.7)

This equation is an Abelian di↵erential equation of the second kind in Z. If a choice

for the potentials Z and y are made, then the electric field can be found without

integration. However choices for these potentials can lead to models with unphysical
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behaviour. We observed that if the electric field intensity is specified then the Abelian

di↵erential equation has to be integrated. We transformed the master equation (8.0.7)

to the following canonical di↵erential equation

wẇ = wF1 + F0, (8.0.8)

where functions F1 and F0 now depend on the potential y and the electric field intensity

E. They have the forms

F1 =

✓
ẏ

x

◆ 2
3

� 1

18↵
+

y

36↵xẏ
+

xÿ

18↵ẏ
+

2ÿ

9ẏ
� yÿ

36↵ẏ2
� 2

9x

�
, (8.0.9)

F0 =

✓
ẏ

x

◆ 4
3


y

432↵2ẏ
� y

2
ÿ

216↵2ẏ3
+

ÿ

ẏ

✓
4

27
+

2x

27↵
+

x
2

108↵2

◆

+
y

27↵xẏ
� 4

27x
+

x

216↵2
+

xyÿ

216↵2ẏ2
� y

2

432↵2xẏ2
� 1

54↵

+
yÿ

54↵ẏ2
� yE

2

16↵ẏ

�
. (8.0.10)

To study the dynamics of this model we imposed restrictions on the functions F1 and

F0. The four cases that were considered are given by

(i) F0 = 0,

(ii) F1 = 0,

(iii) F1 = KF0,

(iv) F1 = Q1 and F0 = Q2.

We showed that case (i) and case (iii) lead to a general form of E where any choice

of y yields new exact solutions for the potential Z. Case (ii) yielded two functional

forms for the potential y as demonstrated in the uncharged case and any choice of

the electric field E satisfying physical criteria generates a new exact solution for the

potential Z. Thus we were able to obtain explicit forms for the potential y and Z in

cases (i), (ii) and (iii). In these three cases exact solutions to the EGB field equations

follow. These three cases exist only in EGB gravity, and a general relativity limit does

not exist for these classes of models. Case (iv) has two constraint equations that have

to be satisfied and it is unlikely to provide new classes of solutions.
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• Finally, we studied a spherically symmetric shear-free spacetime in chapter 7. The

fluid distribution considered was an imperfect fluid with nonvanishing heat flux. The

associated Einstein field equations were generated in N dimensions. The assumption

of isotropic pressure yielded the condition

✓
1

B

◆
Axx + 2Ax

✓
1

B

◆

x

� (N � 3)A

✓
1

B

◆

xx

= 0. (8.0.11)

We obtained several new exact solutions to equation (8.0.11) by specifying the potential

1/B, in order to determine an integrable equation in the potential A. The following

choices were made:

•Solution I

1

B
=

1

↵(t)x�(t)n
, (8.0.12)

•Solution II

1

B
= ↵(t)k�(t)x+�(t)

, (8.0.13)

•Solution III

1

B
=

↵(t)x2

�(t)x+ 1
, (8.0.14)

•Solution IV

1

B
= ↵(t)A�(t)

, (8.0.15)

•Solution V

1

B
= ↵(t)(a+ bx)k. (8.0.16)

In each case the condition of pressure isotropy could be solved and the potential A

was found explicitly. When N = 4 in all of the above cases, we regained the mod-

els described by Brassel et al (2015) and Govender et al (2018). In particular, we

demonstrated that the use of a complex transformation given by

⌦ = i

p
2 [ln(x)� ln(�x+ 1)] , (8.0.17)
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led to a real exact solution for the potential A in the class of models provided by

the choice of 1/B in Solution III. It is interesting to observe that a transformation

containing the complex quantity i results in a real form for the potential.

Investigations in this thesis and solutions generated form an integral part of rela-

tivistic astrophysics and cosmology that are widely used in the framework of general

relativity and EGB gravity to model compact relativistic stars. As a consequence

physically meaningful studies can be conducted on such models. We can enhance the

investigations in this dissertation by performing a detailed physical analysis on the new

exact solutions obtained. In particular a treatment similar to that of Mafa Takisa et al

(2019) in general relativity can be extended to EGB gravity. The physical admissibility

of these solutions will be considered as a future endeavour.
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