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Abstract 
A key aspect of commercial forest management is the continuous gathering of 

information on forest structural attributes. This information provides detailed 

inventory data for commercial forestry stands and is updated frequently for future 

monitoring purposes. Such datasets have previously been obtained using traditional 

methods such as field-based data collection campaigns. These campaigns have major 

implications for economic sustainability of future afforestation programmes, because 

they are regarded as labour-intensive, time consuming, and expensive. The 

introduction of remote sensing technologies has improved forest structural data 

collection over large areas due to its synoptic nature and relative cost-effectiveness. 

The advent of new sensors such as hyperspectral data also has enabled accurate 

estimations of forest foliar chemical bioassays, which are indicative of current forest 

biochemical and structural attribute states. This study advocates the quantitative 

assessments of the links between forest foliar characteristics and forest structural 

attributes. To date research has gone as far as estimating forest chemical attributes, 

but no research efforts have examined the interactions between forest foliar chemistry 

and forest structural attributes in South Africa. Forest foliar chemical composition 

provides information about the current status and productivity of forest plantations.   

 

The forest stand structural attributes that are of significance to commercial timber 

resource assessments such as volume, basal area, and soil nitrogen under forest 

canopy, were surveyed in the field. Leaf and canopy spectral attributes were acquired 

coincident with the field inventories using both an analytical spectroradiometer (ASD) 

and airborne spectrometer for applications (AISA). A soil auger was used to gather 

soil samples diagonally (i.e. north, south, east and west) across centre tree at 0.3 - 

0.7m depths. Various statistical analyses were performed to establish interactions 

between foliar chemistry and both forest structural attributes and soil nitrogen under 

the forest canopy.  Finally, the study attempted to downscale from hyperspectral data 

to broadband sensor specifications to examine these interactions at a coarser, but more 

operational spectral resolution. The downscaling thus was an attempt to operationalise 

the main findings using cheaper and easily available broadband datasets. 
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The results suggested that the volume measurements and vegetation spectral indices 

relationships, derived from ASD spectral characteristics of E. grandis and E. saligna 

clones, yielded significant (p<0.05) correlations. The integration of all clones yielded 

stronger correlations than the relationships for E. grandis, but lower than that of E. 

saligna. Age, site quality, and the clone in question all had a significant (p<0.05) 

influence on the indices.  Ancillary data, such as age and site index, also had a 

significant impact on the future volume models developed, e.g., adjusted R2 = 0.78, 

RMSE =0.0176 m3/ha, p<0.0001 compared to a low adjusted R2 of 0.47 and high 

RMSE (0.055 m3/ha, p<0.0001). On further extending the analysis to airborne 

imagery, varied regression relationships between the indices and both volume and 

basal area were observed. These regression relationships had high adjusted R2 and low 

root mean square error (RMSE) values. The future models developed for volume and 

basal area estimations exhibited high adjusted R2 values (> 90%), p<0.001, and low 

RMSE and PRESS statistics. These models approximated a 1:1 relationship, thereby 

suggesting that airborne remotely-sensed proxies of canopy chemical bioassays may 

generally be useful in the assessment of forest structural attributes.  

 

Soil nitrogen was further estimated from leaf spectra, i.e., raw and continuum 

removed spectral transformation. Significant correlations (0.37 ≥ r ≥ 0.80, p<0.05) 

were observed between leaf spectral indices and soil nitrogen. The significant spectral 

indices-site interactions were only observed between good-medium and good-poor 

sites and no differences were observed between medium and poor sites. Soil nitrogen 

model developed from continuum removed spectra returned a high adjusted R2 values 

(R2 = 0.85; p<0.05) and low PRESS statistic values (0.05) compared to approaches 

based on raw spectra (R2 = 0.77; p<0.05; PRESS = 0.07).  Downscaling from 

hyperspectral data to Landsat TM spectral specifications showed that bands (i.e., 

TM2, TM3, TM4, TM5) yielding significant (p<0.05) correlations with volume and 

soil nitrogen, whilst basal area was significantly correlated (p<0.05) with all Landsat 

TM bands.  Bands TM3 and TM5 exhibited much stronger correlations with volume, 

basal area, and soil nitrogen. A comparison between models developed from 

simulated Landsat TM bands and original Landsat TM bands indicate that simulated 

datasets performed better than the original Landsat TM dataset. The coefficient of 

determination for simulated volume, basal area and soil nitrogen models were 64 %, 
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77% and 91% compared to 13%, 47% and 50% returned by original Landsat TM 

datasets, respectively. The models developed from simulated datasets for future 

estimation of volume, basal area, and soil nitrogen showed that the soil nitrogen 

model had a superior goodness of fit statistic, followed by basal area model and lastly 

volume model, e.g., adjusted R2 = 0.91, MAE =0.030 % and 2.6; R2 = 0.77, MAE 

=0.047 m2 and Mallow’s Cp of 4.4; R2 = 0.64, MAE = 0.594 m3/ha and Mallow’s Cp 

of 1.5, respectively.  

 

It was concluded that forest structural attributes and soil nitrogen under forest canopy 

can be estimated using foliar chemical proxies obtained from hyperspectral data and 

ancillary data, such as age and site index. Spectral resampling from hyperspectral to 

broadband data such as Landsat TM bands has the potential to estimate basal area and 

soil nitrogen with reasonable success. Resampling from hyper- to multispectral data 

properties for volume estimations was not as successful. The results of this study have 

important implications for future technology-based forest management and inventory 

updating approaches and monitoring and controlling of fertiliser applications on a 

regional basis.  
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CHAPTER 1: General Introduction 
  

1.1. Introduction: Forest Growth and Yield  
 

Eucalyptus species are highly commercialised hardwoods in South Africa and are 

mainly grown on short rotations for pulpwood, mining timber, and pole production 

(FSA, 2003, Majeke et al., 2008). These species therefore are also important for 

growing the economy of South Africa. Forest growth and yield has become an 

essential component of the information needs required by forest managers for future 

planning. Forest growth is an indicator of growth potential of commercial forested 

areas. The forest growth and yields are calculated from a number of measured and 

derived structural attributes, such as diameter at breast height, height, basal area, 

merchantable volume, above ground biomass, and net primary productivity. The 

optimum growth and yields of commercial forestry ensure the significant contribution 

of this sector to employment, environmental, and economic fronts (DWAF, 1997, 

Tewari, 2001, Chamberlain et al., 2005, Tewari, 2005). In South Africa, the 

commercial forestry sectors products and its related services was estimated to have 

created around 170 000 jobs in 2005, especially in areas where little or no alternative 

employment existed (Chamberlain et al., 2005). Commercial forestry also provides an 

atmospheric filter of carbon dioxide and replaces it with oxygen, thus offsetting 

carbon emissions stored in deadwood, litter, and both above and below ground 

biomass (Beedlow et al., 2004, Roberts et al., 2008, FAO, 2010). Researchers have 

widely acknowledged the importance of including remotely sensed forest structural 

attributes in commercial forestry management and planning regimes (Jungho et al., 

2009). Such actions are likely to yield an important synoptic component for forest 

resource managers regarding status, trends, and structural characteristics of forest 

resources. This will empower them towards future forest planning and timeous forest 

operation interventions, whilst maintaining sustainability (Wulder, 1998, Boyd and 

Danson, 2005, FAO, 2005, Barth et al., 2006) 

 

Accurate information about the spatial distribution and status of forest structural 

attributes such as volume, basal area, diameter at breast height, height, and other 
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attributes is the cornerstone for proper management and planning. Manual or field-

based methods are currently the preferred methods used to gather such information 

needs (Gebreslasie et al., 2010).  Even though the field-based procedures have been 

returning reasonably accurate data (Owen, 2000), they are known to be time 

consuming, expensive, and are often point-based, i.e., they are lacking in spatial 

extent or coverage (Lillesand et al. 2004 pp 615, Boyd and Danson 2005). According 

to Leckie (1990) and Smith et al. (2008), remote sensing techniques offer improved 

spatial coverage due to their synoptic nature over large areas, thereby reducing costs 

of field data collection and improve upon inventory estimates. Remote sensing though 

should not be seen as a substitute for field data collection, but the combination of the 

two methods (i.e. remotely sensed data and a small amount of field data collection) 

yield better results than each method alone (FAO, 2010). Studies such as Castro et al. 

(2003), Foody et al. (2003), Zheng et al. (2004), and Gebreslasie et al. (2008) bear 

testimony to the successful integration of remote sensing with minimum field data 

collection using statistical and empirical methods.   

 

The utility of remote sensing to estimate various forest attributes for different forest 

species using different sensors have previously been explored, e.g., Eklundh et al. 

(2003), Hall et al. (2006), Gebreslasie et al. 2008, Roberts et al. 2008 , Tesfamichael 

et al. 2009, and Cho et al. (2010). These studies highlighted the distinct characteristics 

of remote sensing systems for specific applications, e.g., LiDAR sensors have high 

success rates in estimation of structural attributes when compared to multispectral 

data (Tesfamichael et al., 2010), whilst hyperspectral data are more successful in 

foliar chemical estimations than multispectral data and LiDAR (Green et al., 1998, 

Cho et al., 2010). The success of recently developed hyperspectral sensors in foliar 

chemical estimations has increased the potential to resolve the spatial and spectral 

distributions of biophysiology-based information, thereby aiding forest classification, 

surveys, and management (Ismail et al., 2008, Cho et al., 2009, Oumar and Mutanga, 

2010). The main focus of this study is imaging spectroscopy (hyperspectral sensing), 

which has thus been at the centre of estimating or derivation of biophysiology-based 

information of various plants. 
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1.2. Hyperspectral Remote Sensing  
 

Hyperspectral remote sensing, or imaging spectroscopy, acquires images in many 

narrow (< 10 nm) contiguous spectral bands throughout the visible to near infrared 

spectrum. Hyperspectral systems typically collect more than 200 bands of data, which 

enable the construction of a continuous reflectance spectrum curve for every pixel in 

the scene (Hansen and Schjoerring, 2003, Vaiphasa, 2006). These datasets are a three-

dimensional pixel array, i.e. x-axis is the column indicator (x-coordinate), the y-axis is 

the row indicator (y-coordinate), and the z-axis is the band number, which is expressed 

as the wavelength of that band or channel (Galvao et al., 2005).  The continuous nature 

of the hyperspectral reflectance spectrum distinguishes imaging spectroscopy from the 

multispectral data. This has effectively provided new vegetation biophysical and 

chemical explorations because of the high data quantity and the high spectral 

resolutions. Amongst the first hyperspectral studies in forestry were estimations of 

foliar chemical contents (e.g., chlorophyll, nitrogen, lignin, cellulose, and water 

contents absorption features caused by chemicals present in plant foliage (Curran, 

1989, Yoder and Pettigrew-Cosby, 1995, Plaza et al., 2006, Abdel-Rahman et al., 

2008, Mokhele et al., 2009). Plant foliage has been the focal point of these studies 

because of the important role played by foliage in forest ecosystem functioning, 

growth, and yield prediction (Peterson et al., 1988). Foliage intercepts and absorbs the 

radiant energy which is later transformed to energy of organic substances through the 

complex process of photosynthesis (Coops, 1998, Gindaba et al., 2005). 

 

1.3. Remote Sensing of Forest Foliar Chemistry  
 

Global phenomena such as climate change bring about changes in ecosystems of the 

world (Chen et al., 1999, De Boeck et al., 2007). These changes are likely to be more 

pronounced on the plant foliage of various ecosystems because foliage is the proxy 

indicator of environmental variability (Curran, 1989). Remote sensing as a technology 

has evolved over time and has become one of the important techniques through which 

these changes can be tracked thereby providing valuable information on the vitality, 

state, and functioning of ecosystems over a wide range of scales from local to global 

(Majeke et al., 2008). Recent studies of ecosystems have focused on forest foliar 
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chemistry as it provides information on present status of the plants at any given stage. 

These studies have used laboratory methods and to an extent multispectral data for 

monitoring of these leaf and canopy chemical attributes.  Both these methods have 

shortfalls; laboratory methods are laborious, tedious, and time consuming (Wulder, 

1998, Roberts et al., 2011) while multispectral data have failed to provide consistent 

estimations of foliar chemistry, despite its dominance in remote sensing studies over 

the past decade (Stagakis et al., 2010).  

Multispectral data consist of few, wide spectral bands and have low spectral 

resolution and as a result lose vital information due to averaged information between 

these wide bands (Thenkabail et al., 2000; Galvao et al., 2005). These characteristics 

limit the capabilities of broad-band sensors in resolving details of vegetation canopy 

structure and chemistry.  The breakthrough in foliar chemistry studies came with the 

advent of new sensors, such as imaging spectrometers. Amongst the leaf and canopy 

chemical components that have been retrieved using hyperspectral data are the 

pigments (chlorophyll a, chlorophyll b, and caratenoids), nutrients (nitrogen, carbon), 

structural molecules (cellulose, and lignin concentrations), and canopy water content 

(Filella et al., 1995, Curran, 2001, Lamb et al., 2002, Mokhele et al., 2009, Abdel-

Rahman et al., 2008, Oumar and Mutanga, 2010).  All these studies have proven the 

utility of imaging spectroscopy in estimating leaf and canopy chemical components 

and its use in forest applications in South Africa have received recent attention (Ismail 

et al., 2008, Cho et al., 2010, Oumar and Mutanga, 2011). 

1.4. Related Studies / Forestry Specific Studies 
 

Forest structural attributes provide an important indication of forest growth and form 

a large percentage of forest inventories. Assessing forest structural attributes is vital 

for practical and management purposes (Maselli et al. 2009). A number of studies 

have demonstrated the potential of imaging spectroscopy to detect important 

structural components with reasonable accuracy and precision, e.g., Smith et al. 

(2002) obtained a strong correlation (R2 = 0.86, SEE = 31.42g.m-2.y-1) between foliar 

nitrogen and productivity using AVIRIS data. Gong et al. (2003) used Hyperion 

derived vegetation indices to estimate leaf area index (LAI). The authors found that 

vegetation indices derived from shortwave infrared (SWIR) region and the near-

infrared (NIR) region produced higher correlation with LAI than vegetation indices 
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that used red and NIR bands. Lee et al. (2004) found that individual and narrow bands 

of AVIRIS data exhibited better relationships with LAI compared to broadband data 

for grassland and forest biomes.  Schlerf et al. (2005) quantified forest LAI and 

volume using hyperspectral image and broad-band data. The authors found that 

hyperspectral datasets were more suitable to estimations of volume and LAI compared 

to broadband data, i.e., accuracy for hyperspectral data estimates was higher than that 

of broadband data.  

  

Goodenough et al. (2008) compared AISA and AVIRIS datasets for mapping above 

ground forest carbon. A strong agreement (R2 = 0.90) between ground measured 

biomass and AVIRIS data was obtained, while AISA data resampled to AVIRIS 

spectral and spatial resolutions accounted for 89% classification accuracies in 

mapping above ground biomass of the forested portion of the site. Jusoff (2009) 

estimated Rubberwood standing volume using supervised classification technique 

based on spectral angle Mapper (SAM) and spectral matching techniques between 

image analysis of airborne hyperspectral and field work. The author managed to 

estimate volume of Rubberwood with an accuracy of 89%. All these studies highlight 

the relationships between canopy or leaf chemical attributes derived from 

hyperspectral data and forest structural attributes  

1.5. Significance of the study  
 

Timely and accurate data on the nutrient status of the tree leaves and canopies in 

commercial forest are important for the industry from a management perspective. The 

nutrient status of tree leaves and canopies in commercial forest is indicative of growth 

status at any given stage (Gamon et al., 1997). The advent of hyperspectral 

technologies and advances in hyperspectral data analysis, such as spectral resampling, 

have provided more potentially cost-effective means of obtaining foliage biochemical 

estimates over large areas. Remotely estimated pigment concentrations have the 

potential to improve our ability to provide more accurate estimates of forest structural 

attributes and productivity (Field and Mooney 1986, Reich et al., 1999).  Various 

methods have been used to estimate forest structural attributes, e.g., volume, basal 

area, stems per hectare, above ground biomass, and net primary productivity in South 

Africa (Dye et al., 2002, Esprey, 2005, Tesfamichael et al., 2009, Gebreslasie et al., 
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2010, Roberts et al., 2011), but little or no work has been done to examine and  

quantify the nature of the relationship between foliar chemistry as estimated using 

hyperspectral data and growth and yield of Eucalyptus species, hence the need for this 

research.  The understanding of such relationships will be of operational value if it can 

be further extended over large areas using spectral resampling techniques to simulate 

much broader and cheaper sensors such as broad band multispectral sensors. This 

study therefore aims to assess and quantify the link between canopy chemical 

bioassays and forest structural attributes of even-aged Eucalyptus clones grown in 

South Africa. 

1.6. Research questions  
 
This study seeks to answer the following questions: 
 

• Is the spectral reflectance of cloned Eucalyptus forest canopies strongly 

related to growth and yield, as affected by water status, leaf chlorophyll, and 

nitrogen contents?  

• Can leaf chlorophyll content of Eucalyptus grandis be used to infer soil 

nitrogen status? 

• Can hyperspectral data be downscaled to simulate multi-spectral (broadband) 

data that can address the above-mentioned research questions? 

 

1.7. Study Area 

  
The study was conducted in the Greenhill estates of Mondi Business Paper in the 

KwaZulu-Natal province of South Africa. The study sites are situated approximately 

50km south of Pietermaritzburg around the town of Richmond (30° 29’S; 29° 82’E 

Figure 1.1).  The study area falls within the summer rainfall region of South Africa 

and experiences cold, dry winters and warm, wet summers. Mean annual rainfall 

ranges from 746-1100mm, while the seasonal temperatures vary between a high of 

25°C to a low of 10°C. The extreme temperature change is a function of altitude and 

proximity to the warm Indian Ocean, with higher altitudes experiencing much colder 

temperatures than lower lying areas. The gently undulating to highly dissected, 

strongly rolling, and hilly topography characterizes the terrain of the study area. 

Elevations range between 800m and 1400m above mean sea level. The geology 
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consists of sandstone and clay formations, which have resulted in sandy clay to sandy 

clay loam soils (Schulze, 1997). The primary land use in the Richmond area is 

agriculture,  e.g., plantation forestry, sugar cane, and to a lesser extent, dairy farming.  

 

Plantation forests are  mostly stocked with exotic softwood (i.e., the genus Pinus with 

P. patula, P. taeda and P. Elliottii) and hardwood (species being either Eucalyptus 

(Gum) or Acacia mearnsii (Wattle)). Local small industries in the study area use these 

softwood and hardwood species mainly for timber i.e., furniture and construction 

purposes. The Eucalyptus species (subject of this study) consist of soft gums (sub-

tropical) and hard gums (cold-tolerant). The soft gums are grown in the warmer areas 

whilst hard gums are found in colder areas. The wood density of soft gums is lower 

than hard gums.  Soft gums include the E. saligna and E. grandis species, while hard 

gums include the E. dunnii, E. nitens and E. smithii variants. Recently the industry has 

been experimenting with clonal hybrids such as E. grandis x E. nitens (Norris-Rogers, 

2006). 

The sampling criteria adopted in this study was adopted from Gebreslasieet al,. 

(2008), Tesfamichael et al., (2009) and Roberts et al., (2011). The selection was based 

on spatial location, extent, age, felling dates, site index, and site productivity, i.e., an 

effort was made to select compartments on good, medium, and poor site productivity 

or qualities. The parameters of choice were diameter at breast height, height and in 

some cases soil samples. 
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Figure 1.1. Map of the study area.  

Greenhill Estate 
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1.8. Outline of the thesis 
 

The thesis consists of six chapters, four of which form stand-alone scientific papers as 

part of this thesis, contributing to the overall research objectives. These have already 

been submitted for publication in peer-reviewed journals. The general introduction 

was dealt with in the first chapter, i.e., Chapter 1, which covered the current research 

undertaken in forest foliar chemical analysis and its relationship to forest structural 

attributes, the research problem, and the objectives of the study. Also the description 

of the study area, i.e., the location, climate, geology, soil, topography, and the main 

land use practices were outlined.  

 

Chapter 2 investigates the use of chlorophyll, nitrogen, and water related vegetation 

indices derived from spectroradiometric data in the estimation of volume in 

Eucalyptus clones in the Richmond area. 

 

 Chapter 3 focuses on an assessment of the utility of Airborne Imaging Spectrometer 

for Applications (AISA) for measurement of volume and basal area of Eucalyptus 

grandis.  

 

Chapter 4 examines the potential of estimating soil nitrogen from raw and continuum-

removed Eucalyptus leaf spectral measurements.  

 

Chapter 5 consists of an evaluation of whether volume, basal area, and soil nitrogen 

can be estimated and modelled using the hyperspectral spectra, resampled and 

simulated to Landsat TM spectral configurations. 

 

Finally, Chapter 6 brings all the research findings of the individual chapters into 

perspective as a synthesis.   
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CHAPTER 2 
 

Estimation of merchantable volume of  Eucalyptus clones based on leaf-level 
hyperspectral data 
 

 

 

 

This chapter is based on:  Mzinyane, T, Ahmed, F and Van Aardt, J. 2011.  

Estimation of merchantable volume of Eucalyptus clones based on leaf-level 

hyperspectral data. Forest Ecology and Management. (Submitted) 
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Abstract 

A growing demand for merchantable volume and forest products in South Africa’s 

commercial forestry sector demands using technological advances which will ensure 

sustainable resource extraction. Such techniques arguably will facilitate management 

through improved silvicultural practices and proper planning for the future. This study 

assessed the suitability of chlorophyll, nitrogen, and water content, derived from leaf- 

level spectroradiometer data, for estimating volume of Eucalyptus clones in KwaZulu-

Natal, South Africa. It was hypothesized that water status and chemical bioassays 

such as chlorophyll and nitrogen can contribute to estimation of merchantable 

volume. Volume was derived from field measurements of diameter at breast height 

(DBH) and tree height, while first derivative and continuum removed spectral 

transformations were applied to the spectral data. Chlorophyll, nitrogen, and water 

related indices were used to estimate merchantable volume of Eucalyptus clones. 

Pearson’s correlations were used to assess the relationships between the indices and 

volume. Furthermore, ANOVA was used to assess whether significant differences 

could be detected amongst index values within the plots or compartments, based on 

different age groups, clones, and site qualities. Cross-validation and model selection 

based on adjusted R2 and low Mallows' Cp were utilised in the development of 

volume models. The volume and index relationships of E. grandis and E. saligna 

clones yielded significant (p<0.05) correlations. The strength of the correlations for all 

clones was found to be much higher than the relationships for E. grandis, but lower 

than that of E. saligna. ANOVA results show that the indices were significantly 

(p<0.05) influenced by age, site quality, and the clone in question.  Models developed 

without ancillary data such as age and site index had low adjusted R2, e.g., 0.47, and 

high RMSE (0.055 m3/ha, p<0.0001) values compared to models that included 

ancillary data (R2 = 0.78, RMSE =0.0176 m3/ha, p<0.0001). These results suggest that 

spectral measurements of chlorophyll, nitrogen, and water content have potential as 

independent variables for estimation of merchantable volume of Eucalyptus clones in 

KwaZulu-Natal when used in conjunction with ancillary data. This has important 

implications for extension of results to airborne data and regional assessments.  

Keywords: Spectral vegetation indices, forest merchantable volume, ASD, 

hyperspectral data 
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2.1. Introduction 
 
The improved silvicultural and management practices currently utilized by the South 

African commercial forestry industry enable sustainable growth of various 

commercial forestry species. These management practices require accurate but costly 

inventory data for management and planning purposes (Owen, 2000). According to 

Franklin (2001), inventory data should be spatially explicit, comprehensive, and 

geometrically accurate to ensure a sustainable commercial forestry sector. The 

management of this important resource therefore involves having up-to-date inventory 

data and the ability to objectively quantify biologically-significant attributes of forest 

stands by forest land managers (Latham et al., 1998). Forest structural attributes, 

defined as the size, shape, and distribution of forest components in both the horizontal 

and vertical dimensions (Parker, 1995, Spies, 1998), form an integral part of forest 

inventories and management (Gebreslasie et al., 2010). These forest structural 

attributes affect the ecosystem’s composition, dynamics, and functioning and has been 

a central topic to forest ecology (Nadkarni et al., 2008). The attributes are constantly 

measured and mapped within sustainable management protocols (Baskent and Keles 

2005), using various techniques such as direct, sampling, and predictive methods 

(Avery and Burkhart, 2001, Rahman et al., 2005). Although these techniques have 

been able to provide accurate data from which forest managers describe and deduce 

relationships for compartments, their drawback is that they are costly and time 

consuming, while the accuracy of forest structural attribute assessment is dependent 

on the skill level of the forester (von Gadow and Bredenkamp, 1992, Schreuder et al., 

1993, Trotter et al., 1997, Avery and Burkhart, 2001). According to Esler (2004), the 

relative estimation error of forest structural attributes obtained from traditional field 

inventories at the stand-level typically varies between 10% and 15%. 

Due to these reasons several researchers began to explore other avenues, such as 

remote sensing, for acquiring forests structural attributes at reasonable cost and 

accuracy (Lillesand et al., 2004, Boyd and Danson, 2005, McRoberts and Tomppo, 

2007). Remotely sensed data have been acknowledged and identified as an important 

tool for precision plant management because (i) it provides timely and georeferenced 

information on soil and plant condition (Moran et al., 1997) and (ii) it has been used 

for identification of management zones, mapping of crop nutrient status and to detect 

pest infestations (Barnes et al., 2000). In various cases, remotely sensed data, in 

19 
 



conjunction with field measured forests attributes, have been used to derive 

algorithms that explain the variance in field structural and chemical attributes and for 

extrapolation of such relationships over large areas in the form of thematic maps 

(Cohen et al., 2003, Foody et al., 2003, Zheng et al., 2004). Such modelling has been 

done through various statistical techniques, i.e., forest characteristics are measured 

during field campaigns and empirically / statistically related to remotely sensed 

satellite data (Castro et al., 2003, Lu 2005). Eklundh et al. (2001) obtained 

correlations (R2) above 0.7 between simple ratio (SR) and normalised difference 

vegetation index (NDVI) derived from Landsat ETM+ and leaf area index (LAI) of 

Norway spruce and Scots pines in Sweden.  Gebreslasie et al. (2008), estimated plot-

level forest structural attributes using high spectral resolution Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) satellite data in even-aged 

Eucalyptus plantation, in KwaZulu-Natal, South Africa and their results indicated 

weak relationships (i.e., adjusted R2 < 0.55) between forest structural attributes 

studied ( i.e., stems per hectare (SPHA), diameter at breast height (DBH), mean tree 

height (MTH), basal area and volume and ASTER data. Most of the remote sensing 

applications in South African commercial forestry are recent and have explored the 

possibility of using remote sensing to estimate various forest attributes (such as leaf 

area index (LAI), lignin, forest health, height, diameter at breast height, and stems per 

hectare etc) of plantation forest species. These studies have used a variety of sensors, 

including multispectral (Gebreslasie et al., 2008), imaging spectroscopy (Ahmed and 

Mthembu 2006, Ismail et al., 2008, Cho et al., 2010), fusion of RADAR and multi-

spectral datasets (Roberts et al., 2008), and LIDAR sensor types (Tesfamichael et al. 

(2009a, b).  

 

Although results were encouraging, there seems to be a lack of species-specific 

extension of foliar chemical properties estimation for volume quantification. Foliar 

chemical composition is one of the most important forest characteristics, since it 

provides information about the ecosystem’s processes, vegetation stress, and 

productivity (Curran, 1989, Haboudane et al., 2002). These foliar chemical bioassays 

are known to have strong relationships with maximum photosynthetic capacity, 

ecosystem productivity, volume, and biomass (Field and Mooney 1986, Reich et al., 

1999). In South Africa, the utility of hyperspectral remote sensing in numerous 
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vegetation studies have been explored in the context of LAI and leaf and wood lignin 

estimations (Ahmed and Mthembu, 2006), identification of Sirex noctilio pest 

infestations (Ismail et al., 2008), estimation of sugarcane leaf nitrogen concentration 

(Abdel-Rahman et al., 2008), and detection of sugarcane African stalk borer (Eldana 

saccharina walker, Lepidoptera pyralidae) (Mokhele et al., 2009). These studies have 

not attempted to establish relationships between foliar chemical bioassays and growth 

of various plantation forest species. This study was therefore designed to explore the 

relationship between leaf nitrogen, chlorophyll, and water content, as assessed using 

leaf- and canopy-level hyperspectral data, with volume of Eucalyptus clones in the 

Richmond area of KwaZulu-Natal, South Africa. The main question that we attempted 

to answer was:  Is the spectral reflectance of South African forest canopy strongly 

related to volume, as affected by water status, leaf chlorophyll, and nitrogen content? 

It was hypothesized that water status and chemical bioassays, such as chlorophyll and 

nitrogen, have an impact on merchantable volume modelling without factoring in 

ancillary data such as stand age and site index. 

2.2. Materials and methods 

2.2.1. Study area 

The study was conducted in the Greenhill estates of Mondi Business Paper in the 

KwaZulu-Natal province of South Africa. The study sites are situated around the town 

of Richmond (see figure 1.1.).  The study area falls within the summer rainfall region 

of South Africa and experiences cold, dry winters and warm, wet summers. Mean 

annual rainfall ranges from 746-1100mm, while seasonal temperatures vary between a 

high of 20°C to below 10°C. The extreme temperature change is a function of altitude 

and proximity to the warm Indian Ocean, with higher altitudes experiencing much 

colder temperatures than lower lying areas. The terrain of the study area consists of 

flat gently undulating hilly topography and is classified as being low mountains 

(Schulze, 1997). Elevation ranges between 800m and 1400m above mean sea level. 

The primary land use in the Richmond area is agriculture, e.g., plantation forestry, 

sugar cane, and to a lesser extent, dairy farming. Plantation forestry is a major land 

use in the study area due to the suitable climate and soils. The geology consists of 

sandstone and clay formations, which have resulted in sandy clay to sandy clay loam 

soils (Schulze, 1997). 
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2.2.2. Field measurements 

Thirteen compartments1 of Eucalyptus clones (i.e., 9 Eucalyptus grandis, 1 

Eucalyptus dunnii and 2 Eucalyptus saligna) were selected from the Geographic 

Information Systems (GIS) database provided by Mondi-SA. The selection was based 

on spatial location, extent, age, felling dates, site index, and site productivity, i.e., an 

effort was made to select compartments on good, medium, and poor site productivity 

or qualities. The site quality classification is based on total available water in the soil 

profile, which is a function of effective rooting depth, soil type, rainfall, and 

temperature classes (Smith et al., 2005). The field data collection was undertaken 

during spring (October) of 2009. The age of the Eucalyptus grandis trees at the time 

of the survey ranged from three to ten years, whilst E. saligna had ages of five to 

seven and only seven year old stands were available for E. dunnii. Spacing between 

and within rows of the stands were approximately 2.4m and 3m, respectively. In this 

study, a total of 48 square plots of 20x20m with homogeneous cover were enumerated 

in order to include an adequate number of trees per site quality and thereby strengthen 

the statistical reliability of the results. The distance from the centre tree to the nearest 

road was measured and geographical coordinates of that point on the road were 

recorded using a sub-metre differential global positioning system (DGPS). In each 

plot, only healthy trees with a diameter at breast height (DBH) greater than 5cm were 

considered for enumeration. This procedure is commensurate with the inventory 

protocol of the South Africa commercial forestry industry and has also been followed 

by other studies (e.g., Holmgren, 2004, Maltamo et al., 2004, Gebreslasie et al., 2008, 

Roberts et al., 2008, Tesfamichael et al., 2009a). 

 2.2.3. Merchantable volume measurement 
 
Trees across the range of the DBH greater than 5cm were selected for height 

measurement, thereby ensuring a representative sample across the entire DBH range. 

Tree heights of the selected trees were measured using a Vertex III hypsometer® 

(Haglöf, Sweden). Relationships between DBH and corresponding heights were 

1 Compartments are blocks of trees where the trees of one compartment typically are all from  
the same species and age, and have all been planted at a fixed spacing 
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established at plot-level and based on site quality using regression analysis with R2-

values above 80% for the majority of plots.  Heights of all trees within a plot were 

then estimated using the resultant regression equations of DBH-height relationships 

developed for each plot. The variability in tree merchantable volume is mostly 

explained by tree height and DBH as independent variables (Avery and Burkhart, 

2001). Thus, when these attributes are known for individual trees, merchantable 

volume can be calculated for each tree (i.e., the total overbark merchantable limit was 

5cm). The volume function based on Schumacher and Hall (1933) was used in this 

study (Equation 1). 

Ln (V) = b0 + b1 ln (DBH +f) + b2 ln (H),       1 

Where V is merchantable volume (m3), DBH is diameter at breast height (1.3m) (cm 

over bark), H is tree height (m), and f is a correction factor. Coefficients b0, b1, and b2 

used for this equation were those published in the South African Forestry Handbook 

(Bredenkamp, 2000). Plot-level volume was derived by adding volume of individual 

trees. The aggregate volume was then converted to a hectare scale based on the area 

of a plot. The descriptive statistics of the merchantable volume per compartment are 

shown in Table 2.1.  

Table 2.1 A statistical summary of compartment-level volume (m3). 
 Max. Mean Min. S.D. n 

E.grandis 0.8896 0.1462 0.0083 0.0840 27 

E.dunnii 0.8167 0.2665 0.0259 0.1543 3 

E.saligna 0.9531 0.1712 0.0105 0.1159 6 

 

2.2.4.Site index 
 
Site index describes the quality of a site and is also an indicator of the growth rate of 

trees within a compartment (Megown et al., 1998). Site indices, using a base age of 

five years, were derived by calculating the mean height of 20% of the tallest trees in 

each stand and applying a modified Schumacher-difference form equation (Coetzee, 

1994)  

 

SI5 = β3 * HD1 * exp [β1 (AGE1-AGE2) + β2 (1/AGE1 – 1/AGE2)]   2 
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Where β1, β2, and β3 = parameter estimates, AGE1 and AGE2 = compartment age at 

sampling and at base age five, respectively, and HD1 = average dominant height of 

the 20% tallest trees measured. This equation is the standard formulae used by 

commercial forest companies in South Africa. 

2.2.5 Leaf spectral measurements 

 
Leaf samples were collected from the sunlit branches within different site qualities, 

i.e., good, medium and poor. Leaves were then stacked 10 layers together and 

reflectance measurements taken using the leaf clip of the spectrometer.  Leaf spectral 

measurements were taken using an ASD spectroradiometer (Fieldspec3 Pro), fitted 

with a 25° field of view bare fibre optic. The ASD field spectroradiometer senses in 

the spectral range of 350-2500 nm, with a bandwidth of 1nm (Analytical Spectral 

Devices, 2005). Radiance measurements were converted to target reflectance using a 

calibrated white spectralon panel on the leaf clip. Reflectance measurements were 

taken by averaging 40 scans with a dark current correction at every spectral 

measurement. 

2.2.6. Spectral transformation 

 
The spectral transformations applied in this study, apart from raw reflectance spectra, 

was continuum removal analysis to the selected or targeted absorption features (Table 

2.2). The continuum is removed by dividing the original reflectance values in an 

absorption trough by corresponding values of the continuum line (Kokaly and Clark, 

1999). Continuum removal normalizes reflectance spectra in order to allow for 

comparison of individual absorption features from a common baseline (Kokaly, 2001) 

and the resultant curves have values between 0 and 1, in which the absorption troughs 

are enhanced (Schmidt and Skidmore, 2001).  
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Table 2.2. Selected wavelength ranges and their associated absorption features for 
chlorophyll, nitrogen, and water content. 
Chlorophyll Nitrogen Water content 

440, 680, 720nm                     420-490, 550-652 nm  900-1252nm 

 680-790, 1611-2137nm                      1442, 2252nm 

 

2.2.7. Chemical analysis 

 
A Soil Plant Analysis Development (SPAD) chlorophyll meter (SPAD, 2009), was 

used to measure the leaf chlorophyll in situ, after which leaves were immediately 

stored in zip-lock bags. The SPAD chlorophyll meter allows for a non-destructive 

measurement of chlorophyll in plant leaves and is only useful if a proper statistical 

relationship with leaf chlorophyll has been established. The SPAD chlorophyll meter 

measures the “greenness” (amount of chlorophyll present) of the leave by measuring 

the absorbance of the leaf at two wavelength regions, namely blue (400-500nm) and 

red (600-700nm) (SPAD, 2009). The chlorophyll meter measures the absorption in the 

red and near infrared region of the spectrum and calculates a numerical SPAD value 

proportional to the amount of chlorophyll in the leaf. The leaves were separated into 

two sets, where the wet mass was measured for one set using a scale balance (± 

0.01g), followed by oven drying in the laboratory at 110 °C for 24 hours.  Leaf water 

content was calculated following the procedure described by Liu et al. (2004) and 

Stimson et al. (2005):  

WC (%) = ((FW - DW) / FW) *100            2 

 

Where FW is the fresh weight of the sample and DW is the weight of the sample after 

oven drying. The other leaf set was used for nitrogen and chlorophyll analyses. The 

chlorophyll concentrations were determined spectrophotometrically against 80% 

acetone at 663, 646, and 470nm (Lichtenthaler, 1987) and nitrogen concentrations 

were determined using a modified Kjeldahl digestion method (Gupta, 1999). 
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2.3. Statistical data analysis 

 
A correlation analysis was conducted between chlorophyll and nitrogen contents 

extracted from SPAD measurements. The Pearson correlation coefficient, r, was 

calculated for all wavelengths in the 350-2500nm range for reflectance, continuum 

removed spectra, and first derivative reflectance in order to assess the relationship 

between chlorophyll, nitrogen, plant water content, and reflectance. The threshold for 

the Pearson correlation coefficient was set at ±0.65 because lower values are generally 

regarded as unacceptable within South African industry. The wavelength regions of 

statistically significant correlation (p<0.05) were subsequently evaluated.  

Partial least squares (PLS) regression was used to predict nutrient and water content 

concentrations from the reflectance and continuum removed spectra. Previous 

researchers have used PLS regression in order to deal with the problem of 

multicollinearity (Kooistra et al., 2004, Feudale and Brown, 2005), which occurs 

when the number of samples is significantly smaller than the number of bands used in 

the analysis (Curran 1989, Nguyen and Lee, 2006). PLS is closely related to principal 

component analysis, but it does not decompose the spectra into a set of eigenvectors 

and scores. PLS regression uses the response variable information during the 

decomposition process (Geladi and Kowaski, 1986, Nguyen and Lee, 2006). PLS 

have been demonstrated as an alternative to conventional stepwise regression for 

estimating foliar nutrient content, such as nitrogen and chlorophyll (Hansen and 

Schjoerring, 2003). The centres of the chosen wavelengths are shown in Table 2.2. 

The spectral vegetation indices that are indicative of chlorophyll, nitrogen, and water 

content (Table 2.3) were computed using wavelengths near these centres.  

2.4. Vegetation indices 

 
Vegetation indices are traditionally used to establish non-destructive linkages between 

physiological indicators, measured from the field and laboratory data, and vegetation 

reflectance (Elvidge and Chen, 1995, Thenkabail et al., 2001). In this study, 

previously used narrow waveband spectral indices that are sensitive to leaf 

chlorophyll, nitrogen, and water content were computed and tested (see Table 2.3).  
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Table 2.3 Chlorophyll-, nitrogen-, and water-based narrow-band indices used in this 
study. 
INDICES 

                                                           

FORMULA REFERENCES 

Red Edge 
)700740(

*40700
)700(Re

RR

R
−

+
−

        
Cho and Skidmore 

(2006) 

Vogelmann Index                   
720

740
R

R
 Vogelmann et al. 

(1993) 

TCARI/OSAVI    

   
)16.0670800(

)670800(
*)16.01(

670

700*)670700(*2.0)670700(*3

++

−
+














−−−

RR

RR
R

R
RRRR

 

Albrechtová et al. 

(2008)                            

Nitrogen indices   

Normalised 

Difference 

Nitrogen Index 

(NDNI) 

)1680R/1(Log)1510R/1(Log(
)1680R/1(Log)1510R/1(Log(

+
−

 

Serrano et al. 

(2002) 

 

Normalized 

Difference Red 

Edge (NDRE)           

)720R790R(
)720R790R(

+
−

 

 Rodriguez et al. 

(2006)  

Nitrogen 

Reflectance  

Index (NRI)                       












+

−

)670R570R(
670R570R(

 

Zhao et al. (2005a 

& b) 

 

Water indices                 

Water Index (WI)                
)970R(

)900R(

 

Peñuelas et al. 

(1997) 

Moisture Stress 

Index   (MSI)         













820R
1600R

 

 Hunt and Rock 

(1989) 
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Datt 1  
)1928R850R(

)2218R850R(

−

−

 

Datt (1999) 

Datt 2                             
)1928R850R(

)1788R850R(

−

−

 

Datt (1999) 

 

                                 

Normalized 

Difference Water 

Index (NDWI) 

)1240R860R(

)1240R860R(

+

−

 

Gao et al. (1996) 

 

 
 
One-way ANOVA was used to assess whether significant differences could be 

detected amongst index values within the all plots based on different age groups, 

clones, and their interactions with site quality.  E.dunnii was excluded in the 

subsequent analysis due to the sample size i.e. only 3 plot. A Pearson correlation 

matrix was constructed between the chlorophyll, nitrogen, and water content spectral 

indices. Goodness of fit was evaluated on the basis of correlation strength (r), adjusted 

coefficient of determination (adj. R2), significance of correlations (p<0.001), and the 

root mean square error (RMSE) of the prediction. Spectral indices which exhibited the 

highest significant correlations were further used to develop regression models for 

estimation of volume. 

2.6. Model development and validation 

 
The multivariate analysis (MVA) statistical method (Lu et al., 2004, Sivanpillai et al., 

2006) was employed in this study for selection of the most useful indices for volume 

estimation. Multivariate models are known to offer robust and substantial 

improvement of models when compared to single variable approaches (Sivanpillai et 

al., 2006). Finally, the selected indices were used for model development with and 

without ancillary data (age and site index) using stepwise backward regression. 

Backward stepwise regression first considers all the variables for the regression and 

proceeds by eliminating variables one at a time to produce the model that account for 

28 
 



the largest amount of explained variance with all the coefficients are significant 

(Sedano et al., 2008). Incorporating ancillary data was shown to improve the model fit 

metrics in forest structural attributes studies (Gebreslasie et al., 2010) and reduce the 

likelihood of over fitting a regression equation. These ancillary variables are 

especially useful since they generally are known entities in well-managed commercial 

even-aged plantation forestry. 

 

Model validation is the most important step in the model development process if 

models are to be accepted for operational use and decision making. There are various 

established approaches to model validation, e.g., validation based on an independent 

test data set and cross-validation procedures, also called the leave-one-out methods. 

Ideally, validation based on independently gathered data is highly recommended, but 

is often expensive and time consuming (Tesfamichael et al., 2009). In this study two 

techniques were tested, namely cross-validation (60% for model development and  

40% validation) and model selection based on the highest adjusted R2 and lowest 

Mallows' Cp statistic. Mallows’ Cp is a measure of the bias in a model, based on a 

comparison of total mean squared error to the true error variance.  It thus follows that 

unbiased models have an expected value of approximately p, where p is the number of 

coefficients in the fitted model (including the constant).  The ideal model should have 

Cp values close to p (Atkinson and Riani, 2008, Siniksaran, 2008). Lastly, a cross-

validation procedure was adopted in this study and error of prediction reported.  

Cross-validation omits a subset of samples from the modelling effort and predicts the 

value(s) of the validation sample(s) (Yang et al., 2004). According to Schlerf et al. 

(2005), cross-validation procedures are capable of providing nearly unbiased 

estimations of the prediction error. Figure 2.1 below presents a flow chart of tasks 

undertaken in this research 
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Figure 2.1. Flow chart of the tasks undertaken in this study 
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2.7. Results 

2.7.1. Calibration of the SPAD chlorophyll meter 

 
The SPAD chlorophyll meter was calibrated using chlorophyll and nitrogen data 

obtained from the laboratory analysis. The correlations between SPAD readings and 

extracted chlorophyll and nitrogen contents yielded equations 3 and 4, respectively. 

These equations were used to derive chlorophyll and nitrogen concentrations of all 

other samples. According to Peñuelas et al. (1994) and Hansen and Schjoerring 

(2003), nitrogen is strongly correlated with both chlorophyll a and b concentrations in 

plants and the metabolic functioning of the chlorophyll depends on nitrogen 

availability. A significantly strong linear correlation (r=0.95, p<0.05) with a high 

coefficient of determination (R2= 0.89) was observed between chlorophyll and 

nitrogen of Eucalyptus clones in this study.  

Chlorophyll =   0.6126*SPAD - 21.018   (Adjusted R2 = 0.71)  (3) 

Nitrogen = 0.0011*SPAD - 0.0375          (Adjusted R2 = 0.78)  (4)  

2.7.2. Relationships between volume and indices 

 
The correlations between volume and hyperspectral vegetation indices for each clone 

and a generalized Eucalyptus group are shown in Table 2.4. It is evident that for a 

vegetation index to be a good estimator of volume, it must exhibit a high correlation 

with volume. In this study, the correlations of volume with indices were examined for 

E. grandis and E. saligna separately, and for the combined clones’ data set. The 

volume and index relationships of E. grandis and E. saligna clones yielded significant 

correlations (p<0.05). No correlation analysis was performed for E. dunnii due to the 

limited sample size. High correlation values for E. grandis volume were evident in the 

cases of NRI, WI, Datt1, TCARI, and TCARI/OSAVI. When one compares 

correlation outcomes for E. grandis and E. saligna, the latter species exhibited 

distinctly stronger correlations close to 1 (r ≥ 0.90), whilst those of E. grandis were 

smaller than 0.70. From all the indices tested, chlorophyll-, nitrogen-, and water-based 

indices showed significant correlations in the case of both E. grandis and E. saligna 

volume, except for NDWI, which yielded non-significant correlations with volume for 

E. saligna. The strength of the correlations for the combined clone data set was found 
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to be higher (0.64 ≤ r ≤ 0.89) than that of E. grandis, but lower than the correlations 

for E. saligna. The highest r values were observed for water indices (Datt 1 and 2) 

and nitrogen based indices (NRI).  

Table 2.4. Correlations between volume and spectral vegetation indices for two 
Eucalyptus clones and a general species group 
Index E. grandis  E. saligna  All clones 
Red edge 0.52* 0.91* 0.69* 
Vogelmann 0.59* 0.95* 0.70* 
Tcari /Osavi 0.67* 0.97* 0.82* 
NDNI 0.66* 0.92* 0.80* 
NDRE 0.57* 0.93* 0.69* 
NRI 0.67* 0.95* 0.84* 
WI 0.69* 0.93* 0.78* 
MSI 0.62* 0.93* 0.77* 
Datt 1 0.67* 0.94* 0.80* 
Datt 2 0.62* 0.97* 0.88* 
NDWI 0.49* 0.92* 0.64* 
*Significant at α=0.05 

 

2.7.3. Assessing the effects of site quality, clone and age on the chlorophyll, 

nitrogen and water indices.   

 
An ANOVA was also performed on indices to determine whether there were 

significant interaction effects due to factors such as age, clone, and site quality for E. 

grandis, due to variation in age groups. The general expected relationship is that 

volume is a function of both age and site quality, i.e., volume at an early age would be 

less than volume towards felling age and also volume at poor site qualities would be 

less than volume at either medium or good productivity sites. The ANOVA results 

showed that volume and chlorophyll, nitrogen, and water indices of E. grandis were 

significantly (p < 0.05) influenced by age and site quality, thus corroborating the 

expected trend. The ANOVA analysis based on age groups seven (E. grandis, E. 

saligna, and E. dunnii) and five (E. grandis and E. saligna) furthermore detected the 

significant (p <0.05) influence that site quality and clones have on indices and 

volume.  Surprisingly, most of the pronounced differences were detected between 

poor and good site qualities, while poor-medium and medium-good combinations 

showed no significant differences. This implies that differences of total available 
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water between medium and good or poor site qualities could be negligible or non-

significant.  

 2.7.4. Model development for volume estimation through Chlorophyll, nitrogen, 

and water indices. 

 
The multiple regression approach using the stepwise backward method yielded a four 

variable model, namely datt1, MSI, NDWI, and Vog. These variables had significant 

(p<0.05) contributions in the model building, therefore there was no need to simplify 

the model further. This four variable model for volume estimation of E. grandis 

returned an adjusted R2 value of 0.72, significant at p<0.01, with an RMSE of 

0.0218m3/ha (Table 2.5). The aggregated clone model yielded an adjusted R2 value of 

0.47 (p<0.01, RMSE= 0.0555m3/ha). Higher adjusted R2 values (0.88 and 0.81) were 

observed for E. grandis and an aggregated clone model, respectively, where inclusion 

of ancillary variables to model building is concerned. Factoring in ancillary data, i.e., 

age and site index, contributed to explaining more variability in volume for both the 

models and lower RMSE’s when compared to other models. It was also observed that 

the E. grandis model only factored in age as an ancillary data, while the combined 

clone model included both ancillary data variables. Figure 2.2 shows the general 

volume model estimates which yielded a positive significant (p<0.001) linear 

relationship with an adjusted R2 value of 0.81 and comparably low RMSE of 

0.0176m3/ha.  
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Table 2.5  Volume models developed with and without ancillary data variables age and site index 
Clones Models without Ancillary data Adj. 

R2 
RMSE 
(m3/ha) 

Mallow's 
Cp 

p-value 

E. 
grandis 

Vol=-1.88381+ 49.6856*Datt1-3.39352*MSI -90.0258*NDWI + 2.67079*Vog 0.72 0.0218 5 0.0001 

All 
clones 

Vol=0.507058+71.6366*Datt1+18.9024*Datt2-12.0988*Tcari/Osavi 0.47 0.0555 4 0.0001 

 Models with Ancillary data     

E. 
grandis 

Vol=0.0768542+0.0250322*Age-.228626*NDNI 0.88 0.0140 3 0.0001 

All 
clones 

Vol=-32.3131+0.0290976*Age-5.99652*TCARI/OSAVI 

+0.0157887*SI+32.6424*WI 

0.81 0.0176 5 0.0001 
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Figure 2.2. Observed vs. predicted volume of Eucalyptus clone model
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2.8. Discussion 

The aim of this study was to estimate the volume of Eucalyptus clones using foliar 

chemical and water content, derived from leaf-level hyperspectral data. Merchantable 

stem volume is an important attribute in the South African commercial forestry 

industry given its relation to standing stock. Modelling volume using remote sensing 

techniques therefore have been a focus of much research. The results obtained in this 

study highlight the importance and linkage of foliar chemical bioassays and water in 

growth and yield of Eucalyptus clones. These results will further enable the provision 

of vital information for monitoring tree growth towards improved forest management. 

This information includes accurate, non-destructive, and simple estimation of 

nitrogen, chlorophyll, and water content at both leaf- and canopy levels. The analysis 

in this study has shown significant (r > 0.80, p<0.05) relationships between SPAD 

and both nitrogen and chlorophyll values, thereby emphasizing the viability of remote 

and non-destructive estimation of these variables across large hectares of forest land 

(Equations 3 and 4). Furthermore, chlorophyll content is known to be related to 

nitrogen content (Yoder and Pettigrew-Crosby, 1995) and this study found a 

significant linear relationship with a coefficient of determination (R2) of 0.89. These 

relationships were in agreement with results reported elsewhere, e.g., Jongschaap 

(1999) and Jongschaap and Booij (2004). 

Leaf chlorophyll, nitrogen, water content, and other chemical constituents are 

important indicators of plant growth (Chapin et al., 1990). As noted earlier, the 

importance of merchantable timber volume in commercial forestry has been 

intensively researched for future management applications using remote sensing (e.g., 

Tesfamichael et al., 2010). A key aspect of commercial forestry production in South 

Africa is the management of silvicultural practices to enhance optimum growth. In 

most cases, the nutritional status of plants and their ability to respond to fertilizers, 

hence optimum growth returns are diagnosed using foliar analysis as a benchmark 

(Herbert and Schönau, 1989). The volume and indices related to chlorophyll, 

nitrogen, and water content and derived from hyperspectral data indicated significant 

correlations (p<0.05) as shown in Table 2.4. Eucalypts species are recognized as some 

of the fastest growing trees in a wide range of ecological conditions and site qualities 

and they are preferred because of high growth rate, short rotation length (8-10 years) 

and favourable pulpwood properties (FAO, 1988). In this study, E.saligna modelled 
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better than E.grandis as shown in Table 2. 4. This was due to the role played by the 

quality of the site where the compartments were located. The spatial database 

provided by Mondi-SA show that most of the E.grandis compartments were on 

medium and poor site qualities whilst E.saligna was planted on good site quality. Past 

studies have shown the capabilities of narrow band data in estimating foliar chemical 

attributes and improve the accuracy of modelling forest structural attributes compared 

to broadband e.g., Schlerf et al. (2005), Cho et al. (2009). In these studies narrow 

band data explained high variability’s (60-85%) in forest structural attributes i.e., 

biomass, crown volume, and leaf area index (LAI).  

The influence of site quality and age on the physiological indices was further 

evaluated. The respective site qualities are indicative of different total available water 

in the soil profile and hence their volume returns can be expected to be significantly 

different from one another. Site quality and age had a significant (p < 0.05) influence 

on chlorophyll, nitrogen, and water content indices for all E. grandis age groups. 

Volume is a function of height and diameter at breast height and these variables 

increase with time and depend largely on site quality, i.e., volume at good 

productivity sites is expected to be much higher than volume at lower productivity 

sites. An ANOVA test of significance for age groups five and seven across clones 

showed that the indices were statistically (p< 0.05) influenced by the clones and site 

quality, implying that a clone will exhibit variable volume growth, depending on the 

local site quality. Although there were significant effects from site and clone 

interactions, the more significant interaction was site quality, given that this variation 

in this factor far exceeds that from age groups and range (5-7). Future research should 

encompass and expand clone age to properly capture the associated variation, thus 

allowing interpolation rather than extrapolation for this factor. The significantly 

pronounced differences were found between good and poor sites and none between 

medium and both good and poor, which effectively implies that little or no differences 

exist in available soil water between medium and both good and poor site qualities. 

Models were developed to estimate volume from the chlorophyll, nitrogen, and water 

content indices. The models developed in this study for E. grandis and for the 

combined clone model yielded lower than 0.65 adjusted R2 values (Table 2.5). The 

inclusion of ancillary data, i.e., age and site index, resulted in improved adjusted R2 

values with low RMSE values when compared to models without ancillary data. Most 
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of the volume estimation models developed through methods other than remote 

sensing include ancillary data; these types of data furthermore are typically readily 

obtained. Site index also is a function of height-age and it was felt that a comparison 

needed to be made between models with and without such data. A previous study on 

the prediction of forest structural attributes using ASTER and ancillary data showed 

an increase in the adjusted R2 values when factoring in ancillary data (Gebreslasie et 

al., 2010). The same increments to adjusted R2 and low returns of RMSE were 

observed in this study. 

These combined remote sensing and ancillary data models had low Mallows Cp 

values, higher adjusted R2, and low RMSE values (Table 2.5). The coefficient of 

determination for the modelled linear relationship between estimated and observed 

volume was 0.81 and exhibited a near 1:1 relationship and high correlation coefficient 

(r > 0.85) (Figure 2.2). The results show a hint of an over-estimation of volume at 

older age groups and under-estimation at younger compartments. This was partly 

attributed to the fact that growth culminates at relatively young ages in these short 

rotation crops, resulting in overestimation of volume in the case of older 

compartment. To further understand these overestimations, measurements of leaf 

chlorophyll, nitrogen, and water content should be made at older aged compartments 

over time. This will give an indication of whether there is a change in these 

parameters once the growth culmination rotation age has been reached. This model fit 

was deemed satisfactory and hinted at an improved potential of estimating volume 

from hyperspectral data coupled with ancillary data, since adequate variation was 

explained in the volume enumerated data. The modelling approach is also suitable for 

estimation of volume under varying leaf area index (LAI) conditions, different soil 

backgrounds, and solar zenith angles, given the robust nature of independent variables 

such as TCARI/OSAVI. This index is known to be sensitive to chlorophyll content 

and insensitive to the mentioned variations (Haboudane et al. 2002, Albrechtová et 

al., 2008). Overall, the assessment of leaf chlorophyll, nitrogen, and water content 

over large areas may assist with management of silvicultural regimes towards 

optimization of growth, since these metrics are indicators of plant status during the 

growing stages.  The result of this study further affirms the reported strength of the 

relationships between growth and yield on the one hand and chemical bioassays and 

water on other (Brown et al., 1997). These relationships have made it possible to 

provide an indication of processes that hinder growth over large areas. 
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2.9. Conclusion 

This study demonstrated the importance of integration of remote sensing and in situ 

data in modelling efforts to provide more accurate estimates of Eucalyptus clone 

volume in the commercial plantation forestry Greenhill estate in KwaZulu-Natal, 

South Africa.  Foliar chemical bioassays and water content plays a crucial role in 

plant development over the growth period and hence provide valuable information on 

physiological condition and can identify areas where growth has been limited by a 

shortage of resources. These modelling efforts will in future contribute to improved 

management of forest resources by using airborne or spaceborne imaging 

spectroscopy at regional scales. The study has shown the potential for estimating 

chlorophyll and nitrogen non-destructively using a SPAD instrument and extending 

this to remote sensing data and scales. Stand volume was found to be influenced by 

chlorophyll, nitrogen, and water content as assessed at the leaf-level, as well as site 

quality and age as readily available ancillary variables. There is a need to upscale 

these results to airborne hyperspectral imagery in order to investigate the spatial 

patterns of volume based on chlorophyll, nitrogen, and water content. Such an 

approach will effectively allow forest managers to model, map, and manage forests at 

the appropriate scales and with a host of physiological and structural forest data at 

hand. The next chapter will upscale the leaf level results to airborne hyperspectral 

data using Airborne Imaging Spectroradiometer for Applications (AISA). 
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CHAPTER 3 

 Assessments of volume and basal area of Eucalyptus grandis using hyperspectral 
data (AISA) 
 

 

 

 

 

This chapter is based on:  Mzinyane, T, Ahmed, F and Van Aardt, J. 2011. 

Assessments of merchantable volume and basal area of Eucalyptus grandis using 

hyperspectral data (AISA). International Journal of Remote Sensing. (Submitted) 
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  Abstract 
The success of commercial forestry depends on sound management and silvicultural 

practices adopted for optimum returns on a sustainable basis. Such management 

regimes theoretically manifest themselves in leaf biochemistry, which in turn is 

correlated to plantation growth and yield patterns. The study’s objective is to assess 

the impacts of leaf water content, chlorophyll, and nitrogen on volume and basal area 

through simulated AISA hyperspectral data, acquired at the leaf level. Stand-level 

volume and basal area were modelled using independent variables associated with 

foliar biochemistry and extracted from hyperspectral data. Leaf-level 

spectroradiometer data and analysis were extended to the canopy level using airborne 

hyperspectral AISA imagery. Leaf chlorophyll, nitrogen, and water content were 

determined manually in the laboratory and related to canopy spectral properties. 

Volume and basal area were derived from field measurements of diameter at breast 

height (DBH) and tree height. Various chlorophyll, nitrogen, and water-based spectral 

indices were computed.  These indices were used to explain the variance of 

merchantable volume and basal area of Eucalyptus grandis plantations. The 

correlations between measured values of chlorophyll, nitrogen, water content and 

airborne level spectral indices yielded strong (r > 0.70) significant (p < 0.01) 

Pearson’s correlations with the airborne spectral indices of chlorophyll; nitrogen and 

water content, except for the correlation between water band index (WBI) and 

chlorophyll which exhibited a correlation of 0.60. The indices further explained above 

65% of the variation in basal area and volume except for the water band (WBI) and 

Vogelmann (Vog1), which explained 63% and 44%, respectively. Bootstrapped 

histograms of the indices showed that they were more robust in their correlations with 

basal area and volume than simple Pearson’s correlations. Regression relationships of 

the indices and both volume and basal area, varying from linear to exponential, 

yielded high adjusted R2 and low root mean square error (RMSE) values. Models 

developed for future estimation of volume and basal area had high adjusted R2 values 

(> 90%, p<0.001) and low RMSE (0.1613 m3/ha and 0.0049 m2), Cp Mallow (6 for 

volume and 5 for basal area), and PRESS statistic (0.004 for volume and 0.153 for 

basal area) values. The relationships between observed and predicted values for 

volume and basal area approximated a 1:1 relationship, thereby suggesting that 

airborne remotely-sensed proxies of canopy chemical bioassays may generally be 
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useful in the assessment of forest structural attributes. This has important implications 

for future technology-based forest management and inventory updating approaches. 

Keywords: Hyperspectral, forest volume, basal area, indices, bootstrap 

3.1. Introduction 
 
The increasing threat of the land reform process to South African commercial forestry 

sector could imply a reduction in forest coverage in South Africa in the near future 

(Dyer, 2007).  The reduced area of forestry and the growing demand for forestry 

products would lead to demands for efficient and sustainable afforestation 

programmes to ensure optimum returns. These programmes will require accurate 

information about forest spatial distribution and status of forest structural attributes 

such as volume, basal area, diameter at breast height, height, and other system state 

attributes. Field surveys are typically employed to gather information on forest 

structural attributes (Gebreslasie et al., 2010). These field-based surveys have been 

endured because they return reasonably accurate data (Owen, 2000), but they also 

have drawbacks. They are point-based (low spatial and temporal coverage), subject to 

the experience of the collector, and tedious and expensive, thus severely limiting 

decision making by forest resource managers (Lillesand et al., 2000, Avery and 

Burkhart, 2001). Field surveys operate on a premise that homogeneous assemblages 

of plants typically occur, thus enabling extraction of average measurements or values 

for a given area. These average values are then extrapolated to a larger surrounding 

area under the same assumption that homogeneity is maintained and that the larger 

area can be considered as a unit or stand (Avery and Burkhart, 2001). However, this 

assumption does not always hold, since synoptic remote sensing studies on growth 

and yield, e.g., Coops et al. (1998), have shown that distinct within compartment 

variations exist. 

 

Remote sensing offers an alternative way of monitoring these large tracts of 

commercial forestry in South Africa, given its ability to extend site-specific 

measurements to much broader scales and spatial extents (Smith et al., 2008). This 

enables proper examination of key forest structural attributes over large tracts of land 

and assists with within compartments assessments and mapping of adverse 

disturbance and damage (Schreuder et al., 1993, Avery and Burkhart, 2001). 
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However, it must be emphasized that remote sensing should not be regarded as a 

substitute for field data collection, but that the combination of the two approaches 

normally yields better results than either method separately (FAO, 2010). These 

spatially determined forest structural attributes are crucial for enhanced inventories 

and future planning of timber harvest rotations, thus saving both money and time 

(Lefsky et al., 2001, Jusoff, 2008). Several authors have proven the capabilities of 

remote sensing as an alternative to field-based approaches for estimating forest 

structural attributes (e.g., Franklin et al., 2000, Hall et al., 2006, Breidenbach et al., 

2008, Tesfamichael et al., 2009 , Gebreslasie et al., 2010). A synoptic approach 

becomes even more critical when within-stand variation of growth drivers, such as 

foliar biochemistry, is considered. The influence of silvicultural practices such as 

fertilization and interactions of water and nutrients on forest structural attributes and 

forest growth and yield potentials are well documented (Campion et al., 2005, Naidoo 

et al., 2006).  Although these relationships are known, little work has been done 

towards integrating remote sensing capabilities and the influence of silvicultural 

practices on forest structural attributes, with a view to provide  efficient management 

synergies for vast tracts of commercial forested land.  

 

Recently developed remote sensing technologies, such as hyperspectral imaging, 

provide an enhanced capability for tracking leaf- and canopy-level silvicultural 

responses in vegetation studies. These sensors possess narrow spectral bands across a 

typically wide range of the electromagnetic spectrum (350-2500 nm), when compared 

to more traditional multispectral imagery (Zhao et al., 2005a, Du et al., 2006, Jain et 

al., 2007, Majeke et al., 2008). Multispectral imagery and its defining broad spectral 

bands, is known for often masking important spectral characteristics of plant 

biochemicals, thus resulting in the loss of vital information (Mokhele et al., 2009). 

Unfortunately, this spectroscopic technology is a fairly new area of research in the 

South African context (Mutanga et al., 2009) and has as a result recently attracted 

much interest from researchers, e.g., Ahmed and Mthembu (2006), Abdel-Rahman et 

al. (2008), Cho et al. (2010), and Oumar and Mutanga (2010). To the best of our 

knowledge, amongst these studies currently underway or completed, none has 

attempted to explore the relationship between forest leaf and canopy chemical 

bioassays (i.e., chlorophyll, nitrogen, water content) and forest structural attributes, 

such as volume and basal area of Eucalyptus grandis.  
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Eucalypts grandis timber forms an important source of fibre for the South African 

pulp and paper industry and is a highly commercialised species in the forestry 

industry, thus playing an important role in the country’s economic growth (DWAF, 

2005, Majeke et al., 2008). As noted earlier and given that fertilization is an important 

component of growth and yield management in commercial forestry in South Africa, 

a need exists to characterize the spatial influence of vegetation biochemistry on forest 

structural attributes using remote sensing, especially hyperspectral sensing. The 

study’s objective is to assess the impacts of leaf water content, chlorophyll, and 

nitrogen on volume and basal area through simulated AISA hyperspectral data, 

acquired at the leaf level. It is envisaged that such relationships would be able to 

explain variation in growth patterns, i.e., capture and detect scales of natural variation 

occurring within the compartments on the hyperspectral image.   

3.2. Materials and Methods 

3.2.1 Study Area 
 
The study was conducted in Richmond (Bioresource Group (BRG) 5), in Kwazulu-

Natal province of South Africa (Figure 3.1). Soils in the area are characterized by fine 

sandy clay and humic topsoils that are underlain by yellow or red apedal subsoils. The 

topography of the study area is flat with undulating hills and is classified by Schulze 

(1997) as being low mountains. Temperatures range from high 20°C values in 

summer to below 10°C in the winter. The area is regarded as a Moist Midlands 

Mistbelt and has favourable climate and high percentage of arable land. Altitude 

ranges from 300-2100m above sea level, with an average of approximately 850m. The 

area is prone to summer rainfall with cold, dry winters and warm, wet summers, with 

an annual rainfall ranging from 800-1280 mm and a mean annual temperature of 17°C 

(Camp, 1997, Schulze 1997). Forestry and sugar cane farming are the dominant land 

uses and both crops are grown on deep well drained soils.  
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Figure 3.1, Map of the study area with sampling sites.
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3.2.2. Field measurements  

 
The Geographic Information System (GIS) database of forest compartments, provided 

by Mondi-SA, was consulted in order to select stands of interest. The field data 

collection coincided with the overpass of the airborne hyperspectral imager, i.e., 

AISA. Site selection was based on spatial location, extent, age, felling dates, site 

index, and site productivity; an effort was made to select forest compartments on 

good, medium, and poor site productivity or quality. 15 Plot locations i.e., 5 per site 

quality were located in the field using a hand held sub-meter differential Global 

Positioning System (DGPS). The number of plots per site quality within the 

compartment was determined based on the size of the compartment. 20m x 20m meter 

square plots were established and inventory measurements collected, namely diameter 

at breast height (dbh) and tree height (tht). All trees with a dbh ≥ 5cm were measured 

within each plot, while heights were measured for only a sub-sample of trees based on 

dbh distribution within the plot.  

3.2.3. Volume and Basal area measurement 
 
Trees across the range of the dbh values were selected for height measurement, 

thereby ensuring a representative sample of the entire dbh range. Tree height was 

measured on a sample of trees using a Vertex III hypsometer® (Haglöf, Sweden). 

Relationships between dbh and corresponding heights were established at plot-level 

and based on site quality using regression analysis. R2 values above 80% were 

observed for the majority of plots.  Heights of all trees within a plot were then 

estimated using the resultant dbh-height regression equations developed within each 

plot. The variability in tree volume is mostly explained by tree height and dbh forest 

attributes (Avery and Burkhart, 2001). Thus, when these attributes are known for 

individual trees, volume can be calculated for each tree. The volume function based 

on the Schumacher and Hall form (1933) was used in this study (Equation 1). 

Ln (V) = b0 + b1 ln (DBH +f) + b2 ln (H),       1 

Where V is utilisable volume (m3), dbh is diameter at breast height at 1.3m (cm over 

bark), H is tree height (m), and f is a correction factor. Coefficients b0, b1, and b2 

used for this equation were those published in the South African Forestry Handbook 

(Bredenkamp, 2000). Plot-level volume was derived by summing the volume of 
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individual trees.  Basal area was derived using equation 2 below. These equations 

1and 2, are standard formulae used by commercial forest companies in South Africa. 

∑
=

=
n

i
DBHBA

1

2

4
π                   2 

The aggregates of volume and basal area were then converted to a hectare scale based 

on the area of a plot. A statistical summary of the plot-level measured volume and 

basal area is shown in Table 3.1.  

Table 3.1: Descriptive statistics for plot-level volume (m3) and basal area (m2) 

Variable Min Max Mean Std. Dev n 

Volume 0.453 4.4096 1.738 1.2763 33 

Basal Area 0.029 0.298 0.131 0.0586 33 

 

3.2.3. Site index 
 

Site index describes the quality of a site and also is an indicator of the growth rate of 

trees within a compartment (Megown et al., 1998).  Site index was calculated using 

the mean height of 20% of the tallest trees within each compartment for a base age of 

five years. A modified version of the Schumacher-difference equation was used to 

calculate the site index of each compartment (Coetzee, 1994).  

 

SI5 = β3 * HD1 * exp [β1 (AGE1-AGE2) + β2 (1/AGE1-1/AGE2)]   3 

 

Where β1, β2 and β3 are parameter estimates, AGE1 and AGE2 are compartment age 

at sampling and at base age five, respectively and HD1 is average dominant height of 

20% tallest trees measured. 

3.3. Remote sensing data  

 
Tree climbers gathered leaf samples from the sunlit branches within the different site 

qualities, i.e., good, medium, and poor. Leaf spectra of E.grandis were acquired at 

geo-referenced points using an ASD spectrometer (Fieldspec3 Pro) fitted with a 25° 
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field of view bare fibre optic (Analytical Spectral Devices, Boulder, CO). The ASD 

field spectrometer sampling interval over the 350–1050 nm range is 1.4 nm with a 

spectral resolution (full bandwidth at half maximum) of 3 nm. Measurements were 

taken during cloud free periods, between 10h00 and 14h00 to minimise the change in 

illumination conditions.  Radiance measurements were converted to target reflectance 

using a calibrated white spectralon panel on the leaf clip. Reflectance measurements 

were taken by averaging 40 scans with a dark current correction at every spectral 

measurement. Approximately 30-40 sunlit leaf samples were collected for leaf 

spectral and chlorophyll measurements. 

3.3.1. AISA imagery pre-processing 

 
The AISA data had a 2m spatial resolution and 272 wavebands in the 393-994nm 

spectral range. For calibration purposes, field spectra of spectrally invariant bodies 

such as tar roads, secondary roads, grass fields, water bodies (dark targets), and rock 

outcrops were collected during flight campaign using the ASD spectroradiometer.  

The imagery was atmospherically corrected using a vicarious calibration technique by 

the Ecosystems Earth Observation group at the Council for Scientific and Industrial 

Research (CSIR) in Pretoria, South Africa. The field spectra were spectrally 

resampled to the spectral configuration of the AISA sensor and used to convert the 

AISA radiance data to absolute reflectance using the empirical line correction tool in 

ENVI 4.7 software. A second-order Savitzky-Golay function was used to smooth the 

AISA image as it exhibited some spectral noise. A seven-band window size was used 

for the smoothing. In order to investigate the impact of leaf chlorophyll, nitrogen, and 

water content on forest structural attributes, vegetation indices (Table 3.2) that are 

indicative of these chemical bioassays were computed using ENVI software. 
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Table 3.2: Chlorophyll, nitrogen, and water content based indices used in this study 

Index Formula Reference 

Red Edge Normalized 

Difference Vegetation 

Index  

(RENDVI) 

705750

705750
705 RR

RR
NDVI

+

−
=  Sims and 

Gamon, 2002 

Modified Red Edge 

Simple Ratio 

MRESRI 

445705

445750
705 RR

RR
mRS

−

−
=  Datt, 1999 

Modified Red Edge 

Normalized Difference 

Vegetation Index 

(mNDVI 705) 

445*2705750

705750705 RRR

RR
mNDVI

−+

−
=  Datt, 1999 

Vogelmann Red Edge 

Index 1 (VOG1) 720

7401
R

R
Vog =  Vogelmann et 

al., 1993 

Red Edge Position Index 

(REPI)  
)700740(

)700(Re
*40700 RR

R
RREP

−
−

+=  Curran et al., 

1995 

Water Band Index (WBI) 
970

900
R

R
WBI =  Champagne, et 

al., 2001 

Water Band Ratio Determined during this study 

R253 Determined during this study 

Optimal vegetation index 
)45.0670(

)12)800)((45.01(
)( +

++
=

R

R
optVI  

Reyniers et al., 

2006 

Normalised Difference 

Vegetation Index green-

blue 

)440573(

)440573(

RR

RR
bgNDVI

+

−
=−  Hansen and 

Schjoerring 

(2003) 

Ratio Vegetation Index 1 
660

810
1 R

R
RVI =  Zhu et al., 2008 

Ratio Vegetation Index 2 
560

8102 R

R
RVI =  Xue et al., 2004 

Nitrogen Reflectance 

Index 
 

)670570(

)670570(

RR

RR
NRI

+

−
=  Zhao et al. 

(2005) 
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3.4. Chemical analysis 

 
A Soil Plant Analysis Development (SPAD) chlorophyll meter was used to measure 

leaf chlorophyll in situ, after which the leaves were immediately stored in zip-lock 

bags and stored in a cooled container. The SPAD chlorophyll meter allows for non-

destructive measurement of chlorophyll in plant leaves and is only useful if a proper 

statistical relationship with leaf chlorophyll has been established. The SPAD 

chlorophyll meter measures the “greenness” (amount of chlorophyll present) of the 

leave by measuring the leaf absorption at two wavelength regions, namely blue (400-

500nm) and red (600-700nm) (SPAD, 2009). The chlorophyll meter measures the 

absorption in the red and near infrared regions of the leaf and calculates a numerical 

SPAD value proportional to the amount of chlorophyll in the leaf (Perry and 

Davenport, 2007). The leaves were separated into two components: the wet mass of 

one batch (25 leaves samples) was measured using a scale balance (± 0.01g), after 

which the leaves were oven dried in the laboratory at 110°C for 24 hours.  The water 

content was calculated following the procedure described by Stimson et al. (2005),  

WC (%) = ((FW - DW) / FW) *100            4 

 

Where FW is the fresh weight of the sample and DW is the weight of the sample after 

oven drying. The second batch of leaves (20 leaves samples) was sent to the Institute 

for Commercial Forestry Research (ICFR) and Horticulture Department at the 

University of KwaZulu-Natal for nitrogen and chlorophyll analyses, respectively. The 

concentrations of chlorophyll were determined spectrophotometrically against 80% 

acetone at 663, 646 and 470nm (Lichtenthaler, 1987) and nitrogen concentrations 

were determined using a modified Kjeldahl digestion method (Gupta, 1999). 

3.5. Statistical analysis 

 
A correlation (r) analysis was undertaken to assess the correlation between actual leaf 

chlorophyll, nitrogen, and water content and reflectance at each measured 

wavelength, with the threshold for r set at ± 0.70. A principal component analysis 

(PCA) approach was subsequently used to predict leaf chlorophyll, nitrogen, and 

water content concentrations from the resultant reflectance wavelengths. PCA was 

applied with the assumption that different measured values of leaf chlorophyll, 
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nitrogen and water content absorbs at different wavelength across the spectral range 

of AISA. PCA decomposes the nutrient data into a few uncorrelated or latent 

variables that best explain the nutrient data.  

 

Stepwise backward regression was used to develop the best models explaining 

variance in volume and basal area from the indices derived from the resultant spectra. 

Backward stepwise regression first considers all the variables for the regression and 

proceeds by eliminating variables one at a time to produce the model that account for 

the largest amount of explained variance with all the coefficients are significant 

(Sedano et al., 2008). The models’ performances were evaluated through the 

coefficient of determination adjusted (R2), root mean square error (RMSE) (equation 

3), and relative error (RE %) of the prediction relative to field measurements 

(Equation 4), Cp Mallow, and PRESS statistic The stepwise statistical procedure 

selects independent variable(s) that provide the model with the best estimation 

accuracy. The model is said to have acceptable accuracy and precision if R2 is large 

and RMSE and RE% are small, respectively (Li et al., 2010). An analysis of variance 

(ANOVA) was further used to test whether there were significant differences between 

observed and estimated means. For every model developed, its reliability must be 

tested using independent samples that were excluded from the model development 

phase (Kozak and Kozak, 2003).  

 

In this study, the leave-one out cross-validation approach was adopted whereby each 

sample was removed iteratively and its value predicted using a model developed from 

the remaining samples. The error of prediction is then computed for the samples not 

used during model development until all samples are completed, with the sum of the 

errors of prediction commonly presented as the PRESS statistic (prediction residual 

sum of squares). In this study further tests of Cp Mallow statistic were included in the 

cross-validation procedure. Models with low Cp Mallow and PRESS statistics were 

selected as the best models for prediction of volume and basal area.  

∑
=

−=
n

i
yy

n 1

2
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Where ŷ 1y , y  are the mean, measured, and predicted values, respectively. 

 

The relationships between the indices and both volume and basal area were further 

tested for the robustness of their relationships using a bootstrapping method. A 

bootstrapping technique is a general technique for estimating sampling distributions, 

standard errors, and confidence intervals for any statistic and is the most commonly 

used method for assessing statistical accuracy (Efron, 1981; Mutanga and Skidmore, 

2007). Bootstrapping simulates the sampling distribution of any statistic by treating 

the observed data as if it was the entire statistical population (Chernick, 1999). For 

each replication, a random sample size of N is selected with replacement from the 

available data (Efron, 1982; Mutanga and Skidmore, 2007). Bootstrapping facilitates 

accuracy assessment using the same dataset and is preferable in many cases to cross-

validation (Souza et al., 2010).  In this study, the statistic of interest was the 

correlation coefficient (r), which was bootstrapped a 1000 times using Simstat 

software.  

3.6. Results 

3.6.1. Calibration of the SPAD chlorophyll meter using chlorophyll and nitrogen 

data obtained from the laboratory analysis 

 
The correlations between SPAD readings and extracted chlorophyll and nitrogen 

contents yielded significant (p<0.05) strong relationships (r> 0.80 and adjusted R2> 

70%). These relationships were then used to derive chlorophyll and nitrogen 

concentrations of all other samples. Foliar nitrogen content is known to be strongly 

correlated with both chlorophyll a and b concentrations in plants and as such the 

metabolic functioning of the chlorophyll depends on nitrogen availability (Hansen and 

Schjoerring 2003). In this study, a significantly strong linear correlation (r=0.95, 

p<0.05) with a high coefficient of determination (adjusted R2= 89%) was observed 

between chlorophyll and nitrogen of Eucalyptus clones in this study.  
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3.6.2. Relationships between volume, basal area, and airborne level spectral indices 

 
Firstly we tested the correlations between measured values of chlorophyll, nitrogen, 

water content and airborne level spectral indices. All the measured values of 

chlorophyll, nitrogen and water content yielded strong (r > 0.70) significant (p < 0.01) 

Pearson’s correlations with the airborne spectral indices of chlorophyll; nitrogen and 

water content (Table 3.3), except for the correlation between water band index (WBI) 

and chlorophyll which exhibited a correlation of 0.60. The correlations between 

merchantable volume, basal area, and hyperspectral vegetation indices for Eucalyptus 

grandis clone are shown in Table 3.4. The chlorophyll, nitrogen, and water content 

indices yielded significant (p<0.01) correlations with volume. The correlation 

relationships amongst the chlorophyll indices (i.e., RENDVI, MRESRI, MRENDVI, 

and REPI) exhibited strong relationships, i.e., r > 0.70, except for Vogelmann red 

edge index 1, which had a correlation of r < 0.60. All the nitrogen indices exhibited 

highly significant correlations with volume (r > 0.85, p<0.01). The water-related 

indices also yielded significant correlations (p<0.01), except for WBI, which returned 

a low, but significant relationship at r = 0.44.  The correlations between basal area and 

all indices produced statistically significant relationships (p<0.01) with large r 

values(r > 0.70). The regression relationships between indices and the other variables, 

i.e., basal area and volume also resulted in significant (p<0.01) coefficients of 

determination and varied from linear and power to exponential relationships. For 

clarity only a selection of regression relationships are depicted in Figures 3.2a and 

3.2b below. The indices explained more than 70% of the variance in volume and basal 

area, thus signaling close relationships between chlorophyll, nitrogen, and water 

content with both volume and basal area. 

3.6.3. Bootstrapping statistics 

 
The relationships between the indices and both volume and basal area were further 

assessed for robustness using a bootstrapping method. Bootstrapping statistics (Table 

3.5) and selected histograms (Figures 3.3a and 3.3b) confirmed the robustness of the 

relationships through mean r values above 0.60 for all the indices, except for 

Vogelmann red edge index 1. The indices returned high bootstrapped correlation 

coefficients for both volume and basal area, thus approaching the population estimate 

with high precision (p<0.05). 
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Table 3.3. Correlations between measured values of chlorophyll, nitrogen, water content and airborne level spectral indices 
 R WBI R1  R2  NDVI VIopt NRI MRNDVI MRESRI RENDVI REPI VOG1 

Chlorophyll .963** .795** .981** .963** .972** .985** .981** .892** .984** .964** .913** .903** 
Nitrogen .963** .795** .981** .963** .972** .985** .981** .892** .984** .964** .913** .903** 
Water content .946** .599** .969** .867** .949** .958** .941** .787** .882** .983** .947** .721** 
**. Correlation is significant at the 0.01 level (2-tailed).         

 
 
 
Table 3.4. Correlations between volume, basal area, and spectral indices for E.grandis. 
Variable / 
Indices 

RENDV
I 

MRESR
I 

MREN
DVI 

REPI Vog1 WBI WBR R VI(opt) NDVI RVI1 RVI2 NRI 

Volume (m3/ha) 0.79* 0.81* 0.71* 0.95* 0.58* 0.44* 0.95* 0.94* 0.93* 0.90* 0.93* 0.86* 0.91* 
Basal Area (m2) 0.84* 0.86* 0.85* 0.91* 0.71* 0.63* 0.90* 0.97* 0.95* 0.97* 0.90* 0.94* 0.93* 
 *p<0.05 
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Table 3.5. Bootstrapped correlation coefficients between volume, basal area, and all spectral indices. A total of 1000 iterations were executed for 
each pair. 
BOOTSTRAP STATISTICS        
 Volume      Basal Area    
Index Mean CI Std 

Error 
Std 
Dev.  

  mean CI Std 
Error 

Std Dev.  

RENDVI 0.97* 0.94 - 0.98 0.0003 0.0101   0.90* 0.86 - 0.94 0.0006 0.0195 
MRESRI 0.86* 0.79 - 0.92 0.0011 0.0333   0.95* 0.90 - 0.98 0.0006 0.0197 
MRENDVI 0.74* 0.65 - 0.94 0.0026 0.0808   0.78* 0.62 - 0.89 0.0022 0.0686 
VREI1 0.58* 0.46 - 0.77 0.0016 0.0516   0.90* 0.84 - 0.95 0.0008 0.0262 
REPI 0.96* 0.93 - 0.98 0.0003 0.0103   0.94* 0.91 - 0.96 0.0004 0.0136 
WBI 0.44* 0.33 - 0.60 0.0026 0.0826   0.71* 0.51 - 0.83 0.0025 0.0805 
WBR 0.93* 0.88 - 0.97 0.0007 0.0236   0.90* 0.84 - 0.95 0.0009 0.0290 
Vog1 0.58* 0.49 - 0.69 0.0016 0.0516   0.90* 0.81 - 0.95 0.0008 0.0262 
R 253  0.92* 0.87-0.97 0.0007 0.0224   0.97* 0.94 - 0.98 0.0003 0.0102 
VI(opt) 0.91* 0.86 - 0.95 0.0008 0.0255   0.95* 0.89 - 0.97 0.0006 0.0194 
NDVI 0.89* 0.86 - 0.95 0.0007 0.0226   0.96* 0.94 - 0.99 0.0003 0.0099 
RVI1 0.90* 0.85 - 0.95 0.0007 0.0237   0.90* 0.84 - 0.94 0.0008 0.0255 
RVI2 0.86* 0.78 - 0.95 0.0013 0.0407   0.94* 0.88 - 0.98 0.0008 0.2520 
NRI 0.89* 0.82 - 0.95 0.001 0.0320   0.93* 0.89 - 0.96 0.0006 0.0189 
* p<0.01 CI= confidence interval       
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Figure 3.2a A graphical depiction of the relationships between basal area and selected indices 
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Figure 3.2b A graphical depiction of the relationships between volume and selected indices 

R2 = 0.94

0

0.5

1

1.5

2

2.5

3

3.5

4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RENDVI

R2 = 0.93

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

REPI

R2 = 0.88

0

0.5

1

1.5

2

2.5

3

3.5

4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

RVI1

R2 = 0.87

0

0.5

1

1.5

2

2.5

3

3.5

4

3.5 3.52 3.54 3.56 3.58 3.6 3.62 3.64 3.66

VI(opt)

Vo
lu

m
e 

m
3 /h

a

R2 = 0.94

0

0.5

1

1.5

2

2.5

3

3.5

4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RENDVI

R2 = 0.93

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

REPI

R2 = 0.88

0

0.5

1

1.5

2

2.5

3

3.5

4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

RVI1

R2 = 0.87

0

0.5

1

1.5

2

2.5

3

3.5

4

3.5 3.52 3.54 3.56 3.58 3.6 3.62 3.64 3.66

VI(opt)

R2 = 0.94

0

0.5

1

1.5

2

2.5

3

3.5

4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RENDVI

R2 = 0.93

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

REPI

R2 = 0.88

0

0.5

1

1.5

2

2.5

3

3.5

4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

RVI1

R2 = 0.87

0

0.5

1

1.5

2

2.5

3

3.5

4

3.5 3.52 3.54 3.56 3.58 3.6 3.62 3.64 3.66

VI(opt)

Vo
lu

m
e 

m
3 /h

a

66 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3a. Bootstrapped correlation coefficients between volume and a selection of spectral indices. A total of 1000 iterations were executed 

for each pair 
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Figure 3.3b.Bootstrapped correlation coefficients between basal area and selected indices. A total of 1000 iterations were executed for each pair. 
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3.6.4. Model development for volume and basal area estimation through 

Chlorophyll, Nitrogen, and water indices. 

 
Multiple regression analysis using the stepwise backward method show that volume 

variability was best explained by five independent variables or indices, namely 

MNDVI, RVI1, Vog 1, WBI, and WBR, while basal area variation was explained by 

four variables, namely MRNDVI, R253, RVI1, and RENDVI. These variables 

exhibited significant contributions (p<0.05) in the model building, which negated the 

need to simplify the models further, i.e., predefined statistical criteria were fulfilled. 

Both volume and basal area models returned high adjusted R2-values (R2 > 0.90, p< 

0.001) and low Mallow Cp values, as shown in Table 3.6. Error estimates for the 

respective models are represented by the RMSE values. The RMSE of the volume 

model was 0.1283 m3/ha and that of the basal area model 0.0038 m2, or 7% and 2%, 

respectively, relative to the mean of each estimate.  

Scatter plots that show the field-measured vs. model predicted values for volume and 

basal area are shown in Figures 3.4 and 3.5, respectively.  These figures show no 

evidence of over- or underestimation in either case, indicative of a random error 

distribution without any discernable patterns. Means of the estimated values for 

volume and basal area were compared with the observed mean for each variable and 

the results showed that there were no significant differences between the predicted-

observed pairs. Finally, assessment of the model performance for future predictive 

purposes, based on a leave-one-out cross-validation approach, was performed using 

the PRESS statistic (Table 3.7). The PRESS statistics for volume and basal area 

models were 0.153 and 0.004, respectively. The predictive maps of basal area and 

volume are depicted in figures 3.6 and 3.7, respectively. Basal area ranged from 0 to 

0.5 m2, whilst volume ranged from 0 to 0.47 m3/ha. These maps show within 

compartment variations of the forest structures i.e., distribution of both volume and 

basal area within the compartment was not uniform. 
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Figure 3.4 Observed vs. predicted volume of Eucalyptus grandis 

 
 

 

Figure  3.5 Observed vs. predicted basal area of Eucalyptus grandis 
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Table 3.6. Spectral index-based volume and basal area models for E. grandis 
Variable Models Adj.R2 RMSE %RMSE Cp 

Mallow 

p-value 

Volume Vol= -241.75 - 26.4842*MRNDVI + 1.33718*Ratio 1 - 6.52123*VOG1 + 

3.36104*WBI + 242.818*WBR 

0.97 0.1613 m3/ha 7 6 0.0001 

BA BA= -1.57007 + 0.813811*MRNDVI + 3.78568*R - 0.0281675*Ratio 1 + 

0.0523769*RENDVI 

0.98 0.0049 (m2) 2 5 0.0001 

 

 

Table 3.7. Predicted and observed volume and basal area models 
 Model Adj. R2 RMSE PRESS 

Basal Area (m2) Predicted BA = 0.9871*Observed BA + 0.0015 0.98 0.004 0.004 

Volume (m3/ha) Predicted Volume = 0.9831*Observed Volume + 0.0259 0.98 0.147 0.153 
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Figure 3.6 Map of the distribution of basal area (m2) within compartment BO11
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Figure 3.7 Map of the distribution of volume (m3/ha) within compartment BO11
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3.7. Discussion 
 

The effective management of commercial forestry demands better understanding of 

the interactive processes taking place between chemical and structural components of 

the forest. Such an understanding is important and can be obtained in a spatially 

explicit manner at high temporal frequency through remote sensing techniques for 

commercial plantation forestry. The objective of this study was to examine the 

impacts of calculated chlorophyll, nitrogen, and water content indices on volume and 

basal area simulated through AISA hyperspectral data, acquired at leaf level. 

Pearson’s r and bootstrapping methods were used to assess the relationships and 

robustness of these relationships.  

3.7.1. Assessing relationships between indices, volume and basal area 

 
Plant foliage plays a crucial role in the forest ecosystem monitoring and acts as an 

indicator of a plant’s productivity (Peterson et al., 1988).  Consequently, healthy 

forest plantations exhibit associated performance in terms of structural attributes. 

Related studies on forest structural estimations using hyperspectral data have shown 

that narrow band indices have higher correlations with forest structural parameters 

than standard vegetation indices, derived from broad band multispectral data e.g., 

Lefsky et al. (2001), Jusoff, (2008), Cho et al. (2009), Souza et al. (2010), Stagakis et 

al. (2010). These studies extracted empirical relationships between field-measured 

plant variables and vegetation indices from the reflectance data (Stagakis et al., 2010). 

In this study the relationships between field-measured variables, namely volume and 

basal area, and chlorophyll, nitrogen and water content indices, derived from AISA 

hyperspectral reflectance imagery, were assessed. High correlations (r > 0.65, p<0.01) 

were obtained for relationships between volume and basal area and chlorophyll, 

nitrogen, water-based indices, with the exception of  Vogelmann red edge index 1   

and water band index (r<0.60, p<0.01) (Table 3.4). These results emphasized the 

strong influence that the foliar nutrient content, i.e., leaf chlorophyll, nitrogen, and 

water content have on the structural attributes such as volume and basal area of E. 

grandis.  

The robustness of these relationships for all the indices, with the exception of WBI, 

was further confirmed by bootstrapping histograms that presented mean r values of 
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+0.60 and +0.70 for volume and basal area, respectively (Table 3.5). This was hardly 

surprising given that the success of commercial forest plantations is heavily 

dependent on improved silvicultural and management techniques to accelerate forest 

productivity and tree growth (Tilman, 1997, Naidoo et al., 2006). Similar results were 

observed elsewhere (Souza et al., 2010), where narrow band indices derived from 

Hyperion imagery returned above 90% correlation coefficients with basal area and 

canopy cover in a Brazilian savannah environment. Bootstrap statistics yielded robust 

r values, ranging from 0.9 to 0.97 for both variables (basal area and canopy cover), for 

the current study. Relationships between volume, basal area, and foliar nutrients, as 

represented by chlorophyll, nitrogen, and water based indices, exhibited high 

coefficients of determination (adjusted R2 >70%). These relationships varied from 

linear to power and exponential relationships, thus reflecting the predictive 

capabilities of the indices when assessing relevant structural parameters (see Figures 

3.2a and 3.2b). The predictive ability of models should exceed a predetermined value 

in order for relationship to assist in future predictions of forest structural attributes 

i.e.,  R2 values above 65% are treated as useful in South Africa scenarios (Naidoo 

pers.comm). For example, regression relationships that explained greater than 70% of 

the variance in the volume and basal area dependent variables were obtained.  This 

variance explained in this study is in agreement with other studies elsewhere e.g., 

Sivanpillai et al. (2006), were able to predict stand age and tree density of 

commercially managed loblolly pine (Pinus teada L. with adjusted R2=78% and 

R2=60%, respectively using Landsat ETM+ reflectance values.  Also Hall et al. 

(2006) obtained satisfactory adjusted R2 values (adjusted R2 > 70%) for volume and 

aboveground biomass. 

3.7.2. Model development and validation 
 

Leaf and canopy pigments, especially chlorophyll, nitrogen, and water content, are 

useful for distinguishing between healthy or stressed forest plantations (Sampson et 

al., 2002). A "healthy" condition in forest stands represents close to optimum forest 

productivity, while stress leads to strained productivity and forest decline. An attempt 

to estimate such pigments visually would not be enough to track the changes in 

productivity or continuous stand condition, as opposed to using remote sensing 

techniques. An ideal situation would be to monitor forest structural attributes, such as 
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volume and basal area, over large areas with a minimum amount of required field 

work. Field plots can be established merely to calibrate already developed models. 

Several studies have shown that it is possible to develop remote sensing models which 

explain a significant amount of variation (i.e., greater than 80% variation) in structural 

attributes over large tracts of forest land with reasonable or acceptable accuracies 

(Jusoff, 2008, Woulter et al., 2009, Pasher and King, 2010).  The models developed 

explained a significant amount of variation in volume and basal area, i.e., above 95% 

with low RMSE and Mallows Cp values (see Table 3.6). Similar low errors (5 -10%) 

were reported elsewhere e.g., Lefsky et al. (2005), Woulter et al. (2009) and 

Tesfamichael et al. (2009). Furthermore, the R2 values obtained for both the volume 

and basal area models indicate that narrow band indices can overcome the observed 

problem of saturation at full canopy closure, as experienced by broadband indices 

(Cho et al., 2009). The models developed in this study for both volume and basal 

area, based on canopy chlorophyll, nitrogen, and water content indices, attest to the 

usefulness of such a large area approach to forest structural and condition assessment.  

 

Scatter-plots obtained during cross-validation of the models using the leave-one-out 

approach corroborated the initial fit statistics in terms of high adjusted R2 values that 

were significant at p< 0.0001. These models returned low RMSE and low PRESS 

statistics, where the PRESS statistic is regarded as indicative of the predictive power 

of the model, as shown in Table 3.7. The models furthermore exhibited a near 1:1 

relationship between observed and predicted values (r > 0.90) (Figures 3.4 and 3.5). 

The results of this study further affirm the reported strength of the relationships 

between growth and yield and silvicultural practices, such as fertilization and 

thinning. These practices respectively bolster leaf health/growth and reduce 

competition for natural resources, such as water and nutrients (Aussenac, 2000). 

Additional research might be required in order to operationalise the proposed 

approach. For example, the outcomes from this study could be downscaled to 

multispectral imagery in order to cut the cost of future volume and basal area 

predictions, since multispectral data are now freely available for large areas. Overall, 

the assessment of leaf chlorophyll, nitrogen, and water content over large areas may 

assist in the design of silvicultural and management regimes to ensure optimum 

growth, since these variables are indicators of the status of a plant during the growing 

stages.  
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 3.8. Conclusions 

The analyses of this study highlight the potential of hyperspectral data in indirect 

monitoring forest structural attributes through sensing of leaf chemical constituents. 

The objective of this study was to assess the relationships between foliar leaf 

chlorophyll, nitrogen, and water content and volume and basal area. This study have 

demonstrated that remotely sensing chlorophyll-, nitrogen-, and water-based narrow 

band indices are directly correlated to forest growth status in terms of standing 

volume and basal area. The indices exhibited high correlations with both volume and 

basal area in that a significant amount of variation in volume and basal area could be 

explained. The results in this study is a first attempt in even-aged Eucalyptus grandis 

forest environments and there is potential to extend the approach to other forest 

species and also downscale results to significantly cheaper and readily available 

broad-band multispectral sensors for management purposes. The next chapter 

investigates the feasibility of narrow band indices derived from leaf spectra of 

Eucalyptus grandis in predicting soil nitrogen content.  
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CHAPTER 4 
 

Predicting soil nitrogen content using narrow-band indices from Eucalyptus grandis 
canopies as proxy 
 

 

 

 

This chapter is based on:  Mzinyane, T, Ahmed, F and Van Aardt, J. 2011. Predicting 

soil nitrogen content using narrow-band indices from Eucalyptus grandis canopies as 

proxy. Forest Ecology and Management (Submitted) 
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Abstract 

 
A key component to successful commercial forestry production in South Africa is the 

application of silvicultural practices to optimize soil fertility, given its crucial role in 

tree growth. The success of applicable silvicultural practices is often reflected in plant 

foliage pigmentation, because leaf pigmentation provides information on the current 

status of the plants and may reflect the amount of nutrients available in the soil. This 

study aims to estimate soil nitrogen content using narrow-band leaf spectral indices 

derived from hyperspectral data, captured with a hand-held 350-2500nm 

spectroradiometer. It has been hypothesized that there is a significant link between the 

amount of soil nitrogen and the spectral behaviour of such leaf spectral indices of 

Eucalyptus grandis across different site qualities, i.e., good, medium and poor. Leaf-

level spectral data were collected and subjected to continuum removal spectral 

transformations, in addition to using raw reflectance spectra. These leaf spectral 

indices were used to explain the variance of soil nitrogen status in the forest soils of 

compartments under Eucalyptus grandis canopies. Soil samples were collected at 

depths of 0.3- 0.7m and analyzed for nitrogen. Results indicated variable but 

significant correlations (0.37 ≥ r ≥ 0.80, p<0.05) between leaf spectral indices and soil 

nitrogen. The ANOVA results for spectral indices-site interactions showed that 

differences between site qualities can be assessed using specific indices. Significant 

differences were only observed between good-medium and good-poor sites. No 

significant differences were observed between medium and poor sites. A comparison 

between models developed from raw and continuum removed spectral indices for 

future estimation of soil nitrogen showed that continuum removed spectra had high 

adjusted R2 values (R2 = 0. 85; p<0.05) and low PRESS statistic values (0.05) when 

compared to approaches based on raw spectra (R2 = 0.77 ; p<0.05; PRESS = 0.07).  

The results obtained show the potential that forest managers may be able to monitor 

the status of soil nitrogen in commercial forestry compartments and determine how 

much fertilizer is required to optimize tree growth. 

Key words: leaf spectral indices, soil nitrogen, spectroradiometer hyperspectral data. 
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4.1. Introduction 

 
Commercial forestry plays an important role in South Africa’s economy through job 

creation and boasts a 1.8% contribution to the country’s gross domestic product 

(GDP) (Chamberlain et al., 2005; Tewari, 2005). However, the long term 

sustainability of this resource will depend on proper planning, monitoring, and 

management regimes implemented by the commercial forestry sector. The success of 

these management regimes involves to a large extent the ability to assess growth rates 

and the health of forests and application of best silvicultural practices.  Soil fertility is 

one property which is heavily influenced by silvicultural practices (Ranger and 

Turpault, 1999), and is geared to promote long term sustainable growth of commercial 

forestry in South Africa.  Specific challenges that face managers in the commercial 

forestry sector are twofold, namely (i) optimizing fertiliser applications in order to 

sustain stand productivity and establishment whilst protecting the environment 

(Wilson et al., 2005) and (ii) addressing the question of how to balance the costs of 

fertilizer and environmental concerns over vast tracts of land? Growth rates of forest 

trees in many parts of the world are limited by the supply of soil N and P, either 

singly or in combination (Khanna, 1994, Lee et al., 1999, Niinemets and Kull 2005). 

A deficiency in soil nitrogen does not only cause a reduction in growth, but also 

induces leaf chlorosis as nitrogen is relocated from old leaves to new growth (Jifon et 

al., 2005). 

Some of the methods that have been used to estimate soil nitrogen status of forest 

sites include soil nitrogen index, direct measurement of N mineralization in the field, 

and model simulations of mineralization (Paul et al., 2002).  Although these methods 

are effective, they are also site-specific, expensive, time-consuming, and can only be 

extended over large areas with great difficulty. A rapid and efficient method for 

estimating soil nitrogen status, which can be applied over large areas, is therefore 

necessary. Remote sensing technologies can provide an alternative way of minimizing 

the effects of excessive fertilization by enabling farmers to manage nutrient 

applications more efficiently while sustaining environmental resources. Nutritional 

status of the plants and their ability to respond to fertilizers are commonly examined 

via plant foliage, given that foliage represents a major locus for energy capture and 

water exchange in forest and other ecosystems (Field and Mooney, 1986, Schönau 
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and Herbert, 1989, Curran, 1989, Coops, 1999).  Imaging spectroscopy datasets have 

been used to measure a multitude of individual absorption features for plant foliage, 

such as pigment composition and content (Lichtenthaler et al., 1996, Gitelson and 

Merzlyak 1997), canopy water content (Peñuelas et al., 1994), and canopy dry plant 

litter or wood (Asner et al., 1998). Such approaches have also been used to quantify 

vegetation health, physiological status, and productivity of various ecosystems, e.g., 

forestry and agriculture (Haboudane et al., 2002, Chen et al., 2007, Abdel-Rahman et 

al., 2008, Barry et al., 2008, Ismail et al., 2008, Mokhele et al., 2009, Cho et al., 

2010).  Although these studies have reported varying success, conclusive attempts to 

relate forest foliar chemistry to forest floor mineral soil characteristics are still 

lacking.  Imaging spectroscopy of soil nutrients, texture, organic matter, and spectral 

variability have received some attention (Ben-Dor et al., 2002; Udelhoven et al., 

2003). Aitkenhead-Peterson et al. (2006) and Albrechtová et al. (2008) went a step 

further in their research by linking foliar chemistry and forest floor solid, organic 

phase carbon and nitrogen  and  reported encouraging results (R2 > 75%, p< 0.01). It 

is worth noting that in South Africa, spectroscopy studies relating foliar chemistry to 

soil nutrients in short-rotation, highly productive sites are severely lacking.  This 

study therefore seeks to utilize spectroscopy for detailed examination of soil nitrogen 

using narrow-band spectral indices obtained from hand held spectroradiometer at leaf-

level and thereby extend results from previous studies in other locations (Thomasson 

et al., 2001, Ben-Dor et al., 2002, Udelhoven et al., 2003, Aitkenhead-Peterson et al. 

(2006) and Albrechtová et al., 2008). 

4.2. Materials and methods 

4.2.1. Study area 

 
The study was conducted in the Greenhill estates in KwaZulu-Natal province of South 

Africa. The study sites are situated approximately 50 km south of Pietermaritzburg 

around the town of Richmond (Figure 4.1). The study area falls within the summer 

rainfall region of South Africa and experiences cold dry winters and warm wet 

summers. Mean annual rainfall ranges from 746-1100 mm while temperatures vary 

between a high of 25°C to below 10°C (Schulze, 1997). The extreme temperature 

change is a function of elevation and proximity to the warm Indian Ocean with higher 

laying areas experiencing much colder temperatures than low lying areas. Dominant 
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soil forms are Inanda and Mogwa, with Hutton being the subdominant soil form. 

Huttons are characterized by a topsoil (0.4-0.5 m) on a red, apedal, clay loam subsoil 

(>1 m). A large number of Eucalyptus grandis plantations in the area are located on 

this Hutton soil form. The topography of the Richmond area is flat with undulating 

hills and is classified as being low mountains. Altitude ranges from 362 meters to 

over 1500 meters above sea level with an average of around 874 m (Schulze, 1997). 

4.2.2. Leaf spectral measurements  

 
The field data collection was undertaken at the beginning of winter 2009 during clear 

sky days. The Eucalyptus grandis plots were located across different site qualities, 

namely good, medium and poor. The site quality classification is based on total 

available water (TAW) in the soil profile, which is a function of effective rooting 

depth, soil type, rainfall, and temperature classes (Smith et al., 2005).  Homogeneous 

cover square plots of 20m by 20m were enumerated in order to include up to 45 trees 

per site quality and thereby strengthen the statistical reliability of the results. Leaf 

samples were gathered from the sunlit branches within different site quality classes 

using tree climbers. Leaves were then stacked 10 layers together and reflectance 

measurements taken using the leaf clip of the spectrometer. The ASD field 

spectroradiometer sampling interval over the 350–1050 nm range is 1.4 nm with a 

spectral resolution (full bandwidth at half maximum) of 3 nm. Over the 1050–2500 

nm range, the sampling interval is 2 nm and the spectral resolution is between 10 nm 

and 12 nm (Analytical Spectral Devices, 2002). Radiance measurements were 

converted to target reflectance using a calibrated `panel on the leaf clip. Reflectance 

measurements were taken by averaging 40 scans with a dark current correction at 

every spectral measurement. Continuum removal transformations were applied to the 

resulting spectra (Kokaly and Clark, 1999). Continuum removal normalizes 

reflectance spectra in order to allow for comparison of individual absorption features 

from a common baseline (Kokaly, 2001) and the resultant curves have values between 

0 and 1, in which the absorption troughs are enhanced (Schmidt and Skidmore, 2001). 

A total of 55 leaves samples were then immediately stored in zip-lock bags and a 

cooled container for chemical laboratory analyses.  
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Figure 4.1. Map of study area
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4.2.3. Soil measurements and chemical analysis  

 
Soil samples were taken at depths of 0.3-0.7 m using a soil auger for the three 

different site qualities. These depths were selected because the study area contains 

shallow soils and the age of the trees was at 6 years. The soil samples were taken at 

opposite directions from the centre tree in a 20 by 20m plot, approximately 1.5 meters 

away from the base of the centre tree and diagonally (i.e. North, South, East and 

West) across centre tree. The values were averaged for each plot to serve as an overall 

description of the compartments. A total of 57 soil samples were collected and 

transported back to the laboratory for nitrogen determination. The Kjeldahl method 

was used for soil nitrogen determination (Bremner and Mulvaney, 1982). 

4.2.4. Leaf chemical analysis 

 
In situ leaf chlorophyll firstly was assessed using a Soil Plant Analysis Development 

(SPAD) chlorophyll meter. The SPAD chlorophyll meter measures the “greenness” 

(amount of chlorophyll present) of the leave by measuring the absorption of the leaf at 

two wavelength regions, i.e. blue (400-500nm) and red (600-700nm) (SPAD, 2009). 

This is followed by calculation of a numerical SPAD value which is proportional to 

the amount of chlorophyll in the leaf (Perry and Davenport, 2007). Leaves were then 

transported to the laboratory for chlorophyll analysis in zip-locked bags, stored in 

cooled containers. The concentration of total chlorophyll was determined 

spectrophotometrically against 80% acetone at 663nm, 646nm, and 470nm. The 

concentrations of chlorophylls and pigments were determined according to the 

methods established by Lichtenthaler (1987).   

4.3. Statistical data analysis 

 
The data analysis followed in this study was adopted from Lee et al. (1999) and was 

conducted using SPSS ver. 18 statistical package. The first step was to conduct a 

correlation analysis between actual leaf chlorophyll content and SPAD measurements 

to validate the latter. This was followed by correlation analysis between soil nitrogen 

and leaf spectra to determine which wavelengths would return significant correlations 
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with soil nitrogen. Since the initial aim of this study was to infer soil nitrogen from 

both leaf spectra and leaf chlorophyll, a correlation analysis was undertaken to assess 

the correlation between actual leaf chlorophyll content and reflectance at each 

wavelength, with the threshold for r set at ± 0.65. Well established chlorophyll 

spectral indices were then computed using Microsoft office xcel, as well as other two-

wavelength vegetation indices such as simple ratio SR-based and normalised 

difference vegetation index NDVI-based indices. These latter indices were based on 

wavelengths for which strong positive or negative relationships (r = ± 0.60) were 

found.  Pearson bivariate correlations then were extended to soil nitrogen and both 

chlorophyll indices and leaf spectral indices to test the strength and significance of 

correlations i.e. (r values are reported as a measure of relationship strength between 

soil nitrogen and leaf spectral indices). Analysis of variance (ANOVA) was used to 

assess the impact of site quality on chlorophyll and leaf spectral indices. Although 

model development was not the aim of this study, models were developed for both 

raw and continuum removed spectral indices.  Stepwise regression was used to 

identify models that best explained variance in soil nitrogen from the indices derived 

from raw and continuum removed spectra. The models validation approach adopted in 

this study was a leave-one-out cross-validation method (Efron, 1981), whereby each 

sample was iteratively removed and its value predicted using a model developed from 

the remaining samples. The error of prediction is computed for the sample not used in 

developing the model. This process continues until all samples are predicted in a 

similar manner and the sum of the prediction errors is presented as the PRESS statistic 

(prediction residual sum of squares) (Allen, 1974). We compared PRESS values of 

the models developed using spectral indices from raw and continuum removed 

spectra. A model with the smallest PRESS value was deemed the most reliable. 

4.4. Vegetation indices 

 
Spectral vegetation indices (VIs) are mathematical transformations of vegetation 

reflectance that have been developed to reduce high dimensional datasets to a single 

number (Nilsson, 1995). Researchers have used spectral vegetation indices to assess 

various plant characteristics such as green biomass, leaf area index (LAI), leaf gap 

fraction, N, chlorophyll, and plant stress (Pinter et al., 2003, Cho, 2007, Wu et al., 

2008). Detailed reviews of spectral indices that have been applied to vegetation 
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spectra are provided in Gamon and Surfus (1999), Thenkabail et al. (2000, 2004), 

Tilling et al. (2007), Albrechtová et al. (2008), and Meyer and Neto (2008).  

According to Thenkabail et al. (2004), there is no single best approach for 

determining the optimum number and combination of narrow wavebands for 

estimating agricultural crop characteristics. As a result, spectral vegetation indices 

consist of combinations of several values that are either multiplied, subtracted, added, 

or divided in such a way that they yield a single value that serve as a significant 

indicator of vegetation status within a pixel (Campbell, 2002). A number of examples 

are presented below. 

• Chlorophyll  normalized difference vegetation index (NDVI) 

NDVI is a widely used index for monitoring vegetation condition and is correlated 

and sensitive to a wide range of chlorophyll concentrations (Gitelson and Merzlyak, 

1994). This index is based on the high reflectance of living vegetation in the near 

infrared region of the electromagnetic spectrum and low reflectance (high absorption) 

in the red spectral region (Gamon and Surfus, 1999, Gitelson, 2004): 

NDVI = 
)(
)(

705750

705750

RR
RR

+
−         (1) 

      

• TCARI / OSAVI 

The ratio of transformed chlorophyll absorption in reflectance index / optimized soil-

adjusted vegetation index (TCARI/ OSAVI) is strongly sensitive to chlorophyll 

content and insensitive to the influence of variations in LAI, the effects underlying the 

soil background (Haboudane et al., 2002), and solar zenith angle at the canopy level 

(Albrechtová et al.,2008): 

TCARI / OSAVI = 
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• Red edge 

The red-edge is the name given to the abrupt reflectance change in the 680-740nm 

region of vegetation spectra that is caused by the combined effects of strong 

chlorophyll absorption (red region) and leaf internal scattering (near-infrared region) 

(Filella and Peñuelas, 1994). Although the red edge was initially thought to be 

exclusively sensitive to chlorophyll, Curran et al. (1991) and Cho et al. (2007) have 

shown the sensitivity of the red edge to foliar mass, leaf area index (LAI), and water 

content. The red edge position was located using (i) the linear four point interpolation 

technique and (ii) the linear extrapolation technique (Cho and Skidmore, 2006). 

(i) Linear four-point interpolation technique  

The linear four-point interpolation method assumes that the reflectance curve at the 

red edge can be simplified to a straight line centred near the midpoint between the 

reflectance in the near infra-red (NIR) at approximately 780 nm and the reflectance 

minimum of the chlorophyll absorption feature at approximately 670 nm. This 

technique uses four wavebands (670nm, 700nm, 740nm, and 780 nm) and the red 

edge position (REP) is determined by using a two-step calculation procedure: 

a) Calculation of the reflectance at the inflection point 

Rre = 2

)( 780670 RR +
        (3) 

Where, R is reflectance. 

 

b) Calculation of the red edge wavelength or red edge position is 

REP = 700 + 40 
)(

)(Re
700740

700

RR
R
−
−       (4) 

Where, 700 and 40 are constants resulting from interpolation in the 700-740 nm 

intervals. 
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(ii) Linear extrapolation technique 

This technique is based on linear extrapolation of two straight lines (Equation.  3 and 

4) through two points on the far-red (680-700 nm) and two points on the NIR (725-

760 nm) flanks of the first derivative reflectance spectrum (FDR) of the red edge 

region (Cho and Skidmore, 2006). The REP is then defined by the wavelength value 

at the intersection of the straight lines (Equations. 5 and 6): 

Far-red line:  FDR = m1 λ+c1        (5) 

NIR line:  FDR = m2  λ + c2       (6) 

Where, m and c represent the slope and intercept of the straight lines. At the 

intersection, the two lines have equal λ (wavelength) and FDR values. The REP, 0r 

the wavelength the intersection is therefore given by equation 7: 

)(
)(

21

21

mm
ccREP

−
−−

=         (7) 

The REP by linear extrapolation method requires four coordinate points (or 

wavebands), e.g., two bands near 680 nm and 700 nm to calculate m1 and c1 for the 

far-red line and two bands near 725 nm and 760 nm to calculate m2 and c2 for the 

NIR line. Other spectral and chlorophyll indices used in the study are shown in Table 

4.1.  
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Table 4.1. Spectral and chlorophyll-based vegetation indices applied in this study 
 
Index Formula References 

NDVI  
)705750(
)705750(

RR
RR

+
−  Gitelson and Merzlyak, 

(1994) 

 TCARI / OSAVI 

670800(
670800(

*)16.01(

6700(*2.0)670700(*3

++
−

+

−−−

RR
RR

RRRR

 

Haboudane et al. (2002) 

 

Red Edge Index  
)720(

)740(

R

R   Vogelmann et al. (1993) 

 

Lichtenthaler Index 2 

LIC 2 
)690(

)440(

R

R  Lichtenthaler et al. (1996) 
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Normalized total Pigment Chlorophyll a ratio Index 

(NPCI) )430680(

)430680(

RR

RR

+

−

 

 

Peñuelas et al. (1994) 

NDVI (380, 440)                                                   
)(
)(

420380
420380

RR
RR

+
−  Determined during this 

study 

SR(600, 790)                                                  
)(
)(

790
600

R
R

 

Determined during this 

study 

NDVI (1891, 1991)                                                
)(
)(

19911891
19911891

RR
RR

+
−

 

Determined during this 

study 

SR(2440, 2490)                                                  
)(
)(

2490
2440

R
R

 

Determined during this 

study 

R (2393)                                                        2383R
 

Determined during this 

study 

R(499
-1

)                                                            
)(

1

499R  

Determined during this 

study 
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4.3. Results 

4.3.1. Calibration of the SPAD meter 

 
The SPAD chlorophyll meter data were calibrated using the chlorophyll data obtained 

from the laboratory. The chlorophyll concentration of all samples was obtained using 

the calibration equation (Equation. 8) between SPAD data and laboratory data: 

 

Chlorophyll = 0.199 e (0.054xSPAD)  Adjusted R2=0.92%, SEE = 1.99, p<0.001 (8) 

4.3.2. Relationship between spectral indices and soil nitrogen 

 
The correlation analysis between soil nitrogen and leaf spectra, undertaken to 

determine which wavelengths would return significant correlations with soil nitrogen, 

showed that bands 350-521 nm, 588-800 nm, 1889-1998 nm, and 2391-2500 nm were 

significantly correlated with soil nitrogen.  The correlations between spectral indices 

derived from these significant bands and soil nitrogen are shown in Table 4.2. These 

results show that, amongst the spectral indices derived from raw spectra, red edge and 

Vogelmann (Vogelmann et al., 1993) or red edge index returned the strongest 

correlations with soil nitrogen (r > 0.70, p<0.05). The other indices yielded significant 

(p<0.05), but much weaker correlations (r< 0.65) with soil nitrogen when compared to 

the red edge and Vogelmann approaches. Amongst the continuum removed spectral 

indices, NDVI (1891, 1991)  and R (2393) yielded much stronger significant correlations 

(0.63 and 0.68, respectively) when compared to other indices such as NDVI (380, 440), 

SR (600, 790), SR (2440, 2490), and R (499
-1

). These latter correlations were significant 

(p<0.05) but weaker (0.37-0.48). Laboratory measured leaf chlorophyll exhibited the 

highest significant correlation (r =0.95, p<0.05) with soil nitrogen.                                                                                                                                                                                                                                                                                      
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Table 4.2. Correlations of spectral indices with soil nitrogen 

Raw Spectra                                                                               Vegetation index                                   r 

 Red edge                                              0.85*                                                                                                             

 Vogelmann   0.85*                                                                                                              

 NDVI                                                  -0.64*                                                                                                             

 LIC2                                                    0.62*                                                                                                             

 NPCI                                                   -0.49*                                                                                                             

 TCARI / OSAVI                                  0.40*                                                                                                              

 Chlorophyll 0.95* 

Continuum Removed           NDVI (380, 440)                                                   0.37*                                                                                                              

 SR(600, 790)                                                  0.47*                                     

 NDVI (1891, 1991)                                                0.68* 

 SR(2440, 2490)                                                  0.48* 

 R(2393)                                                        0.63* 

 R(499
-1

)                                                            0.37* 

*Significant at p<0.05. 

4.3.3. Assessing spectral index interactions with site quality 

 
The spectral indices were further investigated to determine if different site qualities 

could be detected. The ANOVA results of interactions between site quality and 

spectral indices showed that only four indices, namely NDVI, Lichtenthaler, 

Normalized total Pigment Chlorophyll a ratio Index (NPCI), and TCARI/OSAVI 

were able to detect subtle site quality differences. It was noticed that differences 

between good-medium and good-poor sites were observed based on NDVI, NPCI, 

and TCARI/OSAVI, while no differences were detected between medium-poor sites. 

The Lichtenthaler index showed differences between good-poor site qualities only. 

All the other indices and the actual leaf chlorophyll content did not yield any 

significant differences amongst the site qualities.   

4.3.4.Models development and validation 

 
Models were developed using indices derived from raw spectra and continuum 

removed spectra. From the indices derived from raw spectra, multiple regression 
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analysis using the stepwise backward approach, indicated that TCARI/OSAVI and 

REP explained 77.25% of the variability in soil nitrogen, while 85% of the variability 

in soil nitrogen was explained by continuum removed spectra for four independent 

variables, namely SR(600, 790), NDVI (1891, 1991), R(2393), and R(499
-1

). These variables 

exhibited significant contributions (p<0.05) in the model building, which negated the 

need to simplify the models further, i.e., predefined statistical criteria for model fitting 

were fulfilled. Scatter plots that show the field-measured vs. model-predicted values 

for soil nitrogen for both scenarios are shown in Figures 4.2 and 4.3, respectively. An 

assessment of the model performance for future predictive purposes, based on a leave-

one-out cross-validation approach, was performed using the PRESS statistic.  It was 

concluded, based on adjusted R2 and PRESS values for models derived from raw 

spectral indices and continuum removed spectral indices, that the best predictive 

capability was generated from continuum removed spectral indices (Figure 4.3, 

adjusted R2= 85%, PRESS = 0.05) compared to raw spectral indices (Figure 4.2, 

adjusted R2 = 77%, PRESS =0.07). Furthermore, ANOVA results for the estimated 

and observed values for soil nitrogen showed that there were no significant 

differences between the predicted-observed pairs. 

 

Figure 4.2. Observed and predicted soil nitrogen model based on raw spectral indices 
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Figure 4.3. Observed and predicted soil nitrogen model based on continuum removed 

spectral indices 
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 4.4. Discussion 

 
Adequate soil nitrogen is essential throughout the life of a crop towards optimized 

growth, yield, and economic return. A fine balancing act is required to minimize risk 

to the environment due to nutrient mobility and leaching, while ensuring that there are 

enough nutrients at the beginning of the growing season to sustain crop development. 

Given the continued decrease of commercial forested area due to environmental 

concerns and political factors in South Africa (Dovey, 2009), accurate information 

pertaining to silvicultural regimes, such as fertilization over large areas, is necessary 

and  will enhance management strategies. The results of the present study suggest that 

vital information, such as soil nitrogen content of the forest floor, can be assessed 

using spectroscopy data. It is widely known that leaf spectral characteristics and 

pigmentation can often serve as a measure of the crop response to nitrogen 

application, i.e. tracking short or medium term changes in the nutrient status of the 

soil (Stovall et al., 2011). This study has shown that visible, red edge, and middle 

infrared regions of the electromagnetic spectrum are the most important spectral 

regions for assessment of soil nitrogen. Chlorophyll pigments are known to absorb in 

the visible and red edge portions of the spectrum (Sims and Gamon, 2002, Kumar et 

al., 2003)  and is central to the understanding of the functioning of agro-ecosystems 

and modeling of crop growth development processes (Jarmer et al., 2008, Wu et al., 

2008). As such one would expect that farmers, foresters, and agronomists could 

benefit from operational assessment of crop canopy health status, abundance, and 

vigor using leaf pigmentation (chlorophyll assessment) as proxy.  What is needed is a 

reduction of over-sampled, high dimensional spectral to multispectral and arguably 

more operational solutions.  

Our results have shown strong relationships between soil nitrogen and leaf spectral 

indices across different site qualities (Table 4.2). Although the strength of correlations 

between leaf spectral indices and soil nitrogen content varied (0.37 ≥ r ≥ 0.85), there 

seems to be an unequivocal link between forest foliage properties and the forest floor 

soil nutrients. These results were not wholly surprising, since Filella and Peñuelas 

(1994) showed that optimum leaf pigment content depends largely on the amount of 

nitrogen in the soil. Our results are also comparable to those from a study conducted 

by Albrechtová et al. (2008), where the authors examined the potential links between 

102 
 



spectral foliar data and the organic C and N of forest soils. Strong significant 

correlations (r> 0.65, 0.05 ≤ p ≤ 0.001) between foliage chlorophyll content and forest 

floor dissolved organic carbon were obtained, with higher foliage chlorophyll content 

corresponding to lower forest floor dissolved organic carbon. Furthermore, variations 

within conifer sites between total chlorophyll content and forest floor water 

extractable dissolved organic carbon (WEDOC) and water extractable dissolved 

organic nitrogen (WEDON) were explained using strong and negative relationships 

(r=0.42-0.99). Aitkenhead-Peterson et al. (2006) also reported strong and negative 

correlations (r =0.91 and r=0.72; p<0.05,) between foliar nitrogen and WEDOC and 

C: N ratio, respectively. In our study, the results further confirm that an increase in 

soil nutrient supply to plants results in an increase in essential foliar pigments and 

chemical constituents such as chlorophyll, nitrogen, etc. (Peñuelas et al., 1994, Yoder 

and Pettigrew-Crosby, 1995, Kokaly, 2001), while a deficiency in soil nutrient 

content leads to a decrease in vital leaf pigments such as chlorophyll (Zhao et al., 

2005). Determination of soil nitrogen from leaf pigments will enable sound 

silvicultural decisions in terms of fertilizer application given the risk of over-

fertilization and costs. These relationships can therefore be used to detect early 

nutrient deficiency before permanent growth-limiting physiological processes are 

visible to the naked eye. Given the significant nature of the relationships, the narrow 

band indices derived from hyperspectral remote sensing would thus enable timely 

interventions to combat nutrient stress in commercial forestry. This is underscored by 

the fact that we have reduced a high dimensional dataset to only a few spectral bands, 

thus enabling a more operational implementation. 

 

As mentioned earlier, the site quality classification is based on total available water 

(TAW) in the soil profile which is a factor of effective rooting depth, soil type, 

rainfall, and temperature classes (Smith et al., 2005).  The ANOVA results suggested 

that there could be a miss-classification between medium-poor site qualities, since 

these classes went largely undetected when using the spectral indices. This implies 

that medium-poor site quality TAW could be similar or very close to one another and 

might require a re-evaluation of the site quality classification scheme. The model 

generated from spectral indices derived from continuum removed spectra (Figure 4.3) 

showed better results compared to the one developed from raw spectral reflectance 
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(Figure 2). The continuum removal model yielded a higher adjusted R2 value with a 

low PRESS static (R2 = 85%, PRESS =0.05) compared to raw spectral model (R2 = 

77%, PRESS =0.07). These results from continuum removed model could be 

attributed to the ability of continuum removal to enhance and transform differences in 

shape of absorption features of interest (Kokaly and Clark, 1999, Mutanga et al., 

2004). Finally, the results of this study attest to the importance of hyperspectral 

remote sensing, specifically narrow-band sensing, in providing more rapid, scalable, 

and more affordable assessments of soil nutrient status than is possible with 

laboratory analysis. The potential for synoptic visualization of soil nitrogen status 

over large areas is evident when these results are extended to airborne sensors or 

much cheaper satellite imagery. This will contribute to (i) a better understanding of 

how different management operations over compartments alter soil nutrient status 

over time and (ii) quantification of site nutrient supply and demand.   Further research 

is needed to study the temporal stability of the approach the impact of the soil 

nitrogen-leaf chlorophyll relationship on commercial forestry growth and yield, i.e. is 

growth of commercial forestry species dependent on this relationship?  It should be 

noted that since the forest canopies varies with time, continuous monitoring of soil 

nitrogen over the entire growth period is required. This could be achieved by 

simulating the results of this study to much cheaper broad-band sensors (next 

chapter). The broad-band sensor’s offers continuous simulated data which can be used 

to monitor soil nitrogen over the full rotation length of forest plantations. 

4.5. Conclusions  
 

Monitoring the biogeochemical status of forest ecosystems is a key component of 

assessing forest productivity and limiting management impacts on the surrounding 

environment in South Africa.  This study has contributed to a better understanding 

regarding the health status of trees and the associated soil nitrogen content. It has been 

shown that there is a close relationship between leaf chlorophyll content, leaf spectral 

indices, and soil nitrogen in the visible region of the electromagnetic spectrum. Leaf 

chlorophyll, an indicator of photosynthesis activity, is of particular significance to 

precision agriculture and is a key component of forest productivity, health, and 

producing a sustainable yield. Hyperspectral remote sensing, specifically narrow-band 

remote sensing, has the potential to help address a key forest management challenge, 
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namely the determination of optimum fertilizer use without negative impacts on the 

surrounding environment. The dynamics of foliar-soil nutrients concentrations 

effectively can be assessed using a narrow-and multispectral approach and resultant 

outputs can feed into the management of plant-environment interactions. However, 

the extension of the approach through time and the impact of such leaf-soil 

relationships on commercial forestry health and sustainable growth and yield in South 

Africa require further research. It is only when we fully understand such interactions, 

their assessment, and can extend such assessments to synoptic platforms, that we will 

be able to operationally monitor forest management requirements and impacts at 

regional scales. The next chapter will investigate the feasibility of modelling forest 

structural attributes and soil nitrogen using spectroradiometric data resampled to 

simulate Landsat TM data.  This is done based on the cheapness, free availability and 

capture frequency of broad-band sensors over the landscape. 
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CHAPTER 5 
 

Modelling forest structural attributes and soil nitrogen using spectroradiometric data 
resampled to simulate Landsat TM data 

 

 

 

 

 

This chapter is based on Mzinyane, T., Ahmed, F and Van Aardt, J. 2011. Modelling 

forest structural attributes and soil nitrogen using spectroradiometer data resampled to 

simulate Landsat TM data. International Journal of Remote Sensing. (Submitted) 
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Abstract 

 
Forest structural attributes and soil nutrients modelling over large tracts of 

commercial forestry is important for management and monitoring purposes. These 

attributes are closely linked to forest foliar chemical content. Estimations of forest 

foliar chemical contents over large areas would be expensive and cumbersome, given 

the costs of hyperspectral data and smaller swath widths of such datasets. This study 

attempted to resample hyperspectral data to broadband data and estimate forest 

structural and soil nitrogen under forest canopy. Volume and basal area were derived 

from field measurements of diameter at breast height (DBH) and tree height whilst 

soil nitrogen was obtained from laboratory analyses of soil samples collected at 

depths of 0.3-0.7m. Canopy spectral data were collected during the summer and fall 

of 2009 and were resampled to simulate the Landsat TM spectral characteristics. 

Pearson’s correlations were used to assess the relationships between individual 

Landsat TM bands and volume, basal area and soil nitrogen. The models for 

estimations of volume, basal area and soil nitrogen were developed using only 

Landsat TM bands which exhibited significant correlations with volume, basal area 

and soil nitrogen. Cross-validation and model selection was based on adjusted R2 and 

low mean absolute error (MAE) and low Mallows Cp. Landsat TM bands (i.e., TM2, 

TM3, TM4, TM5) yielded significant (p<0.05) correlations with volume and soil 

nitrogen whilst basal area was significantly correlated (p<0.05) with all Landsat TM 

bands.  The strength of the correlations TM3 and TM5 were found to be much higher 

than the relationships for other Landsat TM bands. A comparison between models 

developed from Landsat TM bands for future estimation of volume, basal area and 

soil nitrogen showed that soil nitrogen model had a superior goodness of fit statistic 

followed by basal area model and lastly volume model i.e., adjusted R2 = 0. 91, MAE 

=0.030 % and 2.6.; adjusted R2 = 0. 77, MAE =0.047 m2 and Mallow’s Cp of 4.4; 

adjusted R2 = 0.645, MAE = 0.594 m3/ha and Mallow’s Cp of 1.5 respectively. These 

results indicate that Landsat TM bands have the potential to estimate basal area and 

soil nitrogen with reasonable success and are not convincing for volume estimations. 

This has important implications for monitoring and controlling of fertiliser 

applications and basal area regional assessments.  

Keywords: Hyperspectral, Landsat TM, volume, basal area and soil nitrogen 
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 5.1. Introduction 

 
Commercial forestry is important for economic purposes and social development in 

South Africa (DWAF, 2005). The economic return of commercial forestry is normally 

measured in terms of structural attributes such as merchantable volume, above ground 

biomass and stand density. These aspects of forest structure are important for 

characterization of ecosystem productivity and development (Smith et al., 2008). An 

attempt to assess these forest structural attributes over vast tracts of forested lands 

would be virtually impossible and costly using manual or field-based methods (Jusoff 

and Malek, 2008, Roberts et al., 2011).  These assessment tasks and mapping of 

commercial forestry are further made difficult by the wide distribution and highly 

fragmented nature of forestry (Geldenhuys and Mucina, 2006). Although the field-

based methods return acceptable accurate measurements (Owen, 2000), they are also 

known to lack continuous data obtained at a synoptic scale over large areas (Scurlock 

and Prince, 1993, Gower et al., 1999, Jongschaap and Booij, 2004) i.e., they give 

point based measurements, are cumbersome, and may be costly in time and resources 

over large areas (von Gadow and Bredenkamp, 1992, Schreuder et al., 1993, Avery 

and Burkhart, 2001).  

 

An alternative to field-based methods would be remote sensing technologies which 

offer a more practical approach in forest conditions monitoring across different scales 

i.e., local, regional and global scales including places that are inaccessible during field 

campaigns (Norris-Rogers et al., 2006, Tesfamichael et al., 2008, Roberts et al., 2008, 

Gebreslasie et al., 2008). According to Jusoff and Malek, (2008), FAO, (2010), 

Pasher and King, (2010), neither of the methods can yield satisfactory results alone 

but a combination of remote sensing and limited field sampling can produce an 

excellent framework for field inventories and save on cost. Numerous studies have 

showcased the interaction of the two methods using either statistical methods or 

empirical algorithms (e.g., Castro et al., 2003, Lu 2005, Hall et al., 2006, Chubey et 

al., 2006, Ozdemir, 2008). Detailed information extraction about forest structural 

attributes could only be obtained through suitable spectral and spatial resolutions of   

remote sensing sensors (Boyd and Danson, 2005). Recent advances in remote sensing 

technologies and sensors have enabled varying capabilities in vegetation studies thus 

facilitating rigorous advances in understanding overall ecosystem functioning, forest 
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survey, inventory and mapping (Rosenqvist et al., 2003, Wang et al., 2004, Chubey et 

al., 2006, Pandey et al., 2010). Some of the sensors e.g., Light Detection and Ranging 

(LIDAR), Radio Detection and Ranging (RADAR) exhibit higher success rate in 

structural attributes estimations (Tesfamichael et al., 2009) whilst hyperspectral 

sensors are more capable for leaf and canopy biochemical assays studies (Mutanga 

and Skidmore, 2007, Abdel-Rahman et al., 2008, Cho et al., 2010,  Mokhele et al., 

2010 ). The information about these biochemical assays is located in the plant foliage 

(Gindaba et al., 2005). These biochemical assays are indicative of vegetation health, 

productivity and sustainable yields (Ismail et al., 2008). A healthy commercial forest 

is indicative of well-maintained stands and compartments due to adequate silvicultural 

regimes applied throughout the plants’ entire life (Chatziphilippidis and Spyroglou, 

2004). Tracking contributions of foliage chemical bioassays to growth and yield of 

various vegetation types can now be quantified given the capabilities of sensors such 

as hyperspectral datasets. A review on hyperspectral sensors and their successful 

applications in foliar chemistry is well documented e.g., Majeke et al. (2008).  

 
Although these sensors are valuable, they are also expensive considering the vast 

areas of commercial forestry in South Africa and in other countries. The costs and 

coverage of these sensors are envisaged to detract forest companies from investing in 

further research involving them, given that South Africa is a developing country. 

Innovative ways to operationalise and or apply the findings of research outputs using 

hyperspectral data in forestry are needed. One such way is to extend findings to large 

areas using other sensors with wider swath widths. Several techniques developed such 

as spectral resampling and statistics have shown reasonable success in vegetation 

studies. The premise, on which this resampling technique is based, is that field based 

hyperspectral data such as spectrometric data is resampled to match spectral 

characteristics of easily accessible or freely available sensors with large swath widths, 

such as Landsat TM, SPOT.  Schlerf et al. (2005) resampled HyMap reflectance to 

Landsat TM channels in order to compare the estimates of forest stand variables i.e., 

leaf area index (LAI) and volume from both narrow band and broadband vegetation 

indices. Their main finding was that broadband multispectral data exhibited lower 

accuracy compared to hyperspectral data. Duan et al. (2007) assessed chlorophyll-a 

concentration for Lake Chagan using field spectral data resampled to Landsat TM 

channels and they obtained R2 =0.67 using Landsat TM band ratio TM4/TM3. This 
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study aimed to investigate if hyperspectral data can be resampled to Landsat TM to 

(1) estimate forest structural attributes (2) infer soil nitrogen of the forest floor. In 

order to achieve these objectives, AISA spectral attributes were resampled to match 

spectral characteristics of Landsat TM. 

 

5.2. Materials and methods 

5.2.1. Study area 

 
The study was conducted in Richmond in the municipality of Sisonke in the Kwazulu-

Natal province of South Africa (Figure 5.1). Soils in the area are characterized by fine 

sandy clay and humic topsoils that are underlain by yellow or red apedal subsoils. The 

topography of the study area is flat with undulating hills and is classified by Schulze 

(1997) as being low mountains. Temperatures range from high 20°C values in 

summer to below 10°C in the winter. The area is regarded as a Moist Midlands 

Mistbelt and has favourable climate and high percentage of arable land. Altitude 

ranges from 300-2100m above sea level, with an average of approximately 850m. The 

area is prone to summer rainfall with cold, dry winters and warm, wet summers, with 

an annual rainfall ranging from 800-1280mm and a mean annual temperature of 17°C 

(Camp, 1997, Schulze 1997). Plantation forestry dominates the land use in the area, 

with species from the Eucalyptus and Pinus genera primarily grown.  
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Figure 5.1: Map of the study area
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5.2.2. Field measurements 
 
The Geographic Information System (GIS) database of forest compartments, provided 

by Mondi-SA, was consulted in order to select stands of interest. The field data 

collection coincided with the overpass of Landsat TM. Site selection was based on 

spatial location, extent, age, felling dates, site index, and site productivity; an effort 

was made to select forest compartments on good, medium, and poor site productivity 

or quality. Plot locations were located in the field using a hand held sub-meter 

differential Global Positioning System (GPS). The number of plots per site quality 

within the compartment was determined based on the size of the compartment. 20m 

by 20m square plots were established and inventory measurements collected, namely 

diameter at breast height (dbh) and tree height (tht). All trees with a dbh ≥ 5cm were 

measured within each plot, while heights were measured for only a sub-sample of 

trees based on the dbh distribution of trees within the plot. Trees that appeared to be 

damaged, dead, or dying were excluded from the enumeration process, given that the 

commercial forest industry rarely includes such trees in their accounting scheme.  

5.2.3. Volume and Basal area measurement 

 
Trees across the range of the dbh values were selected for height measurement, 

thereby ensuring a representative sample of the entire dbh range. Tree height was 

measured on a sample of trees using a Vertex III hypsometer® (Haglöf, Sweden). 

Relationships between dbh and corresponding heights were established at plot-level 

and based on site quality using regression analysis. R2 values above 80% were 

observed for the majority of plots.  Heights of all trees within a plot were then 

estimated using the resultant dbh -height regression equations developed within each 

plot. The variability in tree volume is mostly explained by tree height and dbh forest 

attributes (Avery and Burkhart, 2001). Thus, when these attributes are known for 

individual trees, volume can be calculated for each tree. The volume function based 

on the Schumacher and Hall form (1933) was used in this study (Equation 1). 

 

Ln (V) = b0 + b1 ln (DBH +f) + b2 ln (H),       1 

 

Where V is utilisable volume (m3), dbh is diameter at breast height at 1.3m (cm over 

bark), H is tree height (m), and f is a correction factor. Coefficients b0, b1, and b2 
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used for this equation were those published in the South African Forestry Handbook 

(Bredenkamp, 2000). Plot-level volume was derived by summing the volume of 

individual trees.  Basal area was derived using equation 2 below.  These equations are 

standard formulae used by commercial forest companies in South Africa. 

∑
=

=
n

i
DBHBA

1

2

4
π          2 

 

The aggregates of volume and basal area were then converted to a hectare scale based 

on the area of a plot. A statistical summary of the measured volume and basal area is 

shown in Table 5.1. 

 

Table 5.1. Descriptive statistics for plot-level volume (m3) and basal area (m2) 

Variable Minimum Maximum Mean Std. Dev N 
Volume 0.453 4.096 1.738 1.2763 33 
Basal Area 0.029 0.298 0.131 0.0586 33 
 

5.2.4. Soil measurements and chemical analysis 

  

Soil samples were taken at depths of 0.3-0.7 m using a soil auger for the three 

different quality sites. These depths were selected because the study area contains 

shallow soils. The soil samples were taken at opposite directions from the centre tree 

in a 20 by 20m plot, approximately 1.5 meters away from the base of the centre tree 

and diagonally (i.e. North, South, East and West) across centre tree. The values were 

averaged for each compartment to serve as an overall description of the 

compartments. A total of 57 soil samples were collected and transported back to the 

laboratory for nitrogen determination. The Kjeldahl method was used for soil nitrogen 

determination (Bremner and Mulvaney, 1982). 

 

5.3. Remote sensing data  

 

Tree climbers gathered leaf samples from the sunlit branches within the different site 

qualities, i.e., good, medium, and poor. Leaf spectra of E.grandis were acquired at 

geo-referenced points using an ASD spectrometer (Fieldspec3 Pro) fitted with a 25° 

field of view bare fibre optic (Analytical Spectral Devices, Boulder, CO). The 

sampling interval over the 350–1050 nm range is 1.4 nm with a spectral resolution 
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(full bandwidth at half maximum) of 3 nm. Over the 1050–2500 nm range, the 

sampling interval is 2 nm and the spectral resolution is between 10 nm and 12 nm 

(Analytical Spectral Devices, 2002). Measurements were taken during cloud free 

periods, between 10h00 and 14h00 to minimise the change in illumination conditions.  

Radiance measurements were converted to target reflectance using a calibrated white 

spectralon panel on the leaf clip. Reflectance measurements were taken by averaging 

40 scans with a dark current correction at every spectral measurement. Approximately 

30-40 sunlit leaf samples were collected for leaf spectral and chlorophyll 

measurements.  

5.3.1. Landsat TM imagery pre-processing 
 
The Landsat TM imagery acquired on March 2009 consisted of seven bands ranging 

in wavelength from 0.45 micrometer (μ) to 2.35 μ with four of the bands falling in the 

infrared part of the spectrum. The imagery was already referenced and in the correct 

coordinates system i.e., (WGS 84 with Gauss Conform projection at longitude of 

31°E), but further geometric corrections were still needed. The imagery was 

georeferenced using a10 m spatial resolution digital terrain model and ground control 

points (GCPs) of water bodies, rocky outcrops, tar roads and road intersections 

digitized from a 1:50 000 topographical map. A nearest neighbour resampling 

technique was used and an overall total root mean square error (RMSE) of 1.74 was 

obtained.  

 

Atmospheric correction was undertaken using the Fast Line of Sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) algorithm (Mezned et al., 2010) using a 

standard mid-latitude summer atmospheric model in conjunction with a rural aerosol 

model. The ASD field spectra were spectrally simulated to the spectral configuration 

of the Landsat TM sensor using the ENVI (Environment for visualizing images, 

Research Systems, Inc.) software, assuming no atmospheric effects in the Landsat 

TM. The method uses a Gaussian model with a full width at half maximum (FWHM) 

equal to the band spacing’s provided. This method is well defined number which is 

used to compare the quality of images under different resolutions. The main aim of 

simulation was to produce lower-spatial-resolution images from high-spatial-

resolution hyperspectral images that are comparable spectrally to the original images. 
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The spectral response functions of Landsat TM were used in the simulation in ENVI 

software. 

5.3.2. Statistical analysis 
 
The data analysis was conducted using two statistical packages, viz. SPSS version 18 

and Statistica version 6.  The analysis was undertaken using both the original Landsat 

TM datasets and the simulated datasets. The aim of this study was to estimate forest 

structural attributes and soil nitrogen under forest canopy from Landsat TM simulated 

datasets and compare the models developed to original Landsat TM bands. A 

correlation analysis was undertaken to assess the correlation strengths and 

significance between volume, basal area, soil nitrogen and both original Landsat TM 

bands and Landsat TM simulated bands i.e., (Pearson’s correlation coefficient r 

values are reported as a measure of relationship strength between the variables). The 

Landsat TM bands which exhibited significant correlations with volume, basal area 

and soil nitrogen were further used to in stepwise-backward regression approach to 

identify models that best explained variance in volume, basal area and soil nitrogen. 

In this study two techniques were tested, namely cross-validation (Efron, 1982) and 

model selection based on the highest adjusted R2 and lowest Mallows' Cp statistic. 

Mallows’ Cp is a measure of the bias in a model, based on a comparison of total mean 

squared error to the true error variance. We report on the mean absolute error (MAE) 

of the models instead of root mean square error (RMSE). According to Willmott and 

Matsuura, (2005) MAE is a natural measure of error compared to RMSE.  

 

5.3.3. Comparison of the model developed from Landsat TM and simulated Landsat 
TM bands 
 
The models developed from the original Landsat TM bands were compared to the 

models developed from the simulated data. This was done to test if the atmospheric 

obscurities had an impact on the models developed from both datasets i.e., original 

Landsat TM data and simulated data. The models comparisons was based on the 

adjusted R2 values  
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5.3. Results 

5.3.1. Relationships between volume, basal area, soil nitrogen, Landsat TM bands  
and simulated Landsat TM bands 
 

The correlations between simulated Landsat TM bands and volume, basal area and 

soil nitrogen were all positive and as shown in Table 5.2. From the table, it can be 

seen that simulated Landsat TM bands except for band 7 yielded significant 

correlations (p<0.05) with volume. For the original Landsat TM bands, only TM4 

correlated significantly (p<0.05) with volume (Table 5.3). The strength of correlations 

for the simulated Landsat TM bands varies between 0.38 and 0.59 i.e., 0.38 ≤ r ≤ 0.59, 

whilst original TM4 band returned a negative correlation i.e., r = -0.37. On 

comparison amongst the simulated Landsat bands, band 5 performed the strongest 

(r=0.59) than other bands followed by band 3 (r=0.52), band 4 (r=0.41) and band 2 

(r=0.38).   

The comparison of the strength of basal area correlations with simulated Landsat TM 

bands and original Landsat TM bands indicates that simulated bands exhibited higher 

strength of correlations compared to original Landsat bands i.e., 0.37 ≤ r ≤ 0.80 , 

compared to -0.29 ≤ r ≤ 0.36.   The strength of performance for basal area- simulated 

Landsat TM bands correlation was observed to be much higher than that of volume 

with the same bands. All simulated Landsat TM bands correlated significantly 

(p<0.05) with basal area and Band 5 exhibited a stronger correlation strength r > 0.70 

with basal area. Other bands (2, 3, 4) yielded moderate correlation strengths (r=0.55, 

0.60, 0.68, respectively) whilst band 7 showed weaker significant correlation strength 

r= 0.37 with basal area. Landsat TM band 5 from original dataset exhibited a much 

stronger correlation r = 0.36 compared to TM1 (r = 0.22) and TM 4 (r = -0.29) 

 

Soil nitrogen correlated significantly (p<0.05) with simulated Landsat TM bands 2, 3, 

4 and 5 but Band 7, which yielded non-significant correlation with soil nitrogen. 

Bands 1, 4 and 4 from the original dataset correlated significantly (p<0.05) with 

correlation strength ranging between 0.30 to 0.42). The strength of correlation 

between soil nitrogen and simulated Landsat bands ranged from moderate to high 
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strength i.e., 0.55 ≤ r ≤ 0.85, with band 5 the highest followed by band 3, band 4 and 

lastly band 2.  The correlation strengths of soil nitrogen- simulated Landsat TM bands 

and basal area-Landsat TM bands were almost in the same low range but differ on the 

high range. Examining individual simulated bands performance with forest variables 

i.e., volume, basal area and soil nitrogen, TM2 had higher significant (p<0.05) 

correlations with basal area and soil nitrogen (r > 0.50) than with volume (r =0.38). 

From the original Landsat TM datasets, TM4 had higher significant (p<0.05) 

correlations with volume (r = 0.42) than with basal area and soil nitrogen (-0.37 ≤ r ≤ 

-0.29). The correlations strength trends for TM3 and TM5 show that soil nitrogen 

correlates significantly better than basal area and volume, respectively. TM4 yielded 

stronger significant correlations with basal area, soil nitrogen and volume in that 

hierarchical order. TM7 had non-significant correlations with both volume and soil 

nitrogen and weak significant correlation with basal area.  

Table 5. 2. Correlations between Landsat TM simulated bands and volume, basal area and soil 
nitrogen 
Variables/Landsat TM Bands TM2 TM3 TM4 TM5 TM7 

Volume 0.38* 0.52* 0.41* 0.59* ns 

Basal Area 0.55* 0.60* 0.68* 0.80* 0.37* 

Soil Nitrogen 0.55* 0.75* 0.58* 0.85* ns 

α < 0.05 

 
Table 5. 3. Correlations between Landsat TM and volume, basal area and soil nitrogen 

α < 0.05 

Variables / 
Landsat TM 
bands 

TM1 TM2 TM3 TM4 TM5 TM7 

Volume ns ns ns -0.37* ns ns 
Basal Area 0.22* ns ns -0.29* 0.36* ns 
Soil Nitrogen 0.30* ns ns 0.42* 0.38* ns 
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5.3.2. Developing predictive models for volume, basal area and soil nitrogen 
estimations through simulated Landsat TM bands and original Landsat TM bands. 
 

• Simulated Landsat bands 

The results of multiple regression approach using the stepwise backward method are 

shown in Table 5.4. The selection procedure was based on the Landsat TM bands 

which gave the best regression results in terms of adjusted R2 and mean absolute error 

and Mallows Cp (table 5.4). The variability in volume and soil nitrogen was explained 

by two Landsat TM bands i.e., TM 4 and TM5 whilst four Landsat TM bands i.e., TM 

3, TM4, TM5 and TM7explained variability in basal area. These Landsat TM bands 

had significant (p<0.05) contributions in the building of models therefore there was 

no need to simplify the models further. The predicted vs. observed plots for volume, basal 

area and soil nitrogen; yielded positive significant (p<0.01) linear relationships, as shown in 

figures 5.2, 5.3 and 5.4.  Volume model exhibited adjusted R2 value of 64% with a 

mean absolute error of 0.594 m3/ha and Cp Mallow of 1.5, whilst basal area model 

had an adjusted R2 value of 77%, mean absolute error of 0.047 m2 and Cp Mallow of 

4.4 and soil nitrogen model had a superior goodness of fit statistic i.e., adjusted R2 = 

0.91, with a mean absolute error of 0.030 % and Cp Mallow of 2.6.  

 
Table 5.4 Mean absolute error, adjusted R2 and Mallows Cp computed for all Landsat TM 
band combinations in estimation volume, basal area and soil nitrogen 
Variable MAE Adj.R2 Cp Landsat Bands 
Volume (m3/ha) 0.594 64% 1.5 TM4 and TM5 

Basal area (m2) 0.047 77% 4.4 TM3, TM4, TM5 and TM7 

Soil nitrogen (%) 0.03 91% 2.6 TM4 and TM5 
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Figure 5.2. Observed and predicted volume model based on Landsat TM 

 

 

   Figure 5.3. Observed and predicted basal area model based on Landsat TM 
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      Figure 5.4. Observed and predicted soil nitrogen model based on Landsat TM 

• Original Landsat TM bands 
 

Table 5.5. shows the results of multiple regression approach using the stepwise 

backward method. The best regression results in terms of adjusted R2 and mean 

absolute error and Mallows Cp are reported (table 5.5). The variability in volume was 

explained by Landsat TM band 4, whilst three Landsat TM bands i.e., TM 1, TM4 and 

TM5 explained variability in basal area and soil nitrogen. The predicted vs. observed 

plots for volume, basal area and soil nitrogen; yielded positive significant (p<0.01) linear 

relationships, as shown in figures 5.5, 5.6 and 5.7.  Volume model exhibited a low 

adjusted R2 value of 13% with a mean absolute error of 0.0246 m3/ha and Cp Mallow 

of 2.3, whilst basal area model had an adjusted R2 value of 47%, mean absolute error 

of 0.0325 m2 and Cp Mallow of 2 and soil nitrogen model returned an adjusted R2 = 

0.50, with a mean absolute error of 0.047 and Cp Mallow of 3.2.  
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Table 5.5 Mean absolute error, adjusted R2 and Mallows Cp computed for all Landsat TM 
band combinations in estimation volume, basal area and soil nitrogen 

 

 

 

 

 
Figure 5.5. Observed and predicted volume model based on Landsat TM 

 

 
 
Figure 5.6. Observed and predicted basal area model based on Landsat TM 

Variable MAE Adj.R2 Cp Landsat Bands 
Volume (m3/ha) 0.0246 13% 2.3 TM4  

Basal area (m2) 0.0325 47% 2 TM1, TM4 and TM5  

Soil nitrogen (%) 0.0470 50% 3.2 TM1,TM4 and TM5 
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Figure 5.7: Observed and predicted soil nitrogen model based on Landsat TM 
 

 

5.4. Discussion 

 
The possibility of obtaining much quicker estimates of forest structural attributes and 

soil chemistry using remote sensing techniques is attractive for scientific and practical 

purposes.  This is especially true for commercial forest plantations given the vast 

hectares they occupy and in areas that are not easily accessible (Maselli and Chiesi, 

2006, Tesfamichael et al., 2009). More specifically, their ability to provide techniques 

such as spectral resampling helps downscale from higher spectral resolutions datasets 

to lower spectral resolutions datasets. The purpose would be to cover larger areas 

since it is widely acknowledged that different sensors have different swath widths and 

capabilities. This study aimed to investigate if the ASD data resampled to simulate 

Landsat TM can be able to (1) estimate forest structural attributes (2) can be used to 

infer soil nitrogen of the forest floor. The objective was to determine if the simulated 

Landsat TM bands can produce models with acceptable accuracy compared to raw 

Landsat TM bands. 

 

The correlation analyses undertaken using simulated datasets and original Landsat 

datasets provided descriptive information on the strength of each band in relation to 

volume, basal area and soil nitrogen as shown in table 5.2 and 5.3. The relationships 

derived from simulated datasets, are such that among Landsat spectral values,  mid-
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infrared spectral range (TM5) consistently returned stronger (positive) correlation 

compared to green (TM2), red (TM3) and near-infrared (TM4) spectral regions. This 

was surprising because TM5 is known to be more suitable for vegetation moisture 

content determination (Hunt and Rock, 1989). Similar results were reported elsewhere 

e.g., Ingram et al. (2005) found basal area to be negatively correlated with spectral 

reflectance (i.e., r = -0.77, p<0.01: middle-infrared band) and stand density returned a 

weak relationship density (r=-0.21, p<0.01) with spectral response of the red band.   

Schlerf et al. (2005) obtained strong negative and positive correlations between TM4 

and forest variables such as leaf area index, stem density, canopy closure, perimeter at 

breast height, stem biomass and stand height. Landsat TM5 band from original dataset 

exhibited higher correlations (positive and negative) compared TM4, TM3 and TM2. 

 

The lack of strong correlations i.e., r > 0.80 of green, red and infra-red spectral bands 

with forest attributes was a cause for concern given that these bands are considered 

optimal for vegetation analysis. The plausible explanations that could be advanced is 

that the compartments had reached full canopy at the time of field data collection 

meaning that leaf area index was a high leaf area index causing these bands to saturate 

(Mutanga and Skidmore, 2004).  Also the timing of field data collection (summer) 

could have affected the amount of leaf water content at the time of field data 

collection. Despite the weaker correlations exhibited by green, red and infra-red 

spectral bands, it was encouraging to note that these bands managed to detect the 

amount of nitrogen in the soil under forest canopy.  These regions are known to 

represent vegetation greenness which in turn would be indicative of a plant response 

to silvicultural practices such as fertiliser and normally such responses manifest on the 

plant foliage (Jokela et al., 1988).  

 

The performance of regression models (i.e., from simulated datasets) based on the 

cross-validation procedure used to assess the prediction power of regression models, 

indicate that whilst there appears to be some reasonable potential for mapping basal 

area and soil nitrogen (R2 = 91 %and 77%, respectively), an uncertainty exists for 

future volume predictions due to lower coefficient of determination (R2 = 64%) and 

higher mean absolute error (MAE = 0.594). This uncertainty is actually consistent 

with Landsat TM saturation characteristic and has been reported elsewhere 

(Steininger, 2000). The simulated models performed better than the original Landsat 
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TM dataset. The coefficient of determination for simulated volume, basal area and 

soil nitrogen models were 64 %, 77% and 91% compared to 13%, 47% and 50% 

returned by original Landsat TM datasets, respectively. This is consistent with other 

results reported elsewhere e.g., Schlerf et al. (2005) and Duan et al. (2007). Since this 

is the first resampling attempt in South Africa, a conclusion that can be drawn from 

these results is that Landsat TM datasets are not suitable for forest structural attributes 

estimations due to problems of saturation at certain biomass levels. Only simulated 

results are report henceforth. 

 

Linear combinations of simulated Landsat TM bands 4 and 5 explained more variance 

in volume and soil nitrogen than other combinations of simulated bands, whilst bands 

3,4,5 and 7 explained more variance in basal area. The significant relationship at the 

95% probability level, adjusted R2, MAE and Mallow’s Cp all demonstrate the 

relative applicability of the method to estimate volume, basal area and soil nitrogen 

using hyperspectral data resampled to Landsat TM spectral configurations in the study 

area. R2 values obtained for volume and basal area in this study were higher than the 

ones reported elsewhere e.g., Maselli et al. (2005) (R2 = 59% for Basal area), Trotter 

et al., 1997 and Hall et al., 2006 (R2 = 30% in both cases). Unfortunately, soil 

nitrogen R2 values could not be comparable to other study because there is little done 

on soil nitrogen using Landsat TM. Other studies have reported promising coefficients 

of determinations using Landsat TM e.g., Lu, (2005) obtained an R2 value of 76% for 

above ground biomass for tropical forest in Brazilian Amazon area, whilst Jensen and 

Binford, (2004) used multiple regression to estimate LAI from Landsat ETM+ with an 

R2 of 0.83%.  These studies highlight the differences in geographic settings of various 

study sites and level of management on forest sites and that will have a major impact 

on the relationships between forest structural attributes and remote sensing data. 

Overall, Landsat Thematic Mapper (TM) have been shown to yield stronger 

predictions of certain forest structural features comparable to other sensors (Lefsky et 

al., 2001, Ingram et al., 2005).  

5.5. Conclusions  
 

Timely information on forest structural and soil nutrient characteristics is a premium 

requirement for optimally managing South African commercial forestry resources. In 
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this study, we assessed the relationship between resampled hyperspectral data to 

reflectance data contained in the Landsat TM bands and forest stand structural and 

soil nitrogen characteristics through multivariate regression analyses. Statistically 

significant relationships were obtained between volume, basal area and soil nitrogen 

and corresponding reflectance values recorded by the Landsat TM sensor. The models 

generated for volume, basal area and soil nitrogen estimations can be applied to the 

study area and there is a need for testing these model coefficients to larger areas using 

tiled scenes. We conclude that hyperspectral data simulated to Landsat TM data 

provide useful platform to estimate forest volume, basal area and soil nitrogen.  The 

next chapter provides a synthesis of the whole study i.e., the research findings of the 

individual chapters will be brought into perspective as a synthesis.   
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CHAPTER 6 

A quantitative assessment of the impacts of leaf water content and chemical bioassays 

on structural attributes of Eucalyptus clones and plantation soil nitrogen using 

hyperspectral data: A Synthesis. 
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6.1 Introduction 
 

Forests are globally important for human survival and enterprise and South Africa is 

no exception. However, many of these forests are under threats which could lead to 

degradation or extinction in extreme cases in the near future.  Factors such as climate 

change will have reductive effects on yields and growths of these forest resources. 

Given the changes that would be brought about by these factors, forest inventory data 

will need to be updated periodically to track such changes and hence manage forest 

resources sustainably and consistently. In South Africa, prediction of growth and 

yield of commercial forestry have relied on the use of empirical models derived from 

field enumerated variables, such as DBH and height. Although these empirical models 

are known for their ability to result in accurate predictions with good precision, such 

assessments typically occur under static climatic conditions. They therefore  lack 

flexibility in predicting growth under fluctuating weather conditions and are 

insensitive to major influential factors which influence growth rates, such as 

management strategies and environmental factors (e.g., rainfall) (Esprey, 2005).  

 

Traditional field-based methods would be virtually impossible to undertake if the 

changes to growth and yields due to natural phenomena are to be quantified.   This is 

further compounded by the vast areas of forested lands, some of which is impossible 

to access. Current and/or future anticipated remote sensing techniques offer a feasible 

solution to tracking such changes due to synoptic, timely, and repeated data collection 

capabilities (Jensen et al., 1989). It must however be noted that the combination of 

remote sensing with minimal field data collection is the preferred manner to track 

such changes (FAO, 2010).  Various factors such as economic, spectral, spatial, and 

radiometric resolution mostly affect the selection of remotely sensed data to be used. 

Despite these challenges, the success stories of remote sensing applications in forest 

and vegetation related studies are well documented worldwide, e.g., Mutanga and 

Skidmore, (2004), Ingram et al. (2005), Zarco-Tejada and Sepulcre-Cantó, 2007, Cho 

et al. (2009), and many more. These and other studies provide an indication of the 

capabilities of different sensors in various forest environments. The continual 

development of hyperspectral sensors has enabled leaf and canopy chemical attributes 

estimations (see Majeke et al., 2008 for a review of hyperspectral studies). Such 
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information is important in many ways, e.g., it could provide vital information about 

the current status of the plant (in this case, forestry) and provide indicators of any 

disturbance which might hinder growth before being visible to the naked eye.  This 

information could then be used to monitor the effects of global warming and climate 

change and associated changes in growths and yields. According to Louw (2003), an 

efficient prediction of growth and yields information underpins sustainable 

management of forest resources and decision making processes  

 

Although a plethora of studies have attempted to estimate leaf chlorophyll, nitrogen, 

lignin, cellulose, and other leaf chemical constituents from the leaf spectral response 

using hyperspectral data, little or no work has been done to establish the extent of the 

relationship between leaf chemical attributes as estimated through hyperspectral data 

and forest growth or structural attributes. These attributes include volume and basal 

area and soil nutrients in South Africa. The leaf spectral response of a forest is known 

to be indirectly affected by the forest structural attributes such as diameter at breast 

height, height, and biomass (Lefsky et al., 1999), while growth is an indirect indicator 

of a plant response to fertilizer (Stovall et al., 2011). The aim in this study was to 

assess the impacts of water content and chemical bioassays such as chlorophyll and 

nitrogen on growth of Eucalyptus clones using hyperspectral remote sensing.  The 

pertinent questions that this study attempted to answer were: 

• Is the spectral reflectance of forest canopy strongly related to growth and 

yield, as affected by water status, leaf chlorophyll and nitrogen contents? 

• Can leaf chlorophyll content be used to infer soil nitrogen status? 

• Can hyperspectral data be downscaled to multispectral data to address the 

above pertinent questions? 

 

6.1.1 Is the spectral reflectance of forest canopy strongly related to growth and 

yield, as affected by leaf water content, leaf chlorophyll and nitrogen contents? 

 
The plant foliar chemical composition is one of the most important forest 

characteristics, because it captures most of the radiant energy needed for 

photosynthesis (Danson and Steven, 1992). Most of the information about the 

ecosystem would therefore be correlated to the status of plant leaves. Prior to 
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advances in science, most inspection of current plant condition were through visual 

inspection techniques. There would always be drawbacks to visual inspection, since it 

is dependent on the interpreter skill and the degree of damage on the leaves. The 

progression of remote sensing science through the years saw the emergence of 

techniques such as hyperspectral remote sensing or imaging spectroscopy, which have 

vastly improved the assessments of the immediate status of the plants. The immediate 

status of a plant can be monitored using leaf spectral properties related to 

physiological estimates of chlorophyll, water, dry matter, and nitrogen (Zarco-Tejada 

and Sepulcre-Cantó, 2007). The results obtained in this study further add to the body 

of knowledge, since very little has been done in linking leaf chemical bioassays to 

growth, even though it is a “known” fact that leaf chemistry is linked to plant growth. 

Significant correlations (p<0.05) were obtained between volume and leaf chlorophyll, 

nitrogen, and water content indices (Table 6.1). These indices were also significantly 

influenced by age, site quality, and clone type, thus indicating that leaf spectral 

characteristics of Eucalyptus clones differ by age and site quality, i.e., good, medium, 

and poor site qualifications.  

 

Table 6.1. Summary of correlations results between volume and spectral vegetation 

indices for two Eucalyptus clones and a general species group 

Index E. grandis  E. saligna  All clones 
Red edge 0.52* 0.91* 0.69* 
Vogelmann 0.59* 0.95* 0.70* 
Tcari /Osavi 0.67* 0.97* 0.82* 
NDNI 0.66* 0.92* 0.80* 
NDRE 0.57* 0.93* 0.69* 
NRI 0.67* 0.95* 0.84* 
WI 0.69* 0.93* 0.78* 
MSI 0.62* 0.93* 0.77* 
Datt 1 0.67* 0.94* 0.80* 
Datt 2 0.62* 0.97* 0.88* 
NDWI 0.49* 0.92* 0.64* 
 

Based on these significant correlations between the spectral indices and volume, 

models were developed for Eucalyptus grandis volume estimation. It was observed 

that volume models, without factoring ancillary data such as age and site index, 

yielded low adjusted R2 values with high root mean square errors (RMSE), e.g., R2 = 
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0.47 and RMSE of 0.055 m3/ha, p<0.0001. This R2 value was deemed as weak and it 

could not be used operationally to estimate volume in Richmond, KwaZulu-Natal. 

Readily available ancillary data were then factored in the model to evaluate if there 

could be an improvement. This was done because a study in the same area using 

ASTER data to estimate forest structural attributes came to a conclusion that the 

models were improved when factoring in the ancillary data (Gebreslasie et al., 2010). 

The model did exhibit a much improved R2 value with a low RMSE i.e., R2 = 0.78 

and RMSE =0.0176 m3/ha (p<0.0001) after incorporating ancillary data. The general 

model that was developed to estimate volume yielded a positive significant (p<0.001) 

linear relationship with an adjusted R2 value of 0.81 and comparably low RMSE of 

0.0176m3/ha (Figure 6.1) 

 

Figure 6.1 Observed vs. predicted volume of from the general Eucalyptus clone model 

On the basis of these results, we concluded that significant potential exists to use leaf 

spectral measurements of chlorophyll, nitrogen, and water content as independent 

variables for estimation of merchantable volume of Eucalyptus clones in KwaZulu-

Natal, when used in conjunction with ancillary data, and that such an approach 

potentially could be extended to airborne data and regional assessments.  

143 
 



Leaf-level spectral measurements were subsequently expanded to include canopy–

level measurements using the Airborne Imaging Spectrometer for Applications 

(AISA). A decision was taken to include another forest structural attribute in the 

analysis, namely basal area. It was in this study that chlorophyll, nitrogen, and water 

content indices explained above 65% of the variance in volume, while these variables 

also explained more than 60% of the variance in basal area, except for the water band 

index and Vogelmann red edge index. The accuracy of correlations between the forest 

structural attributes and indices was tested using bootstrapping techniques. Low 

confidence limits and high precisions (p<0.05) of estimates were observed between 

chlorophyll, nitrogen, and water content indices and forest structural attributes. The 

models developed for future estimation of volume and basal area based on these 

indices exhibited high adjusted R2 values, p<0.001, and low RMSE, and PRESS 

statistic values (e.g., R2 > 0.95, RMSE = 0.1613 m3/ha and 0.0049 m2, PRESS= 0.153 

and 0.004 for volume and basal area, respectively). The scatterplots of observed and 

predicted volume and basal area did not show any signs of overestimation or over-

estimation of these variables, i.e., the points fell within the confidence limit (p<0.001) 

(figure 6.2.). We concluded that silvicultural and management regimes currently 

employed by the commercial forestry sector in South Africa are adequate and has 

important implications for future technology-based forest management and inventory 

updating. 

 

 

 
 

 
Figure 6.2 Observed vs. predicted volume and basal area of Eucalyptus grandis 
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6.1.2. Can leaf chlorophyll content be used to infer soil nitrogen status? 
 
This research question was developed because we saw a necessity to develop ways to 

help forest managers in general to improve the quality of their soils, determine areas 

that need fertiliser as opposed to blanket fertilizer application to the whole area, and 

to exercise greater control over tedious, costly, and time-consuming forestry 

management operations. There exist serious concerns about the environmental 

impacts of over-fertilization, e.g., leaching of fertilizer to groundwater and water 

bodies has serious impacts for aquatic life (Wilson et al., 2005). It is widely accepted 

that fertiliser enhances growth in any vegetation, forestry included (O’Connell and 

Rance, 1999) and the success of fertiliser application normally manifest in the plant 

foliage pigmentation, increased leaf area, and stem mass (Samuelson et al., 2004). It 

then follows that leaf pigmentation, such as chlorophyll and nitrogen, would be able 

to reflect the amount of nutrients available in the soil.  

 

The results obtained in this study showed that a link exists between soil nitrogen and 

leaf chlorophyll indices across different site qualities, namely good, medium, and 

poor. The strength of correlations between leaf spectral indices and soil nitrogen 

content varied between r = 0.37 to 0.85. Our results are in line with other studies 

published elsewhere, e.g., Albrechtová et al. (2008), and confirm the dependency of 

soil nitrogen and optimum leaf pigment content (Filella and Peñuelas, 1994). 

ANOVA results suggested that significant differences in site qualities could only be 

explained between good-medium and good-poor sites, whilst no differences were 

detected between medium-poor sites. We further tested which model would be best 

suited to estimate soil nitrogen with the highest precision, considering models based 

on raw spectra and continuum removed spectra. Although both models explained 

above 70% variation in soil nitrogen, the continuum removed spectral model yielded a 

distinctly higher adjusted R2 value with low PRESS static than the raw spectral model 

(figure 6.3) 
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In conclusion, these results have added to a body of scientific evidence that leaf 

chemical attributes, such as chlorophyll, can be used to monitor soil nitrogen content. 

This is envisaged to have a significant impact in commercial forest management 

practices in South Africa by mapping soil nutrients from leaf spectra using much 

cheaper and easily available imagery, i.e., by resampling ASD data or any 

hyperspectral data to multispectral data to cover a much larger area.    

6.1. 3 Can hyperspectral data be downscaled to simulate multispectral data to 

address the above pertinent questions? 

 
The question of downscaling from hyperspectral data to multispectral data was born 

out of the need to operationalise this study’s research findings in a cost-efficient 

manner.  That is only possible if easily available imagery, such as multispectral 

datasets, can be utilised. The rationale behind downsampling to multispectral datasets, 

besides being cost-effective and readily available can be traced to the fact that 

multispectral data typically has a wider swath width compared to hyperspectral data. 

This translates into a much wider area under commercial forestry being covered. 

Several authors have used resampling techniques, i.e., from hyperspectral to 

multispectral data, and the results were encouraging (e.g., Schlerf et al., 2005). Given 

the cost of hyperspectral data and the fact that South Africa is a developing country, 

Figure 6.3 Observed and predicted soil nitrogen models (a: raw spectra and b: 
continuum removed spectra)  
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Landsat TM was deemed suitable for this study; we therefore downscaled from 

hyperspectral to Landsat multispectral data. 

 

Our main objective was to develop models for estimation of volume, basal area, and 

soil nitrogen using resampled spectra and compared it to original Landsat TM 

datasets. The simulated models performed better than the original Landsat TM dataset 

i.e., their adjusted R2 values were much higher than original datasets (volume 64% to 

13%, basal area 64 % to 47% and soil nitrogen 91% compared 50%). Since our main 

focus was to report on best results between the two datatsets, the following section 

only relates to simulated data. The variance explained by the models for volume, 

basal area, and soil nitrogen varied in their effectiveness. The soil nitrogen model 

variance was explained by two simulated Landsat TM bands (TM4 and TM5) and 

exhibited the highest strength of association between observed and predicted values, 

namely R2 = 0.92 or 92%. Basal area variance was explained by four Landsat TM 

bands, namely TM3, TM4, TM5, and TM7 and an R2 of 0.77 was observed between 

predicted and observed values. The performance of the volume model was not 

satisfactory, given that an R2 > 070 is regarded as an acceptable criterion for a model. 

Volume model variance was explained by Landsat TM bands TM4 and TM5 (R2 = 

0.64).   

 

The performance of individual bands with volume, basal area, and soil nitrogen is 

shown in table 6.2 below.  TM2 performed weaker among the variables, i.e., r < 0.60, 

p<0.05. TM3, TM4, and TM5 were better correlated with basal area and soil nitrogen 

(0.58 ≤ r ≤ 0.85, p<0.05) and lesser with volume (0.38 ≤ r ≤ 0.59, p<0.05). Landsat 

band TM7 was weakly correlated with basal area only (r=0.37, p<0.05). The 

performance of Landsat TM bands green (TM2), red (TM3), and near-infrared (TM4) 

spectral regions was not surprising, given that these bands are known to be suitable 

for vegetation analysis. We concluded that the leaves had high moisture content 

during sampling (sampling took place in summer) and that manifested itself in the 

mid-infrared spectral range (TM5) by consistently exhibiting stronger correlations 

with volume, basal area, and soil nitrogen.  A similar trend was reported in other 

studies, e.g., Ingram et al. (2005). In conclusion, spectral resampling from 

hyperspectral data to Landsat TM data was suitable for estimation of basal area and 

soil nitrogen, but not for volume.  
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Table 6.2. Correlations between Landsat TM bands with volume, basal area and soil nitrogen  

Variables/Landsat TM Bands TM2 TM3 TM4 TM5 TM7 

Volume 0.38* 0.52* 0.41* 0.59* ns 

Basal Area 0.55* 0.60* 0.68* 0.80* 0.37* 

Soil Nitrogen 0.55* 0.75* 0.58* 0.85* ns 

 

6.2 Conclusions 

 
This study makes a contribution in the domain of hyperspectral remote sensing of 

forest structural attributes through sensing of leaf chemical constituents. Numerous 

studies have extracted information relating to leaf and canopy chemical content; 

however, this study has gone a step further and assessed the impacts of forest foliage 

chemical bioassays on forest structural attributes and soil nitrogen under Eucalyptus 

forest canopies. The major contributions of this study were the resampling of 

hyperspectral data to simulate Landsat TM to attempt to address matters that concern 

the commercial forestry sector, i.e., creating a framework from which forest structural 

attributes and soil nitrogen under forest canopy could be mapped over large areas. 

These have major implications in the day-to-day management and planning of 

commercial forestry in South Africa.  

 

The study has proven the potential for estimating chlorophyll and nitrogen non-

destructively using a SPAD instrument and extending this to remote sensing data and 

scales. We also highlighted the importance of incorporating ancillary data with remote 

sensing and in situ data in modelling efforts to provide more accurate estimates of 

Eucalyptus clone volume in the commercial plantation forestry Greenhill estate in 

KwaZulu Natal, South Africa. These modelling efforts will enable forest managers to 

model, map, and manage forests effectively over large areas with a host of 

physiological and structural forest data at hand. 
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In line with other studies, e.g., Aitkenhead-Peterson et al. (2006) and Albrechtová et 

al. (2008), this study has contributed to a better understanding of the health status of 

trees and the associated soil nitrogen content. A close relationship exists between leaf 

chlorophyll content, leaf spectral indices, and soil nitrogen in the visible region of the 

electromagnetic spectrum. This hints at the potential of hyperspectral data to feed into 

the management of plant-environment interactions and could in the process help to 

address a key forest management challenge, namely the determination of optimum 

fertilizer use without negative impacts on the surrounding environment.  

 

This study is a first attempt to downscale results from hyperspectral data to 

significantly cheaper and readily available broad-band multispectral sensors for 

management purposes in South Africa’s Eucalyptus plantations. A possibility exists to 

estimate basal area and soil nitrogen with acceptable precision, while the volume 

model could only be used to describe plantation volume variation in the Greenhill 

area.  A combination of Landsat TM bands TM4 and TM5 produced more accurate 

estimates of soil nitrogen, while TM3, TM4, TM5, and TM7 yielded an acceptable 

precision for basal area estimations. These results show the importance of developing 

reliable and stable techniques, such as spectral resampling, to estimate volume, basal 

area, and soil nitrogen under forest canopies using multi-spectral data. 

The Future  
 
The future for the commercial forestry sector in South Africa relies on new 

technologies underpinned by scientific research approaches. These scientific 

approaches should add to and improve the body of existing scientific knowledge 

related to forest structural attributes and soil chemistry.  The findings of this thesis 

and spatial understanding of spatial forest attributes and soil chemical constituents 

will improve inventory data, management, and planning. The recent development of 

low-cost SumbandilaSat-type sensors is arguably crucial in the future assessments of 

forest structural interactions with foliage chemical bioassays and soil chemistry. 

These interactions and responses can be used to assess climate or land use change at 

the regional to global scales. 

 

The research undertaken in this study should be extended to other forest types and 

vegetation studies in general. The ultimate aim would be to develop maps as GIS 
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layers, which could be linked to strategies aimed at offsetting challenges faced by 

forestry, e.g., pest and diseases assessment, fire management, and many more. 

Importantly, synoptic mapping of forest structural attributes at local, regional, and 

national scales will contribute to effective quantification of short and long-term 

carbon stock changes brought about by climate change. 
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