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Abstract
The immunological mechanisms involved in drug hypersensitivity reactions (DHRs) 
are complex, and despite important advances, multiple aspects remain poorly under-
stood. These not fully known aspects are mainly related to the factors that drive to-
wards either a tolerant or a hypersensitivity response and specifically regarding the 
role of B and T cells. In this review, we focus on recent findings on this knowledge 
area within the last 2 years. We highlight new evidences of covalent and non-covalent 
interactions of drug antigen with proteins, as well as the very first characterization of 
naturally processed flucloxacillin-haptenated human leukocyte antigen (HLA) ligands. 
Moreover, we have analysed new insights into the identification of risk factors as-
sociated with the development of DHRs, such as the role of oxidative metabolism of 
drugs in the activation of the immune system and the discovery of new associations 
between DHRs and HLA variants. Finally, evidence of IgG-mediated anaphylaxis in 
humans and the involvement of specific subpopulations of effector cells associated 
with different clinical entities are also topics explored in this review. All these recent 
findings are relevant for the underlying pathology mechanisms and advance the field 
towards a more precise diagnosis, management and treatment approach for DHRs.
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1  |  INTRODUC TION

Drug hypersensitivity reactions (DHRs) are the third most common 
cause of allergy. Their prevalence reaches 8% in the general popula-
tion1 and is increasing in both adults and children, according to studies 
in populations from Europe and the United States.2-4 Their classifi-
cation is complex, controversial and challenging due to the hetero-
geneity regarding drugs involved, clinical symptoms and underlying 
mechanisms, which are not fully understood.5-8 DHRs are classically 
classified according to clinical and mechanistic aspects, and more re-
cently based on drug interaction with the immune system. Clinically, 
DHRs are divided into immediate (<1–6 h) and non-immediate reac-
tions (>1 h) depending on the time interval between drug exposure 
and onset of symptoms. Although this classification is useful in clin-
ical routine, some controversies exist mainly due to temporal over-
lap between immediate and non-immediate reaction periods.9 Based 
on the mechanism involved, DHRs can be allergic or non-allergic.10 
Allergic reactions are mediated by a specific immunological mecha-
nism and traditionally classified into type I-IV reactions,11 being types 
I (IgE-mediated, produced by B cells) and IV (T cell-mediated) the 
most frequently involved in immediate drug hypersensitivity reac-
tions (IDHRs) and in non-immediate drug hypersensitivity reactions 
(NIDHRs), respectively.9,12 Non-allergic or pseudo-allergic reactions 
include other IDHRs without a demonstrated immune mechanism.13 
Frequently, they are clinically indistinguishable from IgE-mediated 
ones, as they are produced after drug interaction with inflammatory 
cells such as mast cells, basophils and neutrophils. The mechanisms 
involved in non-allergic reactions are based on the over-inhibition of 
specific enzymes such as the cyclooxygenase-1 (COX-1) (pharma-
cological effect) in non-steroidal anti-inflammatory drugs (NSAIDs) 
reactions,14,15 or on the off-target occupation of receptors such as 
the Mas-related G-protein receptor (MRGPRX2) on mast cells16 by 
neuromuscular blocking agents (NMBAs),17,18  fluoroquinolones19 or 
clozapine.20  These mechanisms may be determined by how drugs 
interact with the immune system,13,14 which could explain differ-
ences in drug sensitization, uncommon clinical manifestations, dose-
dependent, predictability and cross-reactivity.13,14 According to this, 
DHRs are developed through immune/allergic stimulation (hapten 
hypothesis), pharmacological interaction (p-i) with immune receptors 
(p-i concept) and non-immunologically mediated pathways (pseudo-
allergy, described above). In this review, we focus on DHRs involving 
the stimulation of B cells and/or T cells.

2  |  DRUG INTER AC TION WITH THE 
IMMUNE SYSTEM

2.1  |  Hapten hypothesis

This hypothesis proposes that covalent binding of drugs or drug 
metabolites to endogenous proteins is required to elicit a DHR.21 
Some drugs reported to bind covalently to proteins are betalac-
tam (BL) antibiotics,22,23 carbamazepine (CBZ),24  sulfanilamides25 

or pyrazolones.26 Identifying the exact determinant recognized by 
the immune system is crucial to understand the mechanism involved 
and to improve diagnostic methods. A recent study27 identified an 
antigenic determinant of clavulanic acid that is responsible for IgE-
mediated reactions and able to bind covalently to human serum 
albumin (HSA) and to activate allergic patients' basophils. Another 
interesting study has characterized for the first time naturally pro-
cessed flucloxacillin-haptenated human leukocyte antigen (HLA) li-
gands presented on the surface of antigen-presenting cells (APCs) 
that may drive drug-specific T cell responses.28 Although covalent 
drug-protein adducts are required to induce sensitization, non-
covalent drug-protein adducts have been suggested to induce the 
effector response in previously sensitized patients.29

2.2  |  p-i concept

The p-i concept states that drugs or drug metabolites may bind di-
rectly, reversibly and non-covalently to immune receptors through 
different pathways involved in NIDHRs.13,30 Drugs can directly bind 
on T cell receptors (TCRs), promoting the activation of T cells without 
the need for peptide and HLA recognition.13 Despite the fact that the 
number of studies that address this topic is limited, those dealing with 
the potential of the sulphamethoxazole model are the most validated 
ones.31 A more recent study found to predominate and public αβTCR 
clonotype able to directly bind to CBZ and its analogues in NIDHRs.32

Other drugs can directly interact with the binding groove of HLA 
or with the peptide presented in the binding groove, which alters 
the conformation of peptide-HLA complexes and promotes the ex-
pansion and activation of T cells.33 Drugs such as CBZ34 and oxypu-
rinol35 are the most studied ones in this model. Moreover, a recent 
study detected atabecestat metabolite-responsive T cell clones ac-
tivated via non-covalent pharmacological binding interaction with 
HLA, with no requirement for protein processing.36  Moreover, di-
rect interaction of drug with HLA can alter the regular repertoire of 
peptides presented by HLA and lead to T cell proliferation.37,38 This 
has been confirmed for abacavir, which binds to HLA-B*57:01 and 
triggers the hypersensitivity reaction.37 More recently, the metabo-
lite CBZ-10,11-epoxide, but not CBZ, has been shown to induce the 
alteration of peptides presented by HLA-B *15:02.39

Despite these advances and new findings, more studies are 
needed to fully understand how pathways of drug interaction with 
the immune system could influence the elicitation of different clin-
ical entities, cross-reactivity, dose-dependence, desensitization re-
sponses, and prediction of DHRs.

3  |  IMMUNOLOGIC AL MECHANISMS IN 
DHRs

The development of both B cell and T cell responses includes a pre-
vious phase of sensitization without clinical symptoms and a later 
phase of effector response.
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3.1  |  Sensitization phase

During first exposure, drugs or drug metabolites are presented by 
APCs through class I or II HLA to TCRs from naïve T cells, which 
are primed, activated and clonally expanded (Figure  1). In IDHRs, 
naïve T cells differentiate into T helper (Th) cells with Th2 cytokine 
pattern (interleukin (IL)-4, IL-5, IL-9 and IL-13). Then, close contact 
occurs between activated B cells after antigen encounter through 
B cell receptor (BCR) and activated Th2 cells. This contact via 
CD40-CD40 ligand causes a cognate activation of B cells that, to-
gether with IL-4, induces B cell proliferation, B cell differentiation 
into antibody-secreting cells, IgE isotype class-switching and re-
lease of drug-specific IgE (sIgE) to the bloodstream. These drug-sIgE 
binds to high-affinity IgE receptors (FcεRI) on basophils and mast 
cells, leading to IgE sensitization.40 Beyond IgE-mediated mast cell 
and basophil sensitization, evidence supports the influence of other 
mechanisms. In this sense, different studies have shown human 
mast cell and human neutrophil activation mediated by IgG bound 
on FcγR,41,42 which would require a previous IgG sensitization.

In NIDHRs, drug presentation promotes the expansion of Th 
cells with Th1 cytokine pattern (mostly interferon (IFN)-γ, tumour 
necrosis factor (TNF)-α, and IL-2). Nevertheless, it has been proven 

that different Th cells are involved, depending on the clinical en-
tity, such as Th2 cells in maculopapular exanthema (MPE)43 and 
drug rash with eosinophilia and systemic symptoms (DRESS)44,45 or 
Th17 in acute generalized exanthematous pustulosis (AGEP).45 The 
immune system requires at least 7 days in order to prime a new T 
cell-mediated reaction (usually 2–8 weeks).46 During the effector re-
sponse, the time will depend on the clinical entity, with symptoms in 
MPE taking between 7 and 12 days to appear, and a longer period of 
time in severe allergic reactions such as Stevens-Johnson syndrome 
(SJS), toxic epidermal necrolysis (TEN) or DRESS. These differences 
could be explained by the drug interaction with the immune system, 
hapten hypothesis or p-i concept.13,14,47

3.2  |  Risk factors for hypersensitivity vs. tolerance

Although studies aimed to identify risk factors associated with DHRs 
have provided relevant information, there is still a lack of knowledge 
about the factors involved in the critical sensitization phase that 
leads to a hypersensitivity or tolerance response and that drives to-
wards IDHR or NIDHR48 (Figure 1). These factors could be related to 
the generated drug-protein adducts, the drug presentation through 

F I G U R E  1  Scheme representing the different key points and unsolved questions in the development of drug hypersensitivity reactions 
(DHRs). Several factors must affect the first interaction of the drug with dendritic cells and its presentation to T cells. There are unsolved 
questions regarding the factors that first drive towards tolerant or allergic responses and secondly, within the latter, towards immediate 
(IDHR) or non-immediate (NIDHR) drug hypersensitivity reactions. Once the ‘decision’ of an IDHR is taken, the second unmet key point is 
the development of a Th2 response that induces the production of IgE, which binds to effector cells, or the development of a Th1 response. 
Moreover, unknown factors can lead to the production of IgG, which can bind to neutrophils surface and induce a reaction alone or in 
synergy with an IgE response. On the contrary, once the ‘decision’ of a NIDHR is taken, undetermined factors lead to the development of a 
particular clinical manifestation with specific immunological characteristics
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specific HLA molecules, the induction of specific T cells, the IgE iso-
type class-switching, the role of T-regulatory (Treg) and B-regulatory 
(Breg) cells, or the existence of some inhibitory check point recep-
tors.47,49 Independently of the mechanism involved, there is clear 
evidence that the immune system can efficiently recognize drugs, 
a process that is followed by a tolerance response in most cases.50 
Regarding this, T CD4+ and T CD8+ cells from healthy donors can 
efficiently recognize benzylpenicillin (BP)-HSA adducts51 and BP,52 
respectively. Similarly, amoxicillin (AX)- and clavulanic acid-specific 
T cells clones have been generated, and identical drug-protein ad-
ducts have been detected from both allergic and tolerant subjects.53

Moreover, the redox status, a concomitant factor in numerous 
pathological situations that requires drug administration, can affect 
drug protein-adduct formation. In this regard, the drug oxidative 
metabolism could result in chemical modification of endogenous 
macromolecules, which may activate the immune system.54 Besides, 
oxidative stress could affect the formation of large amounts of AX-
protein adducts involved in AX adverse reactions.55

Although the key cellular and molecular requirements for a B 
cell to undergo IgE class-switching are known, the reason why some 
patients develop a Th2 pattern response that induces IgE class-
switching, and others do not, remains unclear. Recently, a rare pop-
ulation of IL-13-producing follicular T helper (Tfh) cells that are also 
the major producers of IL-4, referred to as Tfh13 cells, have been 
reported. These cells seem to be required for producing high-affinity 
IgE by B cells.56 Moreover, an additional study in house-dust-mite 
allergy has shown that follicular regulatory T (Tfr) cells control 
Tfh13 cell-induced IgE. The loss of Tfr cells, in addition to causing 
an increase in sIgE, impairs sIgE affinity.57 Interestingly, Tfr cells and 
IL-10 have been recently shown to contribute to the generation of 
IgE58; therefore, the role of Tfr cells seems somewhat controversial. 
Moreover, these findings have not been demonstrated in DHRs yet. 
Many efforts have been made for years to understand and establish-
specific associations between HLA alleles and DHRs.43 Despite the 
fact that a wide variety of studies have reported strong associ-
ations between HLA alleles and DHRs, most patients do not have 
a strong genetic predisposition, which suggests that other factors 
should be considered. Moreover, contradictory data exist mainly 
due to the low number of samples in each study, and specific allele 
frequencies differences between ethnic groups, as recently summa-
rized.59 Moreover, new studies in European populations have found 
associations between HLA-B*15:02 and HLA-A*31:01 with severe 
and mild-moderate DHRs to CBZ respectively,60 HLA-A*32:01 and 
DRESS induced by vancomycin.61 Other studies have suggested an 
association between HLA-B*13:01 and dapsone and dapsone me-
tabolites hypersensitivity,62 as well as between HLA-B*58:01 and 
DHRs to allopurinol in Asian populations, but not in others such as 
Europeans or Africans.63,64

On the other hand, a recent high-density genome-wide genotyp-
ing study has shown GNAI2 as a significant predictor of NSAIDs- in-
duced hypersensitivity in a Spanish population. This association may 
reflect its influence on the recruitment of immune cells involved in 
the pathological mechanisms of NSAID hypersensitivity.65

3.3  |  Effector phase

3.3.1  |  Role of B cells in drug allergic reactions

The current knowledge about the involvement of B cells in the ef-
fector phase of IDHR is limited to the production of specific anti-
bodies. The mechanisms involved in the production of IgE by B 
cells are still not well known, and most of the knowledge comes 
from studies in animal models. In general, professional APCs, such 
as follicular B cells in lymphoid follicles bearing compatible B cell 
receptor (BCR), activate after having internalized and processed 
the drug. After activation, they can migrate to the T cell zone and, 
through the necessary costimulatory signals, induce naïve Th cell 
differentiation towards a Th2 phenotype. The contact of these 
activated Th2 cells bearing appropriate TCRs with activated drug-
presenting B cells induces subsequent activation of transcription 
factors, B cell proliferation, somatic mutation, and production of 
drug-specific antibodies.66 In IgE-mediated reactions, as described 
above, a large proportion of drug-sIgE binds reversibly on FcεRI on 
mast cells and basophils during sensitization.67 While IgE is revers-
ibly bound to FcɛRI, the KD is low and, IgE can remain bound to this 
receptor for extended periods of time in the absence of circulating 
IgE.68,69 During re-exposure, drug-carrier adducts interact with at 
least two adjacent cell-surface bound sIgE (cross-linking) and lead to 
the activation and degranulation of mast cells and basophils, with in-
flammatory mediator release70 leading to urticaria or anaphylaxis.66 
Recent human studies have found evidence that mature B cells that 
produce allergen-specific IgG (sIgG) would be the previous step to 
allergen-sIgE B cells.71,72 In spite of the extreme rarity of IgE memory 
B cells,73 non-secreting IgE memory B cells have been found in the 
blood of allergic subjects,74 as well as non-circulating IgE-secreting 
plasma cells in their bone marrow.75

On the other hand, evidence of IgG-mediated activation has 
been demonstrated in different studies as an alternative pathway 
to the classical IgE-mediated one. IgG-mediated reactions are char-
acterized by the formation of drug-sIgG complexes that, depend-
ing on their nature, involve different effector cells (macrophages/
monocytes, basophils, mast cells, and neutrophils)76 able to activate 
endothelial cells and to induce Fcγ receptor (FcγR)-dependent com-
plement activation.66  The existence of IgG-mediated anaphylaxis 
has been demonstrated in mouse models, where drug-sIgG bound 
to FcγRIII stimulate the release of platelet-activating factor (PAF) by 
basophils, macrophages, or neutrophils.77-79 Interestingly, mice stud-
ies suggest dose-dependence of IgG-mediated anaphylaxis, unlike 
IgE-mediated anaphylaxis.77 However, evidence of IgG-mediated 
anaphylaxis in drug allergy in humans are scarce. Some studies could 
demonstrate the presence of IgG anti-IgA in patients with immu-
nodeficiency that developed anaphylaxis after immunoglobulin infu-
sion.80 Biological agents have been shown to induce anaphylaxis in 
the absence of sIgE but with high levels of sIgG in patients infused 
with relatively high doses of the culprit.81 Finally, a relevant study42 
found a correlation between levels of anti-NMBA IgG, IgG receptors 
on neutrophils, and neutrophil activation with anaphylaxis severity. 
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These findings suggest the existence of an IgG-neutrophil pathway 
in human NMBA-induced anaphylaxis, which may aggravate anaphy-
laxis in combination with the IgE pathway or underlie anaphylaxis in 
the absence of sIgE.

3.3.2  |  Role of T cells in drug allergic reactions

As part of the adaptive immune system, T cells play a crucial role 
in the elicitation of DHRs, with important differences depending 
on the type of reaction. Although T cells are not the main effec-
tor cells in IDHRs, their activation can modulate basophil, mast cell 
and B cell responses by releasing different cytokines and mediators. 
Regarding NIDHRs, T cells are the common effector cells involved in 
all these reactions despite the heterogeneous clinical entities, from 
mild-moderate reactions as MPE and fixed drug reactions (FDR) to 
the most severe ones as AGEP, DRESS, or SJS/TEN.12,43,82 The com-
mon immunopathogenic mechanism for NIDHRs consists in the ac-
tivation of CD4+ drug-specific cytokine-secreting T cells and CD8+ 
cytotoxic T cells (CTLs).47 Moreover, skin is the most commonly af-
fected organ, although liver, pancreas, lungs, or kidney can be also 
involved.83

Following drug exposure in sensitized patients, naïve T cells, be-
sides drug-specific CD4+ and CD8+ T cells, are activated and, de-
pending on their homing receptors, infiltrate the skin. In this regard, 
different studies have reported that activated T cells highly express 
the cutaneous lymphocyte antigen (CLA), related to the skin-homing 
process by behaving as ligand for E-selectin.84 Moreover, infiltrating 
T cells also express a high amount of skin-homing markers such as 
CCR10, CCR6, and CXCR3.43 After migrating to the skin, they re-
lease several mediators such as granulocyte-macrophage colony-
stimulating factor (GM-CSF), chemokines and cytokines, mainly 
IL-12, IFN-γ and TNF-α, but also IL-4, IL-5, IL-8 or IL-17; this promotes 
the recruitment of other cell populations, which include T cells, den-
dritic cells, macrophages, eosinophils or neutrophils, responsible for 
the skin inflammation.43,45

Allergic patients can respond several years after the initial hy-
persensitivity reaction and under drug avoidance, suggesting that 
drug-specific memory T cells persist for a long time.85 Recent inter-
esting findings on the nature of tissue-resident memory T (TRM) cells 
reveal that, during the resolution phase in the skin, the majority of 
CD4+ and CD8+ T cells express CD69, which is responsible for retain-
ing them into the tissue.86 Interestingly, TRM cells can downregulate 
CD69 and exit the skin, promoting the spread of TRM cells, mainly 
of CD4+ T cells, which is consistent with the more prolonged tissue 
residency of CD8+ T cells.84

There is clear evidence that drug-specific CTLs are important 
effector cells in NIDRHs,87 although with differences in the role of 
specific T cell subpopulations in each clinical entity. Regarding this, 
it has been proposed that CD8+ T cells mediate bullous diseases as 
SJS-TEN or AGEP, whereas CD4+ T cells are more related to skin 
inflammatory non-bullous diseases as MPE,43 although controversy 
exists.50 A recent article has shown a common contribution of T 

CD4+, T CD8+ and natural killer (NK) cells in all NIDHRs; however, 
specific cell subpopulations have been reported to be involved in 
different clinical entities.44

3.3.3  |  Role of T cells in specific clinical entities

SJS/TEN
Drug-specific T CD8+ and NK cells mediate keratinocyte apoptosis 
through the release of different cytotoxic molecules, such as perforin 
and granulysin and the expression of FAS ligand (FasL).43,44,88 The 
release of cytokines such as IFN-γ and IL-15, related to the prolifera-
tion of NK cells, has been also associated with the severity of SJS/
TEN.89 The most frequent drugs involved in SJS/TEN are sulphona-
mides, anticonvulsants and allopurinol.44,88,90

DRESS
Clinical entity characterized by high levels of eotaxin and IL-5 in skin 
lesions (responsible for the recruitment of eosinophils), and by skin 
infiltration of CD4+ and CD8+ T cells.90 A recently published work 
showed that if there is an exposure to antibiotics during the active 
phase of DRESS, it can trigger a sensitization to the administered 
drug; which is explained by the massive activation of reactive im-
mune cells.91 A later manuscript has shown that other drugs such 
as radiocontrast media, proton pumps inhibitors or analgesics could 
be also involved in DRESS relapses.46 These relapses may be associ-
ated with unknown mechanisms, and, in most cases, patients toler-
ate the drug after the complete recovery. On the contrary, relapses 
with proven sensitization to secondary drugs may trigger a multiple 
drug hypersensitivity syndrome and therefore, culprit drugs cannot 
be readministered.92

AGEP
It is characterized by the activation and migration of a high num-
ber of CD8+ and CD4+ T cells to the skin, mainly with a Th1/Th17 
cytokine pattern and high expression of HLA-DR. T cell activation 
promotes CXCL8, CCL27, and CCR6  secretion by keratinocytes, 
molecules involved in neutrophil recruitment.43,88,90,93 Moreover, it 
has been reported that CD4+Th1/Th2 and inflammatory/cytotoxic 
NK cells,44 as well as a high expression of FasL and release of per-
forin and granzyme B by drug-specific CTLs, provoke keratinocyte 
apoptosis.94

MPE
It is characterized by the infiltration of CD4+ T cells in the dermis, 
and of CD4+ and CD8+ T cells, with high expression of perforin and 
granzyme B, at the dermo-epidermal junction zone adjacent to basal 
keratinocytes.43,87  New insights into cytokine detection, enzyme-
linked immunospot and T cell clone phenotyping have revealed a 
more complex immunoprofile than previously thought, which is 
composed of a high amount of Th2 cytokines, a lesser extent of Th1 
cytokines, and different regulators of eosinophil maturation and 
recruitment molecules.43,50  Moreover, a recently published study 
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has shown a higher contribution of CD4+Th2 T cells and IFN-γ+ NK 
cells.44

3.4  |  Role of Treg and Breg cells

Past and recent studies have demonstrated that different cell sub-
sets of Treg cells play an important role in the immune regulation 
to tolerate antigens.8 These cells, which constitute 5–10% of total 
peripheral CD4+ T cells, have the ability to regulate the response of 
effector cells, mainly, CD4+ but also CD8+ T cells and B cells, which 
limits the allergic inflammation.95 It has been proposed that aller-
gic reactions can be suppressed by different mechanisms through 
Treg cells, such as the release of inhibitory cytokines (IL-10, TGF-β, 
IL-35) or the induction of apoptosis and cytolysis (galectin-9 (Gal-
9), granzymes A and B). These mechanisms induce metabolic dis-
ruption (CD25, cAMP, adenosine receptor 2, histamine receptor 2, 
CD39 and CD73) and expression of suppressive bound-membrane 
molecules (CTLA-4, PD-1).96,97 Related to this, patients with human 
immunodeficiency virus (HIV) infection, who are characterized by 
the loss of CD4+ T cells and expansion of CD8+ T cells, present a 
higher risk of suffering DHRs.47 This fact could be explained by the 
loss of Treg cells.98

Despite the few number of studies addressing the role of Treg 
cells in DHRs, it has been suggested that the inadequate function 
of Treg cells could impair their regulatory role in controlling se-
vere diseases such as SJS/TEN or DRESS. Moreover, a significant 
reduction in IL-10 producing Treg cells was found in skin lesions 
during acute and recovery phases of MPE, compared with tolerant 

subjects.97  Nevertheless, other molecules and mechanisms could 
be also involved in the control of number and function of effector 
cells. The interaction between Gal-9, secreted (among others) by 
Treg cells, and the T cell Ig- and mucin domain-containing molecule 
(Tim-3) on the surface of Th1 and Th17 cells induce the apoptosis of 
these effector cells. Based on this, a recent study has shown a lower 
number of Gal-9-producing Treg cells during the resolution phase 
of MPE, compared with tolerant subjects.97 Altogether, these data 
suggest the importance of Treg cells for controlling MPE,88 although 
more studies are needed in order to understand better the role of 
Treg cells in allergic diseases (Figure 2).

Breg cells are immunosuppressive B cells that have been de-
scribed in both mice and humans and which have been receiving 
increasing attention during the last two decades.99 Certain subpop-
ulations of plasma cells have been recently included under the um-
brella of Breg cells.100,101 Three main cytokines produced by Breg 
cells have been reported to contribute significantly to suppressive 
properties: IL-10, transforming growth factor (TGF)-β, and IL-35.102 
IL-10 not only displays a very potent immunosuppressive capacity 
but also regulates positively B cell survival and class-switch recom-
bination, as well as plasma cell differentiation.103,104 Importantly, 
Breg cells promote the generation of functional Treg cells and sup-
press effector T cell activation. B cells switching to IL-10-producing 
B cells was demonstrated in humans in high-dose allergen exposure 
models and allergen immunotherapy.104  Moreover, Breg cells also 
express surface-bound molecules that enable cellular interactions of 
immunosuppressive nature (eg PD-1, FASL, CD73, CD9, CD1d).105 
However, until now, no studies have demonstrated the role of Breg 
cells in DHRs (Figure 2).

4  |  CONCLUSIONS

The recent findings highlight the importance of improving our 
knowledge about drug interaction with immune system, with new 
evidences of antigenic determinants covalently bound on proteins 
including HLA ligands. Moreover, non-covalent interaction can be 
important in the immunological activation, as additional factors as 
oxidative metabolism of drugs have a crucial role in adduct induc-
tion. At the effector response, it has been reported new insights 
about the B and T cell subpopulations in the elicitation of the re-
sponse in DHR, including the consequences of the inadequate func-
tion of Treg cells that impair the control of effector cells.

Despite these important advances, there are still multiple immu-
nological aspects that remain poorly understood about the induction 
of either hypersensitivity or tolerance responses, and specifically 
about the role of B and T cells in these responses. In order to under-
stand the underlying pathology mechanisms of DHRs, it is required 
to further advance the knowledge of the interaction of drugs with 
the immune system, the effector cells involved in different clinical 
entities and the identification of relevant risk factors. This would be 
essential to achieve in future a more precise diagnosis, management 
and treatment of DHRs.

F I G U R E  2  Role of T regulatory (Treg) and B regulatory (Breg) 
cells in drug hypersensitivity reactions (DHRs). Treg cells can 
modulate the allergic response by different ways: through the 
release of IL-10 and Gal-9 inhibiting the proliferation of CD4+ and 
CD8+ T cells and also of B cells. On the contrary, Breg cells have 
the ability to inhibit CD4+ and CD8+ proliferation through the 
production of IL-10, IL-35 and TGFβ. Moreover, they can induce the 
differentiation of Treg cells and regulate the B cell survival, class 
switch recombination and plasma cell differentiation
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Major milestones discoveries:

•	 New DHR classification based on the interaction between drugs 
and the immune system.

•	 New evidence of antigenic determinants covalently bound on 
proteins and the very first characterization of naturally processed 
flucloxacillin-haptenated HLA ligands.

•	 New evidence of non-covalent interaction of drugs with immune 
system involved in immunological activation: non-covalent phar-
macological interaction of atabecestat metabolites with HLA and 
capacity of CBZ metabolites to induce alteration of peptides pre-
sented by HLA.

•	 New insights into the oxidative metabolism of drugs which can 
be an important factor in the activation of the immune system in 
DHRs.

•	 New associations between DHRs and HLA variants in European 
populations (HLA-B*15:02 and severe DHRs to CBZ; HLA-
A*31:01 and mild-moderate DHRs to CBZ; HLA-A*32:01 and 
vancomycin DRESS), and in Asian populations (HLA-B*13:01 and 
DRHs to dapsone; HLA-B*58:01 and DHRs to allopurinol).

•	 Evidences of the existence of IgG-mediated anaphylaxis (IgG-
neutrophil pathway) in humans.

•	 Involvement of different cell subpopulations in the elicitation of 
the effector phase in NIDHR, depending on the clinical entity.

•	 The inadequate function of Treg cells impairs the control of effec-
tor cells in NIDHRs by different mechanisms.

Future research perspectives:

•	 To identify the antigenic determinants (drug or drug metabolite) 
that are immunologically recognized and their mechanism of in-
teraction with the immune system.

•	 To understand better the direct interaction between different 
drugs or drug metabolites with TCRs and HLAs.

•	 To get a deeper insight into the specific factors involved in drug 
sensitization, which can trigger a tolerance or a hypersensitivity 
response, as well as to determine the type of DHR elicited.

•	 To increase the current limited knowledge about the role of B 
cells, and especially Breg cells, in DHRs.

•	 To confirm genetic associations recently established between 
DHRs and HLA variants.
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