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Abstract
Wegeneralize ideas in the recent literature and develop new ones in order to propose a general
class of contour integral methods for linear convection–diffusion PDEs and in particular for
those arising in finance. These methods aim to provide a numerical approximation of the
solution by computing its inverse Laplace transform. The choice of the integration contour is
determined by the computation of a few suitably weighted pseudo-spectral level sets of the
leading operator of the equation. Parabolic and hyperbolic profiles proposed in the literature
are investigated and compared to the elliptic contour originally proposed by Guglielmi,
López-Fernández and Nino 2020, see Guglielmi et al. (Math Comput 89:1161–1191, 2020).
In summary, the article

(i) provides a comparison among three different integration profiles;
(ii) proposes a new fast pseudospectral roaming method;
(iii) optimizes the selection of time windows on which one may arbitrarily approximate the

solution by no extra computational cost with respect to the case of a fixed time instant;
(iv) focuses extensively on computational aspects and it is the reference of the MATLAB

code [20], where all algorithms described here are implemented.
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1 Introduction

We consider convection diffusion PDEs of the form

∂U

∂t
(x, t) = A(x)U (x, t) + f (x, t),+B.C.

U (x, 0) = U0(x) (1)

with A a linear second order elliptic operator. After discretizing the problem in space, we
study efficient numerical integrators for the Cauchy problem

u̇ = Au + b(t), u(0) = u0, t > 0, (2)

with A representing a suitable discretization of the elliptic operator A and b is a source
term which possibly includes boundary contributions. We are particularly interested in equa-
tions arising in mathematical finance, such as Black–Scholes, Heston or Heston–Hull–White
equations [3,7,9], but our approach is by no means restricted to them .

In order to approximate the solution u(t) to (2) one may use Runge-Kutta methods,
multistep integrators as well as splitting schemes. The drawback of these time-stepping
schemes is that in order to approximate the solution at a certain time T = tn , one needs to
compute an approximation of the solution at grid points 0 < t1 < t2 < . . . < tn , which
would be particularly demanding if T is large. As an alternative, it is possible to derive
methods based on the Laplace transform and its numerical inversion, which do not advance
on a grid. In the literature this approach has been widely studied for pure diffusion equations
(see e.g. [5,18,19,22]) and for convection diffusion equations recently in [6]. An important
case is when the time T at which one is interested to determine the solution is not known
exactly but is uncertain although it belongs to a certain time window ofmoderate size. In such
case it would be convenient to develop methods which do not require substantial additional
computations with respect to the model case when T is fixed a priori. This is another goal of
this article, i.e. to discuss and analyze methods able to approximate the solution on suitable
time windows.

In the sequel of the article—when not indicated differently—the considered norm is the
spectral one, that is the matrix norm induced by the vector Euclidean norm.

The magnitude of the resolvent norm
∥
∥(z I − A)−1

∥
∥ has a crucial role in the rate of

convergence of any contour integral method based on Laplace transformation. Due to this,
the choice and parametrization of the integration contour is of main importance. In a recent
paper [6], an elliptic profile has been proposed, in connection to the knowledge of the ε-
pseudospectrum of A (see [24])

σε(A) =
{

z ∈ C : ∥∥(zI − A)−1
∥
∥ ≤ 1

ε

}

, (3)

for suitable values ε > 0. Since A is in general non-normal, due to the convection terms
in the operator A, the pseudospectrum may increase fast around the spectrum of A, making
the problem challenging. We assume the existence of the Laplace transform of b and that it
admits a bounded analytic extension to a suitable region of the complex plane outside the
spectrum of A. We then apply the Laplace transform to (2), which yields, for the Laplace
transform of u, û = L(u),

û(z) = (z I − A)−1
(

u0 + b̂(z)
)

, (4)

where b̂ = L(b) and I stands for the identity matrix.
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After solving (4), we reobtain u by considering the inverse Laplace transform

u(t) = 1

2π i

∫

�

ezt û(z) dz, (5)

being the contour � an open piecewise smooth curve running from −i∞ to +i∞ surround-
ing all singularities of û. To approximate the Bromwich integral (5), we parameterize the
integration contour � by z = z(x), x ∈ R, for a suitable mapping z(x), so that

∫

�

ezt û(z) dz =
∫

R

G(x)dx,

with G appropriately defined. Since we are interested in approximating u(t)within precision
tol, we will only consider the portion of the Bromwich integral parameterized in [−cπ, cπ],
this is,

I =
∫

R

G(x)dx ≈
cπ∫

−cπ

G(x)dx,

for a certain truncation parameter c ∈ (0, cmax), which we determine by the estimate

|G(cπ)| = tol

for tol the desired accuracy. Finally, the application of a quadrature formula to approximate
(5) provides a numerical approximation of u, for a given time t , or even time windows of
the form [t0,�t0], � > 1, without need of computing it at intermediate time instants. An
application of the trapezoidal rule

IN = 2cπ

N

N−1
∑

j=1

G(ξ j ) with ξ j = −cπ + j
2cπ

N
, j = 1, . . . , N − 1. (6)

provides the desired approximation IN of I . Note that the computation of each term in the
summation (6) requires the solution of a shifted linear system A − z(ξ j )I . An advantage of
the method we propose is that these computations can be done in parallel. Furthermore, if
the integrand is conjugate symmetric, the number of addends and thus, the number of linear
systems, can be halved. This is often the case in applications, such as the ones we consider
here.

Assuming that the Laplace transform can be analytically extended to the left half of the
complex plane and that this extension is properly bounded with respect to z, several authors
have proposed different contour profiles and parametrizations for �. We refer the reader to
the recent article [6] for a detailed review of the literature concerning the crucial choice of the
profile �. In this paper we extend the results of [6] by considering not only elliptic but also
parabolic and hyperbolic profiles, which we compare. The parametrization of all contours is
optimized by using the knowledge of the pseudospectrum of A on a region of the complex
plane surrounding the spectrum of A. A novel Newton iteration is developed to obtain the
required knowledge of pseudospectral level sets. In this way we are able to determine more
specifically, accurately and efficiently the required pseudospectral level curves and avoid the
use of the software eigtool [27] as it was done in [6]. We notice that since the exponential
factor in (5) reduces the norm of the integrand function when Re(z) is sufficiently large and
negative, we have to control the pseudospectrum of A only in a vertical strip of the complex
plane. A main advantage of the method we discuss is that it provides an approximation of
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Fig. 1 The integration profile �

from [6]

the solution by a prescribed accuracy tol, simply increasing the number of quadrature points
on the integration contour, without changing the integration profile and taking advantage of
previous computations. The paper is organized as follows. In Sect. 2 we describe the three
contours we consider (elliptic, parabolic and hyperbolic). In Sect. 3 we present a newmethod
to obtain approximations of pseudospectral level sets, which does not require making use
of Eigtool. In Sect. 4 we study in full detail the pseudospectra of the 1D Black and Scholes
operator. In Sect. 5 we provide the determination of the parameters characterizing the whole
procedure based on sharp error estimates. In Sect. 6 we compare the profiles and present
some numerical illustrations. Finally, in Sect. 7 we focus our attention on implementation
issues and present a Matlab code aimed to approximate the solution of the problem by means
of any of the considered methods.

2 The Integration Contours

We propose contours � in (5) which are either elliptic, parabolic or hyperbolic arcs, possibly
linked to half-lines.

2.1 Elliptic Profile: A Review From [6]

In [6], � is parameterized by

z(x) =
⎧

⎨

⎩

	1(x), x ≤ −π
2 ,

z(x), −π
2 ≤ x ≤ π

2 ,

	2(x), x ≥ π
2 ,

(7)

where, for constant parameters A1, A2, A3 to be determined,

z(x) = A1 cos x + iA2 sin x + A3

parametrizes an elliptic arc and

	1(x) = A3 + x + π

2
− i

(

A2 − d
(

x + π

2

))

,

	2(x) = A3 − x + π

2
+ i

(

A2 + d
(

x − π

2

))

parametrize two half-lines, see Fig. 1.
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Fig. 2 The ellipse �le f t (in black) and the integration profile (in blue) (Color figure online)

The choice of the parameters A1, A2 ad A3 is discussed on [6] and is fundamentally based
on the knowledge of the ε-pseudospectrum of A in a rectangular region surrounding the
rightmost section of the spectrum.

The only section of the integration contour � (7) that it is actually used in practise is the
arc of ellipse parameterized by z. In order to improve the performance of the quadrature, z
is extended to a rectangle in the complex plane by

z(x + iy) = A1(y) cos x + i A2(y) sin x + A3(y), x ∈
[

−π

2
,
π

2

]

, y ∈ [−a, a], (8)

for a certain parameter a > 0 to be determined. We require (8) to be holomorphic in the
rectangle

R = [−π/2, π/2] × [−ia, ia]
and thus impose the Cauchy-Riemann equations. In this way we obtain that A3 is necessarily
a constant,

A1(y) = a1e
y + a2e

−y, (9)

A2(y) = a2e
−y − a1e

y, (10)

with a1 and a2 real constants. The resulting mapping turns out to be entire. The holomorphy
of z in the rectangle leads to the exponential convergence of the trapezoidal rule when it is
applied to the integral resulting after parametrizing the elliptic contour by z(x), being the
rate of convergence increasing with a, see [6].

The rectangle R is mapped into an elliptic ring-shaped region. In particular the upper
horizontal side of the rectangle is mapped into the inner ellipse �le f t (black) in Fig. 2
and is selected in a way that its rightmost section (continuous line) is external to the ε-
pseudospectrum for a suitable value ε. In order to select �le f t , we fix the center of the ellipse
zL , its right intersection with the real axis zR and one interpolation point zB . In particular zL

is such that ez
L t ≈ eps (the working precision) and zR is the rightmost intersection point of

the ε-pseudospectrum of A and the real axis. The interpolation point zB = d + ir is chosen
in such a way that the ellipse encloses the ε-pseudospectrum of A for a suitable ε, as well as
the possible singularities of b̂. Next the half-elliptic integration profile

� : z(x) = (a1 + a2) cos x + i(a2 − a1) sin x + A3, (11)

is determined, with coefficients a1, a2, A3 depending on the unique free parameter a (see [6]
for the details). Indeed, imposing the ellipse �le f t to be centered at zL and to pass through
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the points zR and zB = d + ir , we get

a1e
a + a2e

−a = zR − zL , a2e
−a − a1e

a = r

sin(θ)
, A3 = zL , (12)

where

θ = arccos

(
d − zL

zR − zL

)

.

Solving (12) for a1, a2, A3 yields

a1 = e−a

2

(

zR − zL − r

sin(θ)

)

(13)

a2 = ea

2

(

zR − zL + r

sin(θ)

)

(14)

A3 = zL

which only depend on the real parameter a.

2.2 Parabolic Profile

For y fixed, the mapping

z(x + iy) = −x2 − 2ix A2(y) + A1(y), x ∈ R, (15)

defines a parabola symmetric with respect to the real axis in the complex plane. In order
to obtain a holomorphic parametrization of the parabola, we impose the Cauchy-Riemann
equations to determine A1 and A2. This yields

A1(y) = y2 + 2a1y + a2,

A2(y) = y + a1,

with real constants a1 and a2. Since the parabolic profile is symmetric with respect to the real
axis we only need of two points in order to determine it uniquely.We proceed by constructing
the conformal mapping

z : R × [−ia, ia] → C

for a certain positive a. Proceeding analogously as for the elliptic profile, we call �le f t =
z(R + ia), this is, the parabola limiting to the left the image by z of the horizontal strip
| Im y| ≤ a. We impose the vertex of �le f t to be the rightmost intersection point of the ε-
pseudospectrum of A, that we call zR , and a further interpolation control point zB = d + ir .
In this way we obtain the uniparametric family of values

a1 = − r

2
√
zR − d

− a, (16)

a2 = zR − a2 − 2aa1, (17)

depending on the free parameter a, which is the band width of the analyticity domain of z.
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2.3 Hyperbolic Profile

As it was done in [18], we set w = x + iy and notice that the function of w

− sin(α + iw) = φ + iψ, with φ,ψ ∈ R,

maps the horizontal line Imw = y into the left branch of the hyperbola

(
φ

sin(α − y)

)2

−
(

ψ

cos(α − y)

)2

= 1,

whose asymptotes are given by φ + iψ with

ψ = ± cot(α − y)φ.

In order to better control the position of the center, the length of the horizontal semi axis
and the angle of the asymptotes, we start here from the more general expression

z(x + iy) = A3(y) − A2(y) sin(A1(y) − y + ix). (18)

After imposing the Cauchy-Riemann equations we actually obtain that A1, A2 and A3 must
be constant with respect to y, leaving a map of the form

z(x + iy) = a3 − a2 sin(a1 − y) cosh x − ia2 cos(a1 − y) sinh x . (19)

Toobtain optimal error estimates,weneed to control the imageof the horizontal strip | Im y| ≤
a under z, which is the region in the complex planed limited by the two branches of hyperbola
z(x − ia) (the one closest and furthest to the left) and z(x + ia), x ∈ R. Similarly to what we
do for the other type of contours, we prescribe z(x − ia), x ∈ R, to be an appropriate critical
hyperbola �le f t , with vertex at zR , center at zC and passing through a third point d + ir . In
this way we obtain

a3 = zC (20)

a3 − a2 sin(a1 + a) = zR ⇒ a2 = zC − zR

sin(a1 + a)

a3 − a2 sin(a1 + a) cosh x = d ⇒ zC − (zC − zR) cosh x = d

−a2 cos(a1 + a) sinh x = r ⇒ −(zC − zR) cot(a1 + a) sinh x = r , (21)

so that

tan(a1 + a) = zR − zC

r

√

cosh2 x − 1 = zR − zC

r

√
(

d − zC

zR − zC

)2

− 1

and

a1 = arctan

(
1

r

√

(d − zC )2 − (zR − zC )2
)

− a. (22)

Equations (22), (21) and (20) give a uniparametric family of solutions for the parameters
a1, a2 and a3, respectively, depending on the width a of the strip of analyticity of the mapping
z. We notice that the orientation we need to invert the Laplace transform is actually the
opposite to the one in (19), as x runs from −∞ to ∞. This is resolved by simply taking the
conjugate of (19) as parametrization.
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3 Roaming Pseudospectral Sets

Weconsider here the case of a parabolic contour. The idea can be extended in a straightforward
way to the elliptic and the hyperbolic contour. We start from an initial internal parabola
uniquely identified by a prescribed interpolation point w = d + ir (together with the vertex
zR , which we consider fixed). Since the parabola is symmetric with respect to the real axis,
we only work with its upper half, with positive imaginary part, and consider a set of M points
zk = φk + iψk , k = 1, . . . , M, on this curve, ordered in such a way that Re zk > Re zk+1.
The parametric form of the inner parabola is

z(x) = −x2 + zR + ir x√
zR − d

, x ∈ R. (23)

Setting as in the previous section z(x) = φ + iψ , with ψ > 0, this means that if we fix the
abscissa φ = Re (z) we obtain

φ = zR − x2 
⇒ x =
√

zR − φ

which uniquely defines the argument of the parametrization x > 0, and consequently

ψ = r x√
zR − d

,

which depends on r and d . We easily obtain

∂ψ

∂d
= xr

2(zR − d)3/2

∂ψ

∂r
= x√

zR − d
.

We discuss two possible approaches and after numerical simulations we have adopted the
second in our code. The idea is that of modifying the interpolation point w = d + ir ,
which determines the parabola (together with the vertex zR , which we consider fixed) by
using variational results for simple singular values. In the sequel we shall make use of the
following classical result on the derivative of a simple eigenvalue (see e.g. [8,17]).

Lemma 1 Let D(t) be a differentiable matrix-valued function in a neighborhood of t0. Let

D(t) = U (t)�(t)V (t)∗ =
∑

i

ui (t)σi (t)vi (t)
∗ (24)

be a smooth (with respect to t) singular value decomposition of the matrix D(t) and σ(t) be
a certain singular value of D(t) converging to a simple singular value σ̂ �= 0 of D0 = D(t0).

If û, v̂ are the associated left and right singular vectors, respectively, the function σ(t) is
differentiable near t = t0 with

σ̇ (t0) = Re
(

û∗ Ḋ0v̂
)

with Ḋ0 = Ḋ(t0). (25)

Proof We have that σ(t)2 is an eigenvalue of D(t)D(t)∗ = U (t)�(t)2U (t)∗.
At t = t0 the left and right eigenvectors associated to σ̂ 2 coincide and are equal to û,

having unit norm. Note that û is a certain column of U (t0) determined by the position of σ̂ 2

in the diagonal matrix �(t0)2.
Then—omitting the ubiquitous dependence on t - by [8, Theorem 6.3.12]we get for t = t0

d

dt
σ 2(t)

∣
∣
∣
t=t0

= 2σ̂ σ̇ (t0) = û∗(Ḋ0D∗
0 + D0 Ḋ∗

0

)

û

û∗û
= 2Re

(

û∗ Ḋ0D
∗
0 û
)

.
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Now using the fact (see (24)) that D∗
0 û = v̂σ̂ we get (25). �

3.1 An Optimal Although Expensive Approach

Differently from what proposed in [6], where both pseudospectral and a weighted version of
pseudospectral level sets were considered, here wewill only consider the weighted ones. This
choice is motivated by the fact that we do not rely anymore on Eigtool for the computation of
pseudospectral level sets. Instead, we will directly compute the value of a weighted version
of the pseudospectrum, which is the one that really matters in the error estimate, see [6,
Theorem 2]. More precisely, we define the weighted ε-pseudospectrum as the set

σε,t (A) =
{

z ∈ C : eRe(z)t
∥
∥
∥(z I − A)−1

∥
∥
∥ ≥ 1

ε

}

, (26)

which is equivalent to

σε,t (A) =
{

z ∈ C : e−Re(z)tσmin

(

z I − A
)

≤ ε
}

. (27)

with σmin

(

z I − A
)

denoting the smallest singular value of z I − A. In particular, we are

interested on the boundary of the weighted ε-pseudospectral level set, this is

∂σε,t (A) =
{

z ∈ C : eRe(z)t
∥
∥
∥(z I − A)−1

∥
∥
∥ = 1

ε

}

. (28)

Note that for t = 0 we recover the standard definition of pseudospectrum and ε-
pseudospectrum.

For a fixed target ε, we impose the set in (28) to lay internal to the parabola. A natural
approach to achieve this goal is defining the functional

F(d, r) = 1

2

M
∑

k=1

(

ε − σ̃k(d, r)
)2

+

where

σ̃k(d, r) = e−Re(zk )tσmin

(

A − zkI
)

, (29)

with zk depending on d and r , and (τ )+ = max{τ, 0}. In this way, values of σ̃k(d, r) which
are larger than ε do not contribute to the functional. The goal is to compute a solution (d, r)
to

min
d,r

F(d, r)

s.t. min
k=1,...,M

σ̃k(d, r) = ε

where - for numerical convenience - the constraint may be treated as a penalization term.
This can be done by computing the gradient of F , where we use Lemma 1. The gradient is
continuous and has the form

G(d, r) =
M
∑

k=1

(ε − σ̃k(d, r))+ Re(iu∗
kvk)

⎛

⎜
⎝

xkr

2(zR − d)3/2
xk√

zR − d

⎞

⎟
⎠ , (30)
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with xk such that z(xk) = zk . Note that Re(zk) does not depend on d and r , see (23). We add
to the functional the penalization term

P(d, r) = 1

2

(

min
k=1,...,M

σ̃k(d, r) − ε

)2

,

whose gradient is obtained in a straightforward way. Then to compute a solution we can
apply any gradient based method for unconstrained optimization to the functional

F(d, r) + cP(d, r),

for a sufficiently large c (in the context of a penalization methodology). The method turns out
to be effective but appears to be computationally expensive due to the fact that at every step
of the gradient descent method we have to compute several singular values and the associated
singular vectors.

3.2 Selecting Points Internal to theWeighted�-Pseudospectrum

A cheaper (and preferred) alternative to the previous method, is obtained by treating the
points {zk} singularly, one after the other. In this way, we start by considering the first point
z1 = φ1 + iψ1 and compute

(A − z1I) = U1�1V1,

setting

σ̃1 = e−Re (z1)t min diag (�1) ,

according to the definition in (29). Then we check the difference δε = ε − σ̃1. If δε ≤ 0 we
proceed by considering z2 and repeating the same steps, otherwise it means that we are inside
the weighted ε-pseudospectrum and therefore we need to update the internal parabola. If we
do not find any zk such that σ̃k < ε, we may consider the point z ∈ {zk}Mk=1 for which the
corresponding σ̃ is minimal and proceed in order to find a closer parabola to the weighted
ε-pseudospectral level set.

The algorithmwe adopt tunes the interpolation pointw = d+ ir , so that the updated curve
is external weighted ε-pseudospectrum of A at z. We indicate by p = p(d, r) a selected point
zk = z(xk) = φk + iψk laying in the wrong weighted pseudospectral level set and write σ̃k
as

σ̃ (d, r) = e−Re(p(d,r))tσmin

(

A − p(d, r)I
)

. (31)

In principle we want to solve the equation

σ̃ (d, r) − ε = 0 w.r.t. r . (32)

It seems natural to fix the parameter d as the mean of the abscissas of the support points zk ,
i.e.

d = 1

M

M
∑

k=1

φk

and solve the scalar equation

σ̃ (d, r) − ε = 0 w.r.t. r . (33)
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Applying Lemma 1 to σ̃ (d, r)- with u and v left and right associated singular vectors - we
get

d

dr
σ̃ (d, r) = −e−Re(p(d,r))t Re(iu∗v) g

with

g = xk√
zR − d

.

In order to accurately compute r such that σ̃ (d, r) = ε we make a few (say m) Newton
iterations

r	+1 = r	 + e−Re(p(d,r	))tσmin
(

A − p(d, r	)I
) − ε

e−Re(p(d,r	))t Re
(

i(u	)∗v	
)

g
, 	 = 1, . . . ,m − 1 (34)

with u	 and v	 singular vectors associated to σmin(A − p(d, r	)I) and r	 the actual ordinate
of the interpolation point w.

Thenwe compute a newparabola,which interpolates d+irm , reparametrize it and compute
a new set of points. Iterating a few times this procedure we compute the desired parabolic
profile.

Remark 2 Since we have 2 free real parameters to determine, d and r , we may consider at
the same time two points z1 and z2 to which correspond values of σ̃ (d, r) smaller than the
target value ε. This would provide a simple variant to the method described above. We would
first determine two points z1 and z2 such that σ̃ j < ε, for j = 1, 2 and then solve equations
(in analogy to (33))

σ̃1(d, r) − ε = 0

σ̃2(d, r) − ε = 0,

with respect to r and d by Newton method. It would be natural to expect that this method
would result into a fewer number of iterations.

4 A Case Study: The 1D Black and Scholes Equation

The well known (deterministic) Black-Scholes equation [3] has the following form:

∂u

∂τ
= 1

2
σ 2s2

∂2u

∂s2
+ rs

∂u

∂s
− ru, s > L, 0 < τ ≤ t, (35)

for L , t given, where the unknown function u(s, τ ) stands for the fair price of the option
when the corresponding asset price at time t − τ is s and t is the maturity time of the option.
Moreover, r ≥ 0, σ > 0 are given constants (representing the interest rate and the volatility,
respectively). In practice, for the sake of numerical approximation, we consider a bounded
spatial domain, setting

L < s < S
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for a sufficiently large S. We take (35) together with the following conditions, typical for the
European call option, cf. [12]:

u(s, 0) = max(0, s − K ),

u(L, τ ) = 0, 0 ≤ τ ≤ t,

u(S, τ ) = S − e−rτ K , 0 ≤ τ ≤ t,

(36)

being K the reference strike price. In this Section we extend the theory developed in [21] for
the 1D convection-diffusion operator

Lu = uxx + ux .

to equation (35). In this way we are able to theoretically determine a region in the complex
plane where the norm of the resolvent of the Black-Scholes differential operator grows
exponentially. This knowledge allows us to use (35) as a benchmark problem to test the new
pseudospectral roaming strategy in Sect. 3. Our goal is to solve (35) with (36) by applying
the Laplace transform method. To do this we first transform the problem to an equivalent one
with homogeneous boundary conditions. This is easily achieved by considering

v(s, τ ) = u(s, τ ) − y(s, τ ),

with

y(s, τ ) = s − L

S − L

(

S − e−rτ K
)

.

The differential equation for v reads

∂v

∂τ
=1

2
σ 2s2

∂2v

∂s2
+rs

∂v

∂s
−rv− s

S−L
re−rτ K+ Lr

S−L
S,s > L, 0 < τ ≤ t, (37)

with initial and boundary data

v(s, 0) = max(0, s − K ) − s − L

S − L
(S − K ) =: v0(s),

v(L, τ ) = 0, 0 ≤ τ ≤ t,

v(S, τ ) = 0, 0 ≤ τ ≤ t,

(38)

We can now apply the Laplace transform to both sides of (37) with respect to τ . This leads
to the following equation for V (s, z), the Laplace transform of v(s, τ ):

V (s, z) = (z I − L)−1
(

v0(s) − sr K

S − L

1

z + r
+ Lr

S − L

1

z

)

,

with L the differential operator for the Black-Scholes problem with homogeneous boundary
conditions.

4.1 Pseudospectra of the Black-Scholes Equation

For our analysis we set L = 1, which is reasonable if S, K >> 1 in (36) and allows to apply
the change of coordinates x = log(s) while keeping the domain bounded. After this change
of variable we obtain the evolution problem ut = Lu, with

Lu = 1

2
σ 2uxx +

(

r − 1

2
σ 2

)

ux − ru, 0 ≤ x ≤ log(S), (39)
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a second order diffusion-convection-reaction differential operator with constant coefficients
on a bounded domain with homogeneous boundary conditions of Dirichlet type. We thus can
compute explicitly the eigenvalues and eigenfunctions of L by applying it to a mapping of
the form ϕ(x) = eαx . In this way, we obtain

Lϕ = (να2 + (r − ν)α − r)eαx = λϕ, with ν = 1

2
σ 2 (40)

and

λ = να2 + (r − ν)α − r . (41)

Then, for each λ real we have two associated values of α, namely

α± = −(r − ν) ± √

(r + ν)2 + 4λν

2ν
. (42)

For any λ and corresponding α+ and α−, the function

φ(x) = eα+x − eα−x

α+ − α−
(43)

satisfies (40) in the interior of [0, log(S)] and the boundary condition at x = 0. It also
satisfies the boundary condition at x = log(S) provided eα+ log(S) = eα− log(S), that is,
(α+ − α−) log(S) = 2πni for some nonzero n ∈ Z. By (42), this amounts to the condition
(log(S)/ν)

√

(r + ν)2 + 4λν = 2πni, and upon squaring we obtain the following eigenval-
ues

λn = −
(
r + ν

2

)2 1

ν
− π2n2ν

log(S)2
, n = 1, 2, 3, ... (44)

Thus�(L) is a discrete set of negative real numbers in the interval (−∞,− 1
4 ). Note that, for

our problem, there are choices of λ for which both α+ and α− lie in the left half-plane and
thus both eα+x and eα−x are decreasing functions. For the eigenfunctions associated to (44),
this occurs with Re(α+) = Re(α−) = − (r−ν)

2ν under the assumption r > ν. More generally,

it occurs if and only if α belongs to the strip B = {α ∈ C : − (r−ν)
ν

≤ Re(α) ≤ 0}, since if
α is one solution of (40), the other is − (r−ν)

ν
− α. The corresponding region in the λ-plane

is the image of B under the function λ = να2 + (r − ν)α − r , which we denote by �:

� =
{

λ ∈ C : λ = να2 + (r − ν)α − r , − (r − ν)

ν
≤ Re(α) ≤ 0

}

. (45)

The “critical parabola” that bounds � is the image of the boundary of B under the same
function, which we can simply represent by

P = {λ ∈ C : λ = να2 + (r − ν)α − r , Re(α) = 0} (46)

since Re(α) = − (r−ν)
ν

maps onto the same parabola as Re(α) = 0. Suppose now that
λ is any complex number in the interior of � so that Re(α+) < 0 and Re(α−) < 0.
Then φ(x) decreases exponentially with x , so if log(S) is reasonably large, the boundary
condition u(log(S)) = 0 is nearly satisfied, with an error of order eμ log(S) = Sμ, where
μ = max{Re(α+),Re(α−)}. Thus φ(x) is nearly an eigenfunction of L, though λ may be
far from any of the exact eigenvalues. Then we can just repeat the arguments and passages of
[21] to get their results. The main difference is that, in our case, we also consider a reaction
term, anyway results of [21] for the convection-diffusion operator can be extended with their
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same procedure to the convection-diffusion-reaction operator. We now state our version of
Theorem 5 of [21] which deal with the Black-Scholes differential operator.

Theorem 3 Let λ be an arbitrary point in the interior of �, with α± and φ(x) defined by
(42) and (43), and write α+ − α− = (1/ν)

√

(r + ν)2 + 4λν = β + iτ . Then

‖(λI − L)−1‖ ∼ ‖φ‖2
φ(log(S))

(47)

If in addition λ /∈ (−∞, − ( r+ν
2

)2 1
ν
], then φ(log(S)) ∼ Sμ/|α+ − α−| and therefore

‖(λI − L)−1‖ ∼ S−μ(β2 + τ 2)1/2‖φ‖2, (48)

where μ = max{Re(α+),Re(α−)} < 0.

This result tells us that the resolvent norm changes exponentially along any vertical line
inside �. Indeed we know, by construction, that the critical parabola is the curve such that
Re(α) = 0 and therefore S−μ = 1, while on the real axis, for Re(λ) sufficiently small the
real part of α− and α+ are the same and equal to − r−ν

2ν , that corresponds to the case where
S−μ is maximized.

4.2 Symmetrizability and a Further Estimate

As done in [21] we can explicitly symmetrize the BS operator L. First let’s define ρ = r−ν
2ν

and u(x) = e−ρxv(x), which implies

u′ = e−ρx (−ρv + v′) ,

u′′ = e−ρx (ρ2v − 2ρv′ + v′′) ,

and therefore

Lu = νu′′ + (r − ν)u′ − ru

= e−ρx [(ρ2v − 2ρv′ + v′′)ν + (−ρv + v′)(r − ν) − rv
]

= e−ρx [ρ2νv − (r − ν)v′ + νv′′ − ρ(r − ν)v + (r − ν)v′ − rv
]

= e−ρx [v′′ν + v(ρ2ν − ρ(r − ν) − r)
]

= e−ρx
[

νv′′ −
(

(r − ν)2

4ν
− r

)

v

]

.

Thus if we define Kv = νv′′ −
(

(r−ν)2

4ν − r
)

v, Mv = e−ρxv(x), then we have

L = MKM−1. (49)

Here K is a self-adjoint operator and M is a diagonal operator with ‖M‖ = 1, ‖M−1‖ =
eρ log(S), and consequently

κ(M) = ‖M‖‖M−1‖ = S
r−ν
2ν . (50)

From here, we follow the analysis in [21] and derive the following bound for the resolvent
norm of Black-Scholes operator.
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Fig. 3 Magnitude of the estimate of the resolvent norm (48) (left) and magnitude of the computed resolvent
norm (right)

Theorem 4 For any d > 0, r > ν and λ ∈ C,

‖(λI − L)−1‖ ≤ S
r−ν
2ν

dist(λ, P)
≤ S

r−ν
2ν

| Im(λ)| . (51)

The discussion done in the previous subsection this theorem suggested that the pseudospectra
level curves of L are bounded approximately by parabolas. On the light of Theorem 4 we
can say that the exponential bound by parabola does not hold as |λ| → 0 but, for any fixed
ε and S, �ε(L) the ε-pseudospectra is contained in a strip of finite (though typically large)
width:

�ε(L) ⊂ {λ ∈ C : | Im(λ)| ≤ ε S
r−ν
2ν }. (52)

4.3 Numerical Validation

We have to keep in mind that the results previously exposed hold for the continuous operator.
Since our aim is to have a numerical validation we have to deal with the discrete version Lh .
The way properties of the pseudospectrum of the discrete operator converge to the properties
of the continuous one is not treated here and, to our knowledge, is an open research problem.
Nevertheless it is reasonable to expect for small h a behaviour close to the one exhibited by
the differential operator. Indeed this is what we observe in Fig. 3 where we set S = 200 and
used 2000 points for the space discretization; the resolvent norm is plotted in a subset of
the � region. The comparison between the magnitude of the resolvent norm estimate (48)
and the resolvent norm of the discrete operator indicates a very similar behaviour of the two
operators. We clearly see that both decrease when approaching the critical parabola and are
maximal close to the real axis.

5 Choice of the Parameters

In [6] error estimates are developed to provide a practical strategy to optimize the elliptical
integration contour andminimize the required number N of quadrature nodes, for a prescribed
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target accuracy. However, the main results in [6], namely Theorems 1 and 2, do not depend
on the specific choice of an ellipse and apply in a straight forward way to the parabolic and
hyperbolic contours we have described in Sect. 2. The steps to determine the integration
contour are thus common for the three types of contours under study and are the following:

1. Compute zL from ez
L t = ε, with ε the working precision.

2. Compute the critical curve�le f t according to Sect. 3. This procedure provides an explicit
parametrization of �le f t , of the form ψ(x), x ∈ R.

3. Compute cmax as the unique value that satisfies Re(�(cmaxπ)) = zL . This gives, accord-
ing to the discussion in Sect. 2:

cmax(a) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, for the ellipse,

1

π

√

zR − zL + a2 + ar√
zR − d

, for the parabola,

1

π
log

(

b +
√

b2 − 1
)

, with

b = (zC−zL ) sin(a1+a)

(zR−zL ) sin(a1)
, for the hyperbola.

(53)

4. Compute a by following the same steps as in [6, Section 3.2]. This requires the identifi-
cation of the right-most point of the external ellipse/parabola/hyperbola, this is

D(a) =

⎧

⎪⎪⎨

⎪⎪⎩

z(−ia) = zL + cosh(2a)(zR − zL)

+ sinh(2a) r
sin(θ)

, for the ellipse,

z(−ia) = a2 − 2a1(a)a + a2(a), for the parabola,
z(ia) = zC − a2(a) sin(a1(a) − a), for the hyperbola,

(54)

where r in the first expression above is the imaginary part of the control point d + ir

from Sect. 2 and θ = arccos
(

d−zL

zR−zL

)

, as in (13) and (14). In order to have a more robust

estimate we take into account the constant Mlef t , named M+ in [6, equation (23)], which
is defined as

Mlef t = 1

2π
max
z∈�̃le f t

∥
∥
∥ezt (z I − A)−1

(

u0 + b̂(z)
)

z′
∥
∥
∥, (55)

where �̃le f t is a suitable restriction of �le f t .
We also consider a different estimate for Mright , named M− in [6, equation (24)], which
is defined as

Mright = 1

2π
max

z∈�̃right

∥
∥
∥ezt (z I − A)−1

(

u0 + b̂(z)
)

z′
∥
∥
∥, (56)

where �̃right is a suitable restriction of �right . Note that Mlef t can be bounded as

Mlef t ≤ 1

2π
max
z∈�̃le f t

eRe(z)t
∥
∥
∥(z I − A)−1

∥
∥
∥

∥
∥
∥

(

u0 + b̂(z)
) ∥
∥
∥|z′| = M̃le f t , (57)

and we can take advantage of the computation done in step 2 for the weighted ε-
pseudospectrum to approximate M̃le f t . Concerning Mright we first assume that the
maximum is reached on zv(a), the vertex of �̃right ; in this way we have

Mright ≤ 1

2π
eD(a)t

∥
∥
∥(zv(a)I − A)−1

∥
∥
∥

∥
∥
∥u0 + b̂ (zv(a))

∥
∥
∥ |z′v(a)| = M̃right . (58)
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Algorithm 1 Numerical algorithm for computing a.

Input: amax , �le f t , M̃le f t , M̃right = 1, a1 = amax , err = 1 and j = 0
Output: a

1: while err ≥ prec do
2: Find a j+1 ∈ [0, amax ] such that a j+1 = argmin f (a), see (60);

3: err = |a j+1−a j |
a j+1 ;

4: if err ≥ prec; then
5: Compute M̃right according (58) and then update f (a);
6: end if
7: j = j + 1;
8: end while

Therefore repeating the calculations of [6, Section 3.2] and including Mlef t and Mright

we have, for a fixed target accuracy tol,

N = c

a

(

log
(

2πcM̃right + π M̃le f t

)

− log (tol)
)

≤cmax(a)

a

(

log
(

2πcmax(a)M̃right + π M̃le f t

)

− log (tol)
)

. (59)

The value of a is then computed byminimizing the right hand side of (59) which requires
an interval of the form a ∈ [amin, amax], with prescribed bounds amin and amax. Clearly
amin has to be set equal to 0 while to determine amax we need a further discussion.
The procedure described above does not take into account the numerical error due to
the conditioning of z I − A, whose effect is also amplified by the multiplication with
the exponential term. This contribution becomes relevant when one wants to reach high
accuracies or has to deal with ill conditioned systems. To keep under control this error we
estimate it on the vertex of the integration profile defined by a = amax. If this is higher
than the required tolerance we reduce amax and we check again until the estimate is
below the required tolerance. Reducing amax has the effect of bringing the vertex profile
closer to the imaginary axis, which reduces the amplification effect of the exponential.
We remand to Sect. 6.3 for the description on how we estimate the numerical error due
to the solution of linear systems. Two aspects are remarkable.

(i) It may be too restrictive to select the first acceptable amax, since we may exclude
some acceptable a. Therefore, we select the value computed in the iteration before
convergence and add a penalization term to (59). This penalization term is based on
the estimation of the numerical error due to the conditioning of z I − A on the vertex
of the integration profile. The new function to minimize becomes

f (a) = cmax(a)

a

(

log
(

2πcmax(a)M̃right + π M̃le f t

)

− log (tol)
)

+ wp(a),(60)

where w is a positive scalar and

p(a) =
{

0 errnumN (a) < tol

1 errnumN (a) ≥ tol
(61)

(ii) We note that evaluating (58) for every a ∈ [amin, amax] is computationally expensive
due to the presence of the resolvent norm.We thus implement the iteration procedure
described in Algorithm 1, which we have observed to convergence in very few iter-
ations (from 2 to 6 depending on which type of contour we use) in all the numerical
tests done.
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Algorithm 2 Numerical algorithm for approximating c, K.

Input: K (1) given, K (0) = K (1) − 2prec, j = 0
Output: c

1: while |K ( j+1) − K ( j)| ≥ prec do

2: Find c( j) such that Re(z(c( j)π)) = 1
t log

(
tol
K ( j)

)

;

3: K ( j+1) = 1
2π ‖û(z(c( j)π))z

′
(c( j)π))‖;

4: j = j + 1;
5: end while

5. Compute a truncation parameter c ≤ cmax. The actual numerical integration is performed
for x ∈ [−cπ, cπ]. The computation of c requires an iterative procedure resumed in
Algorithm 2 and follows precisely [6, Section 3.5], for the three types of integration
contours.

6. Set

N =
⌈ c

a

(

log
(

2πcM̃right + π M̃le f t

)

− log (tol)
)⌉

. (62)

6 Comparison of the Integration Profiles: Numerical Illustrations

In this section we apply the considered contour integral methods to two illustrative problems
arising from finance. The first problem is the Black-Scholes equation, while the second is
the Heston equation. Both models are the same as in [6].

We show the absolute error rather than the relative error in order to check the match with
the target accuracy tol, that is the accuracy we want to reach in the approximation of (5).
Similarly to what has been done in other publications presented in the literature, we compute
the time approximation error for a semidiscretization in space of the PDE. We do not address
here specific estimates of the spatial discretization error, but rely on the referred literature
for every example. We measure the error in time against a reference solution computed by
using the MATLAB function expmv, see [1, Algorithm 3.2].

We also notice that in all our tests we construct the inner curves as explained in Sect. 3,
taking the weighted ε-pseudospectral level set with ε = 10−7.

6.1 Black-Scholes Equation

Following the same strategy adopted in [6,13], we discretize (35) in space on a uniform space
grid of Nh = 2000 points in [L, S] for L = 0, S = 200, by using the classical centered
finite difference scheme. The error associated to the spatial discretization is then O(�x2),
with �x the diameter of the spatial grid, being around 0.001 for our choice of Nh . This can
be observed in Fig. 4, where we consider a reference solution computed with Nh = 2 · 104
spatial nodes and approximated in time by using expmv.

We set r = 0.06, σ = 0.05, and K = 80. We plot the error for a selection of tolerances
for the cases t = 1 (Fig. 5) and t = 10 (Fig. 6). In Fig. 7 we show the selected profiles of
integration for the tolerance tol = 5 · 10−5 at time t = 1 and t = 10. In the pictures we also
highlight, for each profile, the estimated number of quadrature nodes N according to (62),
to reach the target accuracy. All contour methods are effective when applied to the Black-
Scholes test problem. The hyperbolic contour is slightly faster in reaching the target accuracy
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Fig. 4 Error vs number of nodes
for Black-Scholes, t = 1. The
asymptotic value reached
corresponds to the error in space
when Nh = 2000
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for t = 1, while for t = 10 the parabolic contour seems to provide the best results. In Table 1
we report the values of N estimated by (62), which are similar for the three types of contour.
Also, as expected, the estimate returns larger N when a higher accuracy is required. We note
that for t = 10 and tol = 5 · 10−9 the number of estimated quadrature points increases
significantly. This is due to the fact that when considering larger times, the exponential term
may considerably amplify the numerical error introduced by the solution of linear systems.
To avoid this, one has to select integration profiles which lie in a region with small positive
real part; this results in lower value of a and thus in a larger number of quadrature nodes in
order to reach the prescribed accuracy (see (59)).

6.2 Heston Equation

The Heston equation [7] is given by

∂u

∂τ
= 1

2
s2v

∂2u

∂s2
+ ρσ sv

∂2u

∂s∂v
+ 1

2
σ 2v

∂2u

∂v2
+ (rd − r f )s

∂u

∂s
+ κ(η − v)

∂u

∂v
− rdu.(63)

The unknown function u(s, v, τ ) represents the price of a European option when at time t−τ

the corresponding asset price is equal to s and its variance is v. We consider the equation on
the unbounded domain

0 ≤ τ ≤ t, s > 0, v > 0,

where the time t is fixed. The parameters κ > 0, σ > 0, and ρ ∈ [−1, 1] are given.
Moreover Eq. (63) is usually considered under the condition 2κη > σ 2 that is known as the
Feller condition (see [15]). We take equation (63) together with the initial condition

u(s, v, 0) = max(0, s − K ),

where K > 0 is fixed a priori (and represents the strike price of the option), and boundary
condition

u(L, v, τ ) = 0, 0 ≤ τ ≤ t .

For the numerical solution of (63), we need to choose a bounded domain of integration, we
follow [10] for this issue. In particular, we fix two positive constants S, V and we let the two
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Fig. 5 Error vs number of nodes for Black-Scholes, t = 1. Comparison for different values of the tolerance
among the elliptic, parabolic and hyperbolic contours

variables s, v vary in the set

0 ≤ s ≤ S, 0 ≤ v ≤ V .

On the new boundary, we need to add two more conditions (specific for the European call
option),

∂u

∂s
(S, v, τ ) = e−r f τ , 0 ≤ τ ≤ t,

u(s, V , τ ) = se−r f τ , 0 ≤ τ ≤ t,

which are treated analogously to the boundary condition in (36).We use the spatial discretiza-
tion proposed in [10] for k = 1.5, η = 0.04, σ = 0.3, ρ = −0.9, rd = 0.025, r f = 0,
K = 100, L = 0, S = 8K , V = 5. In Fig. 8, we plot the error for a selection of tolerances
for t = 1 and in Fig. 9 we do the same for t = 10. In Fig. 10 we show the selected profiles
of integration for tol = 5 · 10−5 at t = 1 and t = 10.

We obtain similar results for the Heston test problem to the ones reported for the Black-
Scholes problem. The hyperbolic contour is again the fastest one in reaching the target
accuracy for t = 1. For t = 10 elliptic, parabolic and hyperbolic contours show almost the
same behaviour. In Table 2 we report the values of N estimated by (62) and again we do not
observe remarkable differences for the three types of contour.
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Fig. 6 Error vs number of nodes for Black-Scholes, t = 10. Comparison for different values of the tolerance
among the elliptic, parabolic and hyperbolic contours
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Fig. 7 Example of integration profiles for the Black-Scholes problem for tolerance tol = 5 · 10−5 at time
t = 1 (left) and t = 10 (right)
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Table 1 Estimate (62) for the Black-Scholes test problem at time t = 1 and t = 10. Results for the elliptic,
parabolic and hyperbolic profiles

tol N at t = 1 N at t = 10
Ellipse Parabola Hyperbola Ellipse Parabola Hyperbola

5 · 10−3 12 11 13 18 17 18

5 · 10−5 16 15 16 22 21 23

5 · 10−7 20 19 20 28 25 26

5 · 10−9 24 22 24 52 43 49
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Fig. 8 Error vs number of nodes for Heston, t = 1. Comparison for different values of the tolerance among
the elliptic, parabolic and hyperbolic contours

6.3 Extension to the Case of Time Intervals

This situation is particularly important when the time T at which the solution is required
is only known approximately. In this subsection we extend the results in [6, Section 7] to
determine the solution on an entire time window [t0, t1], with

t1 = �t0, � > 1.

Most part of the computational effort in the evaluation of (6) is devoted to the solution of
linear systems with matrices z I − A, for z the quadrature nodes. However this inversion does
not involve the time t , that only appears in the exponential term. Thus, it is of high interest
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Fig. 9 Error vs number of nodes for Heston, t = 10. Comparison for different values of the tolerance among
the elliptic, parabolic and hyperbolic contours
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Fig. 10 Example of integration profiles for the Heston problem for tolerance tol = 5 · 10−5 at time t = 1
(left) and t = 10 (right)
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Table 2 Estimate (62) for the Heston test problem at time t = 1 and t = 10. Results for the elliptic, parabolic
and hyperbolic profiles

tol N at t = 1 N at t = 10
Ellipse Parabola Hyperbola Ellipse Parabola Hyperbola

5 · 10−3 13 12 12 11 10 11

5 · 10−5 17 16 16 15 14 15

5 · 10−7 21 19 19 18 17 18

5 · 10−9 24 23 23 23 21 21

being able to use a unique integration contour on a whole time interval [t0, t1]. This requires
a suitable modification of our strategy to construct the integration contour. We also aim to
determine an acceptable amplitude of the time window.

Concerning the profile of integration, which is uniquely defined by the parameter a, we
start by constructing �le f t as explained in Sect. 3, for t = t0 (lower end of the time interval).
The choice of t0 reflects into the setting of the parameter zL as explained in Sect. 5. An
application of the construction described in Sect. 3 gives the interpolation point d + ir ,
which uniquely defines �le f t . Then we determine a by following the procedure described in
Sect. 5 with t = t1, the upper end of the time interval. We use the profile determined in this
way for all t ∈ [t0, t1].

Despite the fact that, theoretically, the amplitude of the window can be arbitrarily large, we
need to keep into account the role of the exponential term in amplifying the error introduced by
the conditioning of z I −A. We approximate the exact solution u(t) by the linear combination

ĨN = c

Ni

N−1
∑

j=1

ez(xi )t û j z
′(x j ), (64)

where û j = û(z(x j )) + ρ j and ρ j is the error in the numerical solution of the linear system

((z(x j ))I − A)û = u0 + b̂(z(x j )), (65)

for x j our quadrature nodes and with the assumption that the nodes x j , the parametrization
z(x), and its derivative z′(x) are computed exactly. The actual error in our computation is
given by

˜err N = ∣
∣u(t) − ĨN

∣
∣, (66)

that we can estimate in the following way:

ẽrr N =
∣
∣
∣u(t) − c

Ni

N−1
∑

j=1

ez(xi )t û j z
′(x j )

∣
∣
∣ ≤ errT + errN + errnumN , (67)

where errT is the component of the total error due to the truncation of the integral, errN is
the component due to the approximation of the integral by the quadrature rule and finally
errnumN is the component due to the fact that we operate with finite precision arithmetic. This
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last component reads as

errnumN =
∣
∣
∣
∣

c

Ni

N−1
∑

j=1

ez(xi )t (û(z(x j )) − û j )z
′(x j )

∣
∣
∣
∣

≤ cmax

N

N−1
∑

j=1

eRe (z(xi ))t |ρ j ||z′(x j )|. (68)

Therefore, once the integration contour for a time window [t0, t1] is fixed, we can observe
that errnumN does not remain constant but instead changes exponentially with respect to time.
Since we want that ẽrr N ≤ tol for all t ∈ [t0, t1], we need to check that (68) is below tol
at t0 and t1. If so, we proceed with the computation, otherwise we halve the amplitude of the
window by increasing t0 or decreasing t1, depending on which of the two time instants fails
to satisfy the inequality (68) smaller than tol. If for both t0 and t1 (68) is greater than tol we
deduce that the problem is possibly ill conditioned and we suggest to increase tol.

About the truncation parameter c we observe that this value decreases as time increases,
therefore we run Algorithm 2 for t = t0 and we use the computed value of c in t0 for every
t ∈ [t0, t1]. Doing so we expect to have the final error proportional to tol for t = t0 and
smaller than tol when t > t0.

We show few numerical experiments for both Black-Scholes and Heston equations. In
particular, we make the experiments on the intervals [0.1,�0.1] and [1,�1] for � = 10. In
the plots of Figs. 11, 12, 13, 14 we show the numerical results for Black-Scholes and Heston
equations. The target tolerance chosen is tol = 5 ·10−8 for Black-Scholes and tol = 5 ·10−4

for Heston.We also fix zR = 0.06 for both problems.We note that for the Heston problem the
time window [1, 10] has been found to be too large by the procedure previously described,
therefore the initial time was automatically increased. For the Black-Scholes problem a slow-
down in convergence is observed as t increases, we see this phenomena also in the Heston
problem even if in a less remarkable way. This because, as t increases, the truncation value
used c is larger than what should be required to achieve the prescribed tolerance tol. This
results into a smaller error for N large enough but also produces a slower convergence.

7 Implementation and Codes

The aim of this Section is to explain the structure and the main features of the code available
at [20]. We assume that a space discretization is already available and thus we have the
operator A, the Laplace transform of the known term b̂ and the initial solution u0. The code
provided includes three test problems: a classical convection-diffusion problem, the Black
and Scholes model and the Heston model.

7.1 Construction of the Inner Curve and IntegrationMap

The first step is the computation of the inner curve �le f t , as described in Sect. 3; then we
determine the bandwidth of the map a and the truncation parameter c. Concerning�le f t there
are some practical implementation remarks we want to mention.

First, given a discrete problem, we can use operators arising from coarser discretization to
save computational effort in evaluating the pseudospectra. Not so much is known about the
behavior of the pseudospectra as the size of the operator increases. It is reasonable to expect
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Fig. 11 Black-Scholes equation in time interval [0.1, 1], tol = 5 · 10−8, zL = −400, zR = 0.01

a behavior similar to the one of the condition number, i.e. that it increases as size increases.
Therefore the magnitude of pseudospectra is most likely to be underestimated considering
operators of smaller size. Anyway, since we have exponential convergence with respect to
N , it is sufficient to add few nodes to get a final solution under the required accuracy.

Second, we consider the Newton iteration (34). At the beginning of the process it often
happens that the perturbation due to the gradient is such that r	+1 � r	. If this is the case,
we do the following update: r	+1 = r	 + pr	 with p a suitable positive real number chosen
by the user (0.5 in our problems).

Finally let us comment the choice of the set of points {zk}. We define two grids of points,
one finer than the other. We start by computing δε in the coarser grid; if δε ≤ 0 we consider
the successive point in the same coarse grid. Otherwise we pass to the finer one and we
consider points there until δε > 0. This is all implemented in the functions

1. Elliptic_Map,
2. Parabolic_Map,
3. Hyperbolic_Map.

The three functions have the same structure, it only changes the type of contour, therefore
we limit our description to Parabolic_Map.

7.1.1 An Example of Implementation: The Function Parabolic_Map

The following are the input and output arguments:
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Fig. 12 Black-Scholes equation in time interval [1, 10], tol = 5 · 10−8, zL = −40, zR = 0.01

• Input:

1. A the discrete operator;
2. b̂(z) Laplace transform of the known term;
3. u0 initial solution;
4. Ar operator of smaller size than A used to compute the internal curve �le f t ;
5. ε1 target value of the weighted pseudospectral level curve;
6. T time where to evaluate the solution;
7. nX maximum number of points where I compute the pseudospectra;
8. zL minimum real value;
9. zR the internal parabola vertex position;
10. tol accuracy required.

• Output:

1. ap uniquely defines the map, see Sect. 2;
2. c truncation value of the integral, see Sect. 5;
3. a1 and a2 defined in (16) and (17) respectively;
4. N number of nodes required to integrate with accuracy tol.

The structure of the function is reported in Algorithm 3.
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Fig. 13 Heston equation in time interval [0.1, 1], tol = 5 · 10−4, zL = −400, zR = 0.06

Algorithm 3 Parabolic_Map

Input: A, b̂, u0, T , Ar , ε1, t, nX , zL , zR , tol
Output: ap, c, N , a1, a2

1: Construct �le f t according procedure described in Section 3;
2: Compute a by applying Algorithm 1;
3: Compute c by applying Algorithm 2;

7.2 The Integral Approximation

Once the map and the truncation value c are known, the integration related to the numeri-
cal inversion of the Laplace transform can be performed. This is implemented in function
InLa_Quadrature whose structure is reported in Algorithm 4.

The new variables introduced are: u the output vector that contains the nodal values of the
solution at time t and f lag, an input variable that specify which profile of integration has to
be used: f lag = 1 to the elliptic profile, f lag = 2 the parabolic one and finally f lag = 3
the hyperbolic.

7.3 Amplitude of the TimeWindow

In Sect. 6.3 we have established that the amplitude for a time window [t0, t1] is acceptable
if (68) is smaller than tol when evaluated at t0 and t1. To compute (68) we first need to
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Fig. 14 Heston equation in time interval [5.5, 10], tol = 5 · 10−4, zL = −40, zR = 0.06

Algorithm 4 InLa_Quadrature

Input: A, b̂, u0, T , c, zL , N , a1, a2, f lag
Output: u
Use elliptic, parabolic or hyperbolic map z(x) according to f lag;

2: Initialize u = 0;
for j = �N/2� to N − 1 do

4: x j = −cπ + j 2cπN ;

û = (z(x j )I − A)\(b̂(z(xi ) + u0)) ;

6: u = u + ez(x j )T û(x j )z
′(x j ) ;

end for
8: u = 2c

N Im(u);

approximate the error in the numerical solution ρ j , which is not simple since it depends on
many factors: the condition number of matrix A j = z(x j )I − A, the perturbations in the
matrix and in the r.h.s., the stability of the algorithm to solve the linear system and machine
precision of the solver. Assuming the matrix and the r.h.s. are exact, we can approximate ρ j

by means of the residual associated to the solution of the linear system, i.e.

A jρ j = A j (û(z(x j )) − û j ) = b − A j (û j ) = r j , (69)

so that

‖ρ j‖ ≤ ‖A−1
j ‖‖r j‖. (70)

123



22 Page 30 of 31 Journal of Scientific Computing (2021) 89 :22

Expression (70) needs the evaluation of the numerical solution at the nodes x j and the
computation of the smallest non zero singular value of A j . Since κ(A j ) (and ‖A−1

j ‖) may
change significantly when evaluated at different nodes, we can expect that (68) depends only
weakly on N . This fact allows us to use only few nodes to evaluate (68), which results into
a smaller computational effort with respect Algorithm 4. However, the extra computational
effort is justified by the fact that the solution is made available on a continuous time window
with an error below the prescribed accuracy for all t ∈ [t0, t1].

8 Conclusions

In this article we present significant algorithmic developments of the method in [6] for the
approximation of convection-diffusion problems by means of the inverse Laplace transform.
Themain achievements are the extension tomore general quadratic contour curves, the setting
of a novel method to roam pseudospectral level sets - which makes the whole algorithm faster
and independent of the code Eigtool- and the extension of the method to approximate the
solutions to the PDEs at time windows of suitable length to achieve a given target accuracy.
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