The Milnor-Moore theorem for L_{∞} algebras in rational homotopy theory

José Manuel Moreno Fernández ${ }^{1}$

Received: 17 May 2019 / Accepted: 27 July 2021 / Published online: 20 September 2021
© The Author(s) 2021

Abstract

We give a construction of the universal enveloping A_{∞} algebra of a given L_{∞} algebra, alternative to the already existing versions. As applications, we derive a higher homotopy algebras version of the classical Milnor-Moore theorem. This proposes a new A_{∞} model for simply connected rational homotopy types, and uncovers a relationship between the higher order rational Whitehead products in homotopy groups and the Pontryagin-Massey products in the rational loop space homology algebra.

Keywords Universal enveloping algebra \cdot Rational homotopy theory $\cdot A_{\infty}$-algebra \cdot L_{∞}-algebra • Loop space homology • Higher Whitehead products • Massey-Pontryagin products

Mathematics Subject Classification 55P62 16S30 •17B55 16E45 $\cdot 55 \mathrm{~S} 30 \cdot 55 \mathrm{Q} 15$

1 Introduction

The main goal of this paper is to construct a universal enveloping A_{∞} algebra for a given L_{∞} algebra, alternative to the already existing versions [3,15], and to study some consequences of such a structure in rational homotopy theory.

Let L be an L_{∞} algebra. In Def. 1, we introduce the universal enveloping A_{∞} algebra $U_{t}(L)$. It is isomorphic to the free symmetric algebra $S L$ on L as a graded vector space, and arises from a homotopy transfer process. For dg Lie algebras, $U_{t}(L)$ coincides with the classical dg associative envelope $U L$. To motivate the definition of U_{t}, we first prove the following result (Thm. 2(i)).
Theorem A Let L and UL be a dg Lie algebra and its classical universal enveloping dg associative algebra, respectively. Fix a contraction from L onto $H=H_{*}(L)$, and denote by

[^0][^1]$\left\{\ell_{n}\right\}$ the induced L_{∞} structure on H. Then, there is an explicit contraction from $U L$ onto $S H$, so that denoting by $\left\{m_{n}\right\}$ the induced A_{∞} algebra structure on $S H$, the antisymmetrization $\left\{m_{n}^{\mathcal{L}}\right\}$ of $\left\{m_{n}\right\}$ fits into a strict L_{∞} embedding
$$
\imath:\left(H,\left\{\ell_{n}\right\}\right) \hookrightarrow\left(S H,\left\{m_{n}^{\mathcal{L}}\right\}\right) .
$$

That is, for every homogeneous $x_{i} \in H$,

$$
\imath \ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}\right)=m_{n}^{\mathcal{L}}\left(x_{1}, \ldots, x_{n}\right)
$$

The result above covers the case in which L is a minimal L_{∞} algebra, since any such can be obtained as a contraction of the dg Lie algebra $\mathcal{L C}(L)$. In general, $U_{t}(L)$ is defined as $S L$ together with an A_{∞} structure inherited from a contraction from $\Omega \mathcal{C}(L)$ onto $S L$. Here, \mathcal{C} are the Quillen chains, Ω the cobar construction, and \mathcal{L} Quillen's Lie functor. See Sect. 2 for details.

The original motivation for introducing the envelope we present was for extending the classical Milnor-Moore theorem [24] to L_{∞} algebras in the rational setting. This is Thm. 3 .

Theorem B Let X be a simply connected CW-complex. Endow $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ with an L_{∞} structure $\left\{\ell_{n}\right\}$ representing the rational homotopy type of X for which $\ell_{1}=0$ and $\ell_{2}=[-,-]$ is the Samelson bracket. Then, there is an A_{∞} algebra structure $\left\{m_{n}\right\}$ on the loop space homology algebra $H_{*}(\Omega X ; \mathbb{Q})$ for which $m_{1}=0, m_{2}$ is the Pontryagin product, and such that the rational Hurewicz morphism

$$
h: \pi_{*}(\Omega X) \otimes \mathbb{Q} \hookrightarrow H_{*}(\Omega X ; \mathbb{Q})=U_{t}\left(\pi_{*}(\Omega X) \otimes \mathbb{Q}\right)
$$

is a strict L_{∞} embedding. Therefore, the L_{∞} structure on the rational homotopy Lie algebra is the antisymmetrized of the A_{∞} structure on $H_{*}(\Omega X ; \mathbb{Q})$:

$$
\ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

Thm. B produces a new A_{∞} model for simply connected rational homotopy types, with underlying Hopf algebra $H_{*}(\Omega X ; \mathbb{Q})$. For finite type rational spaces, this enveloping A_{∞} algebra model can be understood as an Eckmann-Hilton or Koszul dual to Kadeishvili's C_{∞} algebra model [14], the latter starting from cohomology instead of homotopy. We explain in Sect. 4.2 how to explicitly extract the Quillen and Sullivan models from such an enveloping A_{∞} model. We also uncover an interesting relationship between the higher order rational Whitehead products on $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ and the higher order Pontryagin-Massey products of $H_{*}(\Omega X ; \mathbb{Q})$ of simply connected spaces: the former are antisymmetrizations of the latter, whenever these are defined. This is Thm. 4. In it, h is the rational Hurewicz morphism.

Theorem C Let $x_{1}, \ldots, x_{n} \in \pi_{*}(\Omega X) \otimes \mathbb{Q}$, and denote by $y_{k}=h\left(x_{k}\right) \in H_{*}(\Omega X ; \mathbb{Q})$ the corresponding spherical classes. Assume that the higher Whitehead product set $\left[x_{1}, \ldots, x_{n}\right]_{W}$ and the higher Massey-Pontryagin products sets $\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle$ for every permutation $\sigma \in S_{n}$ are defined. If the A_{∞} algebra structure $\left\{m_{i}\right\}$ on $H_{*}(\Omega X ; \mathbb{Q})$ provided by Theorem B has vanishing m_{k} for $k \leq n-2$, then $x=\varepsilon \ell_{n}\left(x_{1}, \ldots, x_{n}\right) \in\left[x_{1}, \ldots, x_{n}\right]_{W}$, and satisfies:

$$
h(x) \in \sum_{\sigma \in S_{n}} \chi(\sigma)\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle .
$$

Here, ε is the parity of $\sum_{j=1}^{n-1}\left|x_{j}\right|(k-j)$. If moreover the secondary higher products are all uniquely defined, then the above containment is an equality of elements.

The parity of an integer α is the number $(-1)^{\alpha}$; this will be used at several later places. The Massey-Pontryagin products should not be confused with the classical Massey products, see Sect. 4.3 for details.

We study the homotopical properties of the envelope U_{t}, and we compare it to other alternatives in the literature in Sect. 3. These alternative constructions have been developed by Lada and Markl [15] and by Baranovsky [3]. See Prop. 1 for a recollection of our statements. In particular, the classical identity $U H=H U$, asserting that taking homology and universal enveloping algebra commute, holds only up to homotopy for the enveloping A_{∞} algebras that we consider, and U_{t} is quasi-isomorphic to Baranovsky's construction.

1.1 Background and notation

In this paper, graded objects are always taken over \mathbb{Z} with homological grading (differentials lower the degree by 1). The degree of an element x is denoted by $|x|$, and all algebraic structures are considered over a characteristic zero field.

An A_{∞} algebra is a graded vector space $A=\left\{A_{n}\right\}_{n \in \mathbb{Z}}$ together with linear maps m_{k} : $A^{\otimes k} \rightarrow A$ of degree $k-2$, for $k \geq 1$, satisfying the Stasheff identities for every $i \geq 1$:

$$
\sum_{k=1}^{i} \sum_{n=0}^{i-k}(-1)^{k+n+k n} m_{i-k+1}\left(\mathrm{id}^{\otimes n} \otimes m_{k} \otimes \mathrm{id}^{\otimes i-k-n}\right)=0
$$

A differential graded algebra (DGA), is an A_{∞} algebra for which $m_{k}=0$ for $k \geq 3$. An A_{∞} algebra is minimal if $m_{1}=0$. An A_{∞} morphism $f: A \rightarrow B$ is a family of linear maps $f_{k}: A^{\otimes k} \rightarrow B$ of degree $k-1$ such that the following equation holds for every $i \geq 1$:

$$
\sum_{\substack{i=r+s+t \\ s \geq 1 \\ r, t \geq 0}}(-1)^{r+s t} f_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=\sum_{\substack{1 \leq r \leq i \\ i=i_{1}+\cdots+i_{r}}}(-1)^{\alpha} m_{r}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{r}}\right)
$$

with $\alpha=\sum_{\ell=1}^{r-1} \ell\left(i_{r-\ell}-1\right)$. Such an f is an A_{∞} quasi-isomorphism if $f_{1}:\left(A, m_{1}\right) \rightarrow$ ($A^{\prime}, m_{1}^{\prime}$) is a quasi-isomorphism of complexes. The bar construction $B A$ of an A_{∞} algebra A is the differential graded coalgebra (DGC, henceforth)

$$
B A=(T(s A), \delta),
$$

where $T(s A)$ is the tensor coalgebra on the suspension $s A$ of A (i.e., $(s A)_{p}=A_{p-1}$), and $\delta=\sum_{k \geq 1} \delta_{k}$ is the codifferential such that

$$
\delta_{k}\left[s x_{1}|\cdots| s x_{p}\right]=\sum_{i=0}^{p-k+1} \varepsilon_{i}\left[s x_{1}|\cdots| s x_{i}\left|s m_{k+1}\left(x_{i+1}, \ldots, x_{i+k+1}\right)\right| \cdots \mid s x_{p}\right],
$$

where ε_{i} is the parity of

$$
1+\sum_{j=1}^{i}\left|s x_{j}\right|+\sum_{l=1}^{k+1}(k+1-j)\left|s x_{i+l}\right| .
$$

The bar construction turns A_{∞} morphisms $A \rightarrow C$ into DGC morphisms $B A \rightarrow B C$, and preserves quasi-isomorphisms [16]. The cobar construction ΩC of a coaugmented DGC C is the augmented DGA

$$
\Omega C=\left(T\left(s^{-1} \bar{C}\right), d\right),
$$

where $T\left(s^{-1} \bar{C}\right)$ is the tensor algebra on the desuspension $s^{-1} \bar{C}$ of the cokernel $\bar{C}=$ $\operatorname{coKer}\left(\mathbb{K} \rightarrow C\right.$) of the coaugmentation $\mathbb{K} \rightarrow C$ (i.e., $\left.\left(s^{-1} \bar{C}\right)_{p}=\bar{C}_{p+1}\right)$, and $d=d_{1}+d_{2}$ is the differential determined by

$$
d_{1}\left(s^{-1} x\right)=-s^{-1} \delta x, \quad d_{2}\left(s^{-1} x\right)=\sum_{i}(-1)^{\left|x_{i}\right|} s^{-1} x_{i} \otimes s^{-1} y_{i},
$$

where δ is the codifferential of C and $\sum_{i} x_{i} \otimes y_{i}=\Delta(x)-(1 \otimes x+x \otimes 1)$ is the reduced comultiplication of x. The cobar construction extends to A_{∞} coalgebras, but we will not need such a generality in this paper.

An L_{∞} algebra is a graded vector space $L=\left\{L_{n}\right\}_{n \in \mathbb{Z}}$ together with skew-symmetric linear maps $\ell_{k}: L^{\otimes k} \rightarrow L$ of degree $k-2$, for $k \geq 1$, satisfying the generalized Jacobi identities for every $n \geq 1$:
$\sum_{i+j=n+1} \sum_{\sigma \in S(i, n-i)} \varepsilon(\sigma) \operatorname{sgn}(\sigma)(-1)^{i(j-1)} \ell_{j}\left(\ell_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)=0$.
Here, $S(i, n-i)$ are the $(i, n-i)$ shuffles, given by those permutations σ of n elements such that

$$
\sigma(1)<\cdots<\sigma(i) \quad \text { and } \quad \sigma(i+1)<\cdots<\sigma(n),
$$

$\varepsilon(\sigma)$ stands for the Koszul sign associated to σ and the elements x_{1}, \ldots, x_{n}, and $\operatorname{sgn}(\sigma)$ stands for the signature associated to σ. A differential graded Lie algebra (DGL) is an L_{∞} algebra L for which $\ell_{k}=0$ for $k \geq 3$.

An L_{∞} algebra is minimal if $\ell_{1}=0$. An L_{∞} morphism $f: L \rightarrow L^{\prime}$ is a family of skewsymmetric linear maps $\left\{f_{n}: L^{\otimes n} \rightarrow L^{\prime}\right\}$ of degree $n-1$ such that the following equation is satisfied for every $n \geq 1$:

$$
\begin{gathered}
\sum_{i+j=n+1} \sum_{\sigma \in S(i, n-i)} \varepsilon(\sigma) \operatorname{sgn}(\sigma)(-1)^{i(j-1)} f_{j}\left(\ell_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)= \\
\sum_{\substack{k \geq 1 \\
i_{1}+\cdots+i_{k}=n \\
\tau \in S\left(i_{1}, \ldots, i_{k}\right)}} \varepsilon(\sigma) \operatorname{sgn}(\sigma) \varepsilon_{k} \ell_{k}^{\prime}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{k}}\right)\left(x_{\tau(1)} \otimes \cdots \otimes x_{\tau(n)}\right),
\end{gathered}
$$

with ε_{k} being the parity of $\sum_{l=1}^{k-1}(k-l)\left(i_{l}-1\right)$. Such an f is an L_{∞} quasi-isomorphism if $f_{1}:\left(L, \ell_{1}\right) \rightarrow\left(L^{\prime}, \ell_{1}^{\prime}\right)$ is a quasi-isomorphism of complexes. The Quillen chains $\mathcal{C}(L)$ of an L_{∞} algebra is the equivalent cocommutative DGC (CDGC, henceforth)

$$
\mathcal{C}(L)=(\Lambda s L, \delta),
$$

where $\Lambda s L$ is the cofree conilpotent cocommutative graded coalgebra on the suspension $s L$ of L, and $\delta=\sum_{k \geq 1} \delta_{k}$ is the codifferential whose correstrictions are determined by the L_{∞} structure maps, i.e.,

$$
\begin{equation*}
\delta_{k}\left(s x_{1} \wedge \ldots \wedge s x_{p}\right)=\sum_{i_{1}<\cdots<i_{k}} \varepsilon s \ell_{k}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \wedge s x_{1} \wedge \ldots \widehat{s x}_{i_{1}} \ldots \widehat{s x}_{i_{k}} \ldots \wedge s x_{p} . \tag{1}
\end{equation*}
$$

The $\operatorname{sign} \varepsilon$ is determined by the Koszul sign rule.
A morphism $f=\left\{f_{k}\right\}$ of A_{∞} or L_{∞} algebras is strict if $f_{k}=0$ for all $k \geq 2$.
The Quillen functor $\mathcal{L}(C)$ on a coaugmented CDGC C is the DGL

$$
\mathcal{L}(C)=\left(\mathbb{L}\left(s^{-1} \bar{C}\right), \partial\right),
$$

where $\mathbb{L}\left(s^{-1} \bar{C}\right)$ is the free graded Lie algebra on the desuspension $s^{-1} \bar{C}$ of the cokernel of the coaugmentation, $\bar{C}=\operatorname{coKer}(\mathbb{K} \rightarrow C)$, and $\partial=\partial_{1}+\partial_{2}$ is the differential determined by

$$
\begin{equation*}
\partial_{1}\left(s^{-1} x\right)=-s^{-1} \delta(x), \quad \partial_{2}\left(s^{-1} x\right)=\frac{1}{2} \sum_{i}(-1)^{\left|x_{i}\right|}\left[s^{-1} x_{i}, s^{-1} y_{i}\right], \tag{2}
\end{equation*}
$$

where δ is the codifferential of C and $\sum_{i} x_{i} \otimes y_{i}$ is the reduced comultiplication of x.
There is an antisymmetrization functor $(-)^{\mathcal{L}}$ from the category of A_{∞} algebras to that of L_{∞} algebras which preserves quasi-isomorphisms [15]. For a given A_{∞} algebra ($A,\left\{m_{n}\right\}$), its antisymmetrization $A^{\mathcal{L}}$ has the same underlying graded vector space and higher brackets ℓ_{n} given by

$$
\ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}\right) .
$$

Here, S_{n} is the symmetric group on n letters, and we shorten the notation by $\chi(\sigma)=$ $\varepsilon(\sigma) \operatorname{sgn}(\sigma)$ for $\sigma \in S_{n}$. We will usually denote the higher brackets ℓ_{n} of $A^{\mathcal{L}}$ by $m_{n}^{\mathcal{L}}$.

A contraction of M onto N is a diagram of the form

$$
K \subset M \underset{i}{\stackrel{q}{\leftrightarrows}} N,
$$

where M and N are chain complexes and q and i are chain maps such that $q i=\mathrm{id}_{N}$ and $i q \simeq i d_{M}$ via a chain homotopy K satisfying $K^{2}=K i=q K=0$. We denote it by (M, N, i, q, K), or simply by (i, q, K).

Following [18, Def. 2.3], a morphism of contractions $f:(M, N, i, q, K) \rightarrow$ (A, B, j, p, G) is a chain map $f: M \rightarrow A$ such that $f K=G f$. Denote by $\widehat{f}: N \rightarrow B$ the chain map $\widehat{f}=p f i$. Using that $i q \simeq \mathrm{id}_{M}$, it follows that in presence of a morphism of contractions $f: M \rightarrow A$, the squares in the following diagram commute:

That is, $p f=\widehat{f} q$ and $f i=j \widehat{f}$.
We will be concerned with the following particular instance of the homotopy transfer theorem. A proof for this result will not be given here, it can be found in [5,12,13,16,18,23].

Theorem 1 Let (M, N, i, q, K) be a contraction.

1. If $M=\left(A,\left\{\mu_{n}\right\}\right)$ is an A_{∞} algebra, then there exists an A_{∞} algebra structure $\left\{m_{n}\right\}$ on N, unique up to isomorphism, and A_{∞} algebra quasi-isomorphisms

$$
Q:\left(A,\left\{\mu_{n}\right\}\right) \rightleftarrows\left(N,\left\{m_{n}\right\}\right): I
$$

such that $I_{1}=i, Q_{1}=q$ and $Q I=\mathrm{id}_{N}$.
2. If $M=\left(L,\left\{\vartheta_{n}\right\}\right)$ is an L_{∞} algebra, then there exists an L_{∞} algebra structure $\left\{\ell_{n}\right\}$ on N, unique up to isomorphism, and L_{∞} algebra quasi-isomorphisms

$$
Q:\left(L,\left\{\vartheta_{n}\right\}\right) \rightleftarrows\left(N,\left\{\ell_{n}\right\}\right): I
$$

such that $I_{1}=i, Q_{1}=q$ and $Q I=\mathrm{id}_{N}$.
The maps involved in the higher structure of Theorem 1 can be described in several ways. An explanation of the role played by each of the maps we give below and why the given formulation works is out of the scope of this paper, a good reference for that is for instance [5, Section 12].

We will consistently use the following convention for the rest of the paper: contractions for L_{∞} algebras will be denoted by (i, q, K), whereas contractions for A_{∞} algebras will be denoted by (j, p, G). The capital letters I, Q or J, P will stand for the corresponding induced infinity quasi-isomorphisms extending i, q or j, p, respectively.

If (j, p, G) is a contraction from A onto N, then the higher multiplications $\left\{m_{n}\right\}$ on N and the terms $\left\{J_{n}\right\}$ of the A_{∞} quasi-isomorphism J are recursively given as follows. Formally, set $G \lambda_{1}=-j$, and define $\lambda_{n}: N^{\otimes n} \rightarrow A$ for $n \geq 2$ recursively by

$$
\lambda_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=2}^{n} m_{k}\left(\sum_{i_{1}+\cdots+i_{k}=n}(-1)^{\alpha\left(i_{1}, \ldots, i_{k}\right)} G \lambda_{i_{1}} \otimes \cdots \otimes G \lambda_{i_{k}}\right)\left(x_{1} \otimes \cdots \otimes x_{n}\right) .
$$

Here, $\alpha\left(i_{1}, \ldots, i_{k}\right)=\sum_{j<k} i_{j}\left(i_{k}-1\right)$, see [5, §12]. Then,

$$
m_{n}=p \circ \lambda_{n} \quad \text { and } \quad J_{n}=G \circ \lambda_{n} \quad \text { for all } n \geq 2 .
$$

Similarly, if (i, q, K) is a contraction of L onto N, then the higher brackets $\left\{\ell_{n}\right\}$ and the Taylor series $\left\{I_{n}\right\}$ of the L_{∞} quasi-isomorphism I are recursively given as follows. Formally, set $K \theta_{1}=-i$, and define $\theta_{n}: N^{\otimes n} \rightarrow L$ for $n \geq 2$ recursively by

$$
\begin{aligned}
& \theta_{n}\left(x_{1}, \ldots, x_{n}\right) \\
& = \\
& \sum_{k=2}^{n} \sum_{\substack{i_{1}+\ldots+i_{k}=n \\
i_{1} \leq \cdots \leq i_{k}}} \sum_{\widetilde{S}\left(i_{1}, \ldots, i_{k}\right)}(-1)^{\varepsilon_{\sigma}} \\
& \quad \ell_{k}\left(I_{i_{1}}\left(x_{\sigma(1)}, \ldots, x_{\sigma\left(i_{1}\right)}\right), \ldots, I_{i_{k}}\left(x_{\sigma\left(i_{k-1}+1\right)}, \ldots, x_{\sigma(n)}\right)\right) .
\end{aligned}
$$

In the equation above, $\widetilde{S}\left(i_{1}, \ldots, i_{k}\right)$ are the $\left(i_{1}, \ldots, i_{k}\right)$-shuffle permutations of the symmetric group S_{n}, whose elements are those $\sigma \in S_{n}$ such that $\sigma(1)=1$, and

$$
\sigma(1)<\cdots<\sigma\left(i_{1}\right), \quad \sigma\left(i_{1}+1\right)<\cdots<\sigma\left(i_{2}\right), \quad \ldots, \quad \sigma\left(i_{k-1}+1\right)<\cdots<\sigma(n)
$$

The sign ε_{σ} is determined by the Koszul convention. Then,

$$
\ell_{n}=q \circ \theta_{n} \quad \text { and } \quad I_{n}=K \circ \theta_{n} \quad \text { for all } n \geq 2
$$

2 The universal enveloping A_{∞} algebra as a transfer

We produce the universal enveloping A_{∞} algebra of a given L_{∞} algebra via a transfer process. To do so, we start by showing (Thm. 2) that the classical adjoint pair

$$
U: \mathrm{DGL} \leftrightarrows \mathrm{DGA}:(-)^{\mathcal{L}}
$$

commutes with the transfer of higher structure. See [9, Chap. 21] for a careful exposition of the adjoint pair above. After the proof of Thm. 2, we explain how to produce such a universal envelope, which turns out to coincide with Baranovsky's construction [3] up to homotopy.

Theorem 2 Let L and U L be a DGL and its classical universal enveloping DGA, respectively. Fix a contraction from L onto $H=H_{*}(L)$, and denote by $\left\{\ell_{n}\right\}$ the induced L_{∞} structure on H. Then, there is an explicit contraction from $U L$ onto $S H$, so that denoting by $\left\{m_{n}\right\}$ the induced A_{∞} algebra structure on $S H$:
(i) The antisymmetrization $\left\{m_{n}^{\mathcal{L}}\right\}$ of $\left\{m_{n}\right\}$ fits into a strict L_{∞} embedding

$$
\iota:\left(H,\left\{\ell_{n}\right\}\right) \hookrightarrow\left(S H,\left\{m_{n}^{\mathcal{L}}\right\}\right)
$$

that is, for every homogeneous $x_{i} \in H$,

$$
\ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}\right)=m_{n}^{\mathcal{L}}\left(x_{1}, \ldots, x_{n}\right) .
$$

(ii) The A_{∞} algebra $\left(S H,\left\{m_{n}^{\mathcal{L}}\right\}\right)$ is isomorphic to Baranovsky's enveloping construction on $\left(H,\left\{\ell_{n}\right\}\right)$.

The map $\imath: H \hookrightarrow S H$ above is an L_{∞} version of a PBW map $L \hookrightarrow U L$. The proof of Thm. 2 relies on the following lemma, which is elementary but interesting in itself. It will be relevant for the enveloping A_{∞} algebra as a transferred structure (Def. 1).

Lemma $1 \operatorname{Let}\left(A,\left\{\mu_{n}\right\}\right)$ and $\left(L,\left\{\vartheta_{n}\right\}\right)$ be an A_{∞} and an L_{∞} algebra, and assume that there are contractions of A and of L onto complexes $\left(M_{A}, d\right)$ and $\left(M_{L}, \partial\right)$, respectively:

$$
G \subset A \underset{j}{\stackrel{p}{\rightleftarrows}} M_{A} \quad K \subset L \underset{i}{\stackrel{q}{\rightleftarrows}} M_{L}
$$

If there is a morphism of contractions $f: L \rightarrow A$ which is a strict L_{∞} morphism for the antisymmetrization of the A_{∞} algebra structure $\left\{\mu_{n}\right\}$, then the recursive formulas $\left\{\theta_{n}\right\}$ for transferring the L_{∞} structure on M_{L} map to the antisymmetrization of those $\left\{\lambda_{n}\right\}$ for transferring the A_{∞} structure on M_{A}. More precisely, for any $n \geq 1$ and given homogeneous $x_{1}, \ldots, x_{n} \in M_{L}$,

$$
\begin{equation*}
f \theta_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) \lambda_{n}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right) . \tag{3}
\end{equation*}
$$

Therefore, the higher brackets are the antisymmetrization of the higher multiplications:

$$
\begin{equation*}
\widehat{f} \ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right), \tag{4}
\end{equation*}
$$

the terms of the induced L_{∞} quasi-isomorphisms $I: M_{L} \rightarrow L$ are the antisymmetrization of the terms of the A_{∞} quasi-isomorphism $J: M_{A} \rightarrow A$:

$$
\begin{equation*}
f I_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) J_{n}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right), \tag{5}
\end{equation*}
$$

and $\widehat{f}: M_{L} \rightarrow M_{A}$ is a strict L_{∞} morphism for the antisymmetrization of $\left\{m_{n}\right\}$.
Remark 1 The analog of Lemma 1 for a morphism of contractions $g: A \rightarrow L$ which is a strict L_{∞} morphism for the antisymmetrization of the A_{∞} algebra structure on A also holds.

Proof of Lemma 1 For clarity of exposition, we prove the case in which $A=(A, d)$ is a DGA and $M_{A}=(H A, 0)$ is its homology endowed with the trivial differential; and similarly $L=(L, \partial)$ is a DGL and $M_{L}=(H L, 0)$. The general case follows exactly the same proof,
but with more involved formulas that do not give any additional insight. The multiplication map of A will be denoted by m. We prove equation (3) by induction on n, and deduce at each inductive step the corresponding equation for (4) and for (5).

Let $n=2$. Use, in the order given, the definition of θ_{2}, that f is a Lie map for the brackets involved, that $f i=j \widehat{f}$, and recognize the recursive formula for λ_{2} :

$$
\begin{aligned}
f \theta_{2}\left(x_{1}, x_{2}\right) & =f\left[i\left(x_{1}\right), i\left(x_{2}\right)\right]=\left[f i\left(x_{1}\right), f i\left(x_{2}\right)\right]=\left[j \widehat{f}\left(x_{1}\right), j \widehat{f}\left(x_{2}\right)\right] \\
& =m\left(j \widehat{f}\left(x_{1}\right) \otimes j \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} j \widehat{f}\left(x_{2}\right) \otimes j \widehat{f}\left(x_{1}\right)\right) \\
& =(m \circ j \otimes j)\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) \\
& =\lambda_{2}\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) .
\end{aligned}
$$

Equation (3) is therefore proven. Using that f is a morphism of contractions, and the proof of the case $n=2$ above, we can easily prove equations (4) and (5):

$$
\begin{aligned}
\widehat{f} \ell_{2}\left(x_{1}, x_{2}\right) & =\widehat{f} q \theta_{2}\left(x_{1}, x_{2}\right)=p f \theta_{2}\left(x_{1}, x_{2}\right) \\
& =p \lambda_{2}\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) \\
& =m_{2}\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) ; \\
f I_{2}\left(x_{1}, x_{2}\right) & =f k \theta_{2}\left(x_{1}, x_{2}\right)=G f \theta_{2}\left(x_{1}, x_{2}\right) \\
& =G \lambda_{2}\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) \\
& =J_{2}\left(\widehat{f}\left(x_{1}\right) \otimes \widehat{f}\left(x_{2}\right)-(-1)^{\left|x_{1}\right|\left|x_{2}\right|} \widehat{f}\left(x_{2}\right) \otimes \widehat{f}\left(x_{1}\right)\right) .
\end{aligned}
$$

Assume next that for every $p \leq n-1$, Eq. (3) holds. Then, (4) and (5) also hold for $p \leq n-1$, which follows from a manipulation identical to the one done for the case $n=2$. Let us prove that equation (3) holds for $p=n$, and then also Eqs. (4) and (5) for $p=n$ are straightforward consequence of f being a morphism of contractions and the just proven case n of Eq. 3. To lighten notation, we write $\chi(\sigma):=\varepsilon(\sigma) \operatorname{sgn}(\sigma)$ for any given permutation σ.

Use, in the order given: the definition of θ_{n}, that f is a Lie map for the brackets involved, the identity $f i=j \widehat{f}$ and the induction hypothesis, and rearrange the permutations accordingly, to end up with the recursive formula of λ_{n} evaluated at the desired elements:

$$
\begin{aligned}
f \theta_{n} & \left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{s=1}^{n-1} \sum_{\sigma \in S(s, n-s)} \varepsilon(\sigma) f\left[I_{s}\left(x_{\sigma(1)}, \ldots, x_{\sigma(s)}\right), I_{n-s}\left(x_{\sigma(s+1)}, \ldots, x_{\sigma(n)}\right)\right] \\
= & \sum_{s=1}^{n-1} \sum_{\sigma \in S(s, n-s)} \varepsilon(\sigma)\left[f I_{s}\left(x_{\sigma(1)}, \ldots, x_{\sigma(s)}\right), f I_{n-s}\left(x_{\sigma(s+1)}, \ldots, x_{\sigma(n)}\right)\right] \\
= & \sum_{s=1}^{n-1} \sum_{\sigma \in S(s, n-s)} \varepsilon(\sigma)\left[J_{s}\left(\sum_{\tau \in S_{s}} \chi(\tau) \widehat{f}\left(x_{\tau \sigma(1)}\right) \otimes \cdots \otimes \widehat{f}\left(x_{\tau \sigma(s)}\right)\right), J_{n-s}\right. \\
& \times\left(\sum_{\rho \in S_{n-s}} \chi(\rho) \widehat{f}\left(x_{\rho \sigma(s+1)}\right) \otimes \cdots \otimes \widehat{f}\left(x_{\rho \sigma(n))}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{s=1}^{n-1} \sum_{\sigma \in S(s, n-s)} \sum_{\substack{\tau \in S_{s} \\
\rho \in S_{n-s}}} \varepsilon(\sigma) \chi(\tau) \chi(\rho) \\
& \times\left[J_{s}\left(\widehat{f}\left(x_{\tau \sigma(1)}\right), \ldots, f\left(x_{\tau \sigma(s)}\right)\right), J_{n-s}\left(\widehat{f}\left(x_{\rho \sigma(s+1)}\right), \ldots, \widehat{f}\left(x_{\rho \sigma(n)}\right)\right)\right] \\
&= \sum_{s=1}^{n-1} \sum_{\sigma \in S_{n}}(-1)^{s+1} \chi(\sigma)\left[J_{s}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(s)}\right)\right), J_{n-s}\left(\widehat{f}\left(x_{\sigma(s+1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right)\right] \\
&= m\left(\sum _ { s = 1 } ^ { n - 1 } \sum _ { \sigma \in S _ { n } } (- 1) ^ { s + 1 } \chi (\sigma) \left(J_{s}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(s)}\right)\right) \otimes J_{n-s}\left(\widehat{f}\left(x_{\sigma(s+1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right)\right.\right. \\
&\left.\quad-(-1)^{\alpha} J_{n-s}\left(\widehat{f}\left(x_{\sigma(s+1)}\right), \ldots, \widehat{f}\left(x_{\sigma(n)}\right)\right) \otimes J_{s}\left(\widehat{f}\left(x_{\sigma(1)}\right), \ldots, \widehat{f}\left(x_{\sigma(s)}\right)\right)\right) \\
&= \lambda_{n}\left(\sum_{\sigma \in S_{n}} \chi(\sigma) \widehat{f}\left(x_{\sigma(1)}\right) \otimes \cdots \otimes \widehat{f}\left(x_{\sigma(n)}\right)\right) .
\end{aligned}
$$

Proof of Theorem 2 To prove (i), we show that fixed a contraction of L onto $H L$, one can choose a contraction of $U L$ onto its homology $H U L \cong U H L \cong S H$ so that the PBW map $L \hookrightarrow U L$ is a morphism of contractions, and then apply Lemma 1 . Let (i, q, K) be a contraction of L onto $H=H L$, and write $L=B \oplus \partial B \oplus C$ for the graded vector space decomposition equivalent to it. By the PBW theorem ([9, Thm. 21.1]) and some basic facts of differential graded algebra, there are graded vector space isomorphisms

$$
U L \cong S L \cong S(B \oplus \partial B \oplus C) \cong S(B \oplus \partial B) \otimes S C \cong S(B \oplus \partial B) \otimes U H
$$

The above is a decomposition of the chain complex $U L$ into two terms. In the first term, the differential is an isomorphism, and in the second, the differential is trivial. Since $S(B \oplus \partial B)$ is acyclic, the injection $j:(U H, 0) \hookrightarrow(U L, d)$ is a quasi-isomorphism,

$$
j:(U H, 0) \stackrel{\simeq}{\hookrightarrow}(S(B \oplus \partial B) \otimes U H, d) \xrightarrow{\cong}(U L, d) .
$$

Decompose $U L \cong S(B \oplus \partial B) \otimes U H$, let $p: U L \rightarrow U H \cong 1 \otimes U H$ be the projection onto $U H$, and let G be the inverse of $d: S B \xlongequal{\cong} S \partial B$ extended to all of $U L$ as zero in the subspace $S B \otimes 1 \otimes U H \subseteq U L$. Then, (j, p, G) is a contraction of $U L$ onto $U H$ which is a morphism of retracts for the inclusion $L=B \oplus \partial B \oplus C \hookrightarrow U L=S(B \oplus \partial B \oplus C)$.

To prove (ii), denote by $\left\{\mu_{n}\right\}$ the A_{∞} algebra structure on $U H$ induced by Baranovsky's construction, and by $\left\{m_{n}\right\}$ the induced by the contraction (j, p, G). Since (L, ∂) is a DGL, Baranovsky's construction coincides with the classical universal enveloping DGA ([3, Thm. 3]). The L_{∞} quasi-isomorphism $Q:(L, \partial) \xrightarrow{\simeq}\left(H,\left\{\ell_{n}\right\}\right)$ provided by the contraction (i,q,K) transforms (by [3, Thm. 3]) into an A_{∞} algebra quasi-isomorphism $U(Q):(U L, d) \stackrel{\simeq}{\leftrightarrows}\left(U H,\left\{\mu_{n}\right\}\right)$. There is another A_{∞} algebra quasi-isomorphism $P:(U L, d) \xrightarrow{\simeq}\left(U H,\left\{m_{n}\right\}\right)$ induced by the contraction (j, p, G). Hence, there is a zig-zag of A_{∞} quasi-isomorphisms

$$
\left(U H,\left\{m_{n}\right\}\right) \stackrel{\simeq}{\longleftarrow}(U L, d) \xrightarrow{\simeq}\left(U H,\left\{\mu_{n}\right\}\right)
$$

Since $\left\{m_{n}\right\}$ and $\left\{\mu_{n}\right\}$ are minimal, the two A_{∞} algebra structures are A_{∞}-isomorphic.

The results above motivate Def. 1 for the universal enveloping A_{∞} algebra on an L_{∞} algebra. Recall that any L_{∞} algebra L is L_{∞} quasi-isomorphic to the DGL $\mathcal{L C}(L)$ [16], and that every L_{∞} algebra has a minimal model ([20, Thm. 7.9]). Here, $\mathcal{L}:$ CDGC $\leftrightarrows \mathrm{DGL}: \mathcal{C}$ are the adjoint functors introduced by Quillen [26], with no bounding assumptions on the underlying complexes [11].

Definition 1 Let L be an L_{∞} algebra. Its universal enveloping A_{∞} algebra is

$$
U_{t}(L):=\left(S L,\left\{m_{n}\right\}\right),
$$

where $\left\{m_{n}\right\}$ is any A_{∞} algebra structure arising by exhibiting $S L$ as a contraction of $\Omega \mathcal{C}(L)$. In particular, if L is minimal, then the A_{∞} structure on $S L$ is the one given in Theorem 2.

The definition given is essentially equivalent to Baranovsky's. The difference is that we explicitly use Thm. 2 for constructing it, hence avoiding the use of Baranovsky's chain homotopy K [3, Thm. 1], and with explicit, more transparent formulas whenever L is minimal. A different way of reading Def. 1 is as follows. For an arbitrary L_{∞} algebra L, the A_{∞} structure $\left\{m_{n}\right\}$ on $S L$ arises by forming a diagram:

From this point of view, we start with a contraction from $\mathcal{L C}(L)$ onto L producing the L_{∞} structure of L, and then the proof of Theorem 2 goes through: the classical PBW map

$$
\mathcal{L C}(L) \hookrightarrow U(\mathcal{L C}(L))=\Omega \mathcal{C}(L)
$$

is made a morphism of contractions, where we contract $\Omega \mathcal{C}(L)$ onto its homology $H_{*}(\Omega \mathcal{C}(L))$, which is isomorphic as a graded vector space to $S L$ (this isomorphism follows, for example, from [3, Thm. 1]). Given $f: L_{1} \rightarrow L_{2}$ an L_{∞} morphism, and once chosen contractions

$$
\longrightarrow \Omega \mathcal{C}\left(L_{i}\right) \stackrel{p_{i}}{\stackrel{j_{i}}{\rightleftarrows}} S L_{i}=U_{t}\left(L_{i}\right), \quad i=1,2,
$$

there is a uniquely defined A_{∞} morphism

$$
U_{t}(f)=p_{2} \circ \Omega \mathcal{C}(f) \circ j_{1}: U_{t}\left(L_{1}\right) \rightarrow U_{t}\left(L_{2}\right)
$$

enjoying properties similar to Baranovsky's definition on morphisms (see [3, Thm. 3]).

3 Homotopical properties and comparison with other envelopes

We collect the main properties regarding the homotopy type of the several universal enveloping constructions in Proposition 1.

Let L be an L_{∞} algebra. Denote by $U_{B}(L)$ and $U_{t}(L)$ the construction of Baranovsky and the given in Def. 1, respectively. The universal envelopes U_{B} and U_{t} are homotopy equivalent (Prop. 1 (i)). Quillen's foundation of rational homotopy theory, as well as other deep results
(see for example $[1,10,17]$), rely heavily on the now classical fact that homology commutes with the classical universal enveloping algebra functor over characteristic zero fields,

$$
\begin{equation*}
U H=H U . \tag{7}
\end{equation*}
$$

See [26, Appendix B]. The identity (7) holds only up to homotopy for the universal enveloping constructions U_{B}, U_{t}, and \mathcal{U} (Prop. 1 (iii)), where \mathcal{U} is Lada and Markl's universal enveloping ([15]). Another classical result of Quillen ([26], see also [25]) asserts that for a given DGL L with universal enveloping DGA $U L$, there is a natural DGC quasi-isomorphism

$$
\begin{equation*}
\mathcal{C}(L) \xrightarrow{\simeq} B U L . \tag{8}
\end{equation*}
$$

For L_{∞} algebras, although $\mathcal{C}(L), B U_{t}(L)$ and $B U_{B}(L)$ are DGC's, there is usually no direct DGC quasi-isomorphism as in (8). However, these DGC's are always weakly equivalent, which is the lift of the quasi-isomorphism (8) when dealing with infinity structures (Prop. 1 (ii)).

Proposition 1 Let L be an L_{∞} algebra. Then,
(i) There are A_{∞} quasi-isomorphisms

$$
U_{t}(L) \simeq U_{B}(L) .
$$

The constructions are then the same up to homotopy, and isomorphic if L is minimal.
(ii) There is an A_{∞} coalgebras quasi-isomorphism

$$
\mathcal{C}(L) \stackrel{\simeq}{\leftrightarrows} B U L,
$$

where U is any of the envelopes U_{t} or U_{B}, which is not generally a DGC map.
(iii) Assume that $H_{*}(L)$ carries an L_{∞} structure induced by a contraction from L onto it. Then, there are A_{∞} quasi-isomorphisms

$$
U\left(H_{*}(L)\right) \simeq H_{*}(U L),
$$

where U is any of the envelopes U_{t}, U_{B} or \mathcal{U}.
Proof (i) If L is minimal, Thm. 2(ii) proves the assertion. Otherwise, diagram (6) gives the following square, proving that $\mathcal{C}(L) \xrightarrow{\simeq} B U_{t}(L)$:

We used that the bar construction preserves quasi-isomorphisms and that the quasiisomorphism of Eq. (8) holds for DGL's. By [3, Thm 4 (ii)], there is a DGA quasi-isomorphism $\Omega \mathcal{C}(L) \rightarrow \Omega B U_{B}(L)$. Since the unit of the bar-cobar adjunction is a quasi-isomorphism for conilpotent coalgebras, there is the following zig-zag of DGC quasi-isomorphisms, from which the result follows:

$$
\begin{equation*}
B U_{t}(L) \longleftarrow \mathcal{C}(L) \longrightarrow B \Omega C(L) \longrightarrow B \Omega B U_{B}(L) \longleftarrow B U_{B}(L) \tag{9}
\end{equation*}
$$

(ii) Follows from the zig-zag just above.
(iii) By item (i), it suffices to prove it for $U=U_{B}$ and for $U=\mathcal{U}$. Let $f: L \rightarrow H L$ be an L_{∞} quasi-isomorphism. Since U_{B} preserves quasi-isomorphisms, $U_{B}(f): U_{B}(L) \rightarrow U_{B}(H L)$
is an A_{∞} quasi-isomorphism. Thm. 1 provides an A_{∞} algebra structure on $H\left(U_{B}(L)\right)$, as well as an A_{∞} quasi-isomorphism $I: H\left(U_{B}(L)\right) \rightarrow U_{B}(L)$. Thus, the following composition is an A_{∞} quasi-isomorphism:

$$
H\left(U_{B}(L)\right) \xrightarrow{I} U_{B}(L) \xrightarrow{U_{B}(f)} U_{B}(H L) .
$$

Let us prove it for \mathcal{U}. Fix a contraction

$$
\begin{equation*}
K \oslash L \underset{i}{\stackrel{q}{\leftrightarrows}} H, \tag{10}
\end{equation*}
$$

endow H with an L_{∞} structure via Thm. 1, and denote by $\left\{m_{n}\right\}$ the A_{∞} structure on $\mathcal{U} L$. Markl's PBW-infinity theorem [19, Thm. 4.7] gives an isomorphism of A_{∞} algebras

$$
S^{*}(L) \stackrel{\cong}{\rightrightarrows} G^{*}(L) .
$$

Here, $G^{*}(L)$ is the associated graded A_{∞} algebra for the ascending filtration of $\mathcal{U} L$ given by $F_{0}=\mathbb{Q}, F_{1}=\mathbb{Q} \oplus L$, and for $p \geq 2$:

$$
F_{p} L=\operatorname{Span}_{\mathbb{Q}}\left\{m_{n}\left(x_{1}, .,,, x_{n}\right) \mid n \geq 2, x_{j} \in F_{p_{j}} L, p_{1}+\cdots+p_{n} \leq p\right\}
$$

and

$$
S^{*}(L)=\mathcal{F}\left(L, \ell_{1}\right) / J
$$

is the quotient of the free A_{∞} algebra on the chain complex $\left(L, \ell_{1}\right)$ by the ideal generated by imposing the vanishing on L of the antisymmetrization of the A_{∞} structure $\left\{\mu_{n}\right\}$ of $\mathcal{F}\left(L, \ell_{1}\right)$ for $n \geq 2$. That is,

$$
\mu_{n}^{\mathcal{L}}\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } n \geq 2, x_{i} \in L
$$

Basically, S^{*} is the "free A_{∞} algebra symmetrized on $L^{\prime \prime}$ (not to be confused with a C_{∞} algebra, whose structure maps vanish on the image of the shuffle products). Denote by \mathcal{P} the dg operad whose free algebras are given by S^{*} (an explicit description in terms of planar trees is given in [19, Prop. 4.6]). Summarizing, for any L_{∞} algebra L, there is an isomorphism of A_{∞} algebras

$$
U L \cong S^{*}(L),
$$

where $S^{*}(L)=\mathcal{P}(L)$ is the free \mathcal{P}-algebra for a certain dg operad \mathcal{P}. Thus, after a possible change of homotopy in the contraction from L onto H, Berglund's generalization of the tensor trick to algebras over operads ([5, Thm. 1.2]) applies to the contraction (10). That is, there is a contraction

$$
S^{*}(K) \longrightarrow \mathcal{U} L \cong S^{*}(L) \stackrel{S^{*}(q)}{\underset{S^{*}(i)}{\longrightarrow}} S^{*}(H L) \cong \mathcal{U} H L .
$$

To finish, choose any A_{∞} quasi-isomorphism $\mathcal{U} L \simeq H_{*}(\mathcal{U} L)$, for instance by using Thm. 1. Then, there are A_{∞} quasi-isomorphisms

$$
\mathcal{U} H_{*}(L) \xrightarrow{\simeq} \mathcal{U} L \xrightarrow{\simeq} H_{*}(\mathcal{U} L) .
$$

Remark 2 One could try to adapt Quillen's proof for DGL's in [26, App. B] of the identity $H U=U H$ for \mathcal{U}. Several subtleties arise this way, and in fact, one cannot improve Prop. 1 (iii). Indeed, any "natural" map $\mathcal{U}(H L) \rightarrow H \mathcal{U} L$ passes through a previous choice of infinity structures, thus one cannot expect an isomorphism. It gets even worst than that: no choice will ever be an isomorphism, except for the trivial case, given that by definition $\mathcal{U} H L$ carries a non-trivial differential, whereas $H_{*}(\mathcal{U} L)$ does not.

For \mathcal{P} a dg operad, recall that a \mathcal{P}-algebra is formal if there exists a zig-zag of \mathcal{P}-algebra quasi-isomorphisms connecting it to its homology [16]. In presence of a contraction, Lemma 1 gives a straightforward proof of the fact that L is formal as a DGL if, and only if, $U L$ is formal as a DGA. This result was recently proven in [27], and generalized in [8, Thm. B].

We conclude this section with a conjecture.
Conjecture 1 Let L be an L_{∞} algebra. Lada and Markl's universal enveloping A_{∞} algebra $\mathcal{U} L$ is such that there is a zig-zag of DGC quasi-isomorphism

$$
\mathcal{C}(L) \leftarrow \cdots \rightarrow B \mathcal{U} L
$$

If Conjecture 1 is true, all the universal enveloping constructions studied in this section enjoy the same homotopical properties. Note that there cannot be in general a direct DGC quasi-isomorphism $\mathcal{C}(L) \xrightarrow{\simeq} B \mathcal{U} L$, since for L a DGL with no higher structure, the functor \mathcal{U} does not coincide with the classical universal enveloping construction.

4 The Milnor-Moore infinity theorem and a new rational model

The algebraic formalism of Sect. 2 has interesting applications to rational homotopy theory. The monograph [9] is an excellent resource on rational homotopy theory. In this section, all L_{∞} algebras are concentrated in non-negative degrees, and we adopt the notation ΛV for the symmetric algebra $S V$ on the graded vector space V, as usually done among rational homotopy theorists.

4.1 The Milnor-Moore infinity theorem

Let X be a simply connected CW-complex. The classical Milnor-Moore theorem [24] asserts that the rational homotopy Lie algebra $L_{X}=\pi_{*}(\Omega X) \otimes \mathbb{Q}$ embeds as the subspace of primitive elements of the rational loop space Hopf algebra $H_{*}(\Omega X ; \mathbb{Q})$. Furthermore, the latter Hopf algebra is precisely the universal enveloping algebra of L_{X}, and the inclusion is given by the rationalization of the Hurewicz morphism,

$$
\begin{equation*}
h: \pi_{*}(\Omega X) \otimes \mathbb{Q} \hookrightarrow H_{*}(\Omega X ; \mathbb{Q})=U\left(\pi_{*}(\Omega X) \otimes \mathbb{Q}\right) . \tag{11}
\end{equation*}
$$

If only the rational homotopy Lie algebra $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ is taken into account, then nonequivalent rational spaces may share this invariant. For instance, the rationalization of $\mathbb{C} P^{2}$ and of $K(\mathbb{Z}, 2) \times K(\mathbb{Z}, 5)$ are not equivalent, yet both have abelian two dimensional isomorphic rational homotopy Lie algebras. However, extending a Lie bracket on $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ to a minimal L_{∞} structure determines a unique rational homotopy type. The rational homotopy type encoded by such an L_{∞} algebra L is determined by the DGL $\mathcal{L C}(L)$ in case $L=L_{\geq 1}$, and by the Sullivan algebra $\mathcal{C}^{*}(L)$ in case $L=L_{\geq 0}$ is finite type pronilpotent (in this case, we assume X nilpotent of finite type instead of simply-connected). Here, $\mathcal{C}^{*}=\vee \circ \mathcal{C}$ is the
linear dual \vee of the Quillen chains \mathcal{C}. See [6, Thm. 2.3] for details. By a beautiful result of Majewski, whenever X is simply connected of finite type, the two algebraic models are homotopy equivalent [17].

Denote $U=U_{t}$. The next result lifts the morphism (11) to the context of infinity algebras.
Theorem 3 Let X be a simply connected $C W$-complex. Endow $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ with an L_{∞} structure $\left\{\ell_{n}\right\}$ representing the rational homotopy type of X for which $\ell_{1}=0$ and $\ell_{2}=[-,-]$ is the Samelson bracket. Then, there is an A_{∞} algebra structure $\left\{m_{n}\right\}$ on the loop space homology algebra $H_{*}(\Omega X ; \mathbb{Q})$ for which $m_{1}=0, m_{2}$ is the Pontryagin product, and such that the rational Hurewicz morphism

$$
h: \pi_{*}(\Omega X) \otimes \mathbb{Q} \hookrightarrow H_{*}(\Omega X ; \mathbb{Q})=U\left(\pi_{*}(\Omega X) \otimes \mathbb{Q}\right)
$$

is a strict L_{∞} embedding. Therefore, the L_{∞} structure on the rational homotopy Lie algebra is the antisymmetrized of the A_{∞} structure on $H_{*}(\Omega X ; \mathbb{Q})$:

$$
\ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

Proof Assume that the rational homotopy Lie algebra $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ carries a minimal L_{∞} structure $\left\{\ell_{n}\right\}$ corresponding to the rational homotopy type of X for which ℓ_{2} is the Samelson bracket. For instance, from a CW-decomposition

$$
*=X^{(1)} \subseteq X^{(2)} \subseteq \cdots \subseteq \bigcup_{n} X^{(n)}=X
$$

build the Quillen minimal model $L=(\mathbb{L}(V), \partial)$ of X, satisfying

$$
H_{*}(L) \cong \pi_{*}(\Omega X) \otimes \mathbb{Q}
$$

as graded Lie algebras. The choice of a contraction from L onto $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ gives an L_{∞} structure as in the statement. The rational Hurewicz homomorphism of equation (11) is, after the choice of an ordered basis of L, the PBW map from L into $U L$. Therefore, h can be chosen to be $h=\widehat{\imath}=p ı i$ in the following diagram, which is under the hypotheses of Theorem 1:

An application of Theorem 1 finishes the proof.
Remark 3 Let $U_{t}(L)=\left(S L,\left\{m_{n}\right\}\right)$ be the universal enveloping A_{∞} algebra of $\left(L,\left\{\ell_{n}\right\}\right)$. For each n, the composition

$$
L^{\otimes n} \xrightarrow{i_{n}}(S L)^{\otimes n} \xrightarrow{m_{n}^{\mathcal{L}}} S L
$$

has its image in $L \subseteq S L$. Let $\pi: S L \rightarrow L$ be the projection. The primitives of $S L$ for the standard coproduct are precisely $\mathcal{P}_{*}(S L)=L$. Thus, the original L_{∞} structure can be recovered by performing two natural operations to $U_{t}(L)$: antisymmetrizaton and restriction to primitives.

$$
\left(S L,\left\{m_{n}\right\}\right) \longmapsto\left(\mathcal{P}_{*}(S L), \pi \circ m_{n}^{\mathcal{L}} \circ i_{n}\right)=\left(L,\left\{\ell_{n}\right\}\right) .
$$

Detecting when a given cocommutative Hopf algebra is the universal envelope of its primitives is a difficult problem. This has been studied, among others, by Anick, Cartier, Halperin, Kostant, Milnor and Moore. See for example [10]. The classical name of this sort of result is the Cartier-Milnor-Moore theorem. Does a similar statement hold in the infinity setting?

Conjecture 2 Let A be an A_{∞} algebra over a characteristic zero field such that there is a cocommutative, conilpotent coproduct Δ on A which is a strict A_{∞} morphism $A \rightarrow A^{\otimes 2}$. Then, the primitives for the coproduct $L=\operatorname{Ker}(\bar{\Delta})=\mathcal{P}_{*}(A)$ form an L_{∞} algebra, and the inclusion $L \hookrightarrow A$ extends to an isomorphism of A_{∞} algebras

$$
U L \stackrel{\cong}{\rightrightarrows} A
$$

which respects the Hopf structure.
In the conjecture above, we expect U to be Lada and Markl's envelope, and maybe the diagonal Δ needs to come from a "Hopf algebra up to homotopy", so that the isomorphism might be not only of A_{∞} algebras, but of homotopy Hopf algebras. If X is a simply connected complex, and $H_{*}(\Omega X ; \mathbb{Q})$ carries a universal enveloping A_{∞} structure, then $H_{*}(\Omega X ; \mathbb{Q})$ is a rational model for X. Indeed, by Remark 3,

$$
\mathcal{P}_{*}\left(H_{*}(\Omega X ; \mathbb{Q})\right)=\pi_{*}(\Omega X) \otimes \mathbb{Q}
$$

is a fully-fledged L_{∞} algebra capturing the rational homotopy type of X.

4.2 Examples: recovering the Sullivan and Quillen models

We explicitly record several examples of universal enveloping A_{∞} algebras of the sort

$$
U_{t}\left(\pi_{*}(\Omega X) \otimes \mathbb{Q},\left\{\ell_{n}\right\}\right)=\left(H_{*}(\Omega X ; \mathbb{Q}),\left\{m_{n}\right\}\right) .
$$

1. The simply connected sphere S^{n}.

- For odd n, it is Λx with $|x|=n-1$, with trivial differential and trivial higher multiplications of all orders.
- For even n, it is $\Lambda(x, y)$ with $|x|=n-1,|y|=2 n-2$, with a unique non-trivial multiplication map given by $m_{2}(x, x)=\frac{1}{2} y$.

2. A finite product of simply-connected Eilenberg-Mac Lane spaces $\prod_{i=1}^{k} K\left(\mathbb{Q}, n_{i}\right)$. It is given by

$$
\left(\Lambda x_{1}, \ldots, x_{k}\right), \text { where each }\left|x_{i}\right|=n_{i}-1,
$$

with trivial differential and higher multiplications of all orders.
3. The complex projective spaces $\mathbb{C} P^{k}$, for $k \geq 1$. It is given by $\Lambda(x, y)$, with $|x|=1$, $|y|=2 k$ and its only non-trivial higher multiplication is

$$
m_{k+1}(x, \ldots, x)=\frac{1}{(k+1)!^{2}} y
$$

Indeed, an L_{∞} model $L=\pi_{*}\left(\Omega \mathbb{C} P^{k}\right) \otimes \mathbb{Q}$ of $\mathbb{C} P^{k}$ has a linear basis $\{x, y\}$ with $|x|=1,|y|=2 k$ with a single non-vanishing higher bracket, given by $\ell_{k+1}(x, \ldots, x)=$
$\frac{1}{(k+1)!} y$ (see for instance [6, p. 365]). The result then follows, since the $\operatorname{sign} \chi(\sigma)$ in the sum below is always positive:

$$
\frac{1}{(k+1)!} y=\ell_{k+1}(x, \ldots, x)=\sum_{\sigma \in S_{k+1}} \chi(\sigma) m_{k+1}(x, \ldots, x)=(k+1)!m_{k+1}(x, \ldots, x) .
$$

4. Coformal spaces. The universal enveloping A_{∞} algebra model of any coformal space can be chosen to be the classical universal enveloping algebra of it. Indeed, if X is coformal, then $L=\pi_{*}(\Omega X) \otimes \mathbb{Q}$ together with ℓ_{2} given by the Samelson product is an L_{∞} model of X. Since L is a DGL with trivial differential, the universal enveloping A_{∞} algebra of it coincides with the classical envelope, having the latter trivial differential as well. This includes examples 1 and 2.

Let $U_{t}(L)=\left(\Lambda L,\left\{m_{n}\right\}\right)$ be universal enveloping A_{∞} model of a simply connected complex X. Let $L=\mathcal{P}_{*}\left(H_{*}(\Omega X ; \mathbb{Q})\right)$ be the primitives for the natural diagonal (Rmk. 3). Then, one recovers:

- Provided X is of finite type, a (not necessarily minimal) Sullivan model ($\Lambda V, d$) of X by setting $V=(s L)^{\vee}$ and $d=\sum_{n \geq 1} d_{n}$ determined by the pairing

$$
\begin{equation*}
\left\langle d_{n}(v), s x_{1} \wedge \ldots \wedge s x_{n}\right\rangle=\varepsilon \sum_{\sigma \in S_{n}} \chi(\sigma)\left\langle v ; s m_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)\right\rangle, \tag{12}
\end{equation*}
$$

where ε is the parity of $\sum_{j=1}^{n-1}(n-j)\left|x_{j}\right|$.

- A (not necessarily minimal) Quillen model by setting

$$
(\mathbb{L}(U), \partial)=\left(\mathbb{L}\left(s^{-1} \Lambda^{+} s L\right), \partial_{1}+\partial_{2}\right)=\mathcal{L C}\left(\mathcal{P}_{*}\left(H_{*}(\Omega X ; \mathbb{Q})\right),\left\{m_{n}^{\mathcal{L}}\right\}\right) .
$$

The quadratic part ∂_{2} of the differential is induced by the reduced coproduct of $\mathcal{C}(L)$ (see formula (2)), and ∂_{1} is explicitly given on generators by

$$
\begin{aligned}
& \partial_{1}\left(s^{-1}\left(s x_{1} \wedge \ldots \wedge s x_{p}\right)\right) \\
& =\sum_{k=1}^{p} \sum_{i_{1} \leq \cdots \leq i_{k}} \sum_{\sigma \in S_{k}} \varepsilon_{\left(i_{1}, \ldots, i_{k}\right)}^{\sigma} s^{-1}\left(s m_{k}\left(x_{i_{\sigma(1)}}, \ldots, x_{i_{\sigma(k)}}\right) \wedge s x_{1} \ldots \widehat{\left.s x_{i_{1}} \ldots \widehat{s x_{i_{k}}} \ldots \wedge s x_{i_{p}}\right) .}\right.
\end{aligned}
$$

The sign

$$
\varepsilon_{\left(i_{1}, \ldots, i_{k}\right)}^{\sigma}=-\varepsilon \cdot \chi(\sigma) \cdot(-1)^{n_{i_{1} \ldots i_{k}}}
$$

is determined by the Koszul sign rule, the parity of the permutation, and the elements $x_{i_{1}}, \ldots, x_{i_{k}}$.

4.3 Higher Whitehead products and Pontryagin-Massey products

Several authors have related the (ordinary, as well as higher) Whitehead products [,--] on $\pi_{*}(X)$ with the Pontryagin product $*$ on $H_{*}(\Omega X ; R)$. For instance, the main result in [28] states that the two-fold Whitehead product of $x \in \pi_{n+1}$ and $y \in \pi_{m+1}$ is an antisymmetrized Pontryagin product:

$$
h[x, y]=(-1)^{n}\left(h(x) * h(y)-(-1)^{n m} h(y) * h(x)\right) .
$$

Here, $h: \pi_{*}(X) \stackrel{\cong}{\rightrightarrows} \pi_{*-1}(\Omega X) \rightarrow H_{*-1}(\Omega X ; \mathbb{Z})$ is the Hurewicz morphism precomposed with an isomorphism. In [2, Thm 3.3], it is shown that under some hypothesis, certain higher
order Whitehead product sets $\left[x_{1}, \ldots, x_{k}\right]_{W} \subseteq \pi_{*}(X)$ are non-empty, and contain an element which is a sort of generalized k-fold Pontryagin product. In the spirit of the results just mentioned, and rationally, Thm. 3 seems to be the most general statement expressing the Whitehead products as antisymmetrizations of Pontryagin products. Assuming the existence of non-trivial secondary higher products in a sense to be explained, one can go a step further and extract an interesting relationship. For space considerations, and since this section is about an application of the main results of this work, we omit a (necessarily lengthy) explanation of the involved background. Instead, we refer the reader to [29] for background on the (rational) higher order Whitehead products, and to [4] for an account of their relationship with L_{∞} structures. We start with the following observation.

Proposition 2 Let X be a simply connected complex. The A_{∞} algebra structures on $H_{*}(\Omega X ; \mathbb{Q})$ arising from exhibiting $H_{*}(\Omega X ; \mathbb{Q})$ as a contraction of the chains DGA $C_{*}(\Omega X ; \mathbb{Q})$ and by taking universal enveloping A_{∞} algebra of an L_{∞} model on $\pi_{*}(\Omega X) \otimes \mathbb{Q}$ are A_{∞} quasi-isomorphic.

Proof Let $L=\left(\pi_{*}(\Omega X) \otimes \mathbb{Q},\left\{\ell_{n}\right\}\right)$ be the L_{∞} model of X, and assume without loss of generality that L arises as a contraction of the Quillen model $(\mathbb{L}(U), \partial)$ of X. Denote by $\left\{m_{n}\right\}$ the A_{∞} structure on $H_{*}(\Omega X ; \mathbb{Q})$ arising from Thm. 2. There is a square

whose horizontal top and bottom arrows are A_{∞} and L_{∞} quasi-isomorphisms, respectively. Since there is a DGL quasi-isomorphism $\mathbb{L}(U) \xrightarrow{\simeq} \lambda(X)$ onto the Quillen construction $\lambda(X)$ [26], and the classical enveloping functor U preserves quasi-isomorphisms ([9, Thm. 21.7]), there is a DGA quasi-isomorphism $U \mathbb{L}(U) \xrightarrow{\simeq} U \lambda(X)$. Since $U \lambda(X)$ is weakly equivalent to $C_{*}(\Omega X ; \mathbb{Q})$ as a DGA, there is an A_{∞} quasi-isomorphism $U \lambda(X) \xrightarrow{\simeq}\left(H_{*}(\Omega X ; \mathbb{Q}),\left\{m_{n}^{\prime}\right\}\right)$ for $\left\{m_{n}^{\prime}\right\}$ induced by exhibiting $H_{*}(\Omega X ; \mathbb{Q})$ as a contraction of $C_{*}(\Omega X ; \mathbb{Q})$.

The Massey products of a space X are certain (secondary) higher order operations on the cohomology algebra $H^{*}(X ; R)$. These arise from relations between the cup product and the differential in the singular cochains $C^{*}(X ; R)$, see $[21,22]$. The Massey products and the A_{∞} structures on $H^{*}(X ; R)$ are tightly related, see [7] for details. Both, the Massey products and A_{∞} structure, exist in the homology H of any DGA A - one needs not consider these operations only when A is the singular cochain algebra of a space. So, given that $H_{*}(\Omega X ; R)$ is the homology of the DGA $C_{*}(\Omega X ; R)$ for the Pontryagin product, it makes sense to consider the algebraic Massey products on $H_{*}(\Omega X ; R)$. We call these higher products on $H_{*}(\Omega X ; R)$ arising from relations between the Pontryagin product and the differential of the DGA $C_{*}(\Omega X ; R)$ the higher Massey-Pontryagin products of X. This way, we avoid the confusion with the classical Massey products of X. Again for space considerations, we refer the reader to the works mentioned in this paragraph for the necessary background on Massey products and A_{∞} structures.

Denote by $h: \pi_{*}(\Omega X) \otimes \mathbb{Q} \rightarrow H_{*}(\Omega X ; \mathbb{Q})$ the rational Hurewicz morphism.
Theorem 4 Let $x_{1}, \ldots, x_{n} \in \pi_{*}(\Omega X) \otimes \mathbb{Q}$, and denote by $y_{k}=h\left(x_{k}\right) \in H_{*}(\Omega X ; \mathbb{Q})$ the corresponding spherical classes. Assume that the higher Whitehead product set
$\left[x_{1}, \ldots, x_{n}\right]_{W}$ and the higher Massey-Pontryagin products sets $\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle$ for every $\sigma \in S_{n}$ are defined. If the A_{∞} algebra structure $\left\{m_{k}\right\}$ on $H_{*}(\Omega X ; \mathbb{Q})$ provided by Thm. 3 has vanishing m_{k} for $k \leq n-2$, then $x=\varepsilon \ell_{n}\left(x_{1}, \ldots, x_{n}\right) \in\left[x_{1}, \ldots, x_{n}\right]_{W}$, and satisfies:

$$
h(x) \in \sum_{\sigma \in S_{n}} \chi(\sigma)\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle .
$$

Here, ε is the parity of $\sum_{j=1}^{n-1}\left|x_{j}\right|(k-j)$. If moreover the involved secondary higher products are all uniquely defined, then the above containment is an equality of elements.

Since the particular case $n=3$ of the result above is the most likely to be computed, and in this case the hypothesis that $m_{1}=0$ is superfluous, we consider this case to be of independent interest.

Corollary 1 Let $x_{1}, x_{2}, x_{3} \in \pi_{*}(\Omega X) \otimes \mathbb{Q}$, and denote by $y_{k}=h\left(x_{k}\right) \in H_{*}(\Omega X ; \mathbb{Q})$ the corresponding spherical classes. Assume that the triple Whitehead product $\left[x_{1}, x_{2}, x_{3}\right]_{W}$ and the triple Massey products $\left\langle y_{\sigma(1)}, y_{\sigma(2)}, y_{\sigma(3)}\right\rangle, \sigma \in S_{3}$, are defined. Then $x=$ $\varepsilon \ell_{3}\left(x_{1}, x_{2}, x_{3}\right) \in\left[x_{1}, x_{2}, x_{3}\right]_{W}$, and satisfies:

$$
h(x) \in \sum_{\sigma \in S_{3}} \chi(\sigma)\left\langle y_{\sigma(1)}, y_{\sigma(2)}, y_{\sigma(3)}\right\rangle .
$$

If moreover the triple products are all uniquely defined, then the above containment is an equality of elements.

Proof of Theorem 4 Since $m_{k}=0$ for every $k \leq n-2$, it follows from Thm. 3 that also $\ell_{k}=0$ vanishes whenever $k \leq n-2$. Therefore, [4, Thm. 3.5] asserts that $x=\varepsilon \ell_{n}\left(x_{1}, \ldots, x_{n}\right) \in\left[x_{1}, \ldots, x_{n}\right]$, meanwhile its associative counterpart [7, Thm 3.3] asserts that $\varepsilon_{\sigma} m_{n}\left(y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right) \in\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle$. We are denoting by ε_{σ} the parity of $\sum_{j=1}^{n-1}(k-j)\left|x_{\sigma(j)}\right|$. Using Thm. 3, we conclude that:

$$
\begin{aligned}
h(x) & =\varepsilon h \ell_{n}\left(x_{1}, \ldots, x_{n}\right)=\varepsilon\left(\sum_{\sigma \in S_{n}} \chi(\sigma) \varepsilon_{\sigma} m_{n}\left(y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right)\right) \\
& =\sum_{\sigma \in S_{n}} \chi(\sigma) m_{n}\left(y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right) \in \sum_{\sigma \in S_{n}} \chi(\sigma)\left\langle y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right\rangle .
\end{aligned}
$$

Acknowledgements The author is very grateful to Vladimir Dotsenko, Martin Markl, Aniceto Murillo, Jim Stasheff, Peter Teichner and Felix Wierstra for useful conversations, and to the Max Planck Institute for Mathematics in Bonn for its hospitality and financial support.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. charged to the Universidad de Málaga/CBUA.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anick, D.J.: Hopf algebras up to homotopy. J. Am. Math. Soc. 2(3), 417-453 (1989)
2. Arkowitz, M.: Whitehead products as images of Pontrjagin products. Trans. Amer. Math. Soc. 158, 453-463 (1971)
3. Baranovsky, V.: A universal enveloping for L_{∞}-algebras. Math. Res. Lett. 15(6), 1073-1089 (2008)
4. Belchí, F., Buijs, U., Moreno-Fernández, J.M., Murillo, A.: Higher order Whitehead products and L_{∞} structures on the homology of a DGL. Linear Algebra Appl. 520, 16-31 (2017)
5. Berglund, A.: Homological perturbation theory for algebras over operads. Algebr Geom Topol. 14(5), 2511-2548 (2014)
6. Berglund, A.: Rational homotopy theory of mapping spaces via Lie theory for L_{∞}-algebras. Homology, Homotopy Appl. 17(2), 343-369 (2015)
7. Buijs, U., Moreno-Fernández, J.M., Murillo, A.: A_{∞} structures and Massey products. Mediterr. J. Math. 17(1), 1-15 (2020)
8. Campos, R., Petersen, D., Robert-Nicoud, D., Wierstra, F.: Lie, associative and commutative quasiisomorphism. arXiv preprint arXiv:1904.03585 (2019)
9. Félix, Y., Halperin, S., Thomas, J.C.: Rational homotopy theory, vol. 205. Springer Science \& Business Media (2012)
10. Halperin, S.: Universal enveloping algebras and loop space homology. J. Pure Appl. Algebra 83(3), 237-282 (1992)
11. Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162(2-3), 209-250 (2001)
12. Huebschmann, J.: The sh-Lie algebra perturbation lemma. In: Forum Math, vol. 23, pp. 669-691. Walter de Gruyter GmbH \& Co. KG (2011)
13. Kadeishvili, T.: On the homology theory of fibre spaces. Russ Math Sur 35(3), 231-238 (1980)
14. Kadeishvili, T.: Cohomology C_{∞}-algebra and rational homotopy type. In: Algebraic topology—old and new, Banach Center Publ., vol. 85, pp. 225-240. Polish Acad. Sci. Inst. Math., Warsaw (2009)
15. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147-2161 (1995)
16. Loday, J.L., Vallette, B.: Algebraic operads, vol. 346. Springer, Heidelberg (2012)
17. Majewski, M.: Rational homotopical models and uniqueness. Mem. Amer. Math. Soc. 143(682), xviii+149 (2000)
18. Manetti, M.: A relative version of the ordinary perturbation lemma. Rendiconti di Matematica e delle sue Applicazioni. Serie VII 30(2), 221-238 (2010)
19. Markl, M.: Free homotopy algebras. Homology Homotopy Appl. 7(2), 123-137 (2005)
20. Markl, M.: Deformation theory of algebras and their diagrams, vol. 116. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2012)
21. Massey, W.S.: Some higher order cohomology operations. In: Int. Symp. Alg. Top. Mexico, pp. 145-154. Citeseer (1958)
22. May, J.P.: Matric Massey products. J. Algebra 12(4), 533-568 (1969)
23. Merkulov, S.: Strong homotopy algebras of a Kähler manifold. Int Math Res Notices. 1999(3), 153-164 (1999)
24. Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. of Math pp. 211-264 (1965)
25. Neisendorfer, J.: Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces. Pacific J. Math. 74(2), 429-460 (1978)
26. Quillen, D.: Rational homotopy theory. Ann. of Math. pp. 205-295 (1969)
27. Saleh, B.: Noncommutative formality implies commutative and Lie formality. Algebr Geom Topol. 17(4), 2523-2542 (2017)
28. Samelson, H.: A connection between the Whitehead and the Pontryagin product. Am. J. Math. 75(4), 744-752 (1953)
29. Tanré, D.: Homotopie rationnelle: modeles de Chen, Quillen, Sullivan., vol. vol. 1025, Springer. Springer (1983)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The author has been partially supported by the MINECO grant MTM2016-78647-P, a Postdoctoral Fellowship of the Max Planck Society, and the Irish Research Council Postdoctoral Fellowship GOIPD/2019/823.

[^1]: José Manuel Moreno Fernández
 josemoreno@uma.es
 1 Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29080 Málaga, Spain

