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Abstract
We give a construction of the universal enveloping A∞ algebra of a given L∞ algebra,
alternative to the already existing versions. As applications, we derive a higher homotopy
algebras version of the classical Milnor-Moore theorem. This proposes a new A∞ model for
simply connected rational homotopy types, and uncovers a relationship between the higher
order rational Whitehead products in homotopy groups and the Pontryagin-Massey products
in the rational loop space homology algebra.
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1 Introduction

The main goal of this paper is to construct a universal enveloping A∞ algebra for a given L∞
algebra, alternative to the already existing versions [3,15], and to study some consequences
of such a structure in rational homotopy theory.

Let L be an L∞ algebra. In Def. 1, we introduce the universal enveloping A∞ algebra
Ut (L). It is isomorphic to the free symmetric algebra SL on L as a graded vector space,
and arises from a homotopy transfer process. For dg Lie algebras, Ut (L) coincides with the
classical dg associative envelope UL . To motivate the definition of Ut , we first prove the
following result (Thm. 2(i)).

Theorem A Let L and UL be a dg Lie algebra and its classical universal enveloping dg
associative algebra, respectively. Fix a contraction from L onto H = H∗(L), and denote by
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2148 J. M. Moreno Fernández

{�n} the induced L∞ structure on H. Then, there is an explicit contraction fromUL onto SH,
so that denoting by {mn} the induced A∞ algebra structure on SH, the antisymmetrization{
mL

n

}
of {mn} fits into a strict L∞ embedding

ı : (H , {�n}) ↪→ (
SH , {mL

n }) .

That is, for every homogeneous xi ∈ H ,

ı�n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ) mn

(
xσ(1) ⊗ · · · ⊗ xσ(n)

) = mL
n (x1, . . . , xn).

The result above covers the case in which L is a minimal L∞ algebra, since any such can
be obtained as a contraction of the dg Lie algebra LC(L). In general,Ut (L) is defined as SL
together with an A∞ structure inherited from a contraction from ΩC(L) onto SL . Here, C
are the Quillen chains, Ω the cobar construction, and LQuillen’s Lie functor. See Sect. 2 for
details.

The original motivation for introducing the envelope we present was for extending the
classical Milnor-Moore theorem [24] to L∞ algebras in the rational setting. This is Thm. 3.

Theorem B Let X be a simply connected CW-complex. Endow π∗ (ΩX) ⊗ Q with an L∞
structure {�n} representing the rational homotopy type of X forwhich �1 = 0 and �2 = [−,−]
is the Samelson bracket. Then, there is an A∞ algebra structure {mn} on the loop space
homology algebra H∗ (ΩX; Q) for which m1 = 0,m2 is the Pontryagin product, and such
that the rational Hurewicz morphism

h : π∗ (ΩX) ⊗ Q ↪→ H∗(ΩX; Q) = Ut (π∗ (ΩX) ⊗ Q)

is a strict L∞ embedding. Therefore, the L∞ structure on the rational homotopy Lie algebra
is the antisymmetrized of the A∞ structure on H∗(ΩX; Q):

�n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ)mn

(
xσ(1), . . . , xσ(n)

)
.

Thm. B produces a new A∞ model for simply connected rational homotopy types, with
underlying Hopf algebra H∗(ΩX; Q). For finite type rational spaces, this enveloping A∞
algebra model can be understood as an Eckmann-Hilton or Koszul dual to Kadeishvili’s C∞
algebra model [14], the latter starting from cohomology instead of homotopy. We explain in
Sect. 4.2 how to explicitly extract the Quillen and Sullivan models from such an enveloping
A∞ model. We also uncover an interesting relationship between the higher order rational
Whitehead products on π∗ (ΩX) ⊗ Q and the higher order Pontryagin-Massey products of
H∗ (ΩX; Q) of simply connected spaces: the former are antisymmetrizations of the latter,
whenever these are defined. This is Thm. 4. In it, h is the rational Hurewicz morphism.

Theorem C Let x1, . . . , xn ∈ π∗ (ΩX) ⊗ Q, and denote by yk = h (xk) ∈ H∗ (ΩX; Q)

the corresponding spherical classes. Assume that the higher Whitehead product set
[x1, . . . , xn]W and the higher Massey-Pontryagin products sets

〈
yσ(1), . . . , yσ(n)

〉
for every

permutation σ ∈ Sn are defined. If the A∞ algebra structure {mi } on H∗ (ΩX; Q) provided
by Theorem B has vanishing mk for k ≤ n − 2, then x = ε�n (x1, . . . , xn) ∈ [x1, . . . , xn]W ,

and satisfies:

h(x) ∈
∑

σ∈Sn
χ(σ)

〈
yσ(1), . . . , yσ(n)

〉
.

Here, ε is the parity of
∑n−1

j=1 |x j |(k − j). If moreover the secondary higher products are all
uniquely defined, then the above containment is an equality of elements.
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The Milnor-Moore theorem for L∞ algebras… 2149

The parity of an integer α is the number (−1)α; this will be used at several later places.
TheMassey-Pontryagin products should not be confused with the classical Massey products,
see Sect. 4.3 for details.

We study the homotopical properties of the envelope Ut , and we compare it to other
alternatives in the literature in Sect. 3. These alternative constructions have been developed by
Lada and Markl [15] and by Baranovsky [3]. See Prop. 1 for a recollection of our statements.
In particular, the classical identityUH = HU , asserting that taking homology and universal
enveloping algebra commute, holds only up to homotopy for the enveloping A∞ algebras
that we consider, and Ut is quasi-isomorphic to Baranovsky’s construction.

1.1 Background and notation

In this paper, graded objects are always taken over Z with homological grading (differentials
lower the degree by 1). The degree of an element x is denoted by |x |, and all algebraic
structures are considered over a characteristic zero field.

An A∞ algebra is a graded vector space A = {An}n∈Z together with linear maps mk :
A⊗k → A of degree k − 2, for k ≥ 1, satisfying the Stasheff identities for every i ≥ 1:

i∑

k=1

i−k∑

n=0

(−1)k+n+knmi−k+1(id
⊗n ⊗ mk ⊗ id⊗i−k−n) = 0.

A differential graded algebra (DGA), is an A∞ algebra for which mk = 0 for k ≥ 3. An
A∞ algebra is minimal if m1 = 0. An A∞ morphism f : A → B is a family of linear maps
fk : A⊗k → B of degree k − 1 such that the following equation holds for every i ≥ 1:

∑

i=r+s+t
s≥1
r ,t≥0

(−1)r+st fr+1+t
(
id⊗r ⊗ms ⊗ id⊗t ) =

∑

1≤r≤i
i=i1+···+ir

(−1)αmr
(
fi1 ⊗ · · · ⊗ fir

)

with α = ∑r−1
�=1 �(ir−� − 1). Such an f is an A∞ quasi-isomorphism if f1 : (A,m1) →

(A′,m′
1) is a quasi-isomorphism of complexes. The bar construction BA of an A∞ algebra

A is the differential graded coalgebra (DGC, henceforth)

BA = (T (s A) , δ) ,

where T (s A) is the tensor coalgebra on the suspension s A of A (i.e., (s A)p = Ap−1), and
δ = ∑

k≥1 δk is the codifferential such that

δk[sx1 | · · · | sxp] =
p−k+1∑

i=0

εi [sx1 | · · · | sxi | smk+1 (xi+1, . . . , xi+k+1) | · · · | sxp],

where εi is the parity of

1 +
i∑

j=1

|sx j | +
k+1∑

l=1

(k + 1 − j)|sxi+l |.

The bar construction turns A∞ morphisms A → C into DGC morphisms BA → BC , and
preserves quasi-isomorphisms [16]. The cobar construction ΩC of a coaugmented DGC C
is the augmented DGA

ΩC = (
T

(
s−1C

)
, d

)
,
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2150 J. M. Moreno Fernández

where T
(
s−1C

)
is the tensor algebra on the desuspension s−1C of the cokernel C =

coKer (K → C) of the coaugmentation K → C (i.e., (s−1C)p = C p+1), and d = d1 + d2
is the differential determined by

d1
(
s−1x

) = −s−1δx, d2
(
s−1x

) =
∑

i

(−1)|xi |s−1xi ⊗ s−1yi ,

where δ is the codifferential of C and
∑

i xi ⊗ yi = Δ(x) − (1 ⊗ x + x ⊗ 1) is the reduced
comultiplication of x . The cobar construction extends to A∞ coalgebras, but we will not
need such a generality in this paper.

An L∞ algebra is a graded vector space L = {Ln}n∈Z together with skew-symmetric
linear maps �k : L⊗k → L of degree k − 2, for k ≥ 1, satisfying the generalized Jacobi
identities for every n ≥ 1:

∑

i+ j=n+1

∑

σ∈S(i,n−i)

ε(σ ) sgn(σ )(−1)i( j−1)� j
(
�i

(
xσ(1), . . . , xσ(i)

)
, xσ(i+1), . . . , xσ(n)

) = 0.

Here, S(i, n − i) are the (i, n − i) shuffles, given by those permutations σ of n elements
such that

σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n),

ε(σ ) stands for the Koszul sign associated to σ and the elements x1, . . . , xn , and sgn(σ )

stands for the signature associated to σ . A differential graded Lie algebra (DGL) is an L∞
algebra L for which �k = 0 for k ≥ 3.

An L∞ algebra is minimal if �1 = 0. An L∞ morphism f : L → L ′ is a family of skew-
symmetric linear maps

{
fn : L⊗n → L ′} of degree n − 1 such that the following equation

is satisfied for every n ≥ 1:

∑

i+ j=n+1

∑

σ∈S(i,n−i)

ε(σ ) sgn(σ )(−1)i( j−1) f j
(
�i

(
xσ(1), . . . , xσ(i)

)
, xσ(i+1), . . . , xσ(n)

) =
∑

k≥1
i1+···+ik=n
τ∈S(i1,...,ik )

ε(σ ) sgn(σ )εk�
′
k

(
fi1 ⊗ · · · ⊗ fik

) (
xτ(1) ⊗ · · · ⊗ xτ(n)

)
,

with εk being the parity of
∑k−1

l=1 (k − l)(il − 1). Such an f is an L∞ quasi-isomorphism if
f1 : (L, �1) → (L ′, �′

1) is a quasi-isomorphism of complexes. The Quillen chains C(L) of
an L∞ algebra is the equivalent cocommutative DGC (CDGC, henceforth)

C(L) = (ΛsL, δ) ,

where ΛsL is the cofree conilpotent cocommutative graded coalgebra on the suspension sL
of L , and δ = ∑

k≥1 δk is the codifferential whose correstrictions are determined by the L∞
structure maps, i.e.,

δk
(
sx1 ∧ ... ∧ sxp

) =
∑

i1<···<ik

ε s�k
(
xi1 , . . . , xik

) ∧ sx1 ∧ ...ŝx i1 ...ŝx ik ... ∧ sxp. (1)

The sign ε is determined by the Koszul sign rule.
A morphism f = { fk} of A∞ or L∞ algebras is strict if fk = 0 for all k ≥ 2.
The Quillen functor L(C) on a coaugmented CDGC C is the DGL

L(C) = (
L

(
s−1C

)
, ∂

)
,
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where L
(
s−1C

)
is the free graded Lie algebra on the desuspension s−1C of the cokernel of

the coaugmentation, C = coKer (K → C), and ∂ = ∂1 + ∂2 is the differential determined
by

∂1
(
s−1x

) = −s−1δ(x), ∂2
(
s−1x

) = 1

2

∑

i

(−1)|xi |[s−1xi , s
−1yi ], (2)

where δ is the codifferential of C and
∑

i xi ⊗ yi is the reduced comultiplication of x .
There is an antisymmetrization functor (−)L from the category of A∞ algebras to that of

L∞ algebras which preserves quasi-isomorphisms [15]. For a given A∞ algebra (A, {mn}),
its antisymmetrization AL has the same underlying graded vector space and higher brackets
�n given by

�n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ) mn

(
xσ(1) ⊗ · · · ⊗ xσ(n)

)
.

Here, Sn is the symmetric group on n letters, and we shorten the notation by χ(σ) =
ε(σ ) sgn(σ ) for σ ∈ Sn . We will usually denote the higher brackets �n of AL by mL

n .
A contraction of M onto N is a diagram of the form

M N ,K
q

i

where M and N are chain complexes and q and i are chain maps such that qi = idN and
iq � idM via a chain homotopy K satisfying K 2 = Ki = qK = 0. We denote it by
(M, N , i, q, K ), or simply by (i, q, K ).

Following [18, Def. 2.3], a morphism of contractions f : (M, N , i, q, K ) →
(A, B, j, p,G) is a chain map f : M → A such that f K = G f . Denote by f̂ : N → B
the chain map f̂ = p f i . Using that iq � idM , it follows that in presence of a morphism of
contractions f : M → A, the squares in the following diagram commute:

A B

M N .

G
p

j

K
q

f

i

f̂

That is, p f = f̂ q and f i = j f̂ .
We will be concerned with the following particular instance of the homotopy transfer

theorem. A proof for this result will not be given here, it can be found in [5,12,13,16,18,23].

Theorem 1 Let (M, N , i, q, K ) be a contraction.

1. If M = (A, {μn}) is an A∞ algebra, then there exists an A∞ algebra structure {mn} on
N, unique up to isomorphism, and A∞ algebra quasi-isomorphisms

Q : (A, {μn}) (N , {mn}) : I
such that I1 = i , Q1 = q and QI = idN .

2. If M = (L, {ϑn}) is an L∞ algebra, then there exists an L∞ algebra structure {�n} on
N, unique up to isomorphism, and L∞ algebra quasi-isomorphisms

Q : (L, {ϑn}) (N , {�n}) : I

123



2152 J. M. Moreno Fernández

such that I1 = i , Q1 = q and QI = idN .

The maps involved in the higher structure of Theorem 1 can be described in several ways.
An explanation of the role played by each of the maps we give below and why the given
formulation works is out of the scope of this paper, a good reference for that is for instance
[5, Section 12].

We will consistently use the following convention for the rest of the paper: contractions
for L∞ algebras will be denoted by (i, q, K ), whereas contractions for A∞ algebras will
be denoted by ( j, p,G). The capital letters I , Q or J , P will stand for the corresponding
induced infinity quasi-isomorphisms extending i, q or j, p, respectively.

If ( j, p,G) is a contraction from A onto N , then the higher multiplications {mn} on N and
the terms {Jn} of the A∞ quasi-isomorphism J are recursively given as follows. Formally,
set Gλ1 = − j , and define λn : N⊗n → A for n ≥ 2 recursively by

λn(x1, . . . , xn) =
n∑

k=2

mk

⎛

⎝
∑

i1+···+ik=n

(−1)α(i1,...,ik )Gλi1 ⊗ · · · ⊗ Gλik

⎞

⎠ (x1 ⊗ · · · ⊗ xn).

Here, α(i1, . . . , ik) = ∑
j<k i j (ik − 1), see [5, §12]. Then,

mn = p ◦ λn and Jn = G ◦ λn for all n ≥ 2.

Similarly, if (i, q, K ) is a contraction of L onto N , then the higher brackets {�n} and the
Taylor series {In} of the L∞ quasi-isomorphism I are recursively given as follows. Formally,
set K θ1 = −i , and define θn : N⊗n → L for n ≥ 2 recursively by

θn (x1, . . . , xn)

=
n∑

k=2

∑

i1+···+ik=n
i1≤···≤ik

∑

S̃(i1,...,ik )

(−1)εσ

�k
(
Ii1

(
xσ(1), . . . , xσ(i1)

)
, . . . , Iik

(
xσ(ik−1+1), . . . , xσ(n)

))
.

In the equation above, S̃(i1, . . . , ik) are the (i1, . . . , ik)- shuffle permutations of the symmetric
group Sn , whose elements are those σ ∈ Sn such that σ(1) = 1, and

σ(1) < · · · < σ(i1), σ (i1 + 1) < · · · < σ(i2), . . . , σ (ik−1 + 1) < · · · < σ(n).

The sign εσ is determined by the Koszul convention. Then,

�n = q ◦ θn and In = K ◦ θn for all n ≥ 2.

2 The universal enveloping A∞ algebra as a transfer

Weproduce the universal enveloping A∞ algebra of a given L∞ algebra via a transfer process.
To do so, we start by showing (Thm. 2) that the classical adjoint pair

U : DGL � DGA : (−)L

commutes with the transfer of higher structure. See [9, Chap. 21] for a careful exposition of
the adjoint pair above. After the proof of Thm. 2, we explain how to produce such a universal
envelope, which turns out to coincide with Baranovsky’s construction [3] up to homotopy.
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Theorem 2 Let L andUL be aDGLand its classical universal envelopingDGA, respectively.
Fix a contraction from L onto H = H∗(L), and denote by {�n} the induced L∞ structure
on H. Then, there is an explicit contraction from UL onto SH, so that denoting by {mn} the
induced A∞ algebra structure on SH:

(i) The antisymmetrization
{
mL

n

}
of {mn} fits into a strict L∞ embedding

ı : (H , {�n}) ↪→ (
SH , {mL

n }) ,

that is, for every homogeneous xi ∈ H ,

�n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ) mn

(
xσ(1) ⊗ · · · ⊗ xσ(n)

) = mL
n (x1, . . . , xn).

(ii) The A∞ algebra
(
SH , {mL

n }) is isomorphic to Baranovsky’s enveloping construction
on (H , {�n}).

The map ı : H ↪→ SH above is an L∞ version of a PBW map L ↪→ UL. The proof of
Thm. 2 relies on the following lemma, which is elementary but interesting in itself. It will be
relevant for the enveloping A∞ algebra as a transferred structure (Def. 1).

Lemma 1 Let (A, {μn}) and (L, {ϑn}) be an A∞ and an L∞ algebra, and assume that there
are contractions of A and of L onto complexes (MA, d) and (ML , ∂), respectively:

A MA L ML .G
p

j
K

q

i

If there is a morphism of contractions f : L → A which is a strict L∞ morphism for
the antisymmetrization of the A∞ algebra structure {μn}, then the recursive formulas {θn}
for transferring the L∞ structure on ML map to the antisymmetrization of those {λn} for
transferring the A∞ structure on MA. More precisely, for any n ≥ 1 and given homogeneous
x1, . . . , xn ∈ ML ,

f θn(x1, . . . , xn) =
∑

σ∈Sn
χ(σ)λn

(
f̂ (xσ(1)), . . . , f̂ (xσ(n))

)
. (3)

Therefore, the higher brackets are the antisymmetrization of the higher multiplications:

f̂ �n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ)mn

(
f̂ (xσ(1)), . . . , f̂ (xσ(n))

)
, (4)

the terms of the induced L∞ quasi-isomorphisms I : ML → L are the antisymmetrization
of the terms of the A∞ quasi-isomorphism J : MA → A:

f In(x1, . . . , xn) =
∑

σ∈Sn
χ(σ)Jn

(
f̂ (xσ(1)), . . . , f̂ (xσ(n))

)
, (5)

and f̂ : ML → MA is a strict L∞ morphism for the antisymmetrization of {mn}.
Remark 1 The analog of Lemma 1 for a morphism of contractions g : A → L which is a
strict L∞ morphism for the antisymmetrization of the A∞ algebra structure on A also holds.

Proof of Lemma 1 For clarity of exposition, we prove the case in which A = (A, d) is a
DGA and MA = (H A, 0) is its homology endowed with the trivial differential; and similarly
L = (L, ∂) is a DGL and ML = (HL, 0). The general case follows exactly the same proof,
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2154 J. M. Moreno Fernández

but with more involved formulas that do not give any additional insight. The multiplication
map of A will be denoted bym. We prove equation (3) by induction on n, and deduce at each
inductive step the corresponding equation for (4) and for (5).

Let n = 2.Use, in the order given, the definition of θ2, that f is a Lie map for the brackets
involved, that f i = j f̂ , and recognize the recursive formula for λ2 :

f θ2 (x1, x2) = f [i(x1), i(x2)] = [ f i(x1), f i(x2)] = [
j f̂ (x1), j f̂ (x2)

]

= m
(
j f̂ (x1) ⊗ j f̂ (x2) − (−1)|x1||x2| j f̂ (x2) ⊗ j f̂ (x1)

)

= (m ◦ j ⊗ j)
(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)

= λ2

(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)
.

Equation (3) is therefore proven. Using that f is a morphism of contractions, and the proof
of the case n = 2 above, we can easily prove equations (4) and (5):

f̂ �2 (x1, x2) = f̂ qθ2 (x1, x2) = p f θ2 (x1, x2)

= pλ2
(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)

= m2

(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)
;

f I2 (x1, x2) = f kθ2 (x1, x2) = G f θ2 (x1, x2)

= Gλ2

(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)

= J2
(
f̂ (x1) ⊗ f̂ (x2) − (−1)|x1||x2| f̂ (x2) ⊗ f̂ (x1)

)
.

Assume next that for every p ≤ n − 1, Eq. (3) holds. Then, (4) and (5) also hold for
p ≤ n − 1, which follows from a manipulation identical to the one done for the case n = 2.
Let us prove that equation (3) holds for p = n, and then also Eqs. (4) and (5) for p = n are
straightforward consequence of f being a morphism of contractions and the just proven case
n of Eq. 3. To lighten notation, we write χ(σ) := ε(σ ) sgn(σ ) for any given permutation σ.

Use, in the order given: the definition of θn , that f is a Liemap for the brackets involved, the
identity f i = j f̂ and the induction hypothesis, and rearrange the permutations accordingly,
to end up with the recursive formula of λn evaluated at the desired elements:

f θn (x1, . . . , xn)

=
n−1∑

s=1

∑

σ∈S(s,n−s)

ε(σ ) f
[
Is

(
xσ(1), . . . , xσ(s)

)
, In−s

(
xσ(s+1), . . . , xσ(n)

)]

=
n−1∑

s=1

∑

σ∈S(s,n−s)

ε(σ )
[
f Is

(
xσ(1), . . . , xσ(s)

)
, f In−s

(
xσ(s+1), . . . , xσ(n)

)]

=
n−1∑

s=1

∑

σ∈S(s,n−s)

ε(σ )

⎡

⎣Js

⎛

⎝
∑

τ∈Ss
χ(τ) f̂ (xτσ (1)) ⊗ · · · ⊗ f̂ (xτσ (s))

⎞

⎠ , Jn−s

×
⎛

⎝
∑

ρ∈Sn−s

χ(ρ) f̂ (xρσ(s+1)) ⊗ · · · ⊗ f̂ (xρσ(n))

⎞

⎠

⎤

⎦
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=
n−1∑

s=1

∑

σ∈S(s,n−s)

∑

τ∈Ss
ρ∈Sn−s

ε(σ )χ(τ)χ(ρ)

× [
Js

(
f̂ (xτσ (1)), . . . , f̂ (xτσ (s))

)
, Jn−s

(
f̂ (xρσ(s+1)), . . . , f̂ (xρσ(n))

)]

=
n−1∑

s=1

∑

σ∈Sn
(−1)s+1χ(σ)

[
Js

(
f̂ (xσ(1)), . . . , f̂ (xσ(s))

)
, Jn−s

(
f̂ (xσ(s+1)), . . . , f̂ (xσ(n))

)]

= m

( n−1∑

s=1

∑

σ∈Sn
(−1)s+1χ(σ)

(
Js

(
f̂ (xσ(1)), . . . , f̂ (xσ(s))

) ⊗ Jn−s
(
f̂ (xσ(s+1)), . . . , f̂ (xσ(n))

)

− (−1)α Jn−s
(
f̂ (xσ(s+1)), . . . , f̂ (xσ(n))

) ⊗ Js
(
f̂ (xσ(1)), . . . , f̂ (xσ(s))

) )

= λn

⎛

⎝
∑

σ∈Sn
χ(σ) f̂ (xσ(1)) ⊗ · · · ⊗ f̂ (xσ(n))

⎞

⎠ .

�

Proof of Theorem 2 To prove (i), we show that fixed a contraction of L onto HL , one can
choose a contraction of UL onto its homology HUL ∼= UHL ∼= SH so that the PBW
map L ↪→ UL is a morphism of contractions, and then apply Lemma 1. Let (i, q, K ) be a
contraction of L onto H = HL , and write L = B ⊕ ∂B ⊕ C for the graded vector space
decomposition equivalent to it. By the PBW theorem ([9, Thm. 21.1]) and some basic facts
of differential graded algebra, there are graded vector space isomorphisms

UL ∼= SL ∼= S (B ⊕ ∂B ⊕ C) ∼= S (B ⊕ ∂B) ⊗ SC ∼= S (B ⊕ ∂B) ⊗UH .

The above is a decomposition of the chain complex UL into two terms. In the first term, the
differential is an isomorphism, and in the second, the differential is trivial. Since S (B ⊕ ∂B)

is acyclic, the injection j : (UH , 0) ↪→ (UL, d) is a quasi-isomorphism,

j : (UH , 0) (S (B ⊕ ∂B) ⊗UH , d) (UL, d) .
� ∼=

Decompose UL ∼= S (B ⊕ ∂B) ⊗ UH , let p : UL → UH ∼= 1 ⊗ UH be the projection

onto UH , and let G be the inverse of d : SB ∼=−→ S∂B extended to all of UL as zero in the
subspace SB ⊗ 1 ⊗ UH ⊆ UL. Then, ( j, p,G) is a contraction of UL onto UH which is
a morphism of retracts for the inclusion L = B ⊕ ∂B ⊕ C ↪→ UL = S (B ⊕ ∂B ⊕ C).

To prove (i i), denote by {μn} the A∞ algebra structure onUH induced by Baranovsky’s
construction, and by {mn} the induced by the contraction ( j, p,G). Since (L, ∂) is a
DGL, Baranovsky’s construction coincides with the classical universal enveloping DGA

([3, Thm. 3]). The L∞ quasi-isomorphism Q : (L, ∂)
�−→ (H , {�n}) provided by the

contraction (i, q, K ) transforms (by [3, Thm. 3]) into an A∞ algebra quasi-isomorphism

U (Q) : (UL, d)
�−→ (UH , {μn}). There is another A∞ algebra quasi-isomorphism

P : (UL, d)
�−→ (UH , {mn}) induced by the contraction ( j, p,G). Hence, there is a zig-zag

of A∞ quasi-isomorphisms

(UH , {mn}) (UL, d) (UH , {μn})� �

Since {mn} and {μn} are minimal, the two A∞ algebra structures are A∞-isomorphic. �
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The results above motivate Def. 1 for the universal enveloping A∞ algebra on an L∞
algebra. Recall that any L∞ algebra L is L∞ quasi-isomorphic to the DGL LC(L) [16], and
that every L∞ algebra has a minimal model ([20, Thm. 7.9]). Here, L : CDGC � DGL : C
are the adjoint functors introduced by Quillen [26], with no bounding assumptions on the
underlying complexes [11].

Definition 1 Let L be an L∞ algebra. Its universal enveloping A∞ algebra is

Ut (L) := (SL, {mn}) ,

where {mn} is any A∞ algebra structure arising by exhibiting SL as a contraction of ΩC(L).
In particular, if L is minimal, then the A∞ structure on SL is the one given in Theorem 2.

The definition given is essentially equivalent to Baranovsky’s. The difference is that we
explicitly use Thm. 2 for constructing it, hence avoiding the use of Baranovsky’s chain
homotopy K [3, Thm. 1], andwith explicit,more transparent formulaswhenever L isminimal.
A different way of reading Def. 1 is as follows. For an arbitrary L∞ algebra L , the A∞
structure {mn} on SL arises by forming a diagram:

ΩC (L) SL

LC (L) L

(6)

From this point of view, we start with a contraction from LC (L) onto L producing the L∞
structure of L , and then the proof of Theorem 2 goes through: the classical PBW map

LC (L) ↪→ U (LC (L)) = ΩC (L)

is made a morphism of contractions, where we contract ΩC (L) onto its homology
H∗ (ΩC (L)), which is isomorphic as a graded vector space to SL (this isomorphism follows,
for example, from [3, Thm. 1]). Given f : L1 → L2 an L∞ morphism, and once chosen
contractions

ΩC(Li ) SLi = Ut (Li ) , i = 1, 2,
pi

ji

there is a uniquely defined A∞ morphism

Ut ( f ) = p2 ◦ ΩC( f ) ◦ j1 : Ut (L1) → Ut (L2),

enjoying properties similar to Baranovsky’s definition on morphisms (see [3, Thm. 3]).

3 Homotopical properties and comparison with other envelopes

We collect the main properties regarding the homotopy type of the several universal envelop-
ing constructions in Proposition 1.

Let L be an L∞ algebra. Denote byUB(L) andUt (L) the construction of Baranovsky and
the given in Def. 1, respectively. The universal envelopesUB andUt are homotopy equivalent
(Prop. 1 (i)). Quillen’s foundation of rational homotopy theory, as well as other deep results
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(see for example [1,10,17]), rely heavily on the now classical fact that homology commutes
with the classical universal enveloping algebra functor over characteristic zero fields,

UH = HU . (7)

See [26,AppendixB]. The identity (7) holds only up to homotopy for the universal enveloping
constructionsUB ,Ut , andU (Prop. 1 (i i i)),whereU is Lada andMarkl’s universal enveloping
( [15]). Another classical result of Quillen ( [26], see also [25]) asserts that for a given DGL
L with universal enveloping DGA UL , there is a natural DGC quasi-isomorphism

C(L)
�−→ BUL. (8)

For L∞ algebras, although C(L), BUt (L) and BUB(L) are DGC’s, there is usually no direct
DGC quasi-isomorphism as in (8). However, these DGC’s are always weakly equivalent,
which is the lift of the quasi-isomorphism (8) when dealing with infinity structures (Prop. 1
(i i)).

Proposition 1 Let L be an L∞ algebra. Then,

(i) There are A∞ quasi-isomorphisms

Ut (L) � UB(L).

The constructions are then the same up to homotopy, and isomorphic if L is minimal.
(ii) There is an A∞ coalgebras quasi-isomorphism

C(L)
�−→ BUL,

where U is any of the envelopes Ut or UB, which is not generally a DGC map.
(iii) Assume that H∗ (L) carries an L∞ structure induced by a contraction from L onto it.

Then, there are A∞ quasi-isomorphisms

U (H∗ (L)) � H∗ (UL) ,

where U is any of the envelopes Ut ,UB or U .

Proof (i) If L is minimal, Thm. 2(i i) proves the assertion. Otherwise, diagram (6) gives the

following square, proving that C(L)
�−→ BUt (L) :

CLC (L) C(L)

BΩC (L) BUt (L)

�

�
�

We used that the bar construction preserves quasi-isomorphisms and that the quasi-
isomorphismofEq. (8) holds forDGL’s.By [3, Thm4 (ii)], there is aDGAquasi-isomorphism
ΩC(L) → ΩBUB(L). Since the unit of the bar-cobar adjunction is a quasi-isomorphism
for conilpotent coalgebras, there is the following zig-zag of DGC quasi-isomorphisms, from
which the result follows:

BUt (L) C(L) BΩC(L) BΩBUB(L) BUB(L) (9)

(i i) Follows from the zig-zag just above.
(i i i)By item (i), it suffices to prove it forU = UB and forU = U . Let f : L → HL be an L∞
quasi-isomorphism. Since UB preserves quasi-isomorphisms, UB( f ) : UB(L) → UB(HL)
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is an A∞ quasi-isomorphism. Thm. 1 provides an A∞ algebra structure on H(UB(L)), aswell
as an A∞ quasi-isomorphism I : H(UB(L)) → UB(L). Thus, the following composition is
an A∞ quasi-isomorphism:

H(UB(L))
I−→ UB(L)

UB ( f )−−−→ UB(HL).

Let us prove it for U . Fix a contraction

L H ,K
q

i
(10)

endow H with an L∞ structure via Thm. 1, and denote by {mn} the A∞ structure on UL.

Markl’s PBW-infinity theorem [19, Thm. 4.7] gives an isomorphism of A∞ algebras

S∗ (L)
∼=−→ G∗ (L) .

Here, G∗ (L) is the associated graded A∞ algebra for the ascending filtration of UL given
by F0 = Q, F1 = Q ⊕ L , and for p ≥ 2 :

FpL = SpanQ
{
mn (x1, ., , , .xn) | n ≥ 2, x j ∈ Fpj L, p1 + · · · + pn ≤ p

}
,

and

S∗ (L) = F (L, �1) /J

is the quotient of the free A∞ algebra on the chain complex (L, �1) by the ideal generated by
imposing the vanishing on L of the antisymmetrization of the A∞ structure {μn} ofF (L, �1)

for n ≥ 2. That is,

μL
n (x1, . . . , xn) = 0 for all n ≥ 2, xi ∈ L.

Basically, S∗ is the "free A∞ algebra symmetrized on L" (not to be confused with a C∞
algebra, whose structure maps vanish on the image of the shuffle products). Denote by P the
dg operad whose free algebras are given by S∗ (an explicit description in terms of planar trees
is given in [19, Prop. 4.6]). Summarizing, for any L∞ algebra L , there is an isomorphism of
A∞ algebras

UL ∼= S∗ (L) ,

where S∗ (L) = P (L) is the free P-algebra for a certain dg operad P. Thus, after a possible
change of homotopy in the contraction from L onto H , Berglund’s generalization of the
tensor trick to algebras over operads ([5, Thm. 1.2]) applies to the contraction (10). That is,
there is a contraction

UL ∼= S∗ (L) S∗ (HL) ∼= UHL.S∗(K )

S∗(q)

S∗(i)

To finish, choose any A∞ quasi-isomorphism UL � H∗ (UL), for instance by using Thm.
1. Then, there are A∞ quasi-isomorphisms

UH∗ (L)
�−→ UL

�−→ H∗ (UL) .

�
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Remark 2 One could try to adapt Quillen’s proof for DGL’s in [26, App. B] of the identity
HU = UH for U . Several subtleties arise this way, and in fact, one cannot improve Prop.
1 (iii). Indeed, any "natural" map U (HL) → HUL passes through a previous choice of
infinity structures, thus one cannot expect an isomorphism. It gets even worst than that: no
choice will ever be an isomorphism, except for the trivial case, given that by definition UHL
carries a non-trivial differential, whereas H∗ (UL) does not.

For P a dg operad, recall that a P-algebra is formal if there exists a zig-zag of P-algebra
quasi-isomorphisms connecting it to its homology [16]. In presence of a contraction, Lemma
1 gives a straightforward proof of the fact that L is formal as a DGL if, and only if, UL is
formal as a DGA. This result was recently proven in [27], and generalized in [8, Thm. B].

We conclude this section with a conjecture.

Conjecture 1 Let L be an L∞ algebra. Lada and Markl’s universal enveloping A∞ algebra
UL is such that there is a zig-zag of DGC quasi-isomorphism

C(L) ← · · · → BUL.

If Conjecture 1 is true, all the universal enveloping constructions studied in this section
enjoy the same homotopical properties. Note that there cannot be in general a direct DGC

quasi-isomorphism C(L)
�−→ BUL, since for L a DGL with no higher structure, the functor

U does not coincide with the classical universal enveloping construction.

4 TheMilnor-Moore infinity theorem and a new rational model

The algebraic formalism of Sect. 2 has interesting applications to rational homotopy theory.
The monograph [9] is an excellent resource on rational homotopy theory. In this section, all
L∞ algebras are concentrated in non-negative degrees, and we adopt the notation ΛV for
the symmetric algebra SV on the graded vector space V , as usually done among rational
homotopy theorists.

4.1 TheMilnor-Moore infinity theorem

Let X be a simply connected CW-complex. The classical Milnor-Moore theorem [24] asserts
that the rational homotopy Lie algebra LX = π∗ (ΩX) ⊗ Q embeds as the subspace of
primitive elements of the rational loop space Hopf algebra H∗(ΩX; Q). Furthermore, the
latter Hopf algebra is precisely the universal enveloping algebra of LX , and the inclusion is
given by the rationalization of the Hurewicz morphism,

h : π∗ (ΩX) ⊗ Q ↪→ H∗(ΩX; Q) = U (π∗ (ΩX) ⊗ Q) . (11)

If only the rational homotopy Lie algebra π∗ (ΩX) ⊗ Q is taken into account, then non-
equivalent rational spaces may share this invariant. For instance, the rationalization of CP2

and of K (Z, 2)× K (Z, 5) are not equivalent, yet both have abelian two dimensional isomor-
phic rational homotopy Lie algebras. However, extending a Lie bracket on π∗ (ΩX) ⊗ Q to
a minimal L∞ structure determines a unique rational homotopy type. The rational homotopy
type encoded by such an L∞ algebra L is determined by the DGL LC(L) in case L = L≥1,
and by the Sullivan algebra C∗(L) in case L = L≥0 is finite type pronilpotent (in this case,
we assume X nilpotent of finite type instead of simply-connected). Here, C∗ = ∨ ◦ C is the
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linear dual ∨ of the Quillen chains C. See [6, Thm. 2.3] for details. By a beautiful result
of Majewski, whenever X is simply connected of finite type, the two algebraic models are
homotopy equivalent [17].

DenoteU = Ut . The next result lifts the morphism (11) to the context of infinity algebras.

Theorem 3 Let X be a simply connected CW-complex. Endow π∗ (ΩX) ⊗ Q with an L∞
structure {�n} representing the rational homotopy type of X forwhich �1 = 0 and �2 = [−,−]
is the Samelson bracket. Then, there is an A∞ algebra structure {mn} on the loop space
homology algebra H∗ (ΩX; Q) for which m1 = 0,m2 is the Pontryagin product, and such
that the rational Hurewicz morphism

h : π∗ (ΩX) ⊗ Q ↪→ H∗(ΩX; Q) = U (π∗ (ΩX) ⊗ Q)

is a strict L∞ embedding. Therefore, the L∞ structure on the rational homotopy Lie algebra
is the antisymmetrized of the A∞ structure on H∗(ΩX; Q):

�n(x1, . . . , xn) =
∑

σ∈Sn
χ(σ)mn

(
xσ(1), . . . , xσ(n)

)
.

Proof Assume that the rational homotopy Lie algebra π∗ (ΩX) ⊗ Q carries a minimal L∞
structure {�n} corresponding to the rational homotopy type of X for which �2 is the Samelson
bracket. For instance, from a CW-decomposition

∗ = X (1) ⊆ X (2) ⊆ · · · ⊆
⋃

n

X (n) = X ,

build the Quillen minimal model L = (L(V ), ∂) of X , satisfying

H∗ (L) ∼= π∗ (ΩX) ⊗ Q

as graded Lie algebras. The choice of a contraction from L onto π∗ (ΩX) ⊗ Q gives an
L∞ structure as in the statement. The rational Hurewicz homomorphism of equation (11) is,
after the choice of an ordered basis of L , the PBW map from L into UL . Therefore, h can
be chosen to be h = ı̂ = pıi in the following diagram, which is under the hypotheses of
Theorem 1:

T V = U (L(V )) H∗ (ΩX; Q)

L(V ) π∗ (ΩX) ⊗ Q

G
p

j

K
q

ı

i

h

An application of Theorem 1 finishes the proof. �
Remark 3 LetUt (L) = (SL, {mn}) be the universal enveloping A∞ algebra of (L, {�n}). For
each n, the composition

L⊗n (SL)⊗n SL
in mL

n

has its image in L ⊆ SL . Let π : SL → L be the projection. The primitives of SL for
the standard coproduct are precisely P∗(SL) = L. Thus, the original L∞ structure can be
recovered by performing two natural operations toUt (L): antisymmetrizaton and restriction
to primitives.

(SL, {mn}) �−→ (P∗(SL), π ◦ mL
n ◦ in

) = (L, {�n}).
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Detecting when a given cocommutative Hopf algebra is the universal envelope of its
primitives is a difficult problem. This has been studied, among others, by Anick, Cartier,
Halperin, Kostant, Milnor and Moore. See for example [10]. The classical name of this sort
of result is the Cartier-Milnor-Moore theorem. Does a similar statement hold in the infinity
setting?

Conjecture 2 Let A be an A∞ algebra over a characteristic zero field such that there is a
cocommutative, conilpotent coproduct Δ on A which is a strict A∞ morphism A → A⊗2.
Then, the primitives for the coproduct L = Ker(Δ) = P∗(A) form an L∞ algebra, and the
inclusion L ↪→ A extends to an isomorphism of A∞ algebras

UL
∼=−→ A

which respects the Hopf structure.

In the conjecture above, we expect U to be Lada and Markl’s envelope, and maybe the
diagonal Δ needs to come from a ”Hopf algebra up to homotopy”, so that the isomorphism
might be not only of A∞ algebras, but of homotopy Hopf algebras. If X is a simply connected
complex, and H∗(ΩX; Q) carries a universal enveloping A∞ structure, then H∗(ΩX; Q) is
a rational model for X . Indeed, by Remark 3,

P∗ (H∗(ΩX; Q)) = π∗ (ΩX) ⊗ Q

is a fully-fledged L∞ algebra capturing the rational homotopy type of X .

4.2 Examples: recovering the Sullivan and Quillenmodels

We explicitly record several examples of universal enveloping A∞ algebras of the sort

Ut (π∗ (ΩX) ⊗ Q, {�n}) = (H∗(ΩX; Q), {mn}) .

1. The simply connected sphere Sn .

– For odd n, it is Λx with |x | = n − 1, with trivial differential and trivial higher
multiplications of all orders.

– For even n, it is Λ(x, y) with |x | = n − 1, |y| = 2n − 2, with a unique non-trivial
multiplication map given by m2(x, x) = 1

2 y.

2. A finite product of simply-connected Eilenberg-Mac Lane spaces
∏k

i=1 K (Q, ni ). It
is given by

(Λx1, . . . , xk), where each |xi | = ni − 1,

with trivial differential and higher multiplications of all orders.
3. The complex projective spaces CPk , for k ≥ 1. It is given by Λ(x, y), with |x | = 1,

|y| = 2k and its only non-trivial higher multiplication is

mk+1(x, . . . , x) = 1

(k + 1)!2 y.

Indeed, an L∞ model L = π∗(ΩCPk) ⊗ Q of CPk has a linear basis {x, y} with
|x | = 1, |y| = 2k with a single non-vanishing higher bracket, given by �k+1(x, . . . , x) =
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1
(k+1)! y (see for instance [6, p. 365]). The result then follows, since the sign χ(σ) in the
sum below is always positive:

1

(k + 1)! y = �k+1(x, . . . , x) =
∑

σ∈Sk+1

χ(σ)mk+1(x, . . . , x) = (k + 1)!mk+1(x, . . . , x).

4. Coformal spaces. The universal enveloping A∞ algebramodel of any coformal space can
be chosen to be the classical universal enveloping algebra of it. Indeed, if X is coformal,
then L = π∗(ΩX)⊗ Q together with �2 given by the Samelson product is an L∞ model
of X . Since L is a DGL with trivial differential, the universal enveloping A∞ algebra of
it coincides with the classical envelope, having the latter trivial differential as well. This
includes examples 1 and 2.

Let Ut (L) = (ΛL, {mn}) be universal enveloping A∞ model of a simply connected
complex X . Let L = P∗ (H∗ (ΩX; Q)) be the primitives for the natural diagonal (Rmk. 3).
Then, one recovers:

– Provided X is of finite type, a (not necessarily minimal) Sullivan model (ΛV , d) of X
by setting V = (sL)∨ and d = ∑

n≥1 dn determined by the pairing

〈dn(v), sx1 ∧ ... ∧ sxn〉 = ε
∑

σ∈Sn
χ(σ)

〈
v; smn

(
xσ(1), . . . , xσ(n)

)〉
, (12)

where ε is the parity of
∑n−1

j=1(n − j)|x j |.
– A (not necessarily minimal) Quillen model by setting

(L(U ), ∂) = (
L

(
s−1Λ+sL

)
, ∂1 + ∂2

) = LC (P∗ (H∗ (ΩX; Q)) , {mL
n }) .

The quadratic part ∂2 of the differential is induced by the reduced coproduct of C(L) (see
formula (2)), and ∂1 is explicitly given on generators by

∂1
(
s−1(sx1 ∧ ... ∧ sxp

))

=
p∑

k=1

∑

i1≤···≤ik

∑

σ∈Sk
εσ
(i1,...,ik )s

−1 (
smk

(
xiσ(1) , . . . , xiσ(k)

) ∧ sx1...̂sxi1 ...̂sxik ... ∧ sxi p
)
.

The sign

εσ
(i1,...,ik ) = −ε · χ(σ) · (−1)ni1 ...ik

is determined by the Koszul sign rule, the parity of the permutation, and the elements
xi1 , . . . , xik .

4.3 HigherWhitehead products and Pontryagin-Massey products

Several authors have related the (ordinary, as well as higher) Whitehead products [−,−] on
π∗(X) with the Pontryagin product ∗ on H∗ (ΩX; R). For instance, the main result in [28]
states that the two-fold Whitehead product of x ∈ πn+1 and y ∈ πm+1 is an antisymmetrized
Pontryagin product:

h[x, y] = (−1)n
(
h(x) ∗ h(y) − (−1)nmh(y) ∗ h(x)

)
.

Here, h : π∗(X)
∼=−→ π∗−1(ΩX) → H∗−1(ΩX; Z) is the Hurewicz morphism precomposed

with an isomorphism. In [2, Thm 3.3], it is shown that under some hypothesis, certain higher
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orderWhitehead product sets [x1, . . . , xk]W ⊆ π∗(X) are non-empty, and contain an element
which is a sort of generalized k-fold Pontryagin product. In the spirit of the results just
mentioned, and rationally, Thm. 3 seems to be the most general statement expressing the
Whitehead products as antisymmetrizations of Pontryagin products. Assuming the existence
of non-trivial secondary higher products in a sense to be explained, one can go a step further
and extract an interesting relationship. For space considerations, and since this section is about
an application of the main results of this work, we omit a (necessarily lengthy) explanation of
the involved background. Instead, we refer the reader to [29] for background on the (rational)
higher order Whitehead products, and to [4] for an account of their relationship with L∞
structures. We start with the following observation.

Proposition 2 Let X be a simply connected complex. The A∞ algebra structures on
H∗(ΩX; Q) arising from exhibiting H∗(ΩX; Q) as a contraction of the chains DGA
C∗(ΩX; Q) and by taking universal enveloping A∞ algebra of an L∞ model onπ∗(ΩX)⊗Q

are A∞ quasi-isomorphic.

Proof Let L = (π∗(ΩX) ⊗ Q, {�n}) be the L∞ model of X , and assume without loss of
generality that L arises as a contraction of the Quillen model (L(U ), ∂) of X . Denote by
{mn} the A∞ structure on H∗(ΩX; Q) arising from Thm. 2. There is a square

U (L(V )) H∗ (ΩX; Q)

L(V ) π∗ (ΩX) ⊗ Q

�

�

whose horizontal top and bottom arrows are A∞ and L∞ quasi-isomorphisms, respectively.

Since there is a DGL quasi-isomorphism L(U )
�−→ λ(X) onto the Quillen construction λ(X)

[26], and the classical enveloping functorU preserves quasi-isomorphisms ([9, Thm. 21.7]),

there is a DGA quasi-isomorphismUL(U )
�−→ Uλ(X). SinceUλ(X) is weakly equivalent to

C∗(ΩX; Q) as a DGA, there is an A∞ quasi-isomorphism Uλ(X)
�−→ (H∗(ΩX; Q), {m′

n})
for {m′

n} induced by exhibiting H∗(ΩX; Q) as a contraction of C∗(ΩX; Q). �
The Massey products of a space X are certain (secondary) higher order operations on the

cohomology algebra H∗(X; R). These arise from relations between the cup product and the
differential in the singular cochains C∗(X; R), see [21,22]. The Massey products and the
A∞ structures on H∗(X; R) are tightly related, see [7] for details. Both, theMassey products
and A∞ structure, exist in the homology H of any DGA A - one needs not consider these
operations only when A is the singular cochain algebra of a space. So, given that H∗(ΩX; R)

is the homology of the DGA C∗(ΩX; R) for the Pontryagin product, it makes sense to
consider the algebraic Massey products on H∗(ΩX; R). We call these higher products on
H∗(ΩX; R) arising from relations between the Pontryagin product and the differential of
the DGA C∗(ΩX; R) the higher Massey-Pontryagin products of X . This way, we avoid the
confusion with the classical Massey products of X . Again for space considerations, we refer
the reader to the works mentioned in this paragraph for the necessary background onMassey
products and A∞ structures.

Denote by h : π∗ (ΩX) ⊗ Q → H∗ (ΩX; Q) the rational Hurewicz morphism.

Theorem 4 Let x1, . . . , xn ∈ π∗ (ΩX) ⊗ Q, and denote by yk = h (xk) ∈ H∗ (ΩX; Q)

the corresponding spherical classes. Assume that the higher Whitehead product set
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[x1, . . . , xn]W and the higher Massey-Pontryagin products sets
〈
yσ(1), . . . , yσ(n)

〉
for every

σ ∈ Sn are defined. If the A∞ algebra structure {mk} on H∗ (ΩX; Q) provided by Thm. 3
has vanishing mk for k ≤ n − 2, then x = ε�n (x1, . . . , xn) ∈ [x1, . . . , xn]W , and satisfies:

h(x) ∈
∑

σ∈Sn
χ(σ)

〈
yσ(1), . . . , yσ(n)

〉
.

Here, ε is the parity of
∑n−1

j=1 |x j |(k− j). If moreover the involved secondary higher products
are all uniquely defined, then the above containment is an equality of elements.

Since the particular case n = 3 of the result above is the most likely to be computed,
and in this case the hypothesis that m1 = 0 is superfluous, we consider this case to be of
independent interest.

Corollary 1 Let x1, x2, x3 ∈ π∗ (ΩX) ⊗ Q, and denote by yk = h (xk) ∈ H∗ (ΩX; Q) the
corresponding spherical classes. Assume that the triple Whitehead product [x1, x2, x3]W
and the triple Massey products

〈
yσ(1), yσ(2), yσ(3)

〉
, σ ∈ S3, are defined. Then x =

ε�3 (x1, x2, x3) ∈ [x1, x2, x3]W , and satisfies:

h(x) ∈
∑

σ∈S3
χ(σ)

〈
yσ(1), yσ(2), yσ(3)

〉
.

If moreover the triple products are all uniquely defined, then the above containment is an
equality of elements.

Proof of Theorem 4 Since mk = 0 for every k ≤ n − 2, it follows from Thm. 3 that
also �k = 0 vanishes whenever k ≤ n − 2. Therefore, [4, Thm. 3.5] asserts that
x = ε�n (x1, . . . , xn) ∈ [x1, . . . , xn] , meanwhile its associative counterpart [7, Thm 3.3]
asserts that εσmn

(
yσ(1), . . . , yσ(n)

) ∈ 〈yσ(1), . . . , yσ(n)〉. We are denoting by εσ the parity

of
∑n−1

j=1(k − j)|xσ( j)|. Using Thm. 3, we conclude that:

h(x) = εh�n(x1, . . . , xn) = ε

⎛

⎝
∑

σ∈Sn
χ(σ)εσmn

(
yσ(1), . . . , yσ(n)

)
⎞

⎠

=
∑

σ∈Sn
χ(σ)mn

(
yσ(1), . . . , yσ(n)

) ∈
∑

σ∈Sn
χ(σ)

〈
yσ(1), . . . , yσ(n)

〉
.
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