
Knowledge-Based Systems 232 (2021) 107489

P
M
D

u
o
t
S
e
s
f
M
n
I

I

N

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

TITAN: A knowledge-based platform for Big Dataworkflow
management✩

Antonio Benítez-Hidalgo1, Cristóbal Barba-González, José García-Nieto,
edro Gutiérrez-Moncayo, Manuel Paneque, Antonio J. Nebro, María del
ar Roldán-García, José F. Aldana-Montes, Ismael Navas-Delgado ∗

ept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga 29071, Spain

a r t i c l e i n f o

Article history:
Received 30 November 2020
Received in revised form 2 September 2021
Accepted 6 September 2021
Available online 10 September 2021

Keywords:
Big Data analytics
Semantics
Knowledge extraction

a b s t r a c t

Modern applications of Big Data are transcending from being scalable solutions of data processing
and analysis, to now provide advanced functionalities with the ability to exploit and understand the
underpinning knowledge. This change is promoting the development of tools in the intersection of data
processing, data analysis, knowledge extraction and management. In this paper, we propose TITAN, a
software platform for managing all the life cycle of science workflows from deployment to execution
in the context of Big Data applications. This platform is characterised by a design and operation mode
driven by semantics at different levels: data sources, problem domain and workflow components. The
proposed platform is developed upon an ontological framework of meta-data consistently managing
processes and models and taking advantage of domain knowledge. TITAN comprises a well-grounded
stack of Big Data technologies including Apache Kafka for inter-component communication, Apache
Avro for data serialisation and Apache Spark for data analytics. A series of use cases are conducted for
validation, which comprises workflow composition and semantic meta-data management in academic
and real-world fields of human activity recognition and land use monitoring from satellite images.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Big Data is usually described by the well-known V’s (Vol-
me, Velocity, and Variety, Variability, Veracity, and Value, among
thers) and different approaches generally focus on some of
hese features. A plethora of technologies (most of them Open
ource projects, such as those from Apache Foundation) have
merged in the last years around Big Data to propose generic
olutions that could underline any of these V’s [1,2]. For example,
or dealing with Volume, NoSQL databases (Apache Cassandra,
ongoDB, Apache HBase, Neo4J among many more2) propose
ew approaches to the efficient management of large datasets.
n terms of handling extensive scale data, there exist several

✩ This work has been partially funded by the Spanish Ministry of Science
and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and Andalu-
sian PAIDI program with grant P18-RT-2799. Funding for open access charge:
Universidad de Málaga / CBUA.

∗ Corresponding author.
E-mail address: ismael@uma.es (I. Navas-Delgado).

1 Supported by Grant PRE2018-084280 (Spanish Ministry of Science,
nnovation and Universities).
2 See https://hostingdata.co.uk/nosql-database/ for a long list of classified
oSQL databases.
ttps://doi.org/10.1016/j.knosys.2021.107489
950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
proposals to leverage distributed computing in an efficient man-
ner (such as Apache Spark), that ultimately speed up the data
processing time. Velocity is not only taken into consideration in
NoSQL databases (to ensure the ingestion of fast data streams),
but also in the analysis of data streams (e.g., Apache Kafka, Flink,
and Spark).

However, one of the main focuses nowadays is on providing
Value out of all the available data. Getting this Value is not an
easy task that could be solved with a single horizontal technology.
Thus, there are also many approaches related to Big Data analytics
(i.e., the use of advanced analysis techniques applied to large and
diverse datasets) coming from heterogeneous vertical domains,
such as transportation [3], healthcare [4], e-Science [5], and agri-
culture [6]. The goal is to provide solutions that can deal with
several Big Data issues in an application using the technologies
that best suit for different aspects of the problem.

The development of a solution that provides Value to a given
Big Data analysis process is usually hard-coded in the application.
With the explosion of data and the expectations to make use
of it, organisations start automating data extraction processes,
which would end up in data repositories from which extracting
Value is a challenge. The use of semantics, including contextual
information, is a promising approach to deal with data to improve
the data analysis processes and to ensure the efficient reuse
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.knosys.2021.107489
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107489&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ismael@uma.es
https://hostingdata.co.uk/nosql-database/
https://doi.org/10.1016/j.knosys.2021.107489
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

e
a
t
n
w
s
b
a
a
v

w
e
m
s
s
s
s
q
t
p
e
d
a
o
s
o
T
c
d
b
a
s
u
w
d
t
n

of software components [7,8]. Thus, a current trend is the de-
velopment of data-driven applications capturing, managing and
injecting domain knowledge into their software components [7,
9,10] to cope with the complexity of this kind of applications.
Regardless of how semantics is built up and captured (elicitation
of domain semantics), the use of domain semantics in Big Data
applications can exploit the use of ontologies. That is to say,
it uses a formal description of the concepts in the domain of
interest and the relationships among them [11], to discover new
knowledge (Value) and guide the analysis processes.

The use of semantics opens some exciting research challenges:
nhancing data and analysis results quality; validation of the
nalysis processes (both during design and execution phases);
raceability of the analysis results and capability of generating
ot only an explanation of results but also a ‘‘confidence level’’
hich depends on, among others, data provenance and domain
emantics [12]. In particular, Semantic Web technologies can
e used to annotate data with domain knowledge and also to
nnotate features and transformation processes done by data
nalysis algorithms (e.g., algorithm parameters, input and output
ariables, and behaviours, among others).
In this context, we developed the BIGOWL ontology [7], which

as the result of an ontology-driven approach to support knowl-
dge management in Big Data analytic workflows. With the se-
antics, our ontology follows the tendency of the Big Data analy-
is for automating the selection of concrete modelling techniques
uch as deep learning or multi-objective, using service compo-
ition [13,14]. However, taking advantage of BIGOWL in real
cenarios required much effort from the developer’s side, re-
uiring the manual annotation of the information and deploying
he workflows in the execution environment. In this paper, we
resent TITAN (semanTics in bIg daTa ANalytics), a semantic-
nhanced software platform for the accurate design, annotation,
evelopment, testing, deployment and execution of Big Data an-
lytic workflows. In our proposal, BIGOWL is acting at the core
f TITAN by providing the ontology scheme according to which
emantic annotation of algorithmic components, data sources,
peration constraints, and execution planning is performed. Thus,
ITAN can take advantage of semantics not only in the workflow
onstruction, recommendation or validation, but also by giving
omain context to the analysis. Our framework distinguishes
etween programmer users, who develop new components and
nnotate them using the semantics, and business users, that use
uch components to perform the analysis. TITAN enhances their
ser experiences, so that the latter can benefit of all the frame-
ork semantic features without knowing anything about how to
eclare the semantics of the data or components developed by
he prior. The main contributions of this platform are described
ext:

• Improvement and extension of BIGOWL [7] to enable the au-
tomatic deployment of workflows in Big Data environments.
This includes providing validation mechanisms to ensure the
quality of workflows from the design stages, before their
execution, by taking advantage of the operational semantics
of BIGOWL.

• Development of tools to support the domain contextual-
isation of data processed along with Big Data workflows,
keeping a chain of data provenance not only for the data
themselves, but also for the workflow’s parameters and
hyper-parameters and their components.

• Development of an Open Source Graphical User Interface3
(GUI) for the design of Big Data analytic workflows and their
execution in distributed environments by providing native

3 https://github.com/KhaosResearch/TITAN-GUI
2

support to data stream analysis through Apache Kafka [15]
and Apache Spark [16]. The definition and documentation of
how developers can include their algorithms in TITAN will
boost the creation of a developers’ community.

• Development of an API4 to enable the development of new
software tools, that can be independent of the aforemen-
tioned GUI.

The rest of the paper is structured as follows. In Section 2,
background notes are provided for contextualisation and com-
parison of related work with TITAN. Section 3 describes the
architecture of our semantic-enhanced software platform. Sec-
tion 4 presents the methodology to develop new components.
Section 5 depicts how to design a workflow in TITAN. Hereafter,
in Section 6 three use cases are described to illustrate different
workflow compositions with TITAN. In Section 7, a series of
discussions are included. Finally, Section 8 includes concluding
remarks and future work.

2. Background

This section includes background concepts in the Semantic
Web field. Furthermore, a review of state of the art is provided
to point out the main differences of the related works concerning
the proposed approach.

2.1. Background concepts

• Ontology. Inline with [17], an ontology provides a formal
representation of the real world. It defines a description of
concepts in a concrete domain (classes or concepts), prop-
erties of each concept describing various features and at-
tributes of the concept (properties) and restrictions on prop-
erties. Ontologies are defined in the W3C standard stack
of the Semantic Web.5 An ontology accompanied by a set
of individual instances of classes composes a knowledge
base and offer services to facilitate interoperability across
multiple heterogeneous systems and databases.

• RDF. Resource Description Framework [18] is included in
the W3C recommendation that defines a language for de-
scribing resources on the web. RDF defines resources in
terms of triples, consisting of a subject, predicate and object.
RDF Schema (RDFS) [19] defines vocabularies used in RDF
descriptions.

• SPARQL is a query language for accessing RDF stores. It is
the query language advocated by W3C [20] to work with
RDF graphs [21], then allowing queries and web data sources
identified by URIs.

2.2. Workflow analytic tools

In the last decades, Workflow Management Systems (WMSs)
have grown in popularity within the scientific community. They
can be classified into two distinct categories: task-driven WMSs
and data-driven WMSs [22]. In the task-driven approach (Sec-
tion 2.2.1), workflow task completion triggers the execution of
the dependent tasks in the workflow. Nevertheless, in a data-
driven approach (Section 2.2.2), the functions in the workflow
are started when the input data are available, rather than task
completion dependencies.

There exists a series of studies in which (Big) Data analytic
tools (both task and data driven) are defined to design and exe-
cute data analytic workflows. These studies do not only support

4 https://github.com/KhaosResearch/TITAN-API
5 https://www.w3.org/standards/semanticweb/

https://github.com/KhaosResearch/TITAN-GUI
https://github.com/KhaosResearch/TITAN-API
https://www.w3.org/standards/semanticweb/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

U
p
w
a
s
e

a
a
s
T
a

p
v
f
i
t
c
c
d
a
K
c
a

f
a
t
t
o
s
p

c
a
c
r
N
I
c
i
l
b
o
e
i
t
T
w

s
f
c
p
d

the automation of repetitive tasks, but they can also manage
complex analysis processes at various levels of detail and sys-
tematically capture provenance information for the derived data
products. Some approaches are able to exploit meta-data to some
degree to support users in the construction of workflows and
their deployments. Below we compare some of these proposals,
depending on the two described categories.

2.2.1. Task-driven workflow management systems
VisTrails [23], which has been developed at the University of

tah, is a system whose goal is to simplify and streamline the
rocess of scientific data exploration. VisTrails can be combined
ith a wide range of tools, libraries, and visualisation systems
nd captures provenance for data products and workflow de-
igns. Furthermore, VisTrails uses its own engine to manage the
xecution, allowing workflows to be run online or locally [24].
Following the idea of improving workflow provenance, in 2015

ppeared YesWorkflow [25] that is a set of software tools that
llow scientists annotating scripts (in Python, R, or Perl) with
pecial comments to enhance the provenance of scientific results.
his provenance can be queried to improve workflow trustability
nd re-usability.
In the field of open-source analytic tools, an interesting ap-

roach is KNIME (Konstanz Information Miner) [26], which pro-
ides a robust, modular, and highly scalable platform for work-
low design and execution. It includes components for data load-
ng, transformation, analysis, and visual exploration models. Fur-
hermore, KNIME allows users to design data flows and data
hannels in a visual way, to run some selectively or all analyti-
al components. KNIME is able to process and integrate diverse
atasets. However, the workflow-oriented approach does not fit
ppropriately for processing streaming data. To address this issue,
NIME provides a streaming executor, which executes nodes
oncurrently and so the results of one node are instantly provided
s input to the other connected ones.
Another open-source tool for managing workflows is Air-

low [27], a lightweight workflow manager that allows designing
nd executing workflow as a Directed Acyclic Graph (DAG) of
asks. Both order and relationships between tasks are described in
he DAG. Airflow has an architecture that allows the distribution
f tasks to a high-handed number of workers and across multiple
ervers. Its user interface allows visualising pipelines, monitor
rogress, and troubleshoot issues.
Taverna is an open-source workflow tool suite [28], which

ombines distributed Web Services and local tools into complex
nalysis pipelines with a large number of users in the e-Science
ommunity. Taverna focus on connecting data sources to extract
elevant information and produce a simple analysis of these data.
evertheless, Taverna is not focused on the analysis of Big Data.
ts workflow steps or Processors are implemented either as lo-
al Java classes or as Web Services that implement the WSDL
nterface. Between each processor, there are data and control
inks among them. The data links aim to establish dependencies
etween the output of a processor and the input of another
ne. A control link indicates that a processor can only begin its
xecution when another processor has successfully completed
ts execution [29]. Taverna is able to operate in different execu-
ion environments providing several possibilities of deployment.
averna also has a desktop design GUI in order to facilitate the
orkflow design process.
In the context of tools that take into account semantic repre-

entations to enhance the user’s experience for designing work-
lows, we can find the Workflow Instance Generation and Spe-
ialisation (WINGS) [8]. WINGS allows scientists to design com-
utational experiments through semantic representations that
escribe constraints of the data and computational steps in the
3

workflow. The core ontologies of WINGS are defined in the Web
Ontology Language (OWL), while the rest (e.g., workflow tem-
plates, constrains) are defined in the Resource Description Frame-
work (RDF). WINGS ensures that only the right components are
used in workflows by checking the semantic constraints of the
input and output types. Furthermore, WINGS provides web-based
access and can run workflows by itself, or deploy them to external
workflow management system such as Pegasus [30].

Following the idea of using semantics to assist data analysts in
selecting and developing models in predictive big data analysis,
Kumar et al. [31] proposed to employ Automatic Service Compo-
sition (ASC), where users can use service composition techniques
to combine existing services as components. This framework
generates an abstract workflow for predictive big data analysis
and it is supported for semi-automated model selection using
analytics ontology.

MINT [32] is a framework for model integration that uses se-
mantic representations (based on the Geoscience Standard Names
ontology [33]) to describe datasets and models. MINT provides
functionality for guiding users in the discovery of models and data
to suggest appropriate combinations of models as well as in the
execution and visualisation of results.

Similar to Pegasus, Makeflow [34] is a command-line work-
flow engine that represents data-intensive workflows using a
file format very similar to the one used by the Make tool [35].
In Makeflow, the input data of each activity must be explicitly
specified for the workflow representation or the workflow de-
scription will be regarded as incorrect. Makeflow supports many
different execution environments, including local execution or
HTCondor [36].

A last proposal in task-driven WMS is BioMOBY [37], which
uses semantic approaches to enable the validation of scientific
workflows, defining data types for inputs and outputs of the
components.

2.2.2. Data-driven workflow management systems
Besides MapReduce-based solutions like Apache Hadoop [38],

Apache Yarn [39] or Apache Spark [40], several generalist data-
oriented workflow management solutions have been developed
in the recent years [41].

Pachyderm [42] is an open-source workflow system and data
management framework. A Pachyderm workflow is denoted a
pipeline and is organised around data repositories (nodes in a
DAG) containing data. Pachyderm runs a pipeline on its data and
waits asynchronously for new data to be processed. This tool is
not limited to a given data format or programming language to
process the data. Besides, Pachyderm is based on the idea that
there are no folders (in the form of separate storage buckets) and
all messages should reside in a single conceptual store. Pachy-
derm is built on top of a large number of software layers and
runs on top of widely-used commercial cloud providers such as
Amazon S3 [43], Microsoft Azure [44] or Google Cloud [45].

Likewise, Nextflow [46] enables workflows to be run either
locally or in most cluster environments, and supports running
software via either Docker [47] or Singularity [48] clients, which
depends on the operating system. Nextflow approach, like Pachy-
derm, runs pipelines on its data. Nextflow provides complete
integration with several versioning platforms such as GitHub,
which enables the workflow to check for updates and pull data
from a given repository.

Another tool is the interactive data-driven workflow engine
for Grid-enabled resources, VLAM-G, [49]. It is a decentralised
data flow driven workflow engine focused on e-science commu-
nity. The design of VLAM-G is based on several core Grid services
(resource management, data access, and resource information
services). The engine consists of a Run-Time Environment for

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

[
p
f
l
a
c
i
i
t
e

2

y
s

w
h
s
p
g
l
c
a

workflow components and a Run-Time System Manager that
controls and orchestrates the execution. Workflows are created
by connecting components through data dependencies. The com-
ponents can be special software developed for VLAM-G, web ser-
vices, or interfaces to legacy software. VLAM-G allows monitoring
run-time executions, as well as interactivity through parameters
of the connected modules.

Provenance Management for Data-Driven Workflows, Karma2
50], is another tool where the individual services that com-
ose a workflow publish their own provenance to minimise per-
ormance overheads at the workflow-engine level. Karma col-
ects the metadata provenance in the form of a workflow trace
nd records them in a central database server. That metadata
omprises information about task nodes in workflows, operating
ndependently of the workflow management system used. The
nformation collected can be used to produce workflow execu-
ion traces that identify producer/consumer relationships for data
xchange by these services.

.3. Workflow management systems comparative analysis

In this section, we summarise the main features of the anal-
sed proposals (see Table 1). The main features taken into con-
ideration are:

• Approach. This column indicates wherever the approach is
data driven (D) or task (T) driven.

• Big Data support . The support for Big Data technologies has
been taken into account by discriminating three possible
cases: (N) Big Data technologies are not included, (Y*) Big
Data technologies are included and (Y) focused only in Big
Data technologies.

• Data Stream support . The analysis of streaming data is a
key topic in many Big Data workflows, which can be either
supported (Y) or not supported (N).

• Semantic-Based approach. The use of semantics can be
present in several aspects: (D) design support, (V) work-
flow validation, (P) deployment support, (L) Linked Data
provision. In other cases, (N) when there is no support.

• Open Source. Open Source approaches enable long term
maintenance of the systems, avoiding the limitation of a
specific funding frame. There are three options: closed
source (N) , open source (Y) or unknown (U).

• Cost . The cost of use can be: (F) free, (C) free commu-
nity version and enterprise version underpayment, (E) only
available after any payment or subscription method, or un-
known (U).

• Languages Supported. The programming languages sup-
ported for the development of new components is relevant
to be able to engage as many developers as possible in the
case of Open Source solutions.

• Platform. This feature makes reference to the way the pro-
posal can be used: (O) online version available, (S) stand-
alone version available, (C) cloud support.

As a summary, Table 1 outlines the main features of the related
ork with regards to the knowledge-based approach proposed
ere. These features consist of specifying whether the existing
ystems focus on their orientation to Big Data analysis streaming
rocessing support, provide online version, programming lan-
uage, use of semantics in different steps of the study, or the
icence of the framework. Then, it is possible to identify the actual
ontributions of the proposed semantic model beyond state of the
rt, as follows:
 t

4

• TITAN is conceived to conduct analysis in Big Data and/or
streaming environments. Similar to other frameworks in
the literature, it is oriented to general analysis procedures
(i.e., not limited to Big Data).

• TITAN is a semantic-enhanced platform with features re-
sembling task-driven approaches (e.g., workflow design)
and data-driven approaches (such as the component con-
nection through data dependencies).

• Although there exist frameworks that use semantics during
the analysis process, no one of them is driven by an ontology
as operational core. This fact allows guiding and annotating
all the analysis processes from design to execution and
improves all the steps thanks to the use of the domain
semantics. Furthermore, ontologies provide a formal way of
describing the knowledge domain, based on first-order logic,
which can be exploited to infer new knowledge and ensure
the annotations’ consistency.

• The proposed approach is validated on three real-world
use-cases consisting of classical data mining, streaming Big
Data processing with a deep learning algorithm, and remote
sensing image analysis using a machine learning algorithm.

3. TITAN architecture

TITAN is a semantic-enhanced workflow management system
(WMS) with several architectural levels to deal with the design
of new components until workflows’ execution:

• Metadata framework. Use of ontologies to enable a set of
advanced features.

• Software architecture. TITAN provides features from task-
driven WMS and data-driven WMS.

3.1. Metadata framework

Our main target is the design of a component-based platform
in which semantics can be used to represent different aspects
of Big Data analytic workflows, such as data, tasks, components,
algorithms, and problem domain knowledge. In essence, our plat-
form allows composing complex workflows by the specification
of a series of operations that need to be applied to the input data.
However, TITAN includes not only Big Data components but also
traditional elements for building data analysis workflows.

Thus, explicit knowledge in the domain and how the differ-
ent components transform the data can guide a smart design
of workflows. Each task is formally described using semantics
to ensure compatibility among components through semantic
reasoning. Typically, domain knowledge is captured in the anal-
ysis of the problem and manually integrated during the algo-
rithm design phase. In the best case, it is included as a set
of rules that modify the general behaviour of the analytic al-
gorithms. BIGOWL is aligned to domain ontologies to integrate
domain knowledge in the workflow design process. Furthermore,
this ontology provides TITAN with the formal representation of
the available components, classified in four main groups: data
sources, data processing, data analysis and data sinks. Semantics
is formally represented in our platform employing three levels
of abstraction: BIGOWL ontology, RDF graphs (i.e., individuals
describing the workflows), and domain ontologies.

BIGOWL describes workflows and entities containing software
components. Tasks represent how these components are instan-
tiated (parameter configuration) to be executed. Some compo-
nents are processing (transformation) components, including al-
gorithms. With the aim of describing components, this ontology
contains four main classes: First, Data Collection for annotating

he initial data to serve as the input of the following components

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

d
c
t
f
s
c

r
i
a
w

l
f
i
a
a
k
f
v

w
p
k
e
i
d
m
d
w
t
s
i

3

u
f
q
m
a

t
o

Table 1
Comparison of the main features of the platform with regards to other solutions, based on their approach, Big Data technologies, streaming data,
use of semantics, Open Source, use cost, language support and where are available the platforms.
Framework Approach Big data

support
Data stream
support

Semantic-based
approach

Open source Cost Languages
supported

Platform

VisTrails T N N N Y F Python S
YesWorkflow T N N D Y F Java & Python S
KNIME T Y* Y L N E Java SC
Airflow T Y* N N Y F Python SC
Taverna T N Y N Y F Java S
WINGS T N N DV Y F Java S
Pegasus T Y* N DV Y F Java S
MINT T N N DV Y F Python S
Makeflow T Y N D Y F None S
BioMOBY T N N V Y F Java S
ASC T Y N D U U U U
Pachyderm D Y* Y N N E Go SC
Nextflow D Y* Y N Y F Python S
VLAM-G D Y* N N U U U U
Karma2 D N N D U U U U

TITAN TD Y* Y DVPL Y F Java & Python
& R & C++

SOC
i
T
i
(
c
t
c
f
b
t
p
s
N
t
E
d

(e.g., meta-data about a CSV file); Second, Data Processing, that
efines the behaviour of the processing stage (e.g., clean dataset,
all an external API, etc.); Third, Data Analysis represents all
he analytic operations (e.g. KNN, SVN, Bayesian Network, etc.);
inally, Data Sink, whose instances describe the process of per-
isting data in databases or visualisation. To sum up, the BIGOWL
ore classes and hierarchy are depicted in Fig. 1.
RDF graphs describe specific data, algorithms, components, pa-

ameters, tasks, and workflows. These graphs consist of BIGOWL
nstances (class and property individuals). If new data types
nd/or new object properties are required to describe a specific
orkflow, the ontology can be extended accordingly.
A domain ontology contains terms that represent a particu-

ar knowledge domain. Domain knowledge is one of the crucial
actors to get great success in coping with Big Data analytic as
t improves this process. For example, suppose a classification
nalysis where the dataset contains continuous response vari-
bles and either continuous dependants, a reasoner could use this
nowledge to recommend the use of linear regression algorithms
or classification analysis because when a dataset with continuous
ariables is classified must be used linear regression.
With the help of semantics, we can reuse different algorithms,

orkflows, and data, as well as discover new knowledge em-
loying semantic reasoning. For example, reasoning on domain
nowledge is used in TITAN to detect inconsistencies and op-
rational mistakes in the workflow. Besides, semantic is used
n TITAN to allow the manual annotation of input data using
omain ontologies, letting users indicate, for example, the se-
antic meaning of a column, a row or even a cell in a tabular
ataset. Through this step, users can relate a domain ontology
ith its input data. The semantic knowledge represented as RDF
riples is then stored in the platform’s own RDF storage. Finally,
emantic annotations help to maintain and generate provenance
nformation for the domain of workflows and use cases [51–53].

.2. Software architecture

TITAN consists of several software modules working together
sing BIGOWL as the pivotal element to ensure reusability and
lexibility. It can be deployed on-premises using Docker, to
uickly set up the entire platform on any server with mini-
al configuration. Additionally, an online deployment is freely
vailable at https://titan.khaos.uma.es/.
TITAN considers a workflow as a set of tasks and links among

hem following an open modular design. The tasks are instances
f the components with specific values for their input, output, and
5

Fig. 1. Overview of the BIGOWL ontology. Continuous arrows refer to subclasses,
whereas dotted ones refer to properties. BIGOWL provides core classes for
defining any kind of workflow’s elements as an RDF graph.

parameters. Therefore, this design allows re-using components in
different workflows.

The motivation behind TITAN architecture is to provide a
flexible way to integrate new technologies in the platform as it
grows. Some critical design decisions were made at this point:
first, to not restrict the components to be tied to a particular pro-
gramming language; second, the component’s input and output
data must be easily associated with its corresponding semantics;
finally, the definition, deployment, and execution of workflows
should be assisted by a graphical tool. The current architecture of
the TITAN platform is depicted in Fig. 2.

A graphical tool (web app) is provided to compose workflows
nteractively by drag-and-drop components from a catalogue.
his tool allows users to interact with their data and workflows
n their workspace. This web app is divided in different regions
Fig. 3). In the leftmost area, a list of available components (or
atalogue) is shown. In the middle of the screen, we can find
he canvas, where components can be dragged and dropped and
onnected to compose a workflow. The rightmost area is reserved
or displaying the selected component’s parameters (which can
e updated by the user). Finally, a horizontal menu is located at
he top of the screen. The components’ catalogue is dynamically
rovided by BIGOWL, which is stored in an RDF triple store (RDF
torage). In first releases, Stardog [54] was used as RDF database.
evertheless, the limitations on the community version guided us
o include a second choice for the RDF store: Virtuoso Community
dition. This way, the TITAN platform can be deployed with either
atabase.

https://titan.khaos.uma.es/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

p
t
a
o
d
q
T
r
A

e
p
t
s
R
m

Fig. 2. Core TITAN platform’s architecture is composed of a GUI, a REST API and an orchestrator for executing the workflows. The REST API requires an RDF storage
and database solutions for data persistence. Besides, workflow executors also depends on a remote data file storage for storing component’s outputs. Finally, a
message broker is used for distributing messages between the components.
Fig. 3. Snapshot of the GUI tool. The components are on the left side of the picture. The right side shows the properties area. In the middle of the screen, we can
find the canvas, where components can be dragged and dropped.
This web application is fed by REST APIs. They are aimed at
roviding core functionalities to the platform (e.g., authentica-
ion, data persistence, semantic annotation of components, etc.)
nd to support the life cycle of a workflow, the visualisation
f results (including the execution process of a workflow), and
ata management functionalities. The API methods send SPARQL
ueries to the RDF repository to retrieve required information.
he workflows designed with the GUI (as well as all the user-
elated information) can be also stored in Virtuoso, through the
PI.
An orchestrator , denoted by DRAMA,6 is in charge of the

xecution of components using distributed workers. It exposes a
rivate API that is queried by TITAN’s API. This way, workflows
riggered for execution are flattered into individual tasks that are
ent to a highly-scalable and lightweight message broker (namely
abbitMQ [55]). DRAMA workers execute workflow tasks using
ultiple processes on a single machine or in a distributed fashion

6 In URL: https://github.com/KhaosResearch/drama.
6

using a cluster of machines. A NoSQL database, MongoDB, is used
to persist workflow execution state and other useful metadata.

To cope with a federated configuration, two aspects need to
be considered: (1) components’ inter-communication and (2) file
processing. Components’ inter-communication (i.e., passing data
between components) is implemented with Apache Kafka [56], an
scalable, fault-tolerant, and efficient distributed streaming plat-
form. Apache Avro [57] helps us to deal with the heterogeneity
of the components through its data serialisation system. The data
description with Avro, through Avro schemes, are directly related
to the component semantics. Binary files generated at any step of
the workflow must be available to every other task which might
not be executed on the same machine (datafile storage). Hence,
HDFS [58] or MinIO7 can be used as distributed file system (both
available in TITAN).

7 https://min.io/

https://github.com/KhaosResearch/drama
https://min.io/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

1

3

5

7

9

11

13

15

17

19

a

4

n
i
u
a
s
t
i

2

4

6

8

10

2

4

6

s

t

Listing 1: Python code example of creating a component in
TITAN.
@dataclass
class Point(DataType):

x: int = is_integer()
y: int = is_integer()
z: int = is_integer(default=0)

def execute(pcs: Process, z: int):
"""
Generates random (x,y,z) points.
"""
pcs.info([f"Generating point ({x},{y},0)"])
x, y = [random.randint(0, 9) for _ in range(2)]
point = Point(x=x, y=y, z=z)

send to downstream
for _ in range(10):

pcs.to_downstream(point)

return {}

4. Component development and registration in TITAN

In this section, we provide basic knowledge on how to develop
nd register new components in TITAN.

.1. Component design and code implementation

A set of design rules are defined to enable the integration of
ew components in TITAN. The primary programming language
s Python, but it is possible to integrate components developed
sing other languages. DRAMA framework implements all the
bstractions required to develop and test new components. In this
ense, components must be understood as isolated Python func-
ions with at least one input argument passed by the framework
tself (following an arbitrary number of parameters): a Process
class whose attributes and methods can be accessed from within
the function.

Listing 1 illustrates a component that generates random
(x, y, z) (with fixed z) points using DRAMA. Data, which are sent
by a Task, must inherit from DataType, an abstract class that
includes methods to generate the associated serialisation scheme
for the data automatically (line 2) . The datatype Point holds the
(x, y, z) coordinates of a point (lines 3 to 5). Its Avro schema is to
be effortlessly generated for serialisation purposes when sending
this data to downstream (lines 17 and 18).

A second component could read those points to log their
values as it is shown in the Listing 2 lines 5 to 8. Or as a stream
of data points as is depicted in the Listing 3 lines 5 to 7. The
Process class is bounded to a unique task identifier generated at
run-time, that will be used to create a named temporal file in the
system for debugging messages, setup the data file storage, etc. As
mentioned before, it provides methods to get upstream data from
the preceded task(s) in the workflow, send downstream data,
download and upload files, log messages, etc. Potentially, this
function can spawn other processes to, for example, run a Docker
container or execute scripts in different programming languages

(acting as a ‘‘wrapper’’). O

7

Listing 2: Python code example of reading data in TITAN.
def execute(pcs: Process):

"""
Reads 3D-Point with cartesian coordinates.
"""
inputs = pcs.get_from_upstream()

for p in inputs["Point"]:
pcs.info([f"Got {p}"])

return {}

Listing 3: Python code example of reading data in a streaming
way in TITAN.
def execute(pcs: Process):

"""
Reads stream of 3D-Points with cartesian coordinates.
"""
for key, p in pcs.poll_from_upstream():

if key == pcs.inputs["Point"]:
pcs.info([f"Got {p}"])

4.2. Component annotation

As explained in Section 3.1, all core classes and properties
related to components, parameters and data in TITAN are already
defined in BIGOWL ontology. Thus, components8 in workflows
are represented as instances of BIGOWL in the form of RDF
graphs.

To create the RDF graphs as BIGOWL class and property in-
stances or its possible extensions, we used the ontology editor
Protégé.9 In order to add a new kind of component, a knowledge
engineer firstly seeks its corresponding category (Data Collection,
Data Processing, Data Analysis, Data Sink or its sub-classes) in
BIGOWL. Properties to describe the component based on its type
are relevant to TITAN. The GUI and the APIs use them to provide
useful information on the existing components and automatically
instantiate the workflow execution’s software components. This
process is summed up as follows:

1. Look up the BIGOWL category to classify the new compo-
nent. In case it is needed (if the existing abstract categories
do not fit the new component features), add a new sub-
class of Component class in BIGOWL. This new sub-class
could also include new data or object properties.

2. Search in BIGOWL for both data and object properties re-
lated to the class representing the category chosen in Step
1.

3. For each object property, create a new instance of its
range10 class (or one of its sub-classes), intending to meet
with all their specifications. Then, the user defines the
required instances.

8 TITAN instances graphs: https://github.com/KhaosResearch/TITAN-graphs.
9 Protégé is an open-source ontology editor and a knowledge management

ystem: https://protege.stanford.edu/.
10 An object property range axiom ObjectPropertyRange(OPE CE) states that
he range of the object property expression OPE is the class expression CE. If
PE connects some individual with an individual x, then x is an instance of CE.

https://github.com/KhaosResearch/TITAN-graphs
https://protege.stanford.edu/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

f
a

w
t
S
a
I
i
i
s
u

5

t
t
T
s
t
f
A
i
t
w

i
b
s
r

T

5

v
f
u
e
c

w
b
t
t
n
w
T

n

t
o
o
t

t
f
t
d

f
r

If a different developer is registering an alternative im-
plementation of this component, he/she will only need to
create a new instance of the class Implementation instance
referring it, and following the rest of the steps from here.

4. Create a new instance of the class created in the Step 1.
5. The definition of these instances could provoke the need

for creating new ones according to the BIGOWL ontology.
The user must then repeat steps 2 and 3 to finish the RDF
graph for the new component.

6. Link all the instances from Step 3, using the selected object
properties, with the instance created in Step 4.

Fig. 4 shows the definition of a split shuffle component using
Protégé 5.5.0. This component is an instance of SplitShuffle class
rom BIGOWL. It contains two annotations, six object properties
nd two data properties declared in this instance.
After the definitions and descriptions of the components, as

ell as their data and object properties, the new RDF graph with
he new instances must be updated in the system (as Virtuoso or
tardog graph database schemes). After this, the new components
re available in the web interface ready to be tested (see Fig. 3).
n the case of a team getting the project and deploying their own
nstance, they have to control all these steps. In the case of the
nstance available at https://titan.khaos.uma.es, developers can
ubmit their code to the GIT repository and provide the TITAN
pdates through the support email.

. TITAN usage

TITAN workflows are based on DAG representations according
o which tasks are represented as nodes, and both data and con-
rol flow dependencies between them are represented as edges.
ITAN workflows can be divided into two versions: the user’s de-
cription of the workflow or abstract workflow, and the workflow
hat is executed or concrete workflow. In TITAN, abstract work-
lows are composed of components and their interconnections.
fter setting all the components and their parameters up, they are
nstantiated in independent executable (Kafka) tasks (connected
hrough Kafka topics). Consecutively, concrete and executable
orkflows are created.
Therefore, we follow the same idea described in BIGOWL [7],

n which a workflow is composed of a set of linked components
elonging to three categories: publisher, subscriber, and proces-
or, which allows us to generate, consume, and process data,
espectively.

In this section, we illustrate how to design a workflow in
ITAN using the components published in its semantic registry.

.1. Workflow description

TITAN GUI is an easy-to-use web interface in charge of pro-
iding the users with a tool for interacting with the different
unctionalities included in the platform. Through this tool, the
sers can create their descriptions of the workflows and also
xecuted them. TITAN is an Open Source project, so developers
an deploy an instance on their own premises.
User Management . Only registered users have access to the

orking space where they can design and execute workflows
esides manage their data. The instance deployed in our infras-
ructure allows users to register with a limited disc and compu-
ation usage, as this is a demonstration environment that does
ot aim to provide a computational service. Users are provided
ith an HDFS folder for storing their data and analysis results.
his provides a scalable infrastructure for Big Data cases.
Catalogue. This section of the GUI depicts all the compo-

ents that the users have available for designing a workflow. The
8

components are shown in four main categories: Data Analysing,
Data Collection, Data Processing and Data Sink. This catalogue
can be also explored using a search engine using keywords, to
enable users to fast locate components without having to browse
through the catalogue. Users can drag any component and drop
it into the design canvas. The option Delete Selection provides the
feature of removing elements from the web interface.

Properties. In this section, TITAN GUI shows the properties
and parameters of a selected component in the canvas. Once a
user puts a component in the canvas, the values by default of the
properties and parameters are loaded. These default values can
be defined in BIGOWL. If they are not defined the corresponding
value is shown as empty in the user interface.

Workflow Level Actions. Users have access to the workflows
hey have designed and also to the different executions of each
f them. These workflows can be exported as JSON files (with the
ption See Workflow Data), so they can be shared with other users
hat can import them in their own environment.

With Import Ontology, the user can upload a domain ontology
o the platform through TITAN GUI. Then, for example, columns
rom files like CSV or XLSX can be aligned with classes from
his domain ontology. Thus, TITAN allows annotating data with
omain knowledge that is defined in an ontology.
The functionality Validate Workflow checks whether the work-

low is semantically correct by means of SPARQL queries or SWRL
ules, which are included in BIGOWL [7].

And finally, Execution Workflow transforms the user’s descrip-
tion of the workflow in an executable workflow. Each component
from the JSON file is transformed into a RabbitMQ job.

5.2. Workflow execution

DRAMA framework is the underlying workflow orchestrator
engine used by TITAN. There are two ways of executing workflow
in DRAMA. Firstly, a workflow can be executed programmatically
(i.e., using the drama package for Python 3.7) by passing a list
of TaskRequest to a WorkflowRequest object. Each TaskRe-
quest describes the task name, the module where the function
can be found, optional parameters, and inputs, among others.
Moreover, it is possible to see the execution status at any time
using the task or workflow manager.

Secondly, it can also be deployed as a server. The API exposes
an endpoint to execute a workflow given a list of tasks and their
connections in JSON format. A second endpoint can be used to
retrieve workflow execution status.

Whatever method is used, the workflow request is processed
by DRAMA and unique workflow and tasks identifiers are gener-
ated. Then, tasks are send to the message broker, so that work-
ers can get those messages and execute the main function by
importing the corresponding task module.

During this execution process, TITAN automatically annotates
the tasks (that are instances of the components), parameters,
data, and workflows. Through all those annotations (using RDF
triples), TITAN keeps or creates data traceability not only for data
themselves, but also for parameters, tasks, workflows, and their
results in each step and the final workflow result.

6. Use cases

In order to show a better understanding of the platform and
how its modules collaborate between them for facilitating all the
steps that are involved in the process of creating an executable
workflow, three different use cases are described in this section.

• The first one is focused on classic data mining analysis on

academic problem instances.

https://titan.khaos.uma.es

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

a
l
i
D

d
w
t
e

Fig. 4. Definition of the split shuffle component using Protégé 5.5.0.
• The second case study is centred on Big Data analysis on
human activity recognition using a deep learning algorithm.

• The third case study makes an analysis of a region of interest
for classifying the changing detection in satellite images
using a supervised machine learning algorithm.

In this way, we aim at covering, as much as possible, different
spects in Big Data applications: algorithmic analyses (machine
earning and deep learning), velocity and volume issues (stream-
ng processing), real-world and academic data problems, and Big
ata ecosystems (Apache Spark and Apache Kafka).
Each of these use cases is composed by steps that can be

efined with the help of BIGOWL as components encapsulated
ithin tasks. In order to materialise the components defined with
his ontology in executable scripts (written in Java, Python, R,
tc.), we follow the next methodology:

1. The TITAN components are mapped to one of the four types
of components defined by BIGOWL, namely DataAnalysing,
DataCollection, DataProcessing, and DataSink, e.g., a compo-
nent that loads data from an external source is defined as
a DataCollection component.

2. We define the input Data as the super class of all the classes
representing the different types of data (e.g. DataSet, DataT-
able, etc.). These data are associated with Avro schemes,
which describe the fields allowed in the record and its data
type.

3. In this step the component parameters are defined. All of
them are instances of the BIGOWL Parameter class.

4. The goal of the fourth step is to define as RDF the workflow
tasks, which are components with specific data for tackling
a specific problem (e.g. form where we can load data,
configuration parameters for a component, etc.).

5. Finally, we use the SPARQL queries in Virtuoso for assess-
ing the correctness of the composed workflow, checking
whether the task instances are mutually compatible among
them throughout the complete workflow. Furthermore, if
instead of Virtuoso, Stardog is used, TITAN allows reasoning
over the compatibility and correctness in the workflow
(this process is fully described in [7]).
9

6.1. Case study 1: Iris flower classification

In this section, we describe an example of a machine learning
workflow implemented using the proposed platform. The idea is
to predict a response variable from exploratory observations. In
particular, the aim is to classify the different species of the Iris
flower from a dataset consisting of 50 observations from each of
the three species (Setosa, Versicolour, and Virginica).11

This workflow is generated with TITAN, as illustrated Fig. 5,
which comprises the following components: (1) the dataset is
loaded. Then, (2) it splits into train and test data. After that, (3)
train data are used to train a machine learning model, and (4)
both test data and the model are used to test the classifier’s
prediction. Finally, (5) some useful metrics derived from the
model are highlighted.

Taking this into account, we can semantically annotate each of
the previous steps as separate tasks, linked together in a specific
order:

• The first task encompasses a Import tabular dataset compo-
nent, which loads the Iris dataset. This component specifies
one output class of type GenericDataSet.

• The second task uses a Split shuffle component to split the
dataset into train and test, whose input and output classes
are GenericDataSet and has one parameter to indicate the
ratio of the splitting process.

• A third task uses a KNN Classifier Train component with one
input class of type GenericDataSet and one output class of
type TrainModelKNN, and several parameters for tuning the
model.

• The fourth task requires as input both, a machine learning
model (KNN model) and test data (type GenericDataSet) to
validate the classifier and returns the validation results (type
ValidationResults), by means of Validate model component.

• The ValidationResults from the previous task is consumed by
a VisualizeResults component, to visualise the metrics.

11 This dataset is free and is publicly available at the UCI Machine Learning
Repository: https://archive.ics.uci.edu/.

https://archive.ics.uci.edu/

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

}
G

g
o
p
t

r
t
q
t
t
o
a
i

6

t
h
d
o
w
m
p
n
t

a
L
s
A
m

Fig. 5. Snapshot of the workflow of the classification of the Iris dataset in the graphical tool. The first step is when the dataset is loaded. Then, in the second step,
the data are split into train and test data. After that, as the third step, train data are used to train a machine learning model and, in the fourth step, both test data
and the model are used to test the classifier’s prediction. Finally, some useful metrics derived from the model are highlighted.
L
S

%

Listing 4: First step of SPARQL queries for case study of
Supervised Classification for Iris dataset.
SELECT DISTINCT
(COUNT (?parameterTask) = COUNT(?parameterComp)
as ?result)

WHERE {
titan:WorkflowIris rdf:type dmop:Workflow .
titan:WorkflowIris bigowl:hasTask ?task .
?task rdf:type bigowl:Task .
?task bigowl:hasComponent ?comp .
OPTIONAL {

?task bigowl:hasParameter ?parameterTask .
?comp bigowl:hasParameter ?parameterComp .
?parameterTask bigowl:instanceParameterOf
?parameterComp .

}

ROUP BY ?parameterTask ?parameterComp

Fig. 6 depicts how the Iris dataset is defined through a RDF
raph using the two ontologies above (i.e., BIGOWL, and domain
ntology). Iris dataset properties are designated using BIGOWL
roperties. Its columns are connected with the domain ontology
hrough BIGOWL properties represents and hasSemanticMeaning.

For this workflow, Listing 4 and Listing 5 correspond to the
equired SPARQL queries applied by the semantic model to check
he correctness and task compatibility of the workflow. These
ueries are automatically generated from the TITAN-GUI when
he validation button is clicked. The first step (1) assesses whether
he Iris workflow has declared all the tasks’ parameters. The sec-
nd SPARQL query (2) assesses the correctness of the workflow as
whole. These SPARQL queries are based on the ideas described

n [7].

.2. Case study 2: Human activity recognition

Human activity recognition (HAR) has received increasing in-
erest in many applications such as health care, where Big Data
ave experienced significant growth in generating data and pro-
ucing analytical software solutions. In this use case, a volume
f 30 TBs of data is collected using accelerometers implanted in
earable devices. The classification includes different types of
ovements: short actions such as household activities (e.g., meal
reparation, room cleaning), long actions (e.g., walking or run-
ing), rest (e.g., sitting down, sleeping), and finally, non-wearing
he wearable.

HAR is tackled here by using a blend of both two deep learning
lgorithms: Convolutional Networks (ConvNet) and Bidirectional
STM [59], or RecNetLSTM for short. Nevertheless, driven by the
trict requirement of managing such a large amount of data,
pache Spark is used in this case study as a parallel platform for
odel execution.
10
isting 5: Second step of SPARQL queries for case study of
upervised Classification for Iris dataset.

SELECT DISTINCT ?task1 ?task2
% WHERE {
% titan:WorkflowIris rdf:type dmop:Workflow .
% titan:WorkflowIris bigowl:hasTask ?task1 .
% titan:WorkflowIris bigowl:hasTask ?task2 .
% ?task1 rdf:type bigowl:Task .
% ?task2 rdf:type bigowl:Task .
% ?task1 bigowl:connectedTo ?task2 .
% ?task1 bigowl:hasComponent ?comp1 .
% ?task2 bigowl:hasComponent ?comp2 .
% OPTIONAL { ?comp1 rdfs:label ?name1 . }
% OPTIONAL { ?comp2 rdfs:label ?name2 . }
% ?comp1 bigowl:specifiesOutputClass ?outputC .
% ?comp2 bigowl:specifiesInputClass ?inputC .
% ?task1 bigowl:specifiesOutputClass ?outputTask .
% ?task2 bigowl:specifiesInputClass ?inputTask .
% ?inputC rdf:type ?class .
% ?outputC rdf:type ?classOC .
% ?outputTask rdf:type ?classOT .
% ?inputTask rdf:type ?classIT .
% ?classOC rdfs:subClassOf* ?class .
% ?classOT rdfs:subClassOf* ?class .
% ?classIT rdfs:subClassOf* ?class .
% FILTER (?class!=owl:NamedIndividual)
% }
% GROUP BY ?task1 ?task2

This workflow can be arranged in ten steps (as shown in
Fig. 7). The three firsts consist of training the model, and remain-
ing ones are devoted to the activity classification. First of all, (1)
the datasets of the 11 activities are loaded and all the CSV are
jointed in only one that includes a new column with the activity
that represents. Then (2), the new CSV is split into two CSVs, train
and test. After that, (3) the model is trained with the RecNetLSTM
algorithm. In step (4), the data from the wearable is loaded in
CSV format. After that (5), the model from the step 3 and data
from step 4 are classified. Then (6) the classification is shown. In
parallel (7), the model from step 3 and the test data from step 2
are loaded and the model is assessed. Finally, the testings results
are depicted in the graphical tool.

Fig. 8 depicts the different activities carried out by a sample
patient during the day. We can see how during the night resting
is the main activity (although there are some movements around
4:00 and 5:00), later around 8:00 the patient starts to be more
active and does short and long moves and finally, after 21:00
resting is the main activity again.

Each step is annotated as individual tasks, linked together in
a specific order:

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

o

Fig. 6. Iris dataset definition through RDF graphs using BIGOWL and Iris Domain ontologies. bigowl and do prefixes indicates properties from BIGOWL and Domain
ntology, respectively (dotted-boxes represents data properties in the ontology).
Fig. 7. Snapshot of the classification workflow for the Human Activity Recognition in the TITAN-GUI.
Fig. 8. Snapshot of the Human Activity Recognition in the graphical tool. It is shown how during the night resting is the main activity, later around 8:00, the patient
starts to be more active and does short and long movements and finally, after 21:00 resting is the main activity.
6
l

e
s

F
f
c
N
p
i
i
m
s

• The first task encompasses a Read zip file component, which
loads a compressed file containing several CSV files for each
activity. This component specifies one output class of type
ZipFile. It will unzip it to merge the CSVs into one. This
component generates a single annotated CSV file as output
class (GenericDataSet).

• The second task SplitShuffle divides the GenericDataSet into
two GenericDataSet.

• A third task uses a RecNetLSTM Training component with
one input class of type GenericDataSet and one output class
of type TrainModelRecNetLSTM, and some parameters for
tuning the model.

• The fourth task reads a new GenericDataSet, which is used
for classifying its activities.

• The fifth task requires as input both a machine learning
model TrainModelRecNetLSTM and CSV data from the fourth
step (type GenericDataSet) to predict the data and return the
prediction results (GenericDataSet).

• The sixth task encompasses a Visualise Tabular Datase com-
ponent, which depicts a CSV file with the prediction.

• The seventh task requires as input both a machine learn-
ing model (TrainModelRecNetLSTMmodel) and CSV data from
the third step (type GenericDataSet) to assess the data and
return the testing results (GenericDataSet).
11
• The eighth, ninth and tenth tasks, Visualise provides to TI-
TAN a task for showing the testing results.

.3. Case study 3: Automatic monitoring of Earth Observation Satel-
ite images

This workflow aims to automatically classify regions of inter-
st in the context of Earth Observation using open-data multi-
pectral images taken by satellite constellation Sentinel-2.12
This workflow can be described in eight steps as follows (see

ig. 9): (1) the satellite images (in data products) are downloaded
rom the Copernicus website.13 Then, (2) the images are pre-
lassified with QGIS code to indicate the localisation of each pixel.
ext, (3) the dataset is loaded for its classification. Then, (4) a
re-process is made to remove outlier data. Following, (5) data
s split into training and testing data. After that (6), training data
s used to train an SVM model, and (7) both testing data and the
odel are used to test the prediction of the classifier. Finally, (8)
ome useful metrics derived from the model are highlighted.

12 https://sentinel.esa.int/web/sentinel/missions/sentinel-2
13 https://www.copernicus.eu/en/accessing-data-where-and-how/
conventional-data-access-hubs

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://www.copernicus.eu/en/accessing-data-where-and-how/conventional-data-access-hubs
https://www.copernicus.eu/en/accessing-data-where-and-how/conventional-data-access-hubs

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489
Fig. 9. Snapshot of the workflow of the classification of the Automatic monitoring and change detection on Earth surface in the graphical tool.
To test this workflow for classifying an entire region, we
conduct an experiment with real data from Íznajar reservoir
in Córdoba (Spain). The goal of this example is to distinguish
between vegetation (green area), buildings, water and dry land
(land without vegetation). Fig. 10 depicts four images, where the
real colour image is shown on the top left, brands predictions on
the top right, index prediction on the bottom left, and finally QGIS
classification on the bottom right.

Taking the aforementioned steps into account, each of the pre-
vious steps are semantically annotated as separate tasks, linked
together in a specific order:

• The first task encompasses a Read tabular dataset com-
ponent, which loads the image dataset. This component
specifies as input and output class of type GenericDataSet.

• The second task Remove outlier deletes the rows in the
dataset whose class calculated in step 2 has been erroneous.
This tasks follows theMahalanobis distance [60] for detecting
the outliers.

• The third task uses a Split dataset component to split the
dataset into a train and test. TITAN reuses the components,
so this is the same that it has been used in the Use Case
1 and whose input and output class is a GenericDataSet,
furthermore, has one parameter to indicate the ratio of the
splitting process.

• The fourth task uses a SVM Training component with one
input class of type GenericDataSet and one output class
of type TrainModelSVM, as well as several parameters for
tuning the model.

• The fifth task requires two inputs, a machine learning model
(SVMmodelmodel) and test data (type GenericDataSet) in or-
der to use the classifier and return the predict results (type
Tabular Dataset). Intending to manage this hard-demanding
in execution time classification, TITAN provides us with the
Python libraries: Multiprocessing and Pandas, which let us
parallelisation the classification.

• The last task, has two input, the model TrainModelSVM and
the GenericDataSet from step three for assessing the model.
The results are consumed by three Visualise Results compo-
nents, to visualise the metrics.

7. Discussion

One of the leading contributions we claim with the design and
implementation of TITAN is the ability to provide the tools for
describing, designing, developing, annotating, re-using, and run-
ning workflows involving Big Data analytics. All the elements of
TITAN are described following the classes and properties defined
in BIGOWL ontology, and this allows us to annotate all the meta-
data flowing from multiple data sources, processing components,
and analytic algorithms.
12
The results obtained in the three case studies indicate that
TITAN allows creating separate components that can be used or
re-used in countless different workflows. TITAN provides us with
DRAMA API, that contains the necessary software architecture
for developing any workflow component such as analysing com-
ponents (KNN, SVM, etc.), sink components (store in MongoDB
or HDFS, etc.) or even of loading data (read CSV files o Mongo
resources, etc.).

TITAN-API and BIGOWL enable to progressively deliver com-
ponent recommendations for the construction of Big Data analyt-
ics workflows. The resulting workflows are indeed enhanced with
knowledge that explicitly describes and registers the data lineage
(data provenance in database systems), from sources to results, as
well as checking errors from workflow designing to its execution
time. It is worth mentioning that in BIGOWL, the semantic model
and data linage is mapped with RDF triples. They refer to records
of the inputs, entities, systems, algorithms, and processes that
influence data of interest, hence providing a historical record of
the data obtained (as results) and its origins (as sources).

8. Concluding remarks and future work

This work presents TITAN, a platform for the generation and
deployment of data science workflows for Big Data analytics.
TITAN is featured by a design and operation mode driven by
semantics at different levels: data source, problem domain, and
workflow component. The semantic annotation of all the meta-
data involved in a Big Data workflow offers a series of main
advantages, such as semantic validation of workflow composition,
the possibility of linking knowledge domain data with processing
components, as well as monitoring and keeping data quality and
consistency at any step of the data life cycle.

As future lines of research, the definition of a methodology
to capture and represent expert knowledge, when there are not
existing ontologies, opens the possibility to generate new families
of algorithms of Big Data analytics, in which the knowledge’s
domain changes from being introduced ad hoc (or extracted by
some mechanism), to be introduced in a (semi-)automatic way.
The challenge will be the development of mechanisms that facil-
itate this task to domain experts and, besides, facilitate the reuse
of different algorithms that use the same techniques through
a homogeneous mechanism to introduce the knowledge of the
domain. Furthermore, it can also lead to improvements in the
obtained results of the analysis process by improving their quality
or the efficiency of the algorithms [61,62]

Future work entails as well as the generation of numerous
sample workflows oriented to Big Data streaming processing
and analysis. All these new samples will increment the number
of ready-to-use components in the internal catalogue of TITAN,
which will be indeed made available for scientific and industry
communities.

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489

i

a
d
p
o
u

C

Fig. 10. Snapshot of the classification result of the Íznajar reservoir in TITAN. The real colour image is shown on the top left, brands predictions on the top right,
ndex prediction on the bottom left, and finally QGIS classification on the bottom right.
Another line of future work consists in developing mech-
nisms for easing the process of adding new components, so
evelopers can include them and directly test them in the de-
loyment available at https://titan.khaos.uma.es. This new devel-
pment will be included in the Open Source project so it can be
sed also in other deployments of TITAN.

RediT authorship contribution statement

Antonio Benítez-Hidalgo: Software, Validation, Writing –
review & editing. Cristóbal Barba-González: Methodology,
Validation, Formal analysis, Writing – review & editing. José
García-Nieto: Methodology, Validation, Formal analysis, Writing
– review & editing. Pedro Gutiérrez-Moncayo: Software,
Validation. Manuel Paneque: Software, Validation. Antonio J.
Nebro: Validation, Writing – review & editing. María del
Mar Roldán-García: Validation, Writing – review & editing.
José F. Aldana-Montes: Funding acquisition. Ismael Navas-
Delgado: Conceptualization, Validation, Writing – review &
editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding

All of the sources of funding for the work described in this
publication are acknowledged in the manuscript.

Intellectual property

We confirm that we have given due consideration to the pro-
tection of intellectual property associated with this work and that
there are no impediments to publication, including the timing of
publication, with respect to intellectual property. In so doing, we
confirm that we have followed the regulations of our institutions
concerning intellectual property.
13
References

[1] A. Zomaya, S. Sakr, Handbook of Big Data Technologies, first ed., Springer
International Publishing, 2017.

[2] R. Elshawi, S. Sakr, D. Talia, P. Trunfio, Big data systems meet machine
learning challenges: Towards big data science as a service, Big Data Res.
14 (2018) 1–11, http://dx.doi.org/10.1016/j.bdr.2018.04.004.

[3] A. Neilson, Indratmo, B. Daniel, S. Tjandra, Systematic review of the litera-
ture on big data in the transportation domain: Concepts and applications,
Big Data Res. (2019).

[4] W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise
and potential, Health Inf. Sci. Syst. 2 (1) (2014) 3.

[5] I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, et al., Workflows for
e-Science: Scientific Workflows for Grids, vol. 1, Springer, 2007.

[6] S. Wolfert, L. Ge, C. Verdouw, M.-J. Bogaardt, Big data in smart farming
– A review, Agricult. Syst. 153 (2017) 69–80, http://dx.doi.org/10.1016/j.
agsy.2017.01.023.

[7] C. Barba-González, J. García-Nieto, M. Roldán-García, I. Navas-Delgado, A.
Nebro, J. Aldana-Montes, BIGOWL: Knowledge centered big data analytics,
Expert Syst. Appl. 115 (2019) 543–556.

[8] Y. Gil, V. Ratnakar, J. Kim, P.A. Gonzalez-Calero, P. Groth, J. Moody,
E. Deelman, Wings: Intelligent workflow-based design of computational
experiments, IEEE Intell. Syst. 26 (1) (2011).

[9] A. Konys, Ontology-based approaches to big data analytics, in: International
Multi-Conference on Advanced Computer Systems, Springer, 2016, pp.
355–365.

[10] E.W. Kuiler, From big data to knowledge: an ontological approach to big
data analytics, Rev. Policy Res. 31 (4) (2014) 311–318.

[11] T.R. Gruber, A translation approach to portable ontology specifications,
Knowl. Acquis. 5 (2) (1993) 199–220, http://dx.doi.org/10.1006/knac.1993.
1008.

[12] R. McClatchey, A. Branson, J. Shamdasani, Z. Kovacs, et al., Designing
traceability into big data systems, 2015, arXiv preprint arXiv:1502.01545.

[13] T.A.S. Siriweera, I. Paik, B.T. Kumara, QoS and customizable transaction-
aware selection for big data analytics on automatic service composition,
in: 2017 IEEE International Conference on Services Computing, SCC, IEEE,
2017, pp. 116–123.

[14] T. Akila, I. Paik, S. Siriweera, QoS-aware rule-based traffic-efficient mul-
tiobjective service selection in big data space, IEEE Access 6 (2018)
48797–48814.

[15] M. Kleppmann, J. Kreps, Kafka, samza and the unix philosophy of
distributed data, IEEE Data Eng. Bull. 38 (4) (2015) 4–14.

[16] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, Spark: Cluster
computing with working sets, in: Proceedings of the 2Nd USENIX Confer-
ence on Hot Topics in Cloud Computing, HotCloud’10, USENIX Association,
2010, p. 10.

https://titan.khaos.uma.es
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb1
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb1
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb1
http://dx.doi.org/10.1016/j.bdr.2018.04.004
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb3
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb3
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb3
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb3
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb3
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb4
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb4
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb4
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb5
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb5
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb5
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb7
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb7
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb7
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb7
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb7
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb8
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb8
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb8
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb8
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb8
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb9
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb9
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb9
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb9
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb9
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb10
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb10
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb10
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://arxiv.org/abs/1502.01545
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb13
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb14
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb14
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb14
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb14
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb14
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb15
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb15
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb15
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb16

A. Benítez-Hidalgo, C. Barba-González, J. García-Nieto et al. Knowledge-Based Systems 232 (2021) 107489
[17] N.F. Noy, D.L. McGuinness, et al., Ontology Development 101: A Guide
to Creating Your First Ontology, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical
Report SMI-2001-0880, Stanford, CA, 2001.

[18] B. McBride, The resource description framework (RDF) and its vocabulary
description language RDFS, in: Handbook on Ontologies, Springer, 2004,
pp. 51–65.

[19] S. Staab, R. Studer, Handbook on Ontologies, Springer Science & Business
Media, 2013.

[20] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1 query language,
2013, W3C Recommendation 21 (10).

[21] E. Prud, A. Seaborne, et al., SPARQL query language for RDF, 2006, W3C
Recommendation.

[22] R. Mitchell, L. Pottier, S. Jacobs, R.F. da Silva, M. Rynge, K. Vahi, E. Deelman,
Exploration of workflow management systems emerging features from
users perspectives, in: 2019 IEEE International Conference on Big Data,
Big Data, IEEE, 2019, pp. 4537–4544.

[23] C.E. Scheidegger, H.T. Vo, D. Koop, J. Freire, C.T. Silva, Querying and re-
using workflows with vstrails, in: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, ACM, New
York, NY, USA, 2008, pp. 1251–1254.

[24] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, C.E. Scheidegger, H.T. Vo, Man-
aging rapidly-evolving scientific workflows, in: International Provenance
and Annotation Workshop, Springer, 2006, pp. 10–18.

[25] T.M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K.
Bocinsky, Y. Cao, F. Chirigati, S.C. Dey, J. Freire, D.N. Huntzinger, C. Jones, D.
Koop, P. Missier, M. Schildhauer, C.R. Schwalm, Y. Wei, J. Cheney, M. Bieda,
B. Ludäscher, YesWorkflow: A user-oriented, language-independent tool for
recovering workflow information from scripts, 2015, CoRR abs/1502.02403.
arXiv:1502.02403. URL http://arxiv.org/abs/1502.02403.

[26] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl,
K. Thiel, B. Wiswedel, KNIME-the Konstanz information miner: version 2.0
and beyond, AcM SIGKDD Explorations Newsl. 11 (1) (2009) 26–31.

[27] A.A. Documentation, Apache airflow documentation-airflow documenta-
tion, 2019.

[28] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.
Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F.
Bacall, A. Hardisty, A. Nieva de la Hidalga, M.P. Balcazar Vargas, S. Sufi, C.
Goble, The Taverna workflow suite: designing and executing workflows of
web services on the desktop, web or in the cloud, Nucleic Acids Res. 41
(W1) (2013) 557–561.

[29] D. Turi, P. Missier, C. Goble, D. De Roure, T. Oinn, Taverna workflows:
Syntax and semantics, in: Third IEEE International Conference on E-Science
and Grid Computing, E-Science 2007, IEEE, 2007, pp. 441–448.

[30] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R.
Mayani, W. Chen, R.F. Da Silva, M. Livny, et al., Pegasus, a workflow
management system for science automation, Future Gener. Comput. Syst.
46 (2015) 17–35.

[31] B.T.G.S. Kumara, I. Paik, J. Zhang, T.H.A.S. Siriweera, K.R.C. Koswatte,
Ontology-based workflow generation for intelligent big data analytics, in:
2015 IEEE International Conference on Web Services, 2015, pp. 495–502.

[32] Y. Gil, K. Cobourn, E. Deelman, C. Duffy, R. Ferreira da Silva, A. Kemanian,
C. Knoblock, V. Kumar, S. Peckham, L.A. Carvalho, et al., MINT: model
integration through knowledge-powered data and process composition,
2018.

[33] S.D. Peckham, The CSDMS standard names: Cross-domain naming con-
ventions for describing process models, data sets and their associated
variables, 2014.

[34] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: A portable abstraction
for data intensive computing on clusters, clouds, and grids, in: Proceedings
of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, 2012, pp. 1–13.

[35] R. Mecklenburg, Managing Projects with GNU Make: The Power of GNU
Make for Building Anything, O’Reilly Media, Inc., 2004.

[36] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor: a distributed
job scheduler, in: Beowulf Cluster Computing with Windows, 2001, pp.
307–350.
14
[37] M.D. Wilkinson, M. Links, BioMOBY: an open source biological web services
proposal, Brief. Bioinform. 3 (4) (2002) 331–341.

[38] M. Bhandarkar, MapReduce programming with apache Hadoop, in: 2010
IEEE International Symposium on Parallel & Distributed Processing, IPDPS,
IEEE, 2010, p. 1.

[39] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, et al., Apache hadoop yarn: Yet another
resource negotiator, in: Proceedings of the 4th Annual Symposium on
Cloud Computing, 2013, pp. 1–16.

[40] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M.J. Franklin, et al., Apache spark: a unified
engine for big data processing, Commun. ACM 59 (11) (2016) 56–65.

[41] M. Atkinson, S. Gesing, J. Montagnat, I. Taylor, Scientific workflows: Past,
present and future, 2017.

[42] J.A. Novella, P. Emami Khoonsari, S. Herman, D. Whitenack, M. Capuccini,
J. Burman, K. Kultima, O. Spjuth, Container-based bioinformatics with
Pachyderm, Bioinformatics 35 (5) (2019) 839–846.

[43] M. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for sci-
ence grids: a viable solution? in: Proceedings of the 2008 International
Workshop on Data-Aware Distributed Computing, 2008, pp. 55–64.

[44] B. Wilder, Cloud Architecture Patterns: Using Microsoft Azure, O’Reilly
Media, Inc., 2012.

[45] A.K. Mishra, J.L. Hellerstein, W. Cirne, C.R. Das, Towards characterizing
cloud backend workloads: insights from Google compute clusters, ACM
SIGMETRICS Perform. Eval. Rev. 37 (4) (2010) 34–41.

[46] P. Di Tommaso, M. Chatzou, E.W. Floden, P.P. Barja, E. Palumbo, C.
Notredame, Nextflow enables reproducible computational workflows,
Nature Biotechnol. 35 (4) (2017) 316–319.

[47] D. Merkel, Docker: lightweight linux containers for consistent development
and deployment, Linux J. 2014 (239) (2014) 2.

[48] G.M. Kurtzer, Singularity 2.1. 2-Linux application and environment
containers for science, 2016.

[49] V. Korkhov, D. Vasyunin, A. Wibisono, A.S. Belloum, M.A. Inda, M. Roos,
T.M. Breit, L.O. Hertzberger, VLAM-G: Interactive data driven workflow
engine for Grid-enabled resources, Sci. Program. 15 (3) (2007) 173–188.

[50] Y.L. Simmhan, B. Plale, D. Gannon, Karma2: Provenance management for
data-driven workflows, Int. J. Web Serv. Res. 5 (2) (2008) 1–22.

[51] B. Cao, B. Plale, G. Subramanian, P. Missier, C. Goble, Y. Simmhan,
Semantically annotated provenance in the life science grid, in: Proceedings
of the First International Conference on Semantic Web in Provenance
Management-Volume 526, CEUR-WS. org, 2009, pp. 17–22.

[52] N. Del Rio, P.P. Da Silva, A.Q. Gates, L. Salayandia, Semantic annotation
of maps through knowledge provenance, in: International Conference on
GeoSpatial Sematics, Springer, 2007, pp. 20–35.

[53] C. Halaschek-Wiener, J. Golbeck, A. Schain, M. Grove, B. Parsia, J. Hendler,
Annotation and provenance tracking in semantic web photo libraries, in:
International Provenance and Annotation Workshop, Springer, 2006, pp.
82–89.

[54] K. Cerans, G. Barzdins, R. Liepins, J. Ovcinnikova, S. Rikacovs, A. Spro-
gis, Graphical schema editing for stardog OWL/RDF databases using
OWLGrEd/S, in: OWLED, Vol. 849.

[55] D. Dossot, RabbitMQ Essentials, Packt Publishing Ltd, 2014.
[56] J. Kreps, N. Narkhede, J. Rao, Kafka: A distributed messaging system for log

processing, in: Proceedings of 6th International Workshop on Networking
Meets Databases (NetDB), Athens, Greece, 2011.

[57] D. Vohra, Apache avro, in: Practical Hadoop Ecosystem: A Definitive Guide
to Hadoop-Related Frameworks and Tools, A Press, Berkeley, CA, 2016, pp.
303–323.

[58] D. Borthakur, et al., HDFS architecture guide, Hadoop Apache Project 53
(1–13) (2008) 2.

[59] S. Hurtado Requena, C. Barba-González, M. Rybinski, F.J. Baron-Lopez, J.
Wärnberg, I. Navas-Delgado, J.F. Aldana-Montes, et al., Análisis de los datos
del acelerómetro para detección de actividades, 2018.

[60] R. De Maesschalck, D. Jouan-Rimbaud, D.L. Massart, The mahalanobis
distance, Chemometr. Intell. Lab. Syst. 50 (1) (2000) 1–18.

[61] W. Song, S.C. Park, Genetic algorithm for text clustering based on latent
semantic indexing, Comput. Math. Appl. 57 (11–12) (2009) 1901–1907.

[62] C.B. González, J. García-Nieto, I.N. Delgado, J.F.A. Montes, A fine grain
sentiment analysis with semantics in tweets, IJIMAI 3 (6) (2016) 22–28.

http://refhub.elsevier.com/S0950-7051(21)00751-6/sb18
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb18
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb18
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb18
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb18
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb19
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb19
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb19
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb20
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb20
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb20
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb21
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb21
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb21
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb22
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb23
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb24
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb24
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb24
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb24
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb24
http://arxiv.org/abs/1502.02403
http://arxiv.org/abs/1502.02403
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb26
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb26
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb26
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb26
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb26
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb27
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb27
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb27
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb28
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb29
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb29
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb29
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb29
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb29
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb30
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb32
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb33
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb33
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb33
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb33
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb33
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb35
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb35
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb35
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb36
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb36
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb36
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb36
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb36
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb37
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb37
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb37
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb38
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb38
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb38
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb38
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb38
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb40
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb40
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb40
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb40
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb40
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb41
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb41
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb41
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb42
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb42
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb42
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb42
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb42
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb44
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb44
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb44
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb45
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb45
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb45
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb45
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb45
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb46
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb46
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb46
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb46
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb46
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb47
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb47
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb47
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb48
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb48
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb48
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb49
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb49
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb49
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb49
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb49
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb50
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb50
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb50
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb51
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb52
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb52
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb52
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb52
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb52
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb53
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb55
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb57
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb57
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb57
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb57
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb57
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb58
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb58
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb58
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb59
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb59
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb59
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb59
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb59
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb60
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb60
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb60
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb61
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb61
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb61
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb62
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb62
http://refhub.elsevier.com/S0950-7051(21)00751-6/sb62

	TITAN: A knowledge-based platform for Big Data workflow management
	Introduction
	Background
	Background concepts
	Workflow analytic tools
	Task-driven workflow management systems
	Data-driven workflow management systems

	Workflow management systems comparative analysis

	TITAN architecture
	Metadata framework
	Software architecture

	Component development and registration in TITAN
	Component design and code implementation
	Component annotation

	TITAN usage
	Workflow description
	Workflow execution

	Use cases
	Case study 1: Iris flower classification
	Case study 2: Human activity recognition
	Case study 3: Automatic monitoring of Earth Observation Satellite images

	Discussion
	Concluding remarks and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	
	Intellectual Property

	References

