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Abstract—This work presents an analysis of the influence of
connector repeatability in three different methods for estimat-
ing the propagation constant of transmission lines from two-
port measurements. For this purpose, the repeatability of 16
transitions using 1.85 mm coaxial-to-microstrip end-launcher
connectors has been tested. It has shown that using the same
pair of connectors instead of the whole set significantly reduces
the standard deviation of the transition S-parameters that affects
the final estimation of the propagation constant, and especially
the attenuation constant. In addition, the hypothesis that the
measured data have a normal probability distribution has been
validated by performing an Anderson-Darling test on the es-
timated S-parameters of the transition. The obtained standard
deviation has been included in a sensitivity analysis, generating
S-parameters from normal distribution and performing a Monte
Carlo simulation. The objective is to study the standard deviation
of the propagation constant obtained using the proposed methods
when there are errors related to connector repeatability. In this
case, unlike random errors of the analyzer, it has been found that
all the compared strategies for the estimation of the propagation
constant (traces, eigenvalues, and determinants) work in the same
way concerning launcher repeatability errors. Furthermore, it
has been seen that the propagation constant obtained also follows
a normal distribution. Finally, to validate the presented theory,
methods have been applied to several measurements of two lines
in the 0.01- to 67-GHz frequency range, using the same kit
and different combinations of different connectors. Results show
that higher accuracy is obtained when using the same pair of
connectors, considerably reducing attenuation constant ripple,
which assesses the suitability of the proposed error analysis.

Index Terms—Broadband measurements, connector repeata-
bility errors, microstrip line, propagation constant, transmission
line measurements.

I. INTRODUCTION

HE measurement of the propagation constant of trans-

mission lines has been a topic that researchers have paid
special attention to over the years, as it is necessary for mi-
crowave circuit design with high demanding specifications as
broadband directional couplers and filters. Two strategies have
been followed throughout the years: resonant and broadband
methods. In this paper, we will examine the second ones, based
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on the one in [1]. They provide a continuous solution in the
measured frequency range. Still, their main drawback is that
they strongly depend on the precision of the measurements and
show worse performance for estimating losses. To address the
accuracy of broadband methods, an error analysis, including
random errors in magnitude and phase of the S-parameters, as
well as errors in the length of the lines, was performed in [2].
This analysis showed that eigenvalue-based methods were less
sensitive to random errors than other methods based on traces
or determinants. Furthermore, it was demonstrated that length
errors are interpreted as a bias in the final estimation. Another
problem of this kind of methods is that they are all based on
the invariant concept [3], which assumes that the transition
is the same in all measurements. However, this statement
is not entirely true since connector repeatability is not en-
tirely assured in a real setting. In this sense, in [4], authors
demonstrated that results could be significantly better if special
attention is paid to the repeatability of the launcher, as they
used a destructive method that cut the transmission lines but
kept the same connectors through the whole characterization
process. In [5] authors identified that half-wavelength errors
in Through-Line (TL) calibrations are, in part, due to fixture
inconsistencies. Regarding connector repeatability, stochastic
models can be used to study their behavior [6], modeling
each possible perturbation as an equivalent two-port circuit.
A practical way of representing the uncertainty in complex S-
parameter measurements was presented in [7]. Repeatability
tends to have more variance at high frequencies and affects
the phase notably, more than to the magnitude of the measured
S-parameters. A similar approach to this work, but at lower
frequencies, was attempted in [8], where was stated that
repeatability errors may have an influence on the measurement
results, that is about an order of magnitude bigger than
measurement noise. In [9], authors showed that the size of the
noise peaks in a transmission line characterization is somehow
related to the connections of the device under test.

This letter studied the connector repeatability influence in
broadband two-port methods used for estimating the prop-
agation constant of transmission lines using two-port mea-
surements. For this purpose, firstly, the standard deviation of
several connectors is obtained through measurement and a later
de-embedding process. This standard deviation is used to carry
out a Monte Carlo simulation that includes many transitions,
showing how the repeatability of the connectors influences the
estimated propagation constant. Finally, the theory developed

© is assessed through experimental validation.
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Fig. 1. Cascade connection diagram of different two-port circuits involved
in the transmission line T-parameters measurement using a vector network
analyzer.

II. CONNECTOR REPEATABILITY

Methods compared in this letter were studied in [2]. All
methods start from the measurement of two-port S-parameter
matrix of transmission lines of different lengths using a vector
network analyzer. To cascade the matrices of the transitions
and the line, transmission parameters are used. The measure-
ment scheme is shown in Fig. 1. In this scheme, matrices
[R4] and [Rp] are the transition T-parameters (transformed
from the transition S-parameters), that contain the effects
between the VNA connector and the reference plane of the
TRL calibration, whereas [L;] includes each transmission line
effects. Measured matrix [M;] can be expressed as [M;] =
[RA][L:][Rg]. All methods considered assume that transitions
and, therefore, matrices [R4] and [Rp] are the same in every
measurement. However, this fact is not entirely true since real
connector repeatability is not considered. For this reason, what
is proposed is to analyze the standard deviation of [R4] and
[Rp] in a set of measurements. They can be considered as
error boxes in a Through-Line-Reflect (TRL) calibration. For
this purpose, a multiline TRL kit [10] is manufactured and
measured, using two lines of length 2.39 and 52.59 mm, to
isolate the effects of the transitions in the whole frequency
band of interest. Substrate Rogers RO4350B, with 20 mil
thickness, ¢ = 3.66, tan d = 0.0031, and 17.5 um thick copper
metallization was used, whereas the lines were ended with
1.85 mm Southwest 1892-03A-6 end launchers connectors
(dielectric diameter of 39 mils, pin diameter of 7 mils). As
seen in [11], the frequency response of connectors slightly
deteriorates at higher frequencies, but the invariant nature of
the methods [3] allows the connectors to be used up to 67
GHz. The microstrip line width was set to 1.095 mm, to get a
50 € characteristic impedance, Zy. Measurements were taken
using the vector network analyzer Agilent PNA-X (N5247A),
between 0.01 and 67 GHz, the whole range of the available
instrumentation. The VNA configuration was set up as follows:
fstart = 10 MHz, fs;0, = 67 GHz, and 6401 data points were
taken, using a delay before measuring each point of 250 us.
The bandwidth of the IF bandpass filter was set at 10 kHz,
whereas the port power to -5 dBm.

The experiment was carried out in two different ways, but
always taking sixteen measurements for each connector (as
in [6], [12]), which is disconnected and disassembled after
every measurement to simply introduce actual random errors.

Sixteen measurements of each element in the TRL kit (an
open reflect, a thru, and two lines) were taken using the same
connectors. For example, for the Open Reflect standard in
Port 1, sixteen measurements using connector A, 16 using
connector C, 16 using E, and 16 using G are taken. For port
2, sixteen measurements using connector B, 16 using D, and so
on. For Thru and Line standards, the same pair of connectors
were kept. Later, a de-embedding process was performed in
MATLAB to obtain the error boxes of each set of measure-
ments. On the one hand, if the de-embedding is performed
using all the measurements with the pair of connectors AB,
CD, EF, or GH, what it is called ”same connector”. On the
other hand, reflect measurements are performed with AB, Thru
measurements with CD, and line measurements with EF and
GH, which is called "Multiple connector kit”. Finally, the
standard deviation of these error boxes’ real and imaginary part
was calculated and represented in terms of in-phase/quadrature
covariance-matrix [13]. Figure 2 depicts the magnitude (o,,)
and phase (o,) standard deviations, calculated from the in-
phase/quadrature covariance-matrix. As seen, the standard
deviation is higher when using different connectors, which
will influence on how the methods work, as the transitions
are different from each other. Furthermore, it is important to
evaluate the probability distribution of the estimated transition
S-parameters. For this purpose, what is proposed is to carry
out an Anderson-Darling test [14] that validates whether the
transition S-parameters follow a normal distribution or not.
In [15], the authors conclude that the Anderson-Darling test is
more robust and powerful than the Kolmogorov-Smirnov test
for this purpose. This hypothesis is valid for the distribution in
magnitude and phase of all the obtained transition parameters,
both for a connector and for the joint distribution of different
connectors, at 5% significance level. Although in [12], the
authors state that the phase distribution is triangular, they
mention that the triangular distribution can be approximated
to a normal distribution.

III. SUSCEPTIBILITY TO REPEATABILITY ERRORS

The main objective is to study how several approaches tradi-
tionally used to obtain the propagation constant (v = a + j3)
behave concerning connector repeatability. For this purpose,
the three methods proposed in [2] are examined: Method 1
is based on traces of matrices, Method 2 on eigenvalues, and
Method 3 on determinants. Regarding random errors in VNA,
the strategy based on eigenvalues was the one that performed
the best since it did not have resonances when the difference
in electrical length was equal to 7/2. To carry out the study,
standard deviations plotted in Fig. 2 are the starting point
of a Monte Carlo simulation that takes [Ra] and [Rp] as
two random matrices, generated using a normal distribution
(hypothesis validated in the previous section) as

(14 Oy, )el7rst
(6 + O-m322)ejffp322 '
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(1+ oo )elren

and they are then transforming it to T-parameters. The pa-
rameter 9 is introduced to ensure that S7; and S5, are non-
zero terms in case the magnitude error is 0. A value of
d = 0.0001 is used. Actually, the value of [R] T-parameters
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Fig. 2. Standard deviation in magnitude (a) and phase (b) of transition S-
parameters obtained after measuring sixteen 1.85 mm connectors, using 1 and
4 different connector Kits.
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Fig. 3. Attenuation (a) and phase (b) constants and their standard deviation
obtained by using 1 and 4 connector kits through Method 2.

would not affect if there were no errors since all the methods
eliminate the effects of the transitions if they are the same
in each measurement. [L;] matrices are generated from an
electromagnetic simulation using ANSYS HFSS, considering
two lines of lengths 11.31 and 52.59 mm, respectively, without
taking into account any VNA error. Figure 3 depicts the results
of the Monte Carlo simulation. In this case, and unlike random
errors of the network analyzer, the three considered methods
work in the same way with respect to connector repeatability
errors. This fact can be effortlessly checked when evaluating
matrices [M;] and [Ms] using 2 different connectors [R] for
each line. The argument of the final function to solve in the

NO.,

Fig. 4. Photograph of four microstrip transmission lines and the measurement
setup using vector network analyzer for S-parameters measurement. The
picture shows a pair of labeled connectors, A and B, that are used through
the measurement process and correspond to R4 and Rp transitions.

three Methods is the same. For this reason, only results of
Method 2 are displayed, as they are similar to Methods 1 and
3, to simplify figures. As seen, results are considerably better
when using just one connector kit (red trace in Fig. 3) for
both lines instead of using different kits (blue trace) for each
line. As expected, the attenuation constant («) is significantly
more sensitive to repeatability errors than the phase constant
(). However, the phase constant is deteriorated considerably
starting at 40 GHz to 67GHz. This fact is because it is obtained
from equation 0o

+ 2nmw
B=— @
which has infinite possible solutions. To get the correct one,
it is necessary to unwrap the phase, but when there are large
random errors at higher frequencies, the unwrap function can
fail and take the phase constant to another solution that is
not physically correct. As shown in the histograms of Fig. 3,
the propagation constant obtained after applying the method
considering normal errors maintain a normal probability distri-
bution. This hypothesis has been validated as well through an
Anderson-Darling test, at 5% significance level. In addition,
there is a similarity between the standard deviation of [R]
displayed in Fig. 2 and the one of the propagation constant
(0o and o), shown in Fig. 3 (note that Y-axis is displayed
logarithmically in this figure).

IV. EXPERIMENTAL VALIDATION

To validate the analysis performed, the two lines simulated
in the previous section with lengths 11.31 and 52.59 mm are
manufactured using Rogers 4350B to extract the propagation
constant. These lines are measured using the same network
analyzer as in Section II, between 0.01 and 67 GHz. At this
point, it is important to mention that measurements were taken
without any calibration of the analyzer since the proposed
methods do not require it to work properly [2]. A photograph
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Fig. 5. Mean of the estimated attenuation constant (a) and phase constant (b)
and their standard deviation obtained by using 1 and 4 connector kits through
Method 2.

of the measurement setup is shown in Fig. 4. Sixteen mea-
surements of each line have been taken using the same pair of
connectors, and another sixteen measurements combining four
different connector kits. From these measurements, Method 2,
which is the least sensitive to the VNA’s random errors, has
been applied to all the possible combinations of lines, using
1 or 4 different connector kits for each line. Each connector
is assembled and disassembled before each measurement to
emulate a real measurement process. Results of the estimated
propagation constant are depicted in Fig. 5 in terms of attenu-
ation and phase constants. Both the mean and the standard
deviation of these results have been represented. As seen,
keeping the same pair of connectors reduces the standard
deviation of the estimated propagation constant considerably,
as discussed in the previous section. The measured propagation
constants continue to fit a normal distribution, as validated
through an Anderson-Darling test at a 5% significance level.
Furthermore, it is noteworthy that the attenuation constant has
less ripple and is more accurate at higher frequencies when
only one connector kit is used. Losses are one of the main
drawbacks of this kind of methods, and this can be a simple
way of reducing uncertainty in the estimation of « and f3
significantly.

V. CONCLUSION

In this letter, an analysis of errors due to connector re-
peatability in three broadband methods for estimating the
propagation constant of transmission lines from 2-port mea-
surements has been performed. These three methods rely on
the invariance of the transitions to isolate the effects of the
lines and estimate the propagation constant. They should yield
the same solution if there were no errors. Although this does
not happen in the presence of VNA random errors, in this
work, it has been demonstrated, through a Monte Carlo sim-
ulation, that in the case of connector repeatability errors, the

methods behave in the same way regarding this kind of errors.
Furthermore, it has been shown that using the same connector
kit instead of different ones in all the transmission lines used
to characterize the propagation constant is an appropriate way
to reduce the uncertainty of the final estimation considerably.
This analysis has been corroborated with real measurements,
showing that taking measures with the same kit reduces the
standard deviation of both, attenuation and phase constants
and, therefore, corroborates the analysis proposed in this letter.
This fact is especially relevant in estimating the attenuation
constant, which is quite more sensitive to measurement errors,
as it drastically reduces its ripple and is much more accurate
at higher frequencies if only one connector kit is used.
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