
Knowledge-Based Systems 232 (2021) 107440

a

(
b

m
e
a
i
i
s
m
w
m
t
c

(
I

j
j

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

ViMantic, a distributed robotic architecture for semanticmapping in
indoor environments
D. Fernandez-Chaves a,b,∗, J.R. Ruiz-Sarmiento a, N. Petkov b, J. Gonzalez-Jimenez a

Machine Perception and Intelligent Robotics group (MAPIR), Dept. of System Engineering and Automation, Biomedical Research Institute of Malaga
IBIMA), University of Malaga, Spain
Johann Bernoulli Institute of Mathematics and Computing Science, University of Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 8 October 2020
Received in revised form 9 July 2021
Accepted 22 August 2021
Available online 25 August 2021

Keywords:
Semantic maps
Robotic architecture
Mobile robots
Unity 3D
ROS
Object detection
Detectron2
Robot@Home

a b s t r a c t

Semantic maps augment traditional representations of robot workspaces, typically based on their
geometry and/or topology, with meta-information about the properties, relations and functionalities
of their composing elements. A piece of such information could be: fridges are appliances typically
found in kitchens and employed to keep food in good condition. Thereby, semantic maps allow for the
execution of high-level robotic tasks in an efficient way, e.g. ‘‘Hey robot, Store the leftover salad’’. This
paper presents ViMantic, a novel semantic mapping architecture for the building and maintenance
of such maps, which brings together a number of features as demanded by modern mobile robotic
systems, including: (i) a formal model, based on ontologies, which defines the semantics of the problem
at hand and establishes mechanisms for its manipulation; (ii) techniques for processing sensory
information and automatically populating maps with, for example, objects detected by cutting-edge
CNNs; (iii) distributed execution capabilities through a client–server design, making the knowledge in
the maps accessible and extendable to other robots/agents; (iv) a user interface that allows for the
visualization and interaction with relevant parts of the maps through a virtual environment; (v) public
availability, hence being ready to use in robotic platforms. The suitability of ViMantic has been assessed
using Robot@Home, a vast repository of data collected by a robot in different houses. The experiments
carried out consider different scenarios with one or multiple robots, from where we have extracted
satisfactory results regarding automatic population, execution times, and required size in memory of
the resultant semantic maps.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mobile robots are progressively landing in human environ-
ents like hotels, hospitals, offices, homes, etc., carrying out
lementary tasks as caregivers, security guards or house cleaners,
mong others [1,2]. A key aspect for their successful operation
n those applications is the ability to model and manage the
nformation relevant to the tasks to be accomplished. Let us
uppose a scenario where a robot is commanded to heat the
eal. For addressing such a task the robot must know which
orld elements could be used to warm up the food (e.g. stoves,
icrowaves, ovens, etc.), where they can be found, and how to in-

eract with them. This high-level information of the world is also
alled semantic knowledge, since it provides meta-information

∗ Corresponding author at: Machine Perception and Intelligent Robotics group
MAPIR), Dept. of System Engineering and Automation, Biomedical Research
nstitute of Malaga (IBIMA), University of Malaga, Spain.

E-mail addresses: davfercha@uma.es (D. Fernandez-Chaves),
otaraul@uma.es (J.R. Ruiz-Sarmiento), n.petkov@rug.nl (N. Petkov),
aviergonzalez@uma.es (J. Gonzalez-Jimenez).
https://doi.org/10.1016/j.knosys.2021.107440
0950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
about the elements in the environment regarding their relations,
characteristics, and functionality, that is, their semantics [3,4].
An example of this knowledge could be that stoves are appli-
ances, typically placed in kitchens, that can warm up food. When
semantic knowledge is used to enhance the traditionally avail-
able information about the robot workspace, e.g. geometric and/or
topological maps, objects detected in the environment, etc., this
results in a semantic map [5,6].

In this way, in the scope of mobile robotics, semantic maps are
models that include information about spatial elements (rooms,
objects, etc.) augmented with the semantics required for an ef-
ficient robot operation (see Fig. 1). These maps empower the
cognitive capabilities of robots, enabling them to carry out high-
level queries (e.g. to retrieve the objects that are suitable to per-
form a given a tasks and where they can be found), or to infer
new knowledge (e.g. the type of a room according to the objects
detected inside) [7–9].

In order to be operative in modern mobile robotic systems, a
semantic map has to exhibit certain features as well as mecha-
nisms for its management, which are provided by semantic map-
ping architectures. They include:
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.knosys.2021.107440
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107440&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:davfercha@uma.es
mailto:jotaraul@uma.es
mailto:n.petkov@rug.nl
mailto:javiergonzalez@uma.es
https://doi.org/10.1016/j.knosys.2021.107440
http://creativecommons.org/licenses/by/4.0/

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

a
t

Fig. 1. Example of a simple semantic map built by ViMantic . It includes a conceptual hierarchy modeling the properties of the elements appearing in the domain
t hand as well as their relations, instances of those elements and their observed features, and a screenshot of the GUI designed to show part of that information
o the user.
Fig. 2. Overview of the proposed server side of the architecture showing
its main components and their interconnections. The white boxes stand for
components, the blue one represents the 3D virtual environment and the gray
boxes are optional plugins that add extra functionalities.

• A well defined model representation. A key component
is a formalized and clear model for accommodating the
semantic information, also including mechanisms for its
manipulation, i.e. insertion, modification or query [9–11].

• Model population. The chosen model has to be automat-
ically populated with information coming from the envi-
ronment at hand. For that, they are needed methods that
transform robot sensory data into high level information, for
example images into recognized objects [5,12,13].

• Distributed execution. As these architectures are to be ran
in mobile robots, which usually exhibit heavily constrained
resources, a valuable feature is to provide mechanisms to
operate in a distributed fashion. This permits the external-
ization of the building/management of the map, enabling a
robot to retrieve just the information needed to complete its
tasks from a centralized device, as well as the utilization of
the map by other agents or intelligent devices sharing the
same workspace [14–16].

• Suitable interfaces. Additionally, for robots collaborating
with people, the architecture must provide an interface to
interact with humans in different ways, e.g. to show and
retrieve high-level information from the map [17,18].

• Quality control. Another desirable feature is the measure-
ment of the quality of the resultant maps, i.e. how success-
ful the architecture is when building these representations.
This also enables a comparison of different state-of-the-art
methodologies for semantic mapping [19,20].

• Public availability. The architecture should be ‘‘ready to
use’’, meaning that its implementation has to be public and
easily integrable in most robotic platforms.
2

Although there are numerous works in the literature providing
some of these features and mechanisms [15,21,22], to the best of
our knowledge, there is no a solution providing all of them.

In this paper, we contribute a comprehensive semantic map-
ping architecture including both, state-of-the-art techniques and
dedicated components, ready to be integrated in mobile robotic
platforms. The proposed solution, coined ViMantic , satisfies the
common issues previously posed, i.e. model definition, automatic
population, distributed execution, human–robot interface, quality
control, and public availability. For that, ViMantichas been de-
signed as a client–server architecture that can run in different
devices, then ready to be adapted to the emergent paradigm
of edge computing [23]. Briefly, the server, which could oper-
ate on the own robot or on an external device (e.g. a tablet, a
smartphone, a personal computer, or a laptop, among others),
is in charge of building and managing the semantic map, while
providing a virtual representation of it to support a friendly
user interaction. The client, in its turn, runs on the robot itself
(multiple clients can run at the same time in different robots) and
aims at sensing the environment, detecting elements of interest
in it (e.g.objects, rooms, etc.) and sharing such information with
the server. An implementation of the contributed architecture,
along with directions for installing and using it, has been made
publicly available as a GitHub repository.1

On the one hand, the server resorts to ontologies to represent
the model that accommodates the semantic information relevant
to the problem at hand [24–26]. Ontologies are hierarchical rep-
resentations that formally define the elements in the problem
as concepts with properties, which are structured according to
a subsumption ordering, e.g.microwaves are a subclass of appli-
ances that have a box-shape (see Fig. 1). These structures contain
all the knowledge of a collected semantic map. To measure the
quality of a semantic map, ViManticprovides the functionality for
computing a number of metrics when comparing two ontologies,
where one of them could be an ontology codifying ground truth
information. The server is implemented on Unity 3D [27], being
the previous model a component of it (see Fig. 2). Unity 3D is a
video game engine that allows us to build a 3D virtual environ-
ment incorporating the elements of the semantic map, which can
be visualized by means of friendly graphical user interfaces that
also enable interaction with them.

On the other hand, the client side relies on the Robot Oper-
ating System (ROS) framework [28], which provides off-the-shelf
solutions for navigation, metric map building, gathering of sen-
sory data, etc. To address the automatic population requirement,

1 https://github.com/DavidFernandezChaves/ViMantic-Unity3DNode.

https://github.com/DavidFernandezChaves/ViMantic-Unity3DNode

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

N
r
i
t
w
s

e
w
h
p
t
t
s
(
T
t
t
p

l
m
t
t
o
a
p
p

2

i
r
o
w
l
o
e
p
g
e

the client incorporates an object detection component for identi-
fying the elements in the robot workspace, with a Convolutional
eural Network (CNN) at its heart [7,29], although it could be
eplaced or complemented by any other tool extracting relevant
nformation from sensory data. Detected objects are packed with
heir location in the robot frame and shared with the server,
hich is in charge of their processing and integration into the
emantic map.
In order to validate our proposal, we carried out different

xperiments with the Robot@Home dataset [30]. This repository
as collected by a robot during a number of raids in different
ouses, including data from sensors typically found in robotic
latforms like laser scanners and RGB-D cameras. In addition,
he dataset provides reconstructions of such environments in
he form of point clouds, which helps us to improve the vi-
ualization of different outputs from the proposed architecture
e.g. localization of the detected objects, assigned categories, etc.).
his contributes to further validate the ViMantic suitability for
he building and managing of semantic maps. We also describe
wo use cases showing different ways to exploit the information
rovided by these maps.
The following section puts our work into context with the re-

ated literature. Then, Section 3 generally describes the semantic
ap model adopted in this work. Section 4 explains the archi-

ecture components on the server side, while Section 5 describes
hose on the client side. We introduce the experiments carried
ut in Section 6, along with a discussion on the obtained results
nd two use cases exploiting semantic maps. Finally, Section 7
rovides the main conclusions and achievements of the work
resented in the paper.

. Related work

Over the last decades, a menagerie of proposals for the build-
ng and utilization of semantic maps have appeared in the
obotics field (see Table 1). Galindo et al. [10] presented one
f the earliest and most influential works in this respect, in
hich they proposed a multi-hierarchical representation that re-

ates the concepts included in an ontology with spatial elements
btained from sensors. Such a representation was adopted and
xploited in posteriors works, like in Galindo et al. [6] for task
lanning, or in Galindo and Saffiotti [31] for autonomous goal
eneration. Later, this approach was extended by Ruiz-Sarmiento
t al. [9], who presented the multiversal semantic map concept.

In that novel model, each universe is a combination of possible
links between the aforementioned hierarchies, which takes into
account the uncertainty coming from processes involved in the
map building (e.g.object detection or room categorization). The
work by Zender et al. [32], contemporary of the one by Galindo
et al. [10], proposed a similar approach with a single hierarchy.
Such a representation codifies maps based on sensors’ data and
conceptual abstractions such as ‘‘Corridor’’, ‘‘Kitchen’’ or ‘‘Coffee
Machine’’. The codification is done into an ontology by means of
the Web Ontology Language (OWL). In such work, they resorted
to a SIFT-based object recognition system to automatically popu-
late the ontology. In this regard, other works proposed alternative
methods such as classifiers using Convolutional Neural Networks
(CNN) [16] or Probabilistic Graphical Models (PGMs) [39] to
automatically populate the ontology, that is, without requiring
human intervention during the process.

A significant number of papers in the literature have reckoned
on ontologies as formal models to encode semantic knowledge
exploitable by robots. For instance, Tenorth et al. [33] proposed
a system called KnowRob-map that employs Bayesian Logic Net-
works (BLNs) to predict object types according to their descrip-
tion in an ontology (e.g. a flat surface with four legs, located in
3

a kitchen, is probably a table). Pangercic et al. [34] explored
the building of semantic maps of kitchens using an ontology to
classify different types of furniture according to their physical
characteristics. Interestingly, this work takes into account the
handles observed in such pieces of furniture for their categoriza-
tion, for example, a tall planar surface with two long handles is
likely to be a refrigerator. Günther et al. [12] also categorized
furniture according to its description in an ontology. In contrast
to other works, the authors focused on the flat regions of the
furniture and their relations. For example, a horizontal plane
could be part of a chair or of table, but if it is related with a
vertical one, the chair hypothesis gains strength. Another exam-
ple is the research by Reinaldo et al. [35], where they proposed
an intelligent navigation system based on recognized objects and
their semantics. This system permits mobile robots to assume
different behaviors according to the recognized objects and their
properties. Other proposals, such as those by Pronobis and Jens-
felt [11] or Qi et al. [36], combine ontologies with topological
maps, enabling them to also classify areas in the environment
according to their type (e.g.office, kitchen, corridor, etc.).

Less attention, however, has been given to the collabora-
tive/distributed building and management of semantic maps. In
this regard, Prestes et al. [14] proposed a centralized ontology
where different robots or other intelligent agents could simulta-
neously add or query semantic information. As a consequence,
the knowledge of an environment was available to every robot
operating within it, avoiding the maintenance of duplicate data.
Subsequently, Riazuelo et al. [15] expanded this concept, re-
porting an architecture called RoboEarth Semantic Mapping that
uses a cloud ontology to encode semantic knowledge, while a
Simultaneous Localization and Mapping (SLAM) algorithm is em-
ployed to build geometric maps. In this architecture, other agents
can access the data in the cloud in order to retrieve relevant
information to complete their tasks. At this point it is worth men-
tioning the comprehensive review conducted by Kostavelis and
Gasteratos [22], where the authors surveyed available semantic
mapping approaches for dealing with mobile robotic tasks.

As far as Human–Robot Interaction (HRI) is concerned, propos-
als such as that of Cosgun and Christensen [37], or the previously
mentioned one by Zender et al. [32], consider human assistance
during the semantic mapping. According to them, this allows
us to avoid the utilization of object categorization algorithms,
given the many challenges they entail. Another example includ-
ing humans in the loop is the work by Bastianelli et al. [21],
subsequently extended in Gemignani et al. [38], where authors
describe an interactive semantic mapping approach that consid-
ers a person guiding the robot by voice commands. However,
they themselves maintain that their proposal can be improved
by means of the integration of state-of-the-art categorization
techniques.

Recently, virtual environments have been uncovered as
promising tools for HRI. In this sense, there are appearing pre-
liminary works exploring their possibilities in robotics, as the one
by Navarro et al. [18]. This work proposes virtual environments
to perform an immersive teleoperation of robots. For that, the
authors reconstruct the robot’s 3D environment in a virtual space
using point clouds obtained from RGB-D cameras. Users can
interact and control the robot from the virtual environment,
either through a screen or using a virtual reality device to im-
merse themselves in the virtual environment. Roldán et al. [17]
is another example in this line, where the operation interface
with the robot takes place in a virtual environment, also adding
the possibility that different robots operate simultaneously in the
same workspace.

As discussed, there is a large body of literature proposing
semantic mapping models, architectures for their management,

D
.Fernandez-Chaves,J.R.Ruiz-Sarm

iento,N
.Petkov

et
al.

Know
ledge-Based

System
s
232

(2021)
107440

Table 1
List of most relevant semantic mapping models/architectures proposed in the literature and the features they provide.
Proposal Galindo

et al.
[10]

Ruiz-
Sarmiento
et al.
[9]

Galindo
et al.
[6]

Galindo
and
Saffiotti
[31]

Zender
et al.
[32]

Nüchter
et al.
[5]

Fernandez-
Chaves
et al.
[16]

Tenorth
et al.
[33]

Pangercic
et al.
[34]

Günther
et al.
[12]

Pronobis
and
Jensfelt
[11]

Reinado
et al.
[35]

Qi
et al.
[36]

Riazuelo
et al.
[15]

Prestes
et al.
[14]

Cosgun and
Christensen
[37]

Bastianelli
et al.
[21]

Gemignani
et al.
[38]

ViMan-
tic (ours)

Formal model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Automatic
population

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distributed
execution

✓ ✓ ✓ ✓

HRI ✓ ✓ ✓ ✓ ✓
Public
implementation

✓

4

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

h

3

r
a
p
C
p
a
t
a
t
o
A
m
s

p
f
l
t
m
i
d
V

i
s
c
a
a
b
w
A
m
e
s
m
m
g
a
r
r
a
b

o
i
b
t

4

r

v
a
p
u

a
r

and ways to exploit them. However, semantic mapping tech-
niques must exhibit a number of features in order to be flexibly
integrated in modern mobile robotic systems (see Table 1). Our
proposal, coined ViMantic , satisfies such needs by relying on a
client–server architecture that includes a formal model for ac-
commodating semantic knowledge, techniques for the automatic
population of such model, distributed execution features, and
a virtual environment-based HRI. ViMantic is publicly available,
ence any interested researcher can benefit from it.

. Grounding the semantic map concept

As commented, a semantic map is a representation of the
obot workspace containing information at different levels of
bstraction, ranging from the low-level (sensory data, e.g. images,
oint clouds, etc.), to the high-level (concepts such as Table,
hair, etc., as well as their properties and relations). Multiple
roposals exist to accommodate and manage such information,
lthough most of them make similar design decisions regarding
he critical components of semantic maps [22]. In this way, we
dopt here a consensus model consisting of: (i) a formal represen-
ation of the concepts in the domain at hand, and (ii) the linking
f those concepts with spatial elements in the robot environment.
dditionally, we augment these components with: (iii) a virtual
odel of the environment stating the (raw and/or processed)
ensory information gathered from such world elements.
Fig. 1 yields a toy example of a semantic map and its com-

onents, where: the conceptual hierarchy corresponds to (i), the
ormal representation of the concepts; instances of concepts are
inked to spatial elements, also including acquired knowledge like
heir position or size, hence modeling (ii); the virtual environ-
ent implementing (iii) incorporates the gathered and processed

nformation from the spatial elements. The following sections
escribe how these semantic maps are built and managed in
iMantic , which is divided into two main components: the server,

described in Section 4, and the client presented in Section 5. Re-
mark that the proposed architecture has been carefully designed
to cope with the aforementioned issues demanded to modern se-
mantic mapping techniques: model definition, automatic model
population, distributed execution, human–robot interface, and
public availability.

4. Server side: representing, managing and exchanging infor-
mation

The components on the server side are in charge of: (i) defin-
ng the formal model behind the semantic map, (ii) providing
ervices for modifying/querying it according to requests from
lients, (iii) offering a visual representation supporting the inter-
ction with the user and (iv) comparing the semantic map with
nother previously built or ground truth information, which can
e used to measure its quality. To develop those components
e have resorted to Unity 3D, a popular video game engine.
mong other features, Unity 3D offers tools to handle multiple
ulti-platform connections, work with three-dimensional mod-
ls, or design visually appealing interfaces [17,18]. We have cho-
en this game development engine because, in addition to the
entioned features, it has a smooth learning curve and the com-
unity that supports it is overwhelmingly large, not only for
ame development, but also in other application areas, such
s intelligent agents [27]. Moreover, this framework provides a
epository of ready-to-use plugins implementing different algo-
ithms, e.g. encapsulating Artificial Intelligence (AI) behaviors for
gents, or managing collisions between virtual objects, which can
e helpful in robotic applications.
5

The server is made up of a number of components, as shown in
Fig. 2, which implement different functionalities and are able to
freely exchange information among them. Briefly, its main com-
ponents are: (i) the General Manager, which is in charge of manag-
ing the flow of data by creating connections with robots/agents,
and also handles the system configuration (see Section 4.1), (ii)
the Object Manager that processes the object detections coming
from the robot workspace and creates or updates objects in
a virtual environment (also called virtual objects) (Section 4.2),
(iii) the Ontology Manager, which handles the model codifying
the semantic information and provides access to it, for exam-
ple, to accommodate the information coming from the previous
component (see Section 4.3), (iv) the Graphical User Interface (Sec-
tion 4.4) that supports human–robot interaction through buttons,
messages, input fields, etc. and (v) the Report Manager (Sec-
tion 4.5) which generates reports comparing the semantic map
obtained at the end of a run with another semantic map given.
The WebSocket standard [40] is used to communicate the com-
ponents on the server side with those in the clients (robots and
agents). Next sections give more details about these modules and
the information they exchange.

The aforementioned virtual environment deserves further dis-
cussion, as it is at the core of Unity 3D (see the blue box in Fig. 2).
This environment contains all the needed information to virtually
represent the world being modeled. In our case, this includes
representations of the knowledge acquired and produced by the
robots (e.g. gathered images, laser scans, built geometric maps,
detected objects, etc.), as well as semantic information (e.g.object
labels and confidence scores).

Note that our proposal for autonomous semantic mapping
works under the assumption that the world is static. Although
there are many objects such as toilets, beds, sinks, etc. which
are not usually moved, others such as chairs or flower pots can
change their location. In this architecture, these changes can be
managed through user supervision and the graphical interface.

The chosen modular design allows for the addition of new
components or plugins in a straightforward way. Thereby, devel-
pers can make use of this mechanism to access the information
n the semantic map and implement more complex and efficient
ehaviors for robots/agents. We provide more information about
his feature in Section 4.6.

.1. General manager

This component deals with general tasks in the virtual envi-
onment such as loading or saving configuration settings (e.g.path
to the ontology file, semantic map identifier, different param-
eters for dealing with object detections, etc.), or handling the
display/occlusion of the different menus in the interface (e.g.main
iew, settings window, or new connection window). Addition-
lly, the General Manager also establishes connections between
hysical robots (or agents) and the server as demanded by the
ser.
To accomplish that, it is just needed to introduce the robot IP

ddress. Then, the General Manager instantiates an avatar for that
obot in the virtual environment (also called virtual robot). The
virtual robot is set up according to its associated configuration
settings (see Table 2), and a WebSocket connection is established
linking it with its respective physical robot. From that point
onwards, all the messages received from that IP address will
be associated with this avatar, unambiguously identifying it and
enabling the existence of multiple, simultaneous avatars working
within the same semantic map.

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440
Table 2
Server configuration parameters used in the experiments.
Parameter Value

Confidence score threshold for an object to be inserted 0.8
Maximum distance between the robot and the object to be inserted 2 m.
Maximum distance between two object detections sharing category to be merged 0.1 m.
Minimum number of object detections needed to insert it in the virtual environment 2
4.2. Object manager

The Object manager is the component in charge of processing
the object detections originated from clients. These detections
come in the form of messages, which can contain one or mul-
tiple detections, and that encapsulate: the objects’ categories
as predicted by the recognition system (see Section 5.1), their
associated confidence scores, and their bounding boxes (defined
by their spatial extensions and poses with respect to the robot).

Once a new message carrying object detections is received, the
Object Manager transforms the local coordinates of the objects’
poses, which are relative to robot poses, to their global coordi-
nates in the reference system of the virtual environment. This
is done by composing the pose OR of each object with the pose
RV of its associated robot avatar in global coordinates, resulting
in the global object pose OV , that is OV = RV ⊕ OR. Once
properly positioned, they are inserted in the virtual environment
as 3D bounding boxes with their respective size (see green boxes
in Fig. 8). These boxes are also called virtual objects.

In order to group detections belonging to the same physical
object, we have exploited the physics provided by Unity 3D to
detect when any of these virtual objects is close to another (as
set by a given distance threshold) or even in contact. In case
of collision, if they additionally share the same object category,
we merge their information giving rise to a virtual parent object
that encapsulates: the object category and the average confi-
dence score, the number of virtual objects that have been merged
(equivalent to the number of detections of the same physical
object), and the union of the children bounding boxes.

Once the message containing such object detections is pro-
cessed, the resulting information about new/updated virtual ob-
jects is sent to the Ontology manager (see Section 4.3). In this way,
each virtual object is represented in the ontology as an instance
of its associated category or concept. Both, virtual objects and in-
stances, incorporate an unique identifier in order to unequivocally
identify them during this information exchange.

4.3. Ontology manager

As previously mentioned, a semantic mapping architecture
has to provide a formal model that accommodates the semantic
information. For addressing this, we have resorted to ontolo-
gies [41]. An ontology is a formal representation of the knowledge
concerning a domain of discourse through a number of predicates
O = {P1, . . . ,Pn}. This representation usually takes the form
of a hierarchy of concepts sorted according to a subsumption
ordering, which is built using the is-a predicate. Examples of
those concepts could be Object, Appliance or Microwave,
and the aforementioned predicate is used to establish that is-
a(Object,Appliance) and is-a(Appliance,Microwave).
Ontologies also include instances of those concepts, also called
individuals, which represent abstract or physical elements within
a certain environment. For example, when a new TV is detected,
an instance of the concept TV is created and named TV-1. Such
an instance can be further characterized through custom pred-
icates, which are particular to each application. Examples of

predicates could be size, which expresses the dimensions of an

6

object (e.g.size(TV-1,[0.2,0.2,0.3]), or score, which cod-
ifies the certainty of the neural network about the TV detection
(e.g.score(TV-1,0.9)).

To deal with ontologies within Unity 3D we have resorted
to RDFSharp.2 This is an open source C# framework which al-
lows us to manage ontologies coded using the Web Ontology
Language (OWL3). OWL is a language that aims to facilitate the
representation and processing of rich and complex knowledge
through the previously mentioned resources (concepts, instances,
and properties). OWL ontologies can be codified by means of
RDF4, acronym for Resource Description Framework, a family of
specifications from the World Wide Web Consortium (W3C) that
standardizes the data coding for information exchange in the
semantic web, and that is supported by RDFSharp.

In this way, we have designed an ontology containing a num-
ber of object categories/concepts of interest that can be found
in human-like environments as offices or houses (see Fig. 3).
These concepts, their properties and relations are also called prior
knowledge, and has been acquired through human elicitation [9].
The construction of the proposed semantic map involves populat-
ing this model with the objects detected in the environment. For
that, for each detected object, an instance of its respective con-
cept is generated, e.g.TV-1, Microwave-3, Table-2, etc. These
instances have associated properties specified by means of predi-
cates: identifier, position, orientation, size, score (its
confidence score) and nDetections (the number of times that
the object it represents has been detected). It should be noted
that, when an object previously perceived is detected again, the
properties of its corresponding instance in the ontology are ac-
cordingly updated (recall Section 4.2). In its turn, for having a
record of detections, each one is introduced as an instance linked
to the first one by means of the is-part-of predicate.

Thereby, the ontology contains both, prior knowledge, and
information acquired from the robot perception system and pro-
cessed by the Object Manager . This model, codified through RDF,
enables the execution of logical reasoning engines like Pellet [42]
or FaCT++ [43] that can perform profitable tasks for an efficient
robot operation. For example, they can check the consistency of
the codified information [31], infer new information that is not
explicitly provided, or perform high-level queries, e.g. finding an
appliance able to keep food in good condition [9].

4.4. Graphical user interface

The proposed architecture also contemplates a mechanism
for human robot interaction, aiming to enhance their collabora-
tion. For that, it has been designed a Graphical User Interface
(GUI) consisting of three main elements: (i) floating windows,
(ii) the main interface, and (iii) the visualization of the virtual
environment. The combination of these elements turns out to
be a powerful tool for user interaction, allowing the storage and
display of information within the semantic map.

The first of these elements encapsulates options that are set
just one or a few times by the user, so there is no need to fix

2 https://www.w3.org/2001/sw/wiki/RDFSharp.
3 https://www.w3.org/TR/owl-features/.
4 https://www.w3.org.

https://www.w3.org/2001/sw/wiki/RDFSharp
https://www.w3.org/TR/owl-features/
https://www.w3.org

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440
Fig. 3. Left, excerpt of the proposed ontology exhibiting a hierarchy of concepts. Right, properties associated with instances of those concepts (inside a green box).
Fig. 4. Graphical User Interface designed to support human–robot interaction including buttons, text fields, and a visualization of the virtual environment with
different mechanisms for its modification. Down left, a screenshot of the floating window permitting an advanced configuration of the system.
its visualization in the main screen. Currently there are two of
these windows: a first one that permits the user to introduce
the information needed to establish a connection with a phys-
ical robot (recall Section 4.1), and a second window showing a
number of advanced configuration options of the architecture
(e.g. confidence score threshold to process an object detection,
distance threshold to consider that two detections belong to the
same object, etc., see left part of Fig. 4).

The main interface consists of a side bar that provides different
functionalities. First, it displays, in an editable text field, the name
of the current semantic map. If this name is replaced by one
belonging to an existing map, it is loaded in the architecture/GUI.
Two more buttons enable the user to save the map to disk and to
open a new robot connection window. Below them, it is shown
a list with the currently connected robots/agents, also permitting
the user to cancel those connections. Besides, a small button is
also displayed on the upper right side of the GUI, providing access
to the aforementioned system configuration window.

As for the interface with the virtual environment, its permits
the visualization of pieces of the knowledge acquired from the
workspace, and also enables some ways to interact with it. For
example, Fig. 4-right shows virtual objects placed in a previously
built point cloud representation of an environment. Each virtual
7

object is linked to a small floating panel with a button and a
label. The button permits the user to remove that object from
both the virtual environment and the ontology (see Section 4.3),
thus eliminating the robot’s knowledge associated to it. Regarding
the label, it shows the category and confidence score of the
represented object, helping the user to review at a glance relevant
parts of the knowledge acquired from the workspace.

4.5. Report manager

Due to the lack of standard indicators to assess the quality of a
semantic map, ViMantic integrates a report manager that carries
out this task. Concretely, this module compares the ontologies
codifying the information within two different semantic maps
(see Section 4.3). Since the ontologies populated with ViMantic are
formal representations of the information contained in semantic
maps, in this context comparing ontologies is equivalent to com-
paring semantic maps. This enables the evaluation of the quality
of a generated map w.r.t. the ground truth, or even its relative
comparison with a previously built one. The reports generated
supply the following general results: (i) number of detections, (ii)
number of right objects in the map, (iii) number of wrong objects
in the map, (iv) number of detected objects, and (v) number

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

a
w
o
p

c
i
i
w
s
r

L
r
c
t
r
c
s
b
t
l
p

c
e
a
k
r
d
s
c
o
b

5

o
a
F
O
t
c
t

i
(
I
e
o
t
t

i
g
p

t
m
l
c
r
R

5

t
b

of undetected objects. Notice that (iv) fuses possible multiple
detections of the same object in (i). For an object prediction to
be considered right, there has to be an object of the same type in
the reference semantic map whose distance between the nearest
points of their bounding boxes is lower than a given threshold.
In addition, in order to provide further debugging capabilities the
report includes, for each predicted object in the first semantic
map, its properties and the distance to the nearest same-type
object in the second one.

4.6. Plugins

Plugins are optional components that can be added to the
rchitecture to exploit and/or expand its functionality. In this
ay, any instance of ViMantic could include an arbitrary number
f additional plugins, depending on the requirements of each
articular application.
An example of optional component adding extra features

ould be the ‘‘Robot@Home plugin’’, which permits us to load
nformation of houses from the Robot@Home dataset [30]. This
nformation includes point clouds representing those houses,
hich are embedded in the virtual environment and graphically
hown, helping the user to understand the data acquired by the
obot through an immersive experience (recall Fig. 4).

Another example of useful plugin could be an ‘‘Object Finder’’.
et us suppose a scenario where a robot operating in a house
eceives the order ‘‘bring me a bottle’’. In this context, a plugin
ould query the Ontology Manager the position of previously de-
ected bottles, and send the location of the closest one to the
obot in order to navigate there. A more sophisticated approach
ould employ the detection score associated to each object in-
tance to optimize the possibility to truly find a bottle [44]. If no
ottle appears in the semantic map, the plugin could also query
heir most likely positions (e.g.over planar, horizontal surfaces
ike tables and counters) and command the robot to visit those
romising locations to find them [6].
It should be noted that Unity 3D can host complex systems to

ontrol robots, hence turning them into mere task executors. For
xample, plugins could implement a high-level decision-making
nd task execution system, with access to the available semantic
nowledge and capable of controlling the actions of one or more
obots [6]. Continuing with the previous example, a plugin could
ecompose the ‘‘bring me a bottle’’ command into a number of
impler tasks affordable by the robot (e.g.navigation, fetch and
arry, etc.) and, in applications with multiple robots, it could also
ptimally assign such tasks to robots according to their position,
attery level, etc. (see Section 6.4.2).

. Client side: robots sensing and acting

This section describes the side of the architecture to be run
n robots/agents, aiming to support and empower their sensing
nd actuation skills. Its core components are shown in Fig. 5.
or their development we have relied on the widely used Robot
perating System (ROS) [28]. ROS is an open-source collection of
ools, libraries and conventions that simplify the task of building
omplex and robust robotic behaviors, being the default choice in
he robotics community for software developing.

Briefly, the Object Recognition component is in charge of sens-
ng the robot’s surroundings and detecting objects within it
see Section 5.1). The output of this component feeds the Object
nformation Packerone, which packs relevant information about
ach detected object (Section 5.2). Such information includes:
bject category, size, 3D position w.r.t. the robot frame, orien-
ation, and confidence score. The resultant packages are sent to
he server via WebSocket communication [40], which is managed
8

Fig. 5. Overview of the proposed client side of the architecture showing its main
components and their interconnections. White boxes are components, while the
blue one represents sensors capturing data.

by the rosbridge_suite package.5 In its turn, the Robot Localiza-
tion component is responsible for localizing the robot within a
previously built geometric map and sharing such information
with the server (see Section 5.3). Finally, and depending on the
capabilities of each robot/agent, the architecture also considers
an Actuation Skills component that permits it to carry out action
orders as commanded by the server, e.g.navigation to a given
location in the map, fetch and carry an object, etc. (Section 5.4).
Next sections further describe these components.

It is worth mentioning that, although in our discourse we
keep the spotlight on robots, the architecture is designed to
accept/provide information from/to any smart device connected
to the internet and instantiating a ViMantic client. This means that
any intelligent agent (running such a client) like smart sensors
(e.g. IP cameras, presence or humidity sensors, etc.) or devices like
ntelligent light bulbs, smart TVs, smartphones, or tablets, could
enerate new information to be inserted in the semantic map, or
erform queries about its content.
To enable the implementation of this architecture in a prac-

ical way, we have created a library that implements the com-
unication of many of the common message types in ROS. This

ibrary can also be used as a template for implementing other
ustom messages needed in specific applications. The interested
eader can find it at: https://github.com/DavidFernandezChaves/
OSUnityCore.

.1. Object recognition

The purpose of this component is the detection of objects in
he robot’s workspace from the information provided by its on-
oard sensors. Convolutional Neural Networks (CNNs) have proved

to be particularly useful for this purpose in multiple object detec-
tion challenges, e.g.PASCAL [45] or COCO [46]. This is mainly due
to their robustness against challenging factors like changing light-
ing conditions, occlusions, varying viewpoints, or high intraclass
variability (objects belonging to the same category but exhibiting
different shapes, colors, sizes, etc.).

The progress in object detection networks is vertiginous, ap-
pearing novel designs every year improving the performance of
previous works. There are a number of well known networks
providing a high detection success, like YOLOv3 [47], Faster R-
CNN [48], or Mask R-CNN [49]. In this work we opted for Detec-
tron 2 [50], which integrates an improved version of Mask R-CNN,
and that achieved a notorious performance in our previous re-
search [13,16]. The input of this CNN is an intensity image (RGB),
and the output is a set of detected objects. Specifically, a detected
object includes: the object category, a bounding box containing

5 http://wiki.ros.org/rosbridge_suite.

https://github.com/DavidFernandezChaves/ROSUnityCore
https://github.com/DavidFernandezChaves/ROSUnityCore
https://github.com/DavidFernandezChaves/ROSUnityCore
http://wiki.ros.org/rosbridge_suite

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

r
c
b
p
r

t
t
n
t
s
w
a

d
R
c
o

5

i
t
f
b
I
s
t
s
d
h

j
r
s
d
e
t
o
p
o
c
3

Fig. 6. Object detections as reported by Detectron 2, part of the proposed
ecognition component. On the left, the CNN recognized a dining table with a
onfidence score of 0.702, a partially observed chair (0.935) and, even under
ad lighting conditions, a potted plant (0.745). On the right, it detected a
artially observed sink as well as a toilet with 0.736 and 0.979 confidence scores,
espectively.

he object, a mask over the pixels in the image belonging to
he object, and a confidence score codifying how confident the
etwork is about the detection. Fig. 6 shows some examples of
hese detections, illustrating the potential of these network for
uccessfully recognizing objects. To incorporate this CNN into ROS
e have created a Detectron2 wrapping node, which is publicly
vailable for any interested reader.6
Aiming to be as modular as possible, the architecture has been

esigned in such a way that the neural network used by the Object
ecognition component can be replaced by any other technique
onsuming sensory information and producing a list of detected
bjects without affecting the other components.

.2. Object information packer

In order to insert the detected objects in the semantic map,
t is needed to transform the output from the CNN, expressed in
he 2D image plane, into the robot three-dimensional coordinate
rame. Once this transformation is done, the detected object can
e placed in the map as described in Section 4.2. The Object
nformation Packer is in charge of doing that by: (i) retrieving the
patial extensions and 3D poses in the robot frame, (ii) packaging
ogether the derived information from each object detected in the
ame frame, and (iii) sending it to the server. This component
efines how and which information is forwarded to the server,
elping to the previously mentioned modularity.
To calculate the 3D pose and spatial extension of each ob-

ect, the Object Information Packer transforms the masks of pixels
eceived from the CNN into point clouds. For that we rely on
ensory information coming from RGB-D cameras, which provide
epth information of the scene in addition to intensities. How-
ver, in cases where only intensity information is available, novel
echniques are appearing that estimate 3D point clouds or meshes
f objects from such data [51]. Let us define the coordinates of a
ixel in the intensity image belonging to the mask of a detected
bject as p = [u, v]. Then, the intrinsic parameters of the RGB-D
amera can be used to obtain the coordinates of its corresponding
D point in the sensor frame, that is PS = [XS, YS, ZS] (see

Zuñiga Noël et al. [52] for more details). Once expressed in the
sensor frame, such a point can be transformed into the robot
frame by means of the sensor extrinsic parameters, obtaining
PR = [XR, YR, ZR] [53]. This process is repeated for each pixel
in the mask, resulting in a point cloud representing the object.
Such point cloud is further processed to remove spurious points

6 https://github.com/DavidFernandezChaves/Detectron2_ros.
9

as well as erroneous points that do not belong to the object,
typically caused by objects with holes or inaccurate object masks.
Thus, a filter is applied that removes points not satisfying the
condition: µ − 2 σ < ZR < µ + 2σ , where µ is the mean depth
of the point cloud and σ its standard deviation. The remaining
points represent the space occupied by the object, and are used
to retrieve the position of the object centroid in the robot frame,
as well as to fit a 3D bounding box delimiting its extension.

Once the objects detected within an image have been pro-
cessed, the Object Information Packer creates a package contain-
ing their categories, 3D poses, spatial extensions and confidence
scores. This package is sent to the server in order to be pro-
cessed, hence fully incorporating the gathered information into
the semantic map (recall Section 4.2).

5.3. Robot localization

Another type of information needed to properly build the
semantic map is such of the localization of the robot at each time
instant. Such localization is expressed w.r.t. a given geometric
map of the workspace, and permits the server to properly locate
the robot avatar in the virtual environment (recall Section 4.1)
as well as the detected objects (Section 4.2). The building of the
geometric map is out of the scope of this work, but it is worth
mentioning that ROS offers tools for that, like gmapping,7 a ROS
wrapper for OpenSlam’s Gmapping [54].

Robot localization is a widely researched topic in the robotics
community, and ROS provides robust localization packages al-
ready built in. Concretely, we have resorted to the AMCL pack-
age,8 which implements a localization technique based on the
popular Adaptive Monte Carlo Localization method proposed by
Fox [55]. Such package relies on measurements from sensors typ-
ically mounted on mobile robots: 2D laser scanners, to locate the
robot within a previously built geometric map. In this way, in the
context of the proposed architecture, laser scans are processed
by such package and the obtained robot locations are sent to the
server through the WebSocket connection.

5.4. Actuation skills

The previous sections describe components where the
robots/agents play the role of sensors: they gather raw/processed
information and send it to the server. However, agents could
also perform actions in the environment, and the Actuation Skills
component is in charge of encapsulating them. The content of
this component is agent-specific, since it depends on their capa-
bilities.

In the case of mobile robots, their essential capability is to
navigate, but they could be also able to fetch and carry objects,
interact with other devices (e.g.pushing a button), play sounds
(including words), etc. [24,56]. For that they are needed motor-
ized wheels, robotic arms, speakers, etc., which can be present
or not in a given robotic platform. In this way, the Actuation
Skills component acts as a bridge between the server and the
available actuators.

Although the client side could incorporate components to
endow the robot to perform tasks of certain complexity, in our
proposal this is left to the server side. The server, through the
aforementioned plugins, implements the needed logic so a robot
could carry out the needed high-level tasks for the application at
hand. An example of this is the ‘‘Object Finder’’ plugin (recall Sec-
tion 4.6), which sends navigation commands to the Actuation

7 http://wiki.ros.org/gmapping.
8 http://wiki.ros.org/amcl.

https://github.com/DavidFernandezChaves/Detectron2_ros
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

o
F
t
d
c
t
d
p
c
S
b

6

t
a

g
r

i
R
t

t
i
l
o
i
a
F
r
d

f
b
t
o
t
o
w
t
t
e

T
C
G
9
o
i
2
N

6

v
t
e
w
t
b
d

6

b
R
h
g
m
a
b
t
O
R
i

Fig. 7. Mobile robot used to collect the Robot@Home dataset along with some
samples of the data it provides.

Skills component in order to find a given object. Another exam-
ple could be a plugin in charge of gaining in confidence about
uncertain object recognition results. Such a plugin could query
about the low-scoring detections to the ontology, and send nav-
igation commands to the robot in order to revisit them. Looking
at those objects from different points of view clearly helps to
disambiguate the validity of their detections.

6. Evaluation

The purpose of this section is to demonstrate the suitability
f the proposed architecture for the building of semantic maps.
or that, we have carried out a number of experiments using
he Robot@Home dataset as testbed (see Section 6.1). Such a
ata repository permits us to consider one or multiple robots
ollecting data from the same environment, hence enabling the
esting of multi-agent scenarios. Section 6.2 describes how the
ifferent components/parameters in ViMantichave been set up to
erform such experiments. In Section 6.3 we comment on the
onducted experiments as well as on the reported results. Finally,
ection 6.4 discusses two possible use cases of semantic maps
uilt with our architecture.

.1. Dataset: Robot@Home

Robot@Home [30] is a publicly available repository9 of raw
and processed data collected by a mobile robot Giraff [57] while
visiting cluttered houses (see left part of 7). For collecting the
dataset, Giraff was equipped with a rig of 4 RGB-D cameras
(model Asus XTion Pro Live) and a 2D laser scanner (model
Hokuyo URG-04LXUG01). Those sensors gathered 87,000 raw ob-
servations divided into 83 sequences (see central part of 7).
From them, we have selected the sequences where the robot
fully visited four different houses, since they allow us to deeply
test our proposal. Additionally, we only considered the images
gathered by the RGB-D camera looking ahead, given that it is a
more common configuration in robotic platforms. To experiment
with realistic sequences of robot operation, we take advantage
of the fact that the dataset sequences are also available in the
timestamped rosbag format, so by means of the rosbag package10
he sequences can be reproduced making sensors’ data available
t the right time.
Regarding the processed data in the dataset, it includes 2D

eometric maps and 3D reconstructions of the visited houses (see
ight part of 7), both annotated with ground truth categories of

9 http://mapir.isa.uma.es/work/robot-at-home-dataset.
10 http://wiki.ros.org/rosbag.
10
the objects appearing therein, as well as the categories of the
inspected rooms. Specially relevant here are the 3D reconstruc-
tions since, as commented in Section 4.6, they are inserted in the
virtual environment so it looks more appealing to users.

6.2. Experimental setup

In order to employ ViMantic , some of its components must be
nstantiated and configured. This includes: the CNN in the Object
ecognitionmodule, the ontology in the Ontology Manager , and
he configuration parameters in the server.

Regarding the CNN, we have opted for an instance of Detec-
ron 2 pre-trained with the COCO dataset [46]. Such a dataset
ncludes categories of everyday objects typically found in houses
ike chair, sofa, potted plant, bed, dining-table, toilet, or tv, among
thers. As for the ontology, the same object categories considered
n COCO for indoor environments where converted to concepts
nd, by human elicitation, classified into three major groups:
urniture, Appliance and Common object. Fig. 3 shows the
esultant hierarchy of concepts, as well as the properties used to
escribe each object instance.
The configuration parameters in the server have also to be

ixed. The values used in these experiments are shown in Ta-
le 2. They were chosen empirically to: (i) notoriously reduce
he number of wrong object detections that result in virtual
bjects’ instances, and (ii) increase the number of detections
hat are successfully merged. It is worth mentioning that every
bject detection is recorded in the ontology, independently of
hether a virtual object is instantiated or not. It is also specific
o each application in which device the server is executed. In
he experiments described below it was launched in a computer
xternal to the robots, following the idea of edge computing.
In this way, two computers were used during the experiments.

he first one, running the server side of ViMantic , has an Intel
ore i7-5700HQ processor at 2.70 GH, a RAM memory with 2 × 8
B DDR3 at 800 MHz, and a graphic card NVIDIA GeForce GTX
60M with a memory of 2 GB. The second computer, running
ne or multiple instances of the client side of the architecture,
s equipped with an Intel Core i7-8750H processor at 2.20 GH, a
× 8 GB DDR4 RAM memory at 1333 MHz, and a graphic card
VIDIA GeForce GTX 1070 with a memory of 8 GB.

.3. Experiments: putting ViMantic to work

The following sections describe the experiments carried out to
alidate the instantiated ViMantic architecture, which also help us
o illustrate its modus operandi. Concretely, we have conducted an
xperiment where a robot explores different houses and, working
ith a server, builds their respective semantic maps (see Sec-
ion 6.3.1). In a second experiment, two robots collaborate in the
uilding of such maps (Section 6.3.2). Section 6.3.3 reports and
iscusses on the obtained results.

.3.1. Experiment one: building maps with a single robot
The first experiment considers a scenario where a single mo-

ile robot instantiating the ViMantic client visits four houses from
obot@Home, namely alma, anto, pare and rx2. In each of these
ouses, the robot navigates until every room is visited while
athering both RGB-D images and 2D laser scanners. It is worth
entioning that the robot has no other purpose than to wander
nd passively capture data. On the one hand, laser scans are used
y the Robot Localization component to locate the robot within
he provided geometric map of the house (recall Section 5.3).
n the other hand, RGB-D images are processed by the Object
ecognition component in order to detect the objects appearing
n them (see Fig. 6), while the Object Information Packer extracts

http://mapir.isa.uma.es/work/robot-at-home-dataset
http://wiki.ros.org/rosbag

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

w

a
(
t

a
s
a
v
s
t
a
u
a
b

Fig. 8. Views of the virtual environments obtained after the inspection of four houses from the Robot@Home dataset.
Fig. 9. Excerpt of the content of an ontology after the inspection of the anto house by a mobile robot (instantiating a ViMantic client). The whole hierarchy of concepts
as shown in Fig. 3.
dditional information like their spatial extensions and poses
Section 5.1). Then, robot locations and packed detections are sent
o the server for their integration in the semantic map.

Then, such information is processed in the server (configured
s described in Section 6.2) by: the General Manager , which
ynchronizes the robot avatar location with the arriving ones,
nd the Object Manager , which accordingly creates and updates
irtual objects in the virtual environment. Fig. 8 shows the re-
ultant virtual environments of the four houses as visualized in
he graphical user interface, populated with the detected objects
nd the robot avatar (represented by a white oval). Thereby, the
ser can view at a glance relevant parts of the semantic map
nd interact with it. Recall that each object detection processed
y the Object Manager is sent to the Ontology Manager for its

inclusion in the ontology, even those with a confidence score
under the considered threshold, or those that have not yet been
11
detected an enough number of times to be inserted in the virtual
environment. Fig. 9 depicts an excerpt of the ontology content
once the robot visited the anto house, showing on the right side a
number of instances of object detections as provided by the Object
Manager .

Thus, each semantic map built, as defined in Section 3, is com-
posed of: the formal representation of the concepts in the home
domain, the linking of those concepts with the spatial (detected)
elements in the house, and the virtual model of such environ-
ment. Section 6.4 provides some use cases taking advantage of
these maps.

6.3.2. Experiment two: collaborative building
This second experiment aims to illustrate the building of se-

mantic maps by means of two agents/robots. This possibility
is given by the distributed nature of the architecture. For that,

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

u
r
w
m
s
a
h

t
m
i
i
w
s

t
m
m
p
e

R
m
t
a
l
o
w

d
o
h
t
o

w
a
s
o
r
f
d
o
w
t
s
o

s
a
s
i
t
a
r

s
o
9
r
p
o
t
m

b
n

Table 3
Results obtained from the conducted experiments concerning ontologies and
virtual environments.

Ontology Virtual environment

Size (KB) # Instances # Objects Success

1 Robot

anto 1.082 1.845 29 89,66%
alma 693 1.166 21 76,19%
rx2 543 846 22 77,27%
pare 1.006 1.654 40 85,00%

Average 831 1.378 28 82.03%

2 Robots

anto 1.346 2.357 35 88,57%
alma 985 1.685 35 80,00%
rx2 725 1.177 33 75,76%
pare 1.072 1.844 51 90,20%

Average 1.032 1.766 39 83.63%

the same four houses are considered, where two instances of
the ViMantic client are executed into two different robots. These
robots start moving in the same houses at different time instants,
and keep navigating until every room is visited. Since both robots
are instances of the robot that performed the data collection in
Robot@Home, they both follow the same trajectory. To obtain
new information with the second robot, we have used the data
from the camera looking 90◦ to the right, resulting in a different
point of view of the same scene w.r.t. the first robot.

As before, the first robot considers the RGB-D images com-
ing from the camera looking ahead to feed the Object Recogni-
tion component. However, for the second one, instead of such
a camera it is considered the one on its right, so objects are
detected from different viewpoints. Again, 2D laser scans are
used to localize robots, sending both clients their locations along
with the detected objects to the server, which processes them
by means of the General, Object and Ontology managers. The
interested reader can check the following video, which illustrates
part of the semantic map building process carried out in the Anto’s
house during this experiment: https://youtu.be/3MZgAxxBtKY.

6.3.3. Results
This section discusses the results obtained from the previous

experiments. As commented, the built semantic maps consist of
links between spatial elements (objects) and concepts defined on
an ontology, the own ontology formally defining the knowledge
within the home domain, and the representation of those ele-
ments in a virtual environment. To evaluate the suitability of such
maps, we have considered different aspects like the required size
in memory of the final ontology, the performance achieved by
object detection-related components, or the computational time
demanded by the ViMantic critical components. The results shown
have been obtained using the Report Manager module, which
compared the ontologies obtained after each of the different
experiments with ontologies encoding ground truth information.
Next paragraphs go into depth on them.

Ontology analysis. The ontology is the core of the semantic map.
Having a file encoding it, it is possible to restore a previously
built map by loading its ontology through the ViMantic graphical
ser interface, since it also contains the needed information for
ecovering the virtual objects in the virtual environment. This
ay, it is relevant to spend some lines analyzing how its size in
emory behaves depending on the workspace dimensions. As a
tarting point in this analysis, the ontology codifying the concepts
nd their properties has a size of 48 KB. Regarding the visited
ouses, anto and pare are large ones, with two bathrooms each,

a kitchen, spacious living rooms, and four rooms (master rooms,
bedrooms and dressing rooms), while alma and rx2 have a single
bathroom, two and one bedrooms respectively, and open concept
 f

12
kitchens-living rooms. Generally, the bigger the space, the more
objects appear in it.

Table 3 reports the sizes in memory of the ontologies created
in the previous experiments. We can see how such sizes are in
line with the houses’ descriptions. The lightest ontology is the one
built in the rx2 house, with a size of ∼0.5 MB and storing more
than 800 instances. The heaviest one, built in the anto house in
he two robots scenario, exhibits a size of ∼1.3 MB and contains
ore than 2300 instances. We can also check that, on average, an

nstance requires just ∼0.56 KB to be allocated in memory. This
s a reduced size enabling the architecture operation in scenarios
ith thousands of instances, since ontologies efficiently codify
uch information.
However, for applications with even larger environments, long

erm operation requirements, or devices with very constrained
emory resources, maintenance mechanisms could be imple-
ented if needed to keep affordable the ontology size. For exam-
le, similar information could be merged or deprecated knowl-
dge removed [9].

esults of object detection-related components. The perfor-
ance of the object detection-related components within ViMan-

ic is critical for the building of suitable semantic maps. To rely on
n object detection system with a low recognition success would
ead to unreliable object instances in the ontology and virtual
bjects in the virtual environment, hence clouding the interaction
ith the user.
Table 4 shows the performance of these components using

ifferent state-of-the-art CNNs when running in the four houses
f the first experiment. An object inserted in the semantic map
as been considered as right if there is an object in the ground
ruth of the same type whose distance between the nearest points
f their bounding boxes is less than 20 cm.
CenterNet [61] with 240 detected objects was the network

ith the most detections, while Detectron2 [50] with 206 and
n average precision of 0.83 achieved the best trade-off between
uccess and number of detected objects. The number of total
bjects yielded by each CNN is a good indicator of its execution
ate and how prone it is to detect erroneous or poor objects (with
ew detections). For example, Faster-RCNN [60] runs fast and pro-
uced 201 objects in total, but after filtering such objects only 14
f them were considered in the semantic map. Note that objects
ith multiple detections are more likely to be detected when
heir associated bounding boxes are large, so CNNs that return
mall detections (mostly due to blurred images, light effects and
ther problems) are more likely to perform worse.
It is important to point out that the number of detected objects

hown in Table 4 is filtered by the confidence threshold for
detection to be inserted in the map (in our case 0.8). Since

ome CNNs are more conservative than others, success could be
ncreased by lowering this threshold, especially for those CNNs
hat have obtained a low average f1 score (e.g. Faster-RCNN with
n average f1 score of 0.19), as this implies that they have a high
ecall.

We observe that the objects successfully recognized with a
ingle detection do not represent 10% of the total number of
bjects recognized in any case, being Faster-RCNN [60] with
.95% the CNN with more objects successfully detected in this
espect. Moreover, in all cases these objects represent the highest
ercentage of wrong detections with respect to the total number
f them. However, as the number of detections increases, so does
he percentage of them that are right. In all cases, objects with
ore than 9 detections have the highest performance.
The reason for this is that single detections tend to occur in

lurred images or abrupt lighting changes, and such artifacts are
o further detected in the next frames by the CNN. This way, we

ound it useful to set a threshold (γ) to the number of times that

https://youtu.be/3MZgAxxBtKY

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

h
p
a
t

b
d
n
a
h
p
i

e
p
t
d
w
a

d
t

i
t
e
T
f
o
n
r

Table 4
Results obtained from the first experiment using five different state-of-the-art CNNs. The Objects row yields the total number of reported objects in all the considered
ouses, grouping them according to the number of times that they have been detected. In order to compare how profitable each group of objects is for the global
erformance, the percentage of right/wrong objects (computed by dividing the number of right/wrong objects in a given group by the total number of detections in
ll groups) is provided in the rows % Right objects w.r.t. the total (%ROT) and % Wrong objects w.r.t. the total (%WOT). The final three columns on the right show
he success, average precision and average f1-score obtained respectively in the semantic maps after filtering out objects with two detections or less (gamma = 2).

1 2 3 4 5 6 7 8 9 >9 Total Seman-
tic map

success

(γ = 2)

Average

Precision

Average

f1-score

Detectron2
[50]

Objects 107 24 18 9 5 8 3 3 4 25 206 75
0.83 0.73%ROT 7,28% 5,83% 6,80% 3,88% 2,43% 2,91% 0,97% 0,49% 1,46% 11,17% 43,20% 82,67%

%WOT 44,66% 5,83% 1,94% 0,49% 0,00% 0,97% 0,49% 0,97% 0,49% 0,97% 56,80% 17,33%

Yolo3
[58]

Objects 98 39 10 11 6 1 7 1 0 10 183 46
0.85 0.53%ROT 7,10% 6,56% 4,92% 4,37% 2,73% 0,55% 2,73% 0,55% 0,00% 4,92% 34,43% 82,61%

%WOT 46,45% 14,75% 0,55% 1,64% 0,55% 0,00% 1,09% 0,00% 0,00% 0,55% 65,57% 17,39%

SSD [59]
Objects 115 22 12 9 3 3 0 1 1 4 170 33

0.77 0.53%ROT 2,94% 3,53% 5,29% 2,94% 1,18% 1,18% 0,00% 0,59% 0,59% 2,35% 20,59% 72,73%
%WOT 64,71% 9,41% 1,76% 2,35% 0,59% 0,59% 0,00% 0,00% 0,00% 0,00% 79,41% 27,27%

Faster-
RCNN
[60]

Objects 174 13 3 4 3 0 2 0 1 1 201 14
0.92 0.19%ROT 9,95% 2,49% 1,00% 1,99% 1,00% 0,00% 1,00% 0,00% 0,50% 0,50% 18,41% 85,71%

%WOT 76,62% 3,98% 0,50% 0,00% 0,50% 0,00% 0,00% 0,00% 0,00% 0,00% 81,59% 14,29%

CenterNet
[61]

Objects 195 17 11 6 4 0 2 0 0 5 240 28
0.91 0.33%ROT 5,83% 2,50% 3,75% 2,50% 1,25% 0,00% 0,42% 0,00% 0,00% 2,08% 18,33% 85,71%

%WOT 75,42% 4,58% 0,83% 0,00% 0,42% 0,00% 0,42% 0,00% 0,00% 0,00% 81,67% 14,29%
an object has to be detected in order to be inserted in the virtual
map, where the user can interact with it (recall Table 2).

In Table 4, we can check the success of the semantic map
uilding when filtering out objects that received only one or two
etections (γ = 2). Despite the differences found between the
etworks, the final success rate of the maps is quite solid at
round ∼82% without user influence. It is worth mentioning that
uman revision, despite the high reliability of the information
rovided by the semantic maps in ViMantic , could help to further
mprove their quality.

Notice that, although not shown in the virtual environment,
very detection is stored in the ontology so new detections of
reviously observed objects can be identified. It is worth noting
hat such a threshold also disregard a small number of right
etections. Thereby, it sets a trade-off between the number of
rong detections that are visualized in the virtual environment,
s well as those right that are omitted.
In the same way, ViManticuses this parameter and those pre-

viously mentioned (recall Section 5.2 and Section 4.2) to modify
the level of filtering of the detections, allowing to build very
populated semantic maps with less success rate, or to increase
the success rate at the cost of detecting fewer (but probably true)
objects. Nevertheless, the success of the semantic map building
could be further improved by increasing the amount of informa-
tion obtained, for example by using dedicated active perception
systems, by revisiting rooms to certify their knowledge, or by
adding multiple cameras. At this point it is worth recalling that, as
mentioned in Section 4.4, the user can review the semantic map
at any moment and remove wrong detections. This process could
be enhanced by the automatic proposal by ViManticof uncertain
etections to be reviewed (e.g. those with score under a certain
hreshold).

By setting the threshold γ to 3, we obtain the results shown
n Table 3. This table reports, for the two conducted experiments,
he number of objects inserted in the virtual environments mod-
ling each house along with the percentage of right detections.
he achieved success is remarkably high in both cases, ranging
rom ∼76% to ∼90%. When considering two robots, the number
f objects in the virtual environments significantly increases (11
ew objects on average), while the percentage of right detections
emains similar or slightly increases—the average improvement is
13
Table 5
Computational time required by the critical components of ViMantic .
Client

Object recognition Object info packer

Avg. (ms) Std (ms) Avg. (ms) Std (ms)

105.16 29.99 1.59 0.80

Server

Object manager Objects union

Avg. (ms) Std (ms) Avg. (ms) Std (ms)

2.98 8.35 5.03 6.06

of 1.60%. This is mainly due to the detection by the second robot
of objects that went unnoticed by the first one, since it inspected
the houses from a different point of view, or to additional detec-
tions of a previously observed object but that did not overcome
the threshold γ . In conclusion, the collaborative building of the
semantic map proved to be profitable for achieving more right
detections, and leads us to believe that a similar effect could be
achieved by further explorations of the houses by a single robot.

Analysis of computational time. Another factor worth studying
is how efficient ViMantic is, that is, the time needed to process
new information and incorporate it into the semantic map (see
Table 5). In this respect, it is interesting for the architecture to
build the semantic map in real time, that is, it should be able to
process arriving information at the same (or at a higher) rate at
which it is available. In our case, such information comes from
the RGB-D cameras and the 2D laser scanner.

Regarding laser scans, the Robot Localization component is able
to process information coming from sensors with a high fre-
quency (e.g.40 Hz) to estimate the robot’s pose. In our case, the
used laser scanner has a working frequency of 10 Hz. From the
server side, new robot locations just imply the update of the robot
avatar position, so the information coming from the 2D laser
scanner does not impose limitations for such real time operation.

As for RGB-D images, the Object Recognition component spends
on average 105 ms detecting objects. Then, the Object Information
Packer extracts additional information and sends it to the server,
requiring less than 2 ms for that. Once in the server, the Object

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

r
i
r
o

M
q
t
t
s
M
w
i
w
i
t
d
i
n
I
a

R
r
H

i
c
r
o
s
e

o
i
H
a
t

6

i
s
p

6

a
a

a

s
t
d
i
t
s
w
t
w
l
p
a
d
a
t

6

o
c
c
c
r
r
i

b
i
c
t
i
i
i
T
t
t
a
e
b
t
c
r
w
t
o
n
h
o
m
b
r

Fig. 10. Use case of ViManticwhere a plugin calculates the probability for the
oom to belong to a certain category (bathroom, kitchen, living room, etc.). This
s done according to the objects that have been detected inside. In this case, the
esult obtained for the dressing room is inconclusive due to the lack of detected
bjects.

anager employs about 3 ms to process it, while the time re-
uired by the Ontology Manager to insert new instances or update
he already existing ones is negligible. It is also worth mentioning
he 5 ms demanded to merge the detections belonging to the
ame object, which is triggered by Unity 3D within the Object
anager . Summing up all the time required by these components
e retrieve an average computational time of ∼114 ms, which

mplies a working frequency of 8.7 Hz. RGB-D cameras usually
ork at 30 Hz, however, in many applications this frequency

s decreased, since it provides a huge amount on information
hat can hardly be processed online. That is the case of object
etection where, considering the robot speed, the processing of
mages at 30 Hz provides redundant detection results and un-
ecessarily overloads the limited robot computational resources.
ndeed, RGB-D images in the Robot@Home dataset was gathered
t a frequency ranging from 1 Hz up to 11 Hz, so ViMantic is

able to reach a real time operation in it. Nevertheless, if lower
execution times are needed, the network used inside the Object
ecognition component (which is clearly the bottleneck) could be
eplaced by a faster one (e.g.YOLOv3, which works at 20–45
z [47]).
This analysis has been done using a single client sending

nformation to the server. To estimate how the addition of more
lients affects the computational time on the server side, the time
equired by the Object Managermust be multiplied by the number
f clients, while the time needed for fusing detections remains the
ame. In this way, the addition of a client only demands an extra
xecution time of 3 ms.
Since both, clients and server, exchange information by means

f a WebSocket connection, delays in such connection could result
n delays while integrating information into the semantic map.
owever, since the server side is able to process such information
t a high frequency (∼124 Hz), it could quickly recover from
emporal delays.

.4. Use cases

This section describes two use cases that pose different scenar-
os involving robots and semantic maps. In them, the utilization of
emantic maps built by ViMantic enables such robots to efficiently
erform high-level tasks.

.4.1. Inferring room categories
As introduced in Section 4.6, the functionality of the proposed

rchitecture can be extended in a straightforward way by the
ddition of plugins. As a first example of what such plugins
14
could do, let us consider a plugin able to infer new knowledge
from the one already existing in the map. Suppose a scenario
where, in addition to the categories of the objects detected in
the environment, it is also needed to know the categories of the
rooms where they appear, namely bedroom, living room, bath-
room, kitchen, corridor, etc (see next use case). For achieving that,
human elicitation could be used to define concepts representing
the room types, and to describe them by codifying the objects
that can be typically found therein, e.g.microwaves in kitchens
nd toilets in bathrooms [62].
In a previous work [16], we designed a plugin able to exploit

uch prior knowledge, calculating the probability for each room
o belong to the considered categories according to the objects
etected therein and their confidence scores. Such a plugin works
n a passive way, just processing the available information, hence
here are situations where the reported probability is inconclu-
ive due to the lack of detected objects. Fig. 10 shows an example
here only one chair was detected inside a dressing room. In
hat case, the retrieved probability for belonging to categories
here chairs typically appear like bedroom, dressing room or

iving room is the same. This plugin could be extended to exhibit a
roactive behavior, e.g.by sending to an agent an order to inspect
certain room with inconclusive results. This would permit the
etection of new objects or the enhancement of the knowledge
bout previously detected ones, helping to properly categorize
he room.

.4.2. Towards efficient operation: multiple robots, one choice
The second use case supposes a scenario with multiple collab-

rative robots/agents. Thus, if the user gives an order, e.g. ‘‘Please,
heck the sink in the bathroom near the bedrooms’’, a logi-
al question arises: which robot will be best suited for efficiently
omplete the task?. In such scenario, it would be convenient to
ely on a plugin able to optimally choose among the available
obots according to their conditions. Towards such purpose, the
nformation coded into semantic maps results of great utility.

The aforementioned example: ‘‘Please, check the sink in the
athroom near the bedrooms’’, could be interpreted as a nav-
gation plus inspection tasks. A system for interpreting human
ommands would have to translate them into instructions that
he robot can carry out. Next, another system, which could be
mplemented as a plugin to this architecture, would have to
dentify the most appropriate robot to perform the tasks. Fig. 11
llustrates this scenario, with two robots operating in the house.
he semantic map helps here by providing the locations of both,
he two robots, and two previously detected sinks. Notice that, at
his point, it serves as a communication channel between the user
nd the architecture in terms that both are able to understand,
.g. check, tap, bathroom or bedroom. The semantic map could
e also used to extract new information needed for completing
he task. An example of this was illustrated in the previous use
ase, permitting the architecture to categorize, in this one, two
ooms as bathrooms and three of them as bedrooms. In this
ay, to carry out the commanded tasks, the plugin could check
he distance from each bathroom to the categorized bedrooms,
btaining Bathroom-2 as the closest one and setting it as the
avigation goal. Finally, by considering the paths that both robots
ave to follow to reach such a goal, the plugin could decide which
ne is closer to the sink (Robot-2) and send a navigation com-
and to it. This selection criteria can become more sophisticated
y also considering the score of the detected objects/rooms, the
obots’ workload, the level of their batteries, etc [44].

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440

t
o
c
e
t
h
r
i
e
t
c
i
(
t
o
W
t
p

s
p
R
s
c
s
p
w
b
o
o
s
T
p
c
m

t

I
M
e
S
C
–

D

c
t

A

(
n
M
H
g
p
a

R

Fig. 11. Example of a use case where a plugin decides which is the best suited
robot for accomplishing the command ‘‘Check the tap in the bathroom near the
bedrooms’’. The discontinuous lines delimit the rooms, while colors represent
their categories. The continuous lines show the path that each robot should
follow to reach the target.

7. Conclusions

In this article we have presented ViMantic , a novel architec-
ure for semantic mapping by mobile robots. It provides a number
f features demanded by modern mobile robotic systems, in-
luding map model definition, automatic population, distributed
xecution, human–robot interface, and public availability. For
hat, the architecture relies on a client–server design. On the one
and, the server side, built upon Unity 3D, can operate on the own
obot or an external device. It is in charge of building and manag-
ng the semantic map, also keeping a virtual representation of the
nvironment that allows the user to interact in a friendly way. On
he other hand, the client side, developed in the ROS framework,
an be run on one or multiple robots/agents simultaneously. It
ncludes components for gathering information from sensory data
detected objects, robot localization, etc.) as well as for acting in
he physical environment (navigate, play sounds, fetch and carry
bjects, etc.). Both sides exchange information by standardized
ebSocket communication channels. For the sake of modularity,

he architecture permits developers to straightforwardly add new
lugins/components depending on their needs.
We have reported a number of experiments and use cases

upporting the suitability of ViMantic for the building and ex-
loitation of semantic maps. For that, we have relied on the
obot@Home dataset, which provides RGB-D images and 2D laser
cans from different houses collected by a mobile robot. Con-
retely, we have performed two experiments: the first one con-
iders a robot operating in such houses, while the second ex-
eriment poses a collaborative scenario with two. In both cases,
e have described the most relevant parts of the semantic maps
uilding process, the generated information, and the performance
f critical components. We conclude that, based on the results
btained in this experiments, ViMantic is a good architecture for
emantic mapping that meets the expectations of our proposal.
o exemplify possible uses, we have also commented on two
ossible use cases exploiting the outcome of the proposed ar-
hitecture for categorizing rooms, and for optimally selecting the
ost suitable robot for performing a task.
In the future we plan to further leverage and develop the fea-

ures of ViMantic . For example, the detection of objects could take
15
advantage of contextual relations to give a sense of coherence to
its results, for example, that microwaves are typically found on
top of tables and counters but not on the floor. We also aim to
incorporate the capability to update the map in order to consider
dynamic objects, i.e. those objects that can be moved from the
place from which they were previously observed (chairs, bottles,
etc.). Another possible extension could be the utilization of the
virtual environment for virtual reality purposes, e.g. to provide an
immersive experience in semantic maps to the user.

CRediT authorship contribution statement

D. Fernandez-Chaves: Methodology, Software, Data curation,
nvestigation, Writing – original draft. J.R. Ruiz-Sarmiento:
ethodology, Validation, Supervision, Writing – review &
diting. N. Petkov: Funding acquisition, Project administration,
upervision, Writing – review & editing. J. Gonzalez-Jimenez:
onceptualization, Project administration, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work has been supported by the research projects WISER
DPI2017-84827-R), funded by the Spanish Government and fi-
anced by the European Regional Development’s funds (FEDER),
oveCare (ICT-26-2016b-GA-732158), funded by the European
2020 program, and by a postdoc contract from the I-PPIT pro-
ram of the University of Málaga, and the UG PHD scholarship
rogram from the University of Groningen. Funding for open
ccess charge: Universidad de Málaga/CBUA.

eferences

[1] R. Gehle, K. Pitsch, T. Dankert, S. Wrede, Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, in: HRI ’17, 2017,
pp. 187—195, http://dx.doi.org/10.1145/2909824.3020219.

[2] H. Khambhaita, R. Alami, Robotics Research, Springer International
Publishing, Cham, 2020, pp. 285–300.

[3] R. Chatila, J. Laumond, Proceedings. 1985 IEEE International Conference on
Robotics and Automation, 2, 1985, pp. 138–145, http://dx.doi.org/10.1109/
ROBOT.1985.1087373.

[4] B. Kuipers, Cogn. Sci. 2 (2) (1978) 129–153, http://dx.doi.org/10.1207/
s15516709cog0202_3.

[5] A. Nüchter, J. Hertzberg, Robot. Auton. Syst. 56 (11) (2008) 915–926.
[6] C. Galindo, J. Fernandez-Madrigal, J. Gonzalez, A. Saffiotti, Robot. Auton.

Syst. 56 (11) (2008) 955–966.
[7] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-

Rodriguez, A review on deep learning techniques applied to semantic
segmentation, 2017, arXiv preprint arXiv:1704.06857.

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic
image segmentation with deep convolutional nets and fully connected
CRFs, in: International Conference on Learning Representations (ICLR),
2015.

[9] J.R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Knowl.-Based Syst. 119
(2017) 257–272.

[10] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernandez-Madrigal,
J. Gonzalez, 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005, pp. 2278–2283, http://dx.doi.org/10.1109/IROS.2005.
1545511.

[11] A. Pronobis, P. Jensfelt, Large-scale semantic mapping and reasoning with
heterogeneous modalities, in: Robotics and Automation (ICRA), 2012 IEEE
International Conference on, 2012, pp. 3515–3522.

[12] M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg, Building semantic object
maps from sparse and noisy 3D data, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2013), 2013, pp. 2228–2233.

http://dx.doi.org/10.1145/2909824.3020219
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb2
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb2
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb2
http://dx.doi.org/10.1109/ROBOT.1985.1087373
http://dx.doi.org/10.1109/ROBOT.1985.1087373
http://dx.doi.org/10.1109/ROBOT.1985.1087373
http://dx.doi.org/10.1207/s15516709cog0202_3
http://dx.doi.org/10.1207/s15516709cog0202_3
http://dx.doi.org/10.1207/s15516709cog0202_3
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb5
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb6
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb6
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb6
http://arxiv.org/abs/1704.06857
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb9
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb9
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb9
http://dx.doi.org/10.1109/IROS.2005.1545511
http://dx.doi.org/10.1109/IROS.2005.1545511
http://dx.doi.org/10.1109/IROS.2005.1545511

D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov et al. Knowledge-Based Systems 232 (2021) 107440
[13] D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov, J. Gonzalez-Jimenez,
in: I. Rojas, G. Joya, A. Catala (Eds.), Advances in Computational Intelligence,
Springer International Publishing, Cham, 2019, pp. 313–324.

[14] E. Prestes, J.L. Carbonera, S.R. Fiorini, V.A.M. Jorge, M. Abel, R. Madhavan,
A. Locoro, P. Goncalves, M.E. Barreto, M. Habib, A. Chibani, S. Gérard, Y.
Amirat, C. Schlenoff, Robot. Auton. Syst. 61 (11) (2013) 1193–1204.

[15] L. Riazuelo, M. Tenorth, D.D. Marco, M. Salas, D. Gálvez-López, L. Mösen-
lechner, L. Kunze, M. Beetz, J. Tardós, L. Montano, J. Montiel, IEEE Trans.
Autom. Sci. Eng. 12 (2) (2015) 432–443.

[16] D. Fernandez-Chaves, J.R. Ruiz-Sarmiento, N. Petkov, J. Gonzalez-Jimenez,
International Conference on Applications of Intelligent Systems (APPIS),
2020, http://dx.doi.org/10.1145/3378184.3378230.

[17] J.J. Roldán, E. Peña Tapia, D. Garzón-Ramos, J. de León, M. Garzón, J.
del Cerro, A. Barrientos, Studies in Computational Intelligence, vol. 778,
Springer Verlag, 2019, pp. 29–64, http://dx.doi.org/10.1007/978-3-319-
91590-6_2.

[18] F. Navarro, J. Fdez, M. Garzón, J.J. Roldán, A. Barrientos, Advances in Intel-
ligent Systems and Computing, 694, Springer Verlag, 2018, pp. 606–616,
http://dx.doi.org/10.1007/978-3-319-70836-2_50.

[19] R. Capobianco, J. Serafin, J. Dichtl, G. Grisetti, L. Iocchi, D. Nardi, A proposal
for semantic map representation and evaluation, in: Mobile Robots (ECMR),
2015 European Conference on, 2015, pp. 1–6.

[20] S. Kaszuba, S.R. Sabbella, V. Suriani, F. Riccio, D. Nardi, Rosmeery: Robotic
simulated environment for evaluation and benchmarking of semantic
mapping algorithms, 2021, arXiv preprint arXiv:2105.07938.

[21] E. Bastianelli, D. Bloisi, R. Capobianco, F. Cossu, G. Gemignani, L. Iocchi,
D. Nardi, On-line semantic mapping, in: Advanced Robotics (ICAR), 2013
16th International Conference on, 2013, pp. 1–6.

[22] I. Kostavelis, A. Gasteratos, Robot. Auton. Syst. 66 (2015) 86–103.
[23] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, IEEE Internet Things J. 3 (5) (2016)

637–646.
[24] J.-R. Ruiz-Sarmiento, C. Galindo, J. Monroy, F.-A. Moreno, J. Gonzalez-

Jimenez, Knowl.-Based Syst. 168 (2019) 100–108.
[25] N. Eric Maillot, M. Thonnat, Image Vision Comput. 26 (1) (2008) 102–113.
[26] N. Durand, S. Derivaux, G. Forestier, C. Wemmert, P. Gancarski, O. Boussaid,

A. Puissant, Ontology-based object recognition for remote sensing image
interpretation, in: Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th
IEEE International Conference on, vol. 1, 2007, pp. 472–479.

[27] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange,
Unity: A general platform for intelligent agents, 2018, arXiv preprint
arXiv:1809.02627.

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y.
Ng, ICRA Workshop on Open Source Software, 3, (3.2) Kobe, Japan, 2009,
p. 5.

[29] J. Han, D. Zhang, G. Cheng, N. Liu, D. Xu, IEEE Signal Process. Mag. 35 (1)
(2018) 84–100.

[30] J.R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Int. J. Robot. Res. 36
(2) (2017) 131–141.

[31] C. Galindo, A. Saffiotti, Robot. Auton. Syst. 61 (10) (2013) 1131–1143.
[32] H. Zender, O.M. nez Mozos, P. Jensfelt, G.-J. Kruijff, W. Burgard, Robot.

Auton. Syst. 56 (6) (2008) 493–502.
[33] M. Tenorth, L. Kunze, D. Jain, M. Beetz, 2010 10th IEEE-RAS International

Conference on Humanoid Robots, Humanoids 2010, 2010, pp. 430–435,
http://dx.doi.org/10.1109/ICHR.2010.5686350.

[34] D. Pangercic, B. Pitzer, M. Tenorth, M. Beetz, Semantic Object Maps for
robotic housework - representation, acquisition and use, in: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
4644–4651.

[35] J.O. Reinaldo, R.S. Maia, A.A. Souza, Proceedings - 2015 Brazilian Conference
on Intelligent Systems, BRACIS 2015, Institute of Electrical and Electronics
Engineers Inc., 2016, pp. 210–215, http://dx.doi.org/10.1109/BRACIS.2015.
50.

[36] X. Qi, W. Wang, M. Yuan, Y. Wang, M. Li, L. Xue, Y. Sun, Int. J. Adv. Robot.
Syst. 17 (1) (2020) http://dx.doi.org/10.1177/1729881419900066.
16
[37] A. Cosgun, H.I. Christensen, Paladyn 9 (1) (2018) 254–276, http://dx.doi.
org/10.1515/pjbr-2018-0020, arXiv:1710.08682.

[38] G. Gemignani, D. Nardi, D.D. Bloisi, R. Capobianco, L. Iocchi, in: A.M. Hsieh,
O. Khatib, V. Kumar (Eds.), Experimental Robotics: The 14th International
Symposium on Experimental Robotics, in: Springer Tracts in Advanced
Robotics, vol. 109, Springer International Publishing, 2016, pp. 339–355.

[39] M. Günther, J.R. Ruiz-Sarmiento, C. Galindo, J. Gonzalez-Jimenez, J.
Hertzberg, Robot. Auton. Syst. (2018).

[40] V. Wang, F. Salim, P. Moskovits, The Definitive Guide To HTML5
WebSocket, vol. 1, Springer, 2013.

[41] M. Uschold, M. Gruninger, Knowl. Eng. Rev. 11 (1996) 93–136.
[42] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz, Web Semant.: Sci. Serv.

Agents World Wide Web 5 (2) (2007) 51–53.
[43] D. Tsarkov, I. Horrocks, Automated Reasoning: Third International Joint

Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 292–297.

[44] J. Monroy, J.R. Ruiz-Sarmiento, F.-A. Moreno, F. Melendez-Fernandez, C.
Galindo, J. Gonzalez-Jimenez, Sensors 18 (12) (2018).

[45] M. Everingham, S.M. Eslami, L. Gool, C.K. Williams, J. Winn, A. Zisserman,
Int. J. Comput. Vision 111 (1) (2015) 98–136.

[46] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
C.L. Zitnick, Microsoft COCO: Common Objects in Context, in: European
Conference on Computer Vision, 2014, pp. 740–755.

[47] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, 2018, arXiv
preprint arXiv:1804.02767.

[48] S. Ren, K. He, R. Girshick, J. Sun, IEEE Trans. Pattern Anal. Mach. Intell. 39
(6) (2017) 1137–1149.

[49] K. He, G. Gkioxari, P. Dollár, R.B. Girshick, Mask R-CNN, in: 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[50] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, Detectron2, 2019,
https://github.com/facebookresearch/detectron2.

[51] G. Gkioxari, J. Malik, J. Johnson, Mesh r-cnn, in: Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 9785–9795.

[52] D. Zuñiga Noël, J.R. Ruiz-Sarmiento, J. Gonzalez-Jimenez, Computer Anal-
ysis of Images and Patterns. Lecture Notes in Computer Science, 11678,
Springer International Publishing, 2019, pp. 659–671, http://dx.doi.org/10.
1007/978-3-030-29888-3_54.

[53] D. Zuñiga Noël, J.R. Ruiz-Sarmiento, R. Gomez-Ojeda, J. Gonzalez-Jimenez,
IEEE Robot. Autom. Lett. 4 (3) (2019) 2862–2869, http://dx.doi.org/10.1109/
LRA.2019.2922618.

[54] G. Grisetti, C. Stachniss, W. Burgard, IEEE Trans. Robot. 23 (1) (2007) 34–46.
[55] D. Fox, KLD-sampling: Adaptive particle filters, in: Advances in Neural

Information Processing Systems, 2002, pp. 713–720.
[56] J. Alonso-Mora, S. Baker, D. Rus, Int. J. Robot. Res. 36 (9) (2017) 1000–1021,

http://dx.doi.org/10.1177/0278364917719333.
[57] J. González-Jiménez, C. Galindo, J. Ruiz-Sarmiento, 2012 IEEE RO-MAN:

The 21st IEEE International Symposium on Robot and Human Interactive
Communication, IEEE, 2012, pp. 827–832.

[58] J. Redmon, A. Farhadi, YOLOV3: An incremental improvement, 2018, arXiv:
1804.02767.

[59] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg,
Lecture Notes in Comput. Sci. (2016) 21–37.

[60] S. Ren, K. He, R. Girshick, J. Sun, Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, in:
NIPS’15, MIT Press, Cambridge, MA, USA, 2015, pp. 91–99.

[61] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint triplets
for object detection, 2019, arXiv:1904.08189.

[62] J.R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Joint categorization of
objects and rooms for mobile robots, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015.

http://refhub.elsevier.com/S0950-7051(21)00702-4/sb13
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb13
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb13
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb13
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb13
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb14
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb14
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb14
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb14
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb14
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb15
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb15
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb15
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb15
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb15
http://dx.doi.org/10.1145/3378184.3378230
http://dx.doi.org/10.1007/978-3-319-91590-6_2
http://dx.doi.org/10.1007/978-3-319-91590-6_2
http://dx.doi.org/10.1007/978-3-319-91590-6_2
http://dx.doi.org/10.1007/978-3-319-70836-2_50
http://arxiv.org/abs/2105.07938
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb22
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb23
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb23
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb23
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb24
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb24
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb24
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb25
http://arxiv.org/abs/1809.02627
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb28
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb28
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb28
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb28
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb28
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb29
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb29
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb29
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb30
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb30
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb30
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb31
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb32
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb32
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb32
http://dx.doi.org/10.1109/ICHR.2010.5686350
http://dx.doi.org/10.1109/BRACIS.2015.50
http://dx.doi.org/10.1109/BRACIS.2015.50
http://dx.doi.org/10.1109/BRACIS.2015.50
http://dx.doi.org/10.1177/1729881419900066
http://dx.doi.org/10.1515/pjbr-2018-0020
http://dx.doi.org/10.1515/pjbr-2018-0020
http://dx.doi.org/10.1515/pjbr-2018-0020
http://arxiv.org/abs/1710.08682
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb38
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb39
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb39
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb39
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb40
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb40
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb40
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb41
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb42
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb42
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb42
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb43
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb43
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb43
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb43
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb43
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb44
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb44
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb44
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb45
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb45
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb45
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb48
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb48
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb48
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.1007/978-3-030-29888-3_54
http://dx.doi.org/10.1007/978-3-030-29888-3_54
http://dx.doi.org/10.1007/978-3-030-29888-3_54
http://dx.doi.org/10.1109/LRA.2019.2922618
http://dx.doi.org/10.1109/LRA.2019.2922618
http://dx.doi.org/10.1109/LRA.2019.2922618
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb54
http://dx.doi.org/10.1177/0278364917719333
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb57
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb57
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb57
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb57
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb57
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb59
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb59
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb59
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb60
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb60
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb60
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb60
http://refhub.elsevier.com/S0950-7051(21)00702-4/sb60
http://arxiv.org/abs/1904.08189

	ViMantic, a distributed robotic architecture for semantic mapping in indoor environments
	Introduction
	Related work
	Grounding the semantic map concept
	Server side: representing, managing and exchanging information
	General manager
	Object manager
	Ontology manager
	Graphical user interface
	Report manager
	Plugins

	Client side: robots sensing and acting
	Object recognition
	Object information packer
	Robot localization
	Actuation skills

	Evaluation
	Dataset: Robot@Home
	Experimental setup
	Experiments: putting ViMantic to work
	Experiment one: building maps with a single robot
	Experiment two: collaborative building
	Results

	Use cases
	Inferring room categories
	Towards efficient operation: multiple robots, one choice

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

