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a b s t r a c t

Air quality and reduction of emissions in the transport sector are determinant factors in achieving a
sustainable global climate. The monitoring of emissions in traffic routes can help to improve route
planning and to design strategies that may make the pollution levels to be reduced. In this work,
a method which detects the pollution levels of transport vehicles from the images of IP cameras
by means of computer vision techniques and neural networks is proposed. Specifically, for each
sequence of images, a homography is calculated to correct the camera perspective and determine
the real distance for each pixel. Subsequently, the trajectory of each vehicle is computed by applying
convolutional neural networks for object detection and tracking algorithms. Finally, the speed in each
frame and the pollution emitted by each vehicle are determined. Experimental results on several
datasets available in the literature support the feasibility and scalability of the system as an emission
control strategy.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent decades the field of video surveillance has been the
ubject of intense research. The increase in the number of IP
ameras, which are installed mainly for security purposes, has
rovided a massive amount of data which have made it possible
o study not only the detection and tracking of vehicles on the
oad but also high-level characteristics related to their behavior.
hus, it is possible to detect anomalous patterns that differ from
hose of the normal behavior for a vehicle or to estimate param-
ters related to the environment such as the pollution of the area
hrough which the vehicles circulate.

The issue of estimating air pollution caused by vehicle emis-
ions and its effect on the air quality of an area has been ap-
roached from different points of view in some densely popu-
ated cities [1]. The use of emission monitoring sensors to mea-
ure harmful particles produced by traffic [2] has given good
esults, although it is not very suitable for large areas due to

∗ Corresponding author at: Department of Computer Languages
nd Computer Science, University of Málaga, Bulevar Louis Pasteur,
5, 29071 Málaga, Spain.

E-mail addresses: jorgegarcia@lcc.uma.es (J. García-González),
iguelangel@lcc.uma.es (M.A. Molina-Cabello), rmluque@lcc.uma.es

R.M. Luque-Baena), jmortiz@lcc.uma.es (J.M. Ortiz-de-Lazcano-Lobato),
zeqlr@lcc.uma.es (E. López-Rubio).
ttps://doi.org/10.1016/j.asoc.2021.107950
568-4946/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
the cost of system installation. At road intersections, hybrid mod-
els that combine wavelength-based neural networks and genetic
algorithms [3] have been used to determine area pollution.

In order to avoid the cost and difficulties involved in the use
of air quality, environmental, and traffic density sensors on which
the previous methods are based only static cameras present on
the roads will be the source of information for our proposal. The
analysis of the movement of vehicles on the roads will allow us
to know the speed of each vehicle present in the video sequence.
The contribution of each vehicle to the level of pollution in the
area will depend on its estimated speed.

The proposed methodology starts with a detection phase of
the vehicles appearing in the scene [4]. Traditional techniques
applied to foreground object detection such as mixture Gaussian
distributions [5] or statistical background modeling [6] have been
replaced by deep neural networks, which have been incorporated
into the field of video surveillance to address complex tasks
such as object recognition [7] and provide much higher success
rates in object identification and detection [8]. The recent deep
neural network models Faster-RCNN [9] and YOLO [10] have been
chosen in this work for that purpose.

Subsequently, a tracking phase is performed [11]. Each vehicle
speed is estimated after obtaining the vehicle trajectory along
the road. One issue to be taken into account is that the camera
perspective may make it difficult the speed estimation. In order to
obtain a distance value not distorted by the camera perspective, a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2021.107950
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107950&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jorgegarcia@lcc.uma.es
mailto:miguelangel@lcc.uma.es
mailto:rmluque@lcc.uma.es
mailto:jmortiz@lcc.uma.es
mailto:ezeqlr@lcc.uma.es
https://doi.org/10.1016/j.asoc.2021.107950
http://creativecommons.org/licenses/by/4.0/


J. García-González, M.A. Molina-Cabello, R.M. Luque-Baena et al. Applied Soft Computing 113 (2021) 107950

t
s

t
t
m
a
(
o
c
t

2

v
t
g
c
v
m
c
t
G

w
n
s
t
R
h
b

t
p
r
f
d
e
n
p
l
m
f
i

r
n
d
t
t

b
a
A
t
i
p
p
o
v

n

a
c
t
e
s
v

f
c
i
c
e

4

I
r
i
i
w
a

previously defined homography allows points in the video frame
to be projected onto the road plane.

Finally, the estimation of the pollution in the area is based on
he number of vehicles that are detected and their corresponding
peed.
The remaining of the paper is structured as follows: Sec-

ion 2 presents related works, Section 3 shows and explains
he overall proposal architecture, Section 4 explains the applied
ethodology, Section 5 outlines the experimental details such
s homography generation (Section 5.1), pollution estimation
Section 5.3), resources (Section 5.4), evaluation (Section 5.5) and
btained results (Section 5.6), whereas Section 6 summarizes the
onclusions. A final acknowledgments section is included in order
o recognize the origin of the funding that allows this research.

. Related works

The classification of vehicles which appear in typical traffic
ideo sequences has been dealt with different techniques. A more
raditional approach was used in [12], where a growing neural
as approach was proposed to classify the vehicles into several
ategories such as car, motorcycle, truck or van. First of all, the
ehicles were detected by using a foreground object detection
ethod. Then, the most significant features of the detected vehi-
les were obtained by a feature extraction process. And after that,
he types of vehicles were determined by using a set of trained
rowing Neural Gas (GNG) neural networks.
The same classification task was also addressed in [13,14]

here a Convolutional Neural Network (CNN) architecture,
amely Alexnet [15], is selected. In both works the deep neural
ystem was particularly trained for vehicle classification into
he above-mentioned categories: car, motorcycle, truck or van.
egarding the vehicle tracking system, the trajectories of the ve-
icles along the way need to be addressed [11]. For this purpose,
oth approaches were based on a previous work [16].
On the other hand, in the literature there are several proposals

o detect or monitor the air pollution level, both from a general
oint of view and focused on the emissions of vehicles on the
oad. In [17] the proposed system analyzes the emission of gases
rom a vehicle, which are acquired through a physical system. The
river is notified in real time in case of high levels of pollution
mitted by the vehicle. In [18] machine learning and IoT tech-
iques are applied for the detection and monitoring of vehicle
ollution. Each vehicle has a built-in sensor that measures its
evel of pollution, in addition to determining its location. With
achine learning techniques and sensor information obtained

rom vehicles, it is possible to estimate the pollution generated
n a location and warn the most polluting vehicles.

Recent proposals that analyze images in order to study envi-
onmental pollution generally include some deep learning tech-
ique. In [19] deep convolutional networks are applied for the
etection of air pollution by means of images. For the training of
he network, pollution measurements obtained in real time are
aken through the Beijing Air Quality Observatory.

In [20] deep learning techniques are used on images captured
y nearby vehicles or dedicated base stations, with the aim of
nalyzing vehicle emissions and detecting their pollutant level.
nother similar proposal is applied in [21], where a convolu-
ional network in two stages works with video traffic surveillance
mages. In this case the network is trained to detect the most
olluting vehicles based on gases emitted by vehicles. It is im-
ortant to note that these proposals do not determine the level
f pollution of each vehicle in an area or road, but only if the
ehicle is highly polluting or not.
A Faster-RCNN pre-trained network [22] was used to recog-

ize the vehicles in a traffic scene [23]. With that recognition and
2

Fig. 1. Overall system scheme. A blue box indicates input data, a green one
indicates manual selection, and a red one indicates output. Vehicles in the
sequence are detected, their positions are corrected using an homography, and
then they are tracked. Speed is obtained using each vehicle trace and the
equivalence between pixels and meters from the aerial image. Pollution emitted
by the vehicle is based on the estimated speed.

vehicle tracking, the system predicts the pollution of the selected
area in real-time. The model which estimates the pollution is
based on the frequency of vehicles and their speed. The camera
acquires the video sequence with a perspective that differs from
that of the road along which the vehicles circulate, which entails
a lack of homogeneity in the distance measurements in each part
of the video frame. A Self-Organized Map (SOM), which models
the distribution of the vehicles and their size, is applied to correct
the perspective and compute the speed more precisely.

A proposal to estimate the pollution with a different schema
was addressed in [24]. The authors propose a neural network
model to infer pollution levels from existing data sources in a
specific place by using traffic and meteorological data as inputs.
Vehicle stops and delays, traffic flows and congestions, as well as
wind speed, wind direction, rain, radiation and air pressure are
taken into account for the estimation.

3. Proposal architecture

A general overview of the proposal scheme is displayed in
Fig. 1. The information acquired by the IP camera is supplied to
the model frame by frame. Vehicles from these incoming images
are detected by an object detection method. Their positions are
then corrected using an homography H in order to resemble
n aerial perspective so that the distances are not distorted by
amera perspective. A tracker records vehicle positions to be able
o calculate the speed (pixels/time). Then, a real space refer-
nce (distance/pixel) from an aerial image is used to obtain real
peed (distance/time). Once each vehicle speed is computed, that
ehicle contribution to pollution is estimated for each frame.
Fig. 2 illustrates how the tracking is applied. Due to the high

rames per second rates usual surveillance cameras present, two
onsecutive positions from the same vehicle should be very sim-
lar so a simple tracker based on matching last known vehicle
entroids with incoming centroids from the current frame is
nough to obtain a reliable trace for each vehicle.

. Methodology

In this section, the methodology of our proposal is detailed.
t is assumed that the vehicles move on a surface that can be
egarded, to a first approximation, as a plane. In addition to this,
t is also assumed that the video camera is static. This way, it
s possible to project the acquired video frames on the plane
here the vehicles move. In other words, we propose to estimate
homography H which projects the plane of the camera C on the

plane where the vehicles move V:

y = Hx (1)

where:
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Fig. 2. Tracker scheme. Blue boxes indicate inputs, the red box indicates output. Centroids are obtained from vehicle detections, and matched with last known
vehicle centroids in order to get the minimal overall cost.
s

s
y

Fig. 3. Homography obtaining scheme. A blue, green and red box indicates input,
anual selection and output respectively. The first image from the sequence and
n aerial image of the same place are chosen. After manually selecting the same
ositions on both images an homography matrix H to correct the perspective is
enerated.

• x = (x1, x2, 1)T are the homogeneous coordinates of a point
in the video frame. The coordinates x1 and x2 are measured
in pixels.

• y = (y1, y2, 1)T are the homogeneous coordinates of the
point in the plane where the vehicles move V . The coor-
dinates are rectified, i.e., y1 and y2 correspond to actual
distances in the real world.

• H =

( h11 h12 h13
h21 h22 h23
h31 h32 h33

)
is a 3 × 3 homogeneous matrix

with real values. Since H is homogeneous, it only has eight
degrees of freedom because it is defined up to a scale.

The estimation of H is done offline, i.e., prior to the processing of
the surveillance videos. Such estimation is carried out by mapping
four or more calibration points from the C to V . This way, a
reference set of calibration points R is employed to estimate H:

= {(xk, yk) | k ∈ {1, . . . , K }} (2)

Please note that the larger K , the more accurate the esti-
mation. Fig. 3 illustrates the homography obtaining process. In
order to get the homography H, an image from the sequence
and an aerial image from the same place are used. A number
of common identifiable positions are selected on both images so
they represent the same location with different perspective. The
homography matrix is used to correct the perspective of the scene
in order to accurately obtain the speed of each vehicle.

As a surveillance video is acquired, an object detection deep
convolutional network is employed to process the incoming frame
to detect vehicles. Each detected vehicle is defined by a set of
points

{
x̃1, x̃2, x̃3, x̃4

}
on the incoming video frame which corre-

spond the four corners of a rectangle that encloses the vehicle.
Then the points are projected on V:

ỹi = Hx̃i (3)

where i ∈ {1, 2, 3, 4} is the index of the corner point. After that,
the center ŷ of the vehicle on V is estimated by taking the mean
3

of the corner points:

ŷ =
1
4

4∑
i=1

ỹi (4)

It must be highlighted that this estimation of the center of the
vehicle is invariant to the homography transformation, i.e., it does
not matter whether the center is computed on C or on V:

ŷ =
1
4

4∑
i=1

ỹi =
1
4

4∑
i=1

Hx̃i = H

(
1
4

4∑
i=1

x̃i

)
(5)

so that the estimation of the center computed on C is given by:

x̂ =
1
4

4∑
i=1

x̃i (6)

The estimated centers ŷ of the detected vehicles on V are
upplied to an object tracker, that associates detected centers
ˆ (t) at time instant t with detected centers ŷ (t + τ) at time
instant t + τ , so that the actual velocity vector in the real world
of a moving vehicle at time t + τ can be estimated as:

v (t + τ) =
1
τ

(
ŷ (t + τ) − ŷ (t)

)
(7)

Finally, the instantaneous pollution z (t) generated by a vehi-
cle at time t can be estimated as:

z (t) = F (v (t)) (8)

v (t) = ∥v (t)∥ (9)

where ∥·∥ stands for the Euclidean norm of a vector, and F is a
suitable estimation function that translates speed into pollution.
Since the instantaneous pollution z is measured in emitted mass
of pollutant per distance, the overall pollution Z associated to a
vehicle during its appearance in the scene is estimated as follows:

Z =

T∑
t=1

v (t) F (v (t)) (10)

where T is the number of time units t that the vehicle appears in
the scene. Please note that you must multiply z(t) by the traveled
distance v(t) during a unit of time t in order to obtain the emitted
mass of pollutant during that unit of time, which is obtained as
v(t)z(t). After that, you sum the emitted masses of pollutant for
all units of time t to obtain Z , as given by Eq. (10).

Please note that Eq. (10) can be regarded as a discrete time
approximation of the following:

Z ≈

∫ T

1
v (t) F (v (t)) dt (11)

Eq. (11) is the limit of Eq. (10) when the length of the time

intervals dt which are considered tends to zero.
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Fig. 4. Perspective correction. Red dots represent the points selected to perform the homography. In order to get 4(c), 4(a) is turned according to 4(b) perspective.
. Experiments

.1. Homography

In order to get the matrix H, eight identifiable and equivalent
points from Ivideo and Ireference are manually selected where Ivideo is
frame from the video sequence and Ireference is the corresponding
atellite image from the same place obtained from Google Maps.1
ig. 4 shows an example of the process. The real distance refer-
nce value is also obtained from Google Map along with Ireference.
ince points are manually selected, the match is not entirely
xact. Besides, these correspondences influence the calculation of
he homography matrix and its accuracy. However, these slight
ariations do not result in a significant error in the computation
f the real speed.

.2. Speed estimation

In order to obtain pollution estimation, first each vehicle speed
ust be estimated for each frame. Speed is only measured be-

ween the coordinates used to create homography in order to
et the better real space perspective. For the jth tracked vehicle,
et us note the vehicle track Tj,f = (ŷ0, ŷ1, . . . , ŷm) where f is
he frame where the vehicle is first detected, f + m is the frame
here the vehicle is last detected, and ŷi is the jth vehicle center
n corrected frame f + i with 0 ≤ i ≤ m. Let us also note
the real space reference given by the aerial image (measured

1 https://www.google.es/maps/.
4

in meters/pixel), and q the sequence number of frames per sec-
ond (measured in frames/second). Three speed approximation
procedures are proposed:

• Linear Approximation.
Constant speed and straight direction are assumed for the
entire vehicle track. We compute the speed from the first
and the last detected positions of the vehicle. This leads to
a constant estimation of vi,j in km/h for all i, 0 ≤ i ≤ m as
follows:

vi,j = 3.6

ŷ0 − ŷm


m
pq (12)

with ∥·∥ stands for the Euclidean norm of a vector.
• Piecewise Linear Approximation.

Non constant speed and non straight direction are assumed.
The speed is estimated for frame f + i by comparing the
position at frame f +i and position at frame f +i−uwith u as
a configurable parameter. This leads to a variable estimation
for vi,j in km/h for i, 0 ≤ i ≤ m as follows:

vi,j = 3.6

ŷi−u − ŷi


m
pq (13)

where u is a tunable parameter and ∥·∥ stands for the
Euclidean norm of a vector.

• Optical Flow.
Here the speed is estimated by the average of the optical
flow of the pixels that belong to the bounding box of the
tracked vehicle. Let us note Sj,i the set of the pixels in V
within the bounding box of the jth tracked vehicle at frame

https://www.google.es/maps/
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△

f

,

Fig. 5. Emission relation between speed (km/h) and emissions (g/km) for diesel
nd petrol cars according to Eq. (15) and Table 1. ‘Mix’ indicates the weighted
urve following Eq. (16).

f + i. Then the optical flow ϕy (in pixels/frame) is computed
for all the pixels y which belong to Sj,i. This leads to a
variable estimation for vi,j in km/h for i, 0 ≤ i ≤ m as
follows:

vi,j =
3.6pq⏐⏐Sj,i

⏐⏐ ∑
y∈Sj,i

ϕy (14)

where |·| stands for the cardinal of a set. Gunnar-Farneback
algorithm has been applied to obtain ϕy.

.3. Pollution estimation

In the same way that in [23], pollution estimation is based on
he Emission Factor (F ), which is measured in units of litre/100 km
or fuel consumption and in g/km for PM10 particles. Our esti-
ation is based on the emission curves published in Production
f Updated Emission Curves for Use in the National Transport
odel (PUEC from now on) from United Kingdom Department

or Transport. The document is available online.2

(v) =
a + bv + cv2

+ dv3
+ ev4

+ f v5
+ gv6

v
(15)

Eq. (15) models a general car emission curve, and Table 1
hows the adequate coefficient values according to PUEC pro-
ided data for year 2020.
Since our system cannot detect the fuel type for each car,

q. (16) shows how the factor emission F is weighted.

mix(v) = Spetrol ∗ Fpetrol(v) + Sdiesel ∗ Fdiesel(v) (16)

ith Spetrol = 0.44 and Sdiesel = 0.56. Spetrol and Sdiesel values are in
ine with the ratio of cars fueled by petrol and diesel respectively,
ccording to 2020 data published in PUEC. Even though our
ystem is able to identify several kinds of vehicles (car, truck, bus
r motorcycle) it is assumed that the emission factor curve is the
ame for all vehicles.
Fig. 5 shows the relation between speed, which is measured

n kilometers per hour (kph), and factor emission (g/km). The
missions are set to 0 if the speed is lesser than 1, with the aim
f evading Eq. (15) infinite divergence.
Since Eqs. (15) and (16) outputs are expressed in mass of

ollutants per kilometer (g/km) and it is desired to measure

2 www.gov.uk/government/uploads/system/uploads/attachment_data/file/
62795/updated-emission-curves-ntm.pdf.
 d

5

Fig. 6. Emissions relation between speed (m/s) and emissions (g/frame) for
diesel and petrol cars following Eq. (18) and Table 1. Mix indicates the weighted
curve following Eq. (16).

pollution by frame (g/frame), given the speed vij of jth vehicle
from ith frame measured in km/h, and an interval of time △t
measured in seconds, the following calculation is carried out in
order to obtain the increment of pollution △Zij (g/frame):

△rij =
vij

3600
△ t (17)

Zij = F (vij) △ rij (18)

where △rij is the distance traveled by vehicle j during frame i
(km/frame), with increment of time △t =

1
q and q the number of

rames per second (see Fig. 6).
Estimated pollution for the jth vehicle Zj and estimated pollu-

tion for the ith frame Zi can be obtained as follows:

Zj =

∑
i

△Zij (19)

Zi =

∑
j

△Zij (20)

with △Zij being the estimated ith vehicle increment of pollution
at frame j.

5.4. Resources

The video sequences which are chosen for the experiments are
Sherbrooke (30 frames per second and 4000 frames) and St-Marc
(30 frames per second and 2000 frames) from dataset [25].3 These
sequences were selected because the dataset provides the record
position, hence map image can be retrieved (crossing between
Rue Sherbrooke and Avenue du parc la Fontaine and crossing be-
tween Rue Saint-Marc and Boulevard de Maisonneuve O, both in
Montreal, Canada). Both of them provide only partial annotations,
thus the vehicles have been manually annotated using CVAT.4

As object detection methods, ultralytics5 pretrained Yolo V5 [10
26] with structure l based on backbone ResNet 101 (yolov5 from
now on) and Tensorflow6 pretrained Faster R-CNN based on
backbone ResNet V2 [9] (fasterv2 from now on) have been used.

3 www.jpjodoin.com/urbantracker/dataset.html.
4 github.com/openvinotoolkit/cvat.
5 github.com/ultralytics/yolov5/.
6 https://github.com/tensorflow/models/blob/master/research/object_
etection/g3doc/tf2_detection_zoo.md.

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/662795/updated-emission-curves-ntm.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/662795/updated-emission-curves-ntm.pdf
http://www.jpjodoin.com
http://www.github.com/openvinotoolkit/cvat.com
https://github.com/ultralytics/yolov5/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
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Table 1
Coefficients to be applied to Eq. (15) following PUEC 2020 data.

a b c d e f g

Petrol 0.01185628 0.00034047 1.2576E−6 1.0462E−7 −7.216E−10 6.0976E−12 0
Diesel 0.02918783 0.0013909 2.8984E−5 −6.175E−7 9.9971E−9 −7.31 2.1786E−13
Table 2
The table shows main statistics for system using manual annotations as well as yolov5 and fasterv2 object detection methods and Piecewise Linear Approximation
s speed estimation method. The number of tracked vehicles is shown as well as the average generated pollution (g) per vehicle with its standard deviation, the
verage moving speed detected (km/h) with its standard deviation, the total pollution estimated (g), and the error percentage.

Manual yolov5 fasterv2

Sherbrooke

Number of tracked vehicles 48 69 154

Average pollution by tracked vehicle 3.974E − 5 ± 1.373E − 5 1.513E − 5 ± 1.987E − 5 5.351E − 6 ± 1.216E − 5

Average speed 37.712 ± 12.368 334.97 ± 14.616 29.126 ± 15.714

Total pollution 1.908E − 3 2.057E − 3 2.751E − 3

% Pollution Error – 7.84% 44.19%

St-Marc

Number of tracked vehicles 10 17 51

Average pollution by tracked vehicle 2.041E − 5 ± 8.188E − 6 4.667E − 6 ± 7.982E − 6 2.552E − 6 ± 6.004E − 6

Average speed 27.073 ± 14.953 20.069 ± 14.639 20.08 ± 13.842

Total pollution 2.041E − 4 2.1936E − 4 5.0529E − 4

% Pollution Error – 7.45% 147.53%
g
t

fasterv2 is a detection model based on two networks: first, a
etwork uses selective search to generate region proposals where
erhaps an object could be found, then a second network uses
hese proposals to detect the objects. yolov5 instead of using
wo networks in order to propose and detect objects, uses only
ne network by dividing the image into a grid where detections
re made for each grid cell. Due to fasterv2 and yolov5 different
etection strategies, their advantages are different. While fasterv2

should be the most robust model, it is also slower than yolov5.
olov5 has proven to be a detection model with a great speed–
erformance ratio but it should fail to detect many small objects
rouped together.
The system has been implemented using Python 3,7 Tensor-

flow,8 [27] Pytorch9 [28] and Numpy [29].

5.5. Evaluation

Due to the critical role which the object recognition method
plays within the system, two different object detection methods
have been tested. The system performance is compared with
the performance obtained by means of the manual annotations
(ground truth). The tth frame accumulated pollution (AZt ) is
defined as follows:

AZt =

t∑
i=1

Zi (21)

With Zi as ith frame pollution as defined by Eq. (20).
Accumulated Pollution Error (AZE) at frame t is therefore

efined as:

ZEt = |AZmanual,t − AZr,t | (22)

here AZr,t is AZt when the object detection system r is used, and
∈ {yololv5, fasterv2}.

7 www.python.org/.
8 www.tensorflow.org/.
9 pytorch.org/.
6

5.6. Results

Fig. 7 is composed of images which are taken at different
stages of the system process. They show the perspective correc-
tion made by the homography.

Fig. 8 shows the pollution estimated as well as the num-
ber of tracked vehicles for each frame for both sequences and
different object detection methods using Piecewise Linear Ap-
proximation as speed estimation method. It can be observed
the strong relationship between the number of moving vehicles
and the estimated level of pollution. According to these results,
the object detection method performance seems to be essential
for the system to work properly and accurately. fasterv5 shows
reater number of tracked vehicles than both manual annota-
ions and yolov5, this vehicles fake traces were generated due to
duplicate detections.

Figs. 9 and 10 shows how the estimated accumulated pollu-
tion evolves for each object detection method using Piecewise
Linear Approximation as speed estimation method and how ac-
cumulated pollution estimation error evolves compared to use
manual annotations. The results reinforce the idea that the object
detection method performance is key for the system perfor-
mance. In both videos, the pollution obtained using fasterv2 is
further away from that obtained using manual annotations than
whenyolov5was used. This difference always occurs by increasing
the pollution and is probably due to fasterv2’s duplicate detec-
tion propensity, which creates fake traces recording non-existent
pollution.

Considering Table 2 and relating its content to the results
shown by Fig. 10, it can be observed that the number of different
detected traces is not critical to make a better estimation of
pollution as long as no vehicle is lost for too long and no vehicles
are detected double. Although the system may temporarily lose
a vehicle due to failure of the detection method, once the system
detects the moving object again, their contribution to pollution is
taken into consideration, even though that object is understood
as a different vehicle. Since our system does not aim to count
vehicles but to estimate their pollution, this is not relevant and
it is preferable to lose a vehicle and find it later even supposing
that it is a different vehicle than losing it and do not find it again
due to object detection method failures.

http://www.python.org/
http://www.tensorflow.org/
http://pytorch.org/
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Fig. 7. Qualitative results. First row shows original images (frame 34 from Sherbrooke and frame 894 from St-Marc) with vehicles detected by fasterv2. The second
ow shows the same images after the perspective is corrected by means of the homography. The images shows the coordinates used to create homography (polygon
arked as black lines), and the tracked vehicles shows their last trajectory.
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Fig. 11 shows how accumulated pollution error evolves for
ach video and speed approximation method using manual an-
otations instead of an object detection method. Linear Approxi-
ation results in a greater accumulated pollution in both videos
hile Optical Flow seems to obtain the lowest. Applied to St-
arc sequence, Both Piecewise Linear Approximation and Optical
low obtain a similar Behavior. The Linear Approximation as
he outlier method is the expected behavior due to the naive
ssumptions it requires. Both Optical Flow and Piecewise Linear
pproximation are expected to approximate better the speed and
he great difference between them applied to Sherbrooke video
s probably due to the relationship between the performance of
hose methods and the video conditions, such as distance, angle
nd type of movements.

. Conclusions

In this work, a methodology to estimate pollution from ve-
icles in traffic lanes using the IP cameras already installed
hroughout the cities has been proposed. This framework takes
dvantage of the latest deep learning-based object detection
odels for the detection and tracking of vehicles on the road. The
ollution calculation is based mainly on the speed of the vehicles
hat circulates through the region of the analyzed scene. For
hat purpose, it has been necessary to obtain a correspondence
etween distance measures in meters and the pixels of the image
y means of homography transformations which permit real dis-
ances to be obtained from the image of the location of the scene
n Google Maps. Two of the main object detection techniques,
asterRCNN and YoloV5, have been studied and they show very
ifferent results, allowing to conclude the importance of an ap-
ropriate object detection method and recommending the use of
oloV5 for this purpose. Three speed estimation methods are also
7

ested (Linear Approximation, Piecewise Linear Approximation
nd Optical Flow) with similar outcome using Piecewise Linear
pproximation and Optical Flow in one of the sequences and
inear Approximation estimations as outliers due to their naive
ssumptions.
The main limitation of our proposal is that it is not possible

o obtain a data set of emissions per vehicle together with the
equence of images where these vehicles are driving. Thus, al-
hough our proposal is theoretically based and the results on real
raffic videos are consistent, they cannot be agreed with actual
ollution data. This disadvantage could be seen as one of the main
hallenges to move forward. In addition, it would be interesting to
utomate the correspondence between the common identifiable
ositions of the analyzed sequence with the key points of the
ap.
Nevertheless, these results provide a reliable and valid starting

oint to implement a pollution monitoring strategy throughout a
ity and using only the cameras already installed as a resource.
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Fig. 10. Accumulated pollution Error (AZEt ) for each sequence and tested object recognition method using Piecewise Linear Approximation as speed estimation
method (the lower, the better).
Fig. 11. Accumulated pollution (AZt ) for each sequence and tested speed approximation method using manual annotations instead of an object detection method.
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