Expert Systems With Applications 187 (2022) 115838

Contents lists available at ScienceDirect Eipert

Systems
wi
Applications %

Expert Systems With Applications

Eebtorin-Chiel
Binshon

journal homepage: www.elsevier.com/locate/eswa

Check for

Semantic modelling of Earth Observation remote sensing | e

José F. Aldana-Martin, José Garcia-Nieto *, Maria del Mar Rold4n-Garcia, José F. Aldana-Montes
Dept. de Lenguajes y Ciencias de la Computacién, ITIS Software, University of Mdlaga, ETSI Informdtica, Campus de Teatinos, Mdlaga 29071, Spain

ARTICLE INFO ABSTRACT

Keywords: Earth Observation (EO) based on Remote Sensing (RS) is gaining importance nowadays, since it offers a well-
Remote sensing grounded technological framework for the development of advanced applications in multiple domains, such as
Earth Observation climate change, precision agriculture, smart urbanism, safety, and many others. This promotes the continuous

Semantic web
Ontology
Linked data
Reasoning

generation of data-driven software facilities oriented to advanced processing, analysis and visualization, which
often offer enhanced computing capabilities. Nevertheless, the development of knowledge-driven approaches
is still an open challenge in remote sensing, besides they provide human experts with domain knowledge
representation, support for data standardization and semantic integration of sources, which indeed enhance the
construction of advanced on-top applications. To this end, the use of ontologies and web semantic technologies
have shown high success in knowledge representation in many fields, in which the Earth Observation is not
an exception. However, as argued by the research community, there is large room for improvement in the
specific case of remote sensing, where ontologies that consider the special nature and structure of different
satellital and airborne data products are demanded. This article addresses, in first instance, part of this need by
proposing a semantic model for the consolidation, integration, reasoning and linking of data (and meta-data),
in the context of satellital remote sensing products for EO. With this objective, an OWL ontology has been
developed and an RDF repository has been generated to allow advanced SPARQL querying. Although the
proposal has been designed to consider remote sensing data products in general, the current study is mainly
focused on the Sentinel 2 satellite mission from the Copernicus Programme of the European Space Agency
(ESA). Four different use cases are showcased to check potentials of the proposed semantic model in terms of
ontology integration, federated querying, data analysis and reasoning.

1. Introduction deductive methods represents an important research line in remote
sensing (Arvor, Belgiu, Falomir, Mougenot, & Durieux, 2019; Chen,

The development of new sensors and the growing ease of access et al., 2016), as they complement inductive data-driven techniques to
to data generated with remote sensing techniques are pushing data-

driven research and the development of new innovative algorithms for
its analysis. In this context, Earth Observation’s satellite systems are
continuously generating a great quantity of data, which are nowadays
essential for applications in diverse areas, such as: climate change

make them more actionable. A significant example in this direction is
GEOBIA (Geographic Object-Based Image Analysis) (Blaschke, et al.,
2014) that allows to set objects in satellite images (based on grouping
pixels according to common features) to classify them. GEOBIA enables

monitoring (Plummer, Lecomte, & Doherty, 2017), precision agricul- the representation of complex spatial topological and non-topological
ture (Weiss, Jacob, & Duveiller, 2020), smart urban design (Reba & relationships. However, as argued in the literature (Arvor et al., 2019)
Seto, 2020), and many others. This promotes the continuous genera- and (Belgiu et al., 2014), GEOBIA rules are usually highly biased to
tion of data-driven software facilities oriented to advanced processing, specific scenarios and hence, they are rarely suited to be generalized.

analysis and visualization, which often offer enhanced computing ca-
pabilities. However, while promising, such new-generation applications
still require the symbolic representation of scenes and objects in im-
ages, as well as the setting of threshold values of computed vegetation
indexes for the generation of knowledge rule systems (Belgiu, Dragut,
& Strobl, 2014). In this regard, the development of knowledge-driven such as multi-spectral (and hyper-spectral) data from various satellites

In this sense, the development of general knowledge-driven ap-
proaches constitutes an open challenge in remote sensing, besides they
provide human experts with domain knowledge representation, support
for data standardization and semantic integration of multiple sources,

* Corresponding author.
E-mail addresses: jfaldanam@gmail.com (J.F. Aldana-Martin), jnieto@lcc.uma.es (J. Garcia-Nieto), mmar@lcc.uma.es (M. del Mar Roldan-Garcia),
jfam@lcc.uma.es (J.F. Aldana-Montes).

https://doi.org/10.1016/j.eswa.2021.115838

Received 26 May 2020; Received in revised form 19 May 2021; Accepted 30 August 2021

Available online 11 September 2021

0957-4174/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:jfaldanam@gmail.com
mailto:jnieto@lcc.uma.es
mailto:mmar@lcc.uma.es
mailto:jfam@lcc.uma.es
https://doi.org/10.1016/j.eswa.2021.115838
https://doi.org/10.1016/j.eswa.2021.115838
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115838&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J.F. Aldana-Martin et al.

and linked open data (meteorological, plant phenotype, etc.). There-
fore, there is a clear need of studying integration aspects of existing
ontologies in the context of remote sensing (Arvor et al., 2019), as well
as to show the potentials of such integration for feeding advanced anal-
ysis. To this end, the use of ontologies and web semantic technologies
has shown high success in many fields. In the specific domain of remote
sensing, there are several distinct attempts of ontologies, although they
still constitute local prototypes that illustrate the potential in their
use (Andrés, Arvor, Mougenot, Libourel, & Durieux, 2017; Arvor et al.,
2019).

On the basis of this necessity, this article proposes a semantic model
for the consolidation, integration, reasoning and linking of data (and
meta-data), in the context of satellital remote sensing products for EO.
With this objective, an OWL (Web Ontology Language) (Group, 2012)
ontology has been developed and an RDF repository has been generated
to allow advanced SPARQL querying. The proposed ontology, called
RESEO (REmote SEnsing Ontology), has been designed to consider re-
mote sensing data and meta-data products in general, including satellite
constellations, unmanned aerial vehicles (UAVs), airborne, etc. For the
sake of better understanding, the current study is mainly focused on the
Sentinel 2 satellite mission of the Copernicus Programme of the Euro-
pean Space Agency (ESA), due to the growing popularity it is exhibiting
among the scientific community since its launch in 2015 (Pahlevan,
Sarkar, Franz, Balasubramanian, & He, 2017). Several use cases are
showcased to check potentials of the proposed semantic model in
terms of ontology integration, federated querying, data analysis and
reasoning.

The main contributions of this article are summarized as follows:

— A new ontology called RESEO' is proposed for the semantic
modelling of remote sensing data and meta-data, produced in the
scope of Earth observation. This ontology is developed for the first
time (to the best of our knowledge) to cover multiple kinds of data
products of multi/hyper-spectral images and meta-data collected
from well-known satellite EO programs, UAVs, etc. RESEO is
indeed linked with other existing ontologies in the field of Earth
observation, as well as with ontologies devoted to meteorological
open data, so an enriched knowledge framework is obtained as a
result.

- In terms of materialization, the proposed ontology is developed in
OWL 2 and it has been linked with related external ontologies ac-
cording to the same standard. Then, a series of mapping functions
have been developed for data consolidation in RDF (Resource
Description Framework) standard, including automatic storage in
common RDF repository and Endpoint service. From this, a series
of advanced SPARQL queries are set in form of API service to
promote the use from the research community.

— For validation purposes, a series of use cases have been worked
that comprise: time series analysis, multiple satellital data product
consolidation (Sentinel 2 and Landsat 8), data integration for
analysis enrichment, and semantic reasoning for land-cover classi-
fication. RESEO is then shown to be useful to provide a knowledge
framework for the data integration and enriched analysis, in the
scope of remote sensing.

This article is organized as follows. In Section 2 background con-
cepts and literature overview are given. Section 3 describes the seman-
tic approach, focusing on the OWL Ontology. The procedure to validate
this approach is described in Section 4. Section 5 provides discussions.
Finally, Section 6 presents concluding remarks and future works.

1 Available at URL https://github.com/KhaosResearch/RESEO.
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2. Background and related work

This section describes required background concepts about semantic
web and remote sensing. A review of related articles in the specialized
literature is also provided to clarify the contributions or our proposal
with regards to the current state of the art.

2.1. Background concepts

- Ontology. An ontology defines a simplified representation of the
world, so that it can be represented for some purpose (Gruber, 1993).
Ontology languages define a set of representational primitives which
are used to model a body of knowledge. The main elements of an
ontology are classes (or concepts), properties (or attributes), instances
(or class members) and relationships. The Web Ontology Language
(OWL) is a semantic markup language used to define and publish
ontologies. OWL its build on top of RDF and it is a standard by the
W3C. To formalize the proposed ontology in this work, a description
logic syntax OWL-DL is used as summarized in Table 1.

- RDF. Resource Description Framework is also a W3C standard for
the representation of information in the Web (Schreiber & Raimond,
2014). W3C encourages the use of RDF in applications where the data
are going to be processed by other applications instead of only being
shown to users. RDF offers a common framework where information
can be shared between applications without losing their meaning,
identifying each resource by an URI (Uniform Resource Identifier). To
define resources, RDF uses statements in the form of triples, which
contain a subject, a predicate and an object.

- SPARQL. SPARQL is a query language for RDF graphs (Harris &
Seaborne, 2013), allowing the execution of queries between several
graphs in different repositories (federated queries). SPARQL queries use
RDF patterns to retrieve the set of triples in the RDF repository that
match.

- SWRL. This language incorporates mechanisms to identify se-
mantic relationships between individuals (Horrocks, Patel-Schneider,
Bechhofer, & Tsarkov, 2005), hence providing OWL-based ontologies
with extra inference capabilities. SWRL is based on rule expressions
in form of “Antecedent = Consequent” to represent semantic rela-
tionships. Antecedent, as well as consequent, can be formulated as
conjunctions of elements, which are associated to one or more at-
tributes defined by a question mark and a variable (e.g., ?x) in the rule.
SWRL is being used to perform reasoning tasks for object classification
in remote sensing imagery (Andrés et al., 2017; Gu, et al., 2017).

- Data Product. Compressed file that includes both, images from
spectral bands and meta-data files needed to work with them. In Earth
observation remote sensing, data products are collected from satellites,
UAUVs, or airborne devices, among others. Multi-spectral imagery data
products generally refers to 3 to 13 bands regarding to channels,
e.g., red, green, blue, near-infrared and short-wave infrared, whereas
hyper-spectral imagery consists of much narrower bands (10-20 nm),
with hundreds or thousands of them.

- Sentinel 2 Data Product. This kind of products are distributed at
several levels of processing, in this work level 2 A with Bottom-of-
atmosphere reflectance, correcting the atmosphere distortion effect on
the image. Sentinel 2 products cover an area of 100 x 100 km? and have
a spatial resolution of 10, 20 or 60 metres per pixel depending on the
band. This satellite takes 5 days to scan the globe, so it is the frequency
to revisit a scene and to generate the corresponding data product. These
data are distributed through the Copernicus Open Access Hub.? Fig. 1
illustrates the data product folder structure of Sentinel 2, including
the ranges of spatial resolutions (% reflectance and wavelength) of the
twelve bands.

2 Copernicus Open Access Hub: https://SciHub.copernicus.eu/dhus/.
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Table 1
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Basic OWL-DL semantic syntax used to formally define the proposed ontology.

Descriptions Abstract syntax DL syntax
intersection(Cy,C,,...,C,) ¢ ncn--C,
Operators union(C,,C. ... ,C,) C UG U-C,
for at least 1 value V' from C v.c
Restrictions for all values V from C vv.Cc
R is symmetric R=R
Class axioms A partial(Cy,C,, ...,C,) ACC NG n--C,
A complete(C,C,,...,C,) A=C NG n-C,

Sentinel 2 Data Product

Sentinel 2 Multi-spectral bands (from B1 to B12)

Processing parameten, IERS
AUCRE bulletin, . vis NIR SWIR
(optional) P > > >
—— b
B1 B9 B10
Metadats, XML
Y Aerosols Water-vapour Cirrus
QC chack reports 60m
—— — a1 .
5 B7 B8a Snow / ice / cloud discrimination
Metadats, XML Vegetation
Image data, 20m Red-edge
GRANULE GRANULE 1 Awiliary data,
Quality Indicators data B6 B11 B12
A — SR Q€ check reports
10m
rep_info B2B3 B4 B8
YoM schame e “ “w ™ 1000 1200 1000 1600 150 2000 20 200
————— om om o o am o om om o o am
mandestsafe
L 12 | 2190 [ aso | 0.1 1.5 245 100
Browse
Image
INSPIRExml | XML
Product metadata
xmL

Fig. 1. Sentinel 2 Data Product structure (left). A scheme of spatial resolutions for bands (B1 to B12) with names and functionalities is shown at right. From some of these bands,

vegetation indexes are computed, e.g., NDVIL

- Vegetation indices. A vegetation index (Abdou, Morin, Bonn, &
Huete, 1996) is a value calculated from a set of channels (bands)
from satellital sensors that quantifies the intensity of a complex phe-
nomenon. Each channel (band) of a satellite image represents a dif-
ferent part of the electromagnetic spectrum, not limited to the visible
light. An example of this type of indices is the Normalized Difference
Vegetation Index (NDVI), which quantifies the liveliness of green vege-
tation in an area. It is calculated by Eq. (1), where N IR (B8 in Sentinel
2) is the near infrared channel of an image, and RED (B4 in Sentinel
2) is the red channel of an image.

NIR-RED
NIR+ RED

There exist many other indices that can be calculated from popular
remote sensing satellite products (Sentinel 2, Landsat 8, MODIS, Word-
View, etc.), such as: Soil Adjusted Vegetation Index (SAVI), Enhanced
Vegetation Index (EVI), Shadow Index (SI) or Normalized Difference
Water Index (NDWI). All these can be obtained for the same sensed
area and with different satellites, although showing different charac-
teristics and resolutions (depending on the specific physical features
of each sensor instrument). Therefore, data product harmonization is
an important task in remote sensing, since it allows to complement
information, hence enhancing the image analysis (Roy, et al., 2019).
The RESEO ontology proposed in this work aims at covering this issue
from a knowledge-driven perspective.

NDVI = (@)

2.2. Related works

As commented before, a promising research line in Earth Observa-
tion consists in the development of knowledge-based solutions (Chen,
et al., 2016). This will support domain experts to perform advanced
analysis where context knowledge and the interpretation of remote
sensing images are involved. In this sense, mechanisms like GEOBIA

allows the classification of groups of pixels that share several prop-
erties in satellite images, by analysing them using knowledge from
experts (Blaschke, 2010). However, GEOBIA is still limited to objects, so
a complete contextual framework is required to capture the semantics
of such observations, including their relationships in different levels, to
better represent them in form of knowledge base.

A first attempt in this direction is the OBOE ontology (Madin, et al.,
2007), which is oriented to represent ecological observations and to
map real-world geographic entities with their corresponding objects
in images. OBOE includes an extensive set of unit definitions and can
facilitate automatic unit conversions, but is intended as a broadly appli-
cable ontology, missing characteristics from specific research domain.
OBOE can be aligned with the O&M ontology (Cox, 2013) by means
of a property of equivalence between the classes Measurement (in the
former) and Observation (in the latter). O&M is an OWL ontology that
follows the ISO/OGC standard for Observations, as well as for other
standard geographic information schemes.

From a different perspective, the Semantic Sensor Network (SSN)
ontology (Compton, et al., 2012) comprises a contextual framework to
represent sensor meta-data and observations, including remote sens-
ing. In turn, SSN can be aligned with OBOE and O&M to compose
a high level integration scheme, hence considering ecological and
sensors knowledge domains. In this regard, the Semantic Web for
Earth and Environmental Terminology (SWEET) (Raskin & Pan, 2005)
is actually a collection of OWL ontologies considering such differ-
ent domains (space, time, biological realms, physical quantities, etc.)
and science knowledge concepts (phenomena, reactions, chemical pro-
cesses, events, etc.). SWEET has been extended in some works to cover
other domains, such as hydrogeology (Tripathi & Babaie, 2008) and
Earth systems sciences in general (DiGiuseppe, Pouchard, & Noy, 2014).

From an orthogonal viewpoint, web semantic technologies can be
also used to discover and integrate remote sensing services, which



J.F. Aldana-Martin et al.

Table 2
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Summary ontologies’ main features with regards to the proposed approach.

Domain/Ontology

OBOE SNN

TIME-OWL AEMET GeoSPARQL RESEO

Scientific observation and measurement v v
Sensor’s metadata v
Temporal concepts

Meteorological data

Geospatial information

SWRL classification

A
ANANE NN

are disperse on the web, although devoted to similar and complemen-
tary functionalities. In Liu, Xue, Guang, and Liu (2015), an ontology-
enabled framework is proposed for enabling collaboration among ser-
vice providers and applications to semantically discover remote sensing
services. This framework combines the use of ontologies and processing
workflows.

Another interesting semantic model is the standard GeoSPARQL
(Battle & Kolas, 2012). It supports the semantic representation and
querying of geospatial data. GeoSPARQL defines a specific ontology
for representing geospatial data in RDF, including an extension to the
SPARQL query language for dealing with this kind of data. GeoSPARQL
allows qualitative spatial reasoning and computations, so it is also suit-
able for being used in the context of remote sensing analysis (Viqueira,
Villarroya, Mera, & Taboada, 2020).

All these semantic approaches can be extended to consider specific
elements to the remote sensing domain, which lead to interpret EO
images (e.g. spectral bands, indices, product’s meta-data, etc.). Re-
cent studies in this direction can be found in Andrés et al. (2017)
and Gu, et al. (2017), although they are focused on the specific case
of ontology-driven image classification.

The RESEO ontology aims at covering this gap, hence to improve
the integration of remote sensing data and to enhance the generation
of knowledge-driven approaches in this domain. Following the sugges-
tions made in Arvor et al. (2019), RESEO can be used for modelling
elements, such as: Sentinel 2, NDVI, NDVI Processing, MSI, etc., which
indeed can be used as linking concepts for the alignment with other
related ontologies: OBOE, SSN, and SWEET. As a summary, Table 2
shows the main features characterizing the reported ontologies, with
regards to the proposed approach.

3. Semantic approach

One of the main objectives of RESEO is to provide an ontological
framework for the semantic consolidation of the data captured by Earth
Observation satellites, in a way that it can be easily extended for adding
new data sources, such as different satellites, UAVs or linked open
data. To this end, the proposed ontology has been defined in OWL 2,
following the Ontology Development 101 (Noy & McGuinness, 2001)
seven-step methodology as detailed next:

(i) Determine the domain and scope of the ontology. Although general
enough to consider any kind of remote sensing product, for
simplicity in this study, the scope of RESEO has been limited
to the attributes of the Sentinel-2 and Landsat —8 meta-data.
For example, the Sentinel 2 products include platform name,
orbit number, orbit direction, format, filename, data take identifier,
processing level, etc.

(ii) Consider reusing existing ontologies. Several existing ontologies
have been used to make the proposal easier to align with oth-
ers. Firstly, the OWL-Time.owl (Cox & Little, 2017) is used to
describe temporal instants, and GeoSPARQL.owl (Perry & Her-
ring, 2012) to describe geographical positions, both ontologies
are W3C standards. To integrate meteorological data, RESEO
is aligned to the AEMET.owl ontology (Poveda Villalén, 2011),
that defines meteorological data and how it is captured. In the
context of EO and sensors, the OBOE and SSN ontologies have
been partially reused to consider classes related to satellital

sensors and indexes. Table 2 shows the domains of all the
linked ontologies. RESEO’s goal is not to replace any of this
standard ontologies, but to integrate all their fields to enhance
the generation of knowledge-driven approach in the field of
remote sensing.

(iii) Enumerate important terms in the ontology. The most important
concepts for RESEO are the Product, its DataSource, the Snapshot
(the analysis of a Product) and the Scene of interest for an
analysis.

(iv) Define classes and the class hierarchy. The key concepts defined
above have been modelled as the classes of the ontology. Fig. 2
shows the most important classes of RESEO. Some of these
classes comprise a generalization of a set of more concrete
classes. For example, DataSource is a general concept, which is
specified in a hierarchy of subclasses that define more concrete
data sources for a product, like Satellite, which later has other
subclasses like Sentinel 2 or Landsat 8. If a use case needs any
extra data source, it can be integrated in the ontology as a
subclass of Data Source.

(v) Define the properties of classes and slots. Object properties define
relationships between classes. Some examples of them are: Prod-
uct has data source Data Source, Product has scene Scene, Satellite
has sensor Sensor, etc. Data properties define attributes that a
member of a class can have. Some examples of them are: Sentinel
2 product has a footprint, a format, a tile-id, etc. General classes
usually do not have any data property.

(vi) Define the facets of the slots. Each property in the ontology is
constrained in the type and cardinality of its range and domain.
For example, the range of the hasDataSource object property is
a DataSource, and the domain of hasDataSource is Product; the
range and domain of the format data property are xsd:string and
Sentinel2Product, respectively. Value restrictions are used in our
ontology to specify, for example, that if Sentinel 2 is connected to
Sensor through the hasSensor object property, at least one sensor
has to be MSI (Multi-Spectral Imagery).

(vii) Create instances. Individuals are specific data that belong to a
class. These instances are created by mapping the data from
the data sources (Copernicus Data Hub,> AEMET Open Data,*
etc.) to RDF. The mappings are done by following the model
defined by the ontology. Apart from the mapping of data, some
static instances are created for the satellites in study, namely:
Sentinel 2 and Landsat 8. These instances are created so that all
the new ones generated from the data have a place to link to.
For example, if a new Sentinel 2 product is included, its data
source must be an instance of DataSource and all the Sentinel 2
products will link to the same instance.

3.1. Ontology model

In its current version (1.0), RESEO includes 3319 axioms, 157
classes, 105 object properties, 118 data properties and 20 individuals. A
number of classes have been integrated from other external ontologies,

3 https://SciHub.copernicus.eu/.
4 https://opendata.aemet.es/.
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[“4— has individual

[V} has subdass

v}~ hasDataSource (Domain>Range)

~}— hasDataSource(Equivalent dass all)
V= hasDataSource(Equivalent dass some)
[“— hasDate (Domain>Range)

+— hasDate(Equivalent dass all)

v — hasDate(Equivalent dass some)

= hasProduct (Domain>Range)

v/}=— hasProduct(Equivalent dass all)

Satellite
Landsat8

Sentinel2 J J' Scene

[“— hasProduct(Equivalent dass some)

Sentinel2Produc [/I— hasScene (Domain>Range)

t [Z hasScene(Equivalent dass al)
[Vi— hasScene(Equivalent dass some)
/= hasSensor (Domain>Range)
L it deatnp o J [ isDataSourceOf (Domain>Range)

[/— isDateOf (Domain>Range)

[V} isProductOf (Domain>Range)

+ [}— isSceneOf (Domain>Range)
Snapshot = !

[/} partOfProduct (Domain>Range)
[h= processedBy (Domain>Range)

Fig. 2. Class diagram of the RESEO ontology. Continuous arrows refer to subclass of. Dotted arrows refer to specific properties as shown in the figure legend at right.

Table 3
Product: Object properties.

Object properties Description logic

= isDataSourceOf~
3 hasDataSource Thing C Product
T C V hasDataSource DataSource

hasDataSource

= isDateOf~

T C < 1 hasDate Thing

3 hasDate Thing C Product
T C V hasDate
GeneralDateTimeDescription

hasDate

isProductOf~
hasProduct Thing C Snapshot
C V hasProduct Product

hasProduct

— wl

isSceneOf~

hasScene Thing C SpatialObject
3 hasScene Thing C Product

T C V hasScene Scene

hasScene

w

although a set of new generic ones have been designed to be inherited
from. This allows the ontology to be easily expanded by adding new
Scene, DataSource or Product types depending on the specific end user’s
case of study. For simplicity, a selection of the most important classes
of RESEO are detailed as follows:

- Product. This class defines the data products received from the
remote sensing devices, i.e., EO satellites and UAVs. Each Product
has associated a timestamp given from the owl-TIME ontology of
type time:GeneralDateTimeDescription.® The Product class is modelled in
this version with two subclasses, Sentinel2Product and Landsat8Product
which correspond to the data sources worked at the moment in the
semantic model, although it can be easily extended with more of them.
A set of main object properties of the Product class are: hasDataSource,
hasDate, hasProduct, and hasScene, which are defined in description
logic in Table 3. Regarding data properties, they are mostly defined
for the subclasses of Product, since they cover specific aspects of the
contextual use cases where they are used. For example, in the case
of Sentinel2Product, data properties are referred to this particular data
structure and attributes as defined in Table 4.

- Data Source. It represents a data provider for a Product. In its
current state, this class has the subclass Satellite, which in turn has
other two subclasses: Sentinel2 and Landsat8. However, depending on

5 More information about the owl-TIME ontology: https://www.w3.org/
TR/owl-time/.

the application, it could be extended with new hierarchies of sub-
classes to define different sources, such as: other EO satellites (MODIS,
WorldView) and UAV products. DataSource includes two main object
properties, hasDataSource and isDataSourceOf, which are defined in
Table 5. It is worth noting that DataSource can also be used as linking
element with other external ontologies, since it could cover sources
of data in general, but focused on contextualizing with the remote
sensing domain of knowledge. In this regard, the subclass Satellite has
the object property processedBy with range NDVIProcessing, which is
in turn linked with classes Procedure and Observation from the SSN
ontology. NDVIProcessing has the data property formula to define how
the NDVI is calculated for each satellite. In this regard, a subclass of
satellite is Sentinel2, which is connected to MSI, being this last a subclass
of Sensor (also taken from SSN). (See Table 4)

- Scene. A Scene defines a region of interest with a specific location
in the Earth. A scene is contained inside one or more products, which
could be captured from different remote sensing devices (Sentinel 2,
Landsat 8, UAVs, etc.), although referring to the same specific location
and preferably to similar (or close) time instants. Scene is modelled as
a subclass of the geosparql:Geometry class of the GeoSPARQL ontology.®
Object properties defined for Scene are: hasNearestStation hasScene and
isSceneOf, which descriptions are detailed in Table 6. Data properties
of this class are defined in geosparql:Geometry. The property hasNear-
estStation is used as linking element with the AEMET.owl ontology
that incorporates meteorological data. In this way, the Scene allows
to integrate different sensing data referring to a specific location, for
a given time period and including the specific climatic conditions,
e.g., the imagery products of Sentinel 2 and Landsat 8 capturing the
area of the Strait of Gibraltar, and including maximum and minimum
temperatures during the first week of August.

- Snapshot. A Snapshot represents the results of an analysis of a
Product, over a concrete Scene of interest. Table 7 shows all the object
properties of this class, namely: hasProduct, isProductOf and isSceneOf,
while Table 8 contains a selection of representative data properties.
Among these properties, it is worth mentioning those referring to
vegetation indexes, such as EVI or NDVI, which are computed with
different combination of spectral bands, depending on the remote sens-
ing devices involved in the specific Scene (e.g., Sentinel 2, Landsat 8,
etc.). The remaining indexes (SAVI, NSD], etc.) are defined in this class
by following similar schemes of data properties as done with EVI and
NDVL. In this sense, NDVI is linked with the OBOE class Characteristic

6 More information about the GeoSPARQL standard: https://www.ogc.org/
standards/geospargl.
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Table 4
Sentinel 2 Product: Data properties.

2090
[7V.Y ]
Scene
(region of interest)

Data properties

Description logic

sentinel2ProductProperties

3 sentinel2ProductProperties Datatype rdfs:Literal
C Sentinel2Product

baresoilpercentage

C sentinel2ProductProperties
T C < 1 baresoilpercentage
3 baresoilpercentage Datatype rdfs:Literal C Sentinel2Product

T C V baresoilpercentage Datatype xmls:decimal

beginposition

C sentinel2ProductProperties

T C < 1 beginposition

3 beginposition Datatype rdfs:Literal C Sentinel2Product
T C V beginposition Datatype xmls:dateTime

datatakesensingstart

C sentinel2ProductProperties

T C < 1 datatakesensingstart

3 datatakesensingstart Datatype rdfs:Literal C Sentinel2Product
T C V datatakesensingstart Datatype xmls:dateTime

endposition

C sentinel2ProductProperties

T C < 1 endposition

3 endposition Datatype rdfs:Literal C Sentinel2Product
T C V endposition Datatype xmls:dateTime

filename

C sentinel2ProductProperties

T C <1 filename

3 filename Datatype rdfs:Literal C Sentinel2Product
T C V filename Datatype xmls:string

footprint

C landsat8ProductProperties

C sentinel2ProductProperties

T C < 1 footprint

3 footprint Datatype rdfs:Literal C Sentinel2Product
T C V footprint Datatype xmls:string

n

gmlfootprint

C sentinel2ProductProperties

T C < 1 gmlfootprint

3 gmlfootprint Datatype rdfs:Literal C Sentinel2Product
T C V gmlfootprint Datatype xmls:string

highprobacloudspercentage

C sentinel2ProductProperties

T C < 1 highprobacloudspercentage

3 highprobacloudspercentage Datatype rdfs:Literal C Sentinel2Product
T C V highprobacloudspercentage Datatype xmls:decimal
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Fig. 3. Overall semantic model driven by the RESEO ontology as terminology component (TBox) in the knowledge-base of remote sensing data. The associated ABox is materialized
with mapping functions to generate RDF linked data, the repository to consolidate them, and the SPARQL Endpoint to provide access by querying.

and with the SWEET ontology by means of the property hasCharacteris-
tic. Another interesting property is the cloud cover percentage in sensed
images, which is often used as a threshold to select an specific product,
or discard it, for the analysis.

- Entity. This class has been reused from the OBOE ontology to
model in RESEO those subclasses related to land-cover classification,

in the current version: BareSoil, Building, Vegetation and Water. These
classes are indeed subclasses of FeatureOfInterest from the SSN ontol-
ogy. They are used as consequent elements in reasoning rules to per-
form ontology classification of remote sensing imagery (to be explained
in Section 4.4).
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Table 5
Data source: Object properties.

Object properties Description logic

hasDataSource = isDataSourceOf~
3 hasDataSource Thing C Product
T C V hasDataSource DataSource

isDataSourceOf =hasDataSource ~
3 isDataSourceOf Thing C DataSource
T C V isDataSourceOf Product
Table 6

Scene: Object properties.

Object properties Description logic

hasNearestStation 3 hasNearestStation Thing C Scene
T C V hasNearestStation

WeatherStation

isSceneOf~

hasScene Thing C SpatialObject
3 hasScene Thing C Product

T C V hasScene Scene

hasScene

w

= hasScene~

3 isSceneOf Thing C Scene
T C V isSceneOf Snapshot
T C V isSceneOf Product

isSceneOf

Table 7
Snapshot: Object properties.

Object properties Description logic

isProductOf~
hasProduct Thing C Snapshot
C V hasProduct Product

hasProduct

— w

isProductOf hasProduct™
isProductOf Thing C Product

C V isProductOf Snapshot

— w

hasScene™

isSceneOf Thing C Scene
C V isSceneOf Snapshot
T C V isSceneOf Product

isSceneOf

= w

3.2. Data consolidation

At this point, the ontological framework of RESEO is then de-
fined, including its linking mechanisms with other existing ontologies
(OBOE, AEMET, GEOSParql, etc.). This constitutes the terminological
component (TBox) of the proposed semantic approach. For model ma-
terialization through the associated ABox, a series of mapping functions
have been defined to convert all processed data into RDF, according to
the RESEO ontological scheme. All these RDF data are then stored and
consolidated in a common RDF repository, which enables an SPARQL
Endpoint for data querying.

An overall representation of the proposed semantic model is illus-
trated in Fig. 3. In the current version, two main data sources have been
used for feeding the model consisting in: (1) Sentinel 2 data products
collected from the Copernicus Data Hub and (2) meteorological data
from the AEMET Open Data Portal.” This last source is obtained from
the corresponding API in JSON format, so specific mappings have been
also developed to transform them into RDF according to the AEMET.owl
ontology. These data are collected for a given scene that is geo-localized
in the area of interest (see Section 4), for a specific time period.

7 AEMET Open Data Portal: http://www.aemet.es/es/datos _abiertos/
AEMET OpenData.
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As commented before, this semantic model could be easily extended
to consider other kinds of remote sensing data products (Landsat,
MODIS, UAVs, etc.), as well as observation and meteorological data.
In this regard, the linking properties defined in RESEO leads the RDF
repository to be connected with other external knowledge graphs, so
the use of federated SPARQL queries will allow semi-transparent data
fusion for feeding advanced applications.

All the services and material generated for the semantic model are
available in a CKAN organization devoted to the Green Senti Project
(University of Malaga).® This Linked Open Data repository contains the
OWL ontologies (RESEO and AEMET), use cases datasets, images, and
SPARQL Endpoint.’

4. Validation

To validate the proposed semantic model, four cases of study have
been developed that represent featured functionalities to be provided
by knowledge-based approaches (Arvor et al., 2019). These functional-
ities are mainly focused on: (1) data processing from multiple satellite
products to generate time series; (2) for a given scene, querying to
merge data from different data products; (3) querying to fuse differ-
ent kind of data, e.g. vegetation indexes and meteorology; and (4)
land-cover semantic classification of remote sensing imagery based on
reasoning rules.

Most of these cases have been conducted on a common scene located
in the Teatinos Campus of the University of Malaga, which is a semi-
urbanized area on the outskirts of the city of Malaga (Spain). Fig. 4
shows the selected area of this scene, which comprises 185 hectares
in the west side of the metropolitan area of Malaga, containing: green
zones, buddings, parkings, sports area, roads, and lakes.

4.1. Use case 1: Time series

One of the main tasks in remote sensing analysis is the generation
of time series of a set of attributes, where vegetation indexes are often
arranged with the observation dates, for monitoring the evolution of
a certain factor. In these time series, additional information such as,
climatic conditions or topological attributes, are usually incorporated,
which are indeed useful for time series forecasting.

Listing 1 SPARQL Query: Q1
PREFIX reseo:
<http://khaos.uma.es/green-senti/reseo#>

SELECT ?uuid ?date ?1link
WHERE {
?product reseo:hasScene ?scene .
?product reseo:hasDate ?date .
?product rdf:type reseo:Sentinel2Product .
?product reseo:link ?link .
?product reseo:uuid ?uuid .
FILTER(?scene = reseo:teatinos) .

8 CKAN Organization

organization/green-senti.
9 Green Senti SPARQL Endpoint for RESEO https://khaos.uma.es/
opendata/sparql/.

Green Senti https://opendata.khaos.uma.es/


http://www.aemet.es/es/datos_abiertos/AEMET_OpenData
http://www.aemet.es/es/datos_abiertos/AEMET_OpenData
https://opendata.khaos.uma.es/organization/green-senti
https://opendata.khaos.uma.es/organization/green-senti
https://khaos.uma.es/opendata/sparql/
https://khaos.uma.es/opendata/sparql/
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Table 8
Snapshot: Data properties.
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Data properties

Description logic

SnapshotProperties

3 SnapshotProperties Datatype rdfs:Literal C Snapshot

cloudcoverpercentage

C SnapshotProperties

T € < 1 cloudcoverpercentage

3 cloudcoverpercentage Datatype rdfs:Literal £ Snapshot
T C V cloudcoverpercentage Datatype xmls:decimal

evi

C SnapshotProperties

TC<1evi

3 evi Datatype rdfs:Literal C Snapshot
T C V evi Datatype xmls:decimal

evi_image

C SnapshotProperties
3 evi_image Datatype rdfs:Literal C Snapshot
T C V evi_image Datatype xmls:anyURI

ndvi

C SnapshotProperties

T C <1 ndvi

3 ndvi Datatype rdfs:Literal C Snapshot
T C V ndvi Datatype xmls:decimal

ndvi_image

C SnapshotProperties
3 ndvi_image Datatype rdfs:Literal £ Snapshot
T C V ndvi_image Datatype xmls:anyURI

true_color

C SnapshotProperties

T C < 1 true_color

3 true_color Datatype rdfs:Literal C Snapshot
T C V true_color Datatype xmls:decimal

true_color_image

C SnapshotProperties
3 true_color_image Datatype rdfs:Literal £ Snapshot
T C V true_color_image Datatype xmls:anyURI

Fig. 4. Selected area (Scene) located in the University campus of Teatinos, Malaga. The complete area surface is 198 has, with green areas and buildings, centred at coordinates

Lat: 36.71618, Lng: -4.48431.

Listing 2 SPARQL Query: Q2

PREFIX reseo:
<http://khaos.uma.es/green-senti/reseo#>
PREFIX aemet:
<http://aemet.linkeddata.es/ontology/>

SELECT distinct ?date ?prop ?val

WHERE {
?scene reseo:hasNearestStation

?station .

?0bs aemet:isCapturedBy ?station .
?0bs aemet:valueOfObservedData ?val .
?0bs aemet:observedProperty ?prop .
?0bs aemet:observedInInterval ?date .
FILTER(?scene = reseo:teatinos) .

In this use case, the goal is to monitor the evolution of green zones
in the university campus. To this end, a procedure has been developed
to calculate the surface of green zones, as the number of pixels with
NDVI > 0.5 for each product and observation date. In this way, the
number of green hectares have been registered from 2016 to the date. It
is worth noting that, as the first Sentinel 2 product that was distributed
at a 2 A level was released in march 2018, the previous period was
feed with products of the 1C level, including the application of the
atmosphere correction.

All these data have been mapped into RDF (following RESEO) and
stored in the repository, which indeed includes meteorological data
(from AEMET) related to the same time period. The integrated data
can be then queried by means of the SPARQL queries on Listings 1
and 2. The resulting time series can be plotted as shown in Fig. 5,
where each point identifies the number of green hectares computed
for each product and for each date of observation. The regression line
fitting the time series reflects the seasonality induced by the vegetative
stage of plants, as well as the amount of surface identifies as green zone.
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The increasing tendency can be explained not only by the growth of
plants, but also for the planting of new ones.

4.2. Use case 2: Merging remote sensing data from different products

Besides Sentinel 2, there are many other EO satellites in orbit and
aerial imagery vehicles, all of them supplying images that can provide
information about the same region of interest (scene). Therefore, an
interesting option is to use not only one remote sensing source, but
several of them, getting the most amount of data for a given analysis.
However due to the differences of the inboard sensors, trajectories,
positions, etc., these remote sensing devices generate different data
products of multi-spectral bands, which also involve differences in
the calculation of indices. For example, there is a smooth different
between the NDVI values calculated by Sentinel 2 and Landsat 8. In
addition, there are different indices that could be calculated with a
given remote sensor, but not with others. This entails the need of
integrating information captured by multiple sensors, for a common
scene.

Listing 3 SPARQL Query: Q3
PREFIX reseo:
<http://khaos.uma.es/green-senti/reseo#>

SELECT ?date
?productS2 ?ndviS2 ?productL8 ?ndvil8
WHERE {
?productS2 reseo:hasDate ?date .
?productS2 rdf:type
reseo:Sentinel2Product.
?snapshotS2 reseo:hasProduct ?productS2 .
?snapshotS2 reseo:hasScene
reseo:teatinos .
?snapshotS2 rdf:type reseo:Snapshot .
?snapshotS2 reseo:NDVI ?ndviS2 .
?productlL8 reseo:hasDate ?date .
?productL8 rdf:type
reseo:Landsat8Product .
?snapshotlL8
reseo:hasProduct ?productL8 .
?snapshotL8 reseo:hasScene
reseo:teatinos .
?snapshotlL8 rdf:type reseo:Snapshot .
?snapshotlL8 reseo:NDVI ?ndvil8 .

For instance, in order to integrate data captured by Sentinel 2 and
Landsat 8, it is required to obtain data products from both satellites
captured at the same date. To perform this task manually, the human
expert has to visit each satellite data portal to get a list of the products
and check which dates have a product available in common. This
manual step could be automated by including Landsat 8 in RESEO
semantic model, so a SPARQL query would return integrated data from
the two satellites in study.

In this use case, after querying all the available Sentinel 2 and
Landsat 8 products for the region of and date of interest, a number of 4
pairs of products matched the requirements. This is mainly due by the
difference in periods for both satellites. To reach a compromise between
the amount of data and the difference in time between products, the
time window for accepting products was set to 1 day. This means that
if a Sentinel 2 product is released a given day, any Landsat 8 products
released the day after or before, will be considered too. This increases
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the number of products available for this study to 16 pairs, from a
starting pool of 140 Landsat 8 products and 96 Sentinel 2 products.
From these selected products, an RDF subgraph including pixel per
pixel values for all bands from both satellites and some indices (NDVI
and EVI) was integrated. An example of SPARQL query to get the NDVI
values calculated from Sentinel 2 and Landsat 8 products is shown
below in Q3 (Listing 3).

Listing 4 SPARQL Query: Q4

PREFIX aemet:
<http://aemet.linkeddata.es/ontology/>
PREFIX reseo:
<http://khaos.uma.es/green-senti/reseo#>

SELECT ?date ?ndvi ?temp
WHERE {
?0bs aemet:observedInInterval ?date .
reseo:teatinos
reseo:hasNearestStation ?station .
?0bs aemet:isCapturedBy ?station .
?0bs aemet:observedProperty
aemet:TemperatureAverage .
?0bs aemet:valueOfObservedData ?temp .
?product reseo:hasDate ?date .
?snapshot reseo:hasProduct ?product .
?snapshot reseo:hasScene reseo:teatinos .
?snapshot rdf:type reseo:Snapshot
?snapshot reseo:NDVI ?ndvi .

Listing 5 SPARQL Query: Q5

PREFIX aemet:
<http://aemet.linkeddata.es/ontology/>
PREFIX reseo:
<http://khaos.uma.es/green-senti/reseo#>

SELECT ?date ?moisture ?temp
WHERE {
?0bs aemet:observedInInterval ?date .
reseo:teatinos
reseo:hasNearestStation ?station .
?0bs aemet:isCapturedBy ?station .
?0bs aemet:observedProperty
aemet:TemperatureAverage .
?0bs aemet:valueOfObservedData ?temp .
?product reseo:hasDate ?date .
?snapshot reseo:hasProduct ?product .
?snapshot reseo:hasScene reseo:teatinos.
?snapshot rdf:type reseo:Snapshot
?snapshot reseo:MOISTURE ?moisture .

4.3. Use case 3: Querying for merging heterogeneous data

Semantic integration and consolidation of heterogeneous data from
multiple sources is a key functionality of ontological models, since it
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enables to enrich the initial knowledge bases with additional variables,
hence allowing advanced analysis (Barba-Gonzalez, et al., 2019).

This use case is oriented to exploit such a functionality in the
context of RESEO, by merging information about the vegetation stage of
the region of interest (University Campus of Teatinos) with the weather
conditions registered in this region and for a given time period (Aug.
2017 to Feb. 2019).

To this end, SPARQL query Q4 is formulated to obtain the NDVI
calculated from Sentinel 2 products together with the registered tem-
perature, while SPARQL query Q5 selects the Moisture index (also from
Sentinel 2 products) with the temperature.

With the resulting data, it is now possible to calculate the corre-
lation between these two couples of variables. In this way, Figs. 6
and 7 show the Pearson correlation of the NDVI with regards to
the average temperature (after normalizing) and the same correlation
of the Moisture with regards the temperature, respectively. In both
cases, there is a negative correlation between these variables, since
the NDVI and the Moisture indices decrease whereas the temperature
is higher. This is a typical observation in southern Spain, where high
temperatures are usually accompanied by a dry environment.

Listing 6 SWRL Rule: R1

@(?pixel)

~ [PixelValue|(?ndviPixelValue)

~ [NDVI|(?ndviImage)

~ lhasValue/(?pixel, ?ndviPixelValue)
~ [value/(?ndviPixelvalue, ?ndvivalue)

~ |partOfRasterImage/(?ndviPixelValue, ?ndviImage)
~ PixelValue|(?band11PixelValue)

~ |Band|11(?band11Image)

~ (?pixel, ?band11PixelValue)

~ (?bandllPixelValue, ?bandl1Value)

~ (?bandllPixelValue, ?band1l1lImage)
~ @(?banMPixelValue)

~ Band04 (?band4Image)
~ lhasValue|(?pixel, ?band4PixelValue)
~ [valueg/(?band4PixelValue, ?band4Value)

~ |partOfRasterImage/(?band4PixelValue, ?band4Image)

~ swrlb:lessThanOrEqual(?ndviValue, 0.246)
~ swrlb:lessThanOrEqual(?bandl1lValue, 0.120)
~ swrlb:lessThanOrEqual(?band4Value, 0.114)

-> Water](?pixel)

4.4. Use case 4: Remote sensing pixel classification with semantic reasoning

Land-cover classification of high resolution imagery is one of the
main functionalities demanded in remote sensing, since it provides a
framework for the identification, monitoring and traceability of im-
portant elements appearing in such images. It is used in important
applications, such as: crop-land classification, urban monitoring and
water reservoirs evolution. This problem has been successfully ap-
proached with two main strategies (Belgiu & Csillik, 2018; Weih &
Riggan, 2010) by the remote sensing community, namely: object-based
and pixel-based classification. Object-based classification has been re-
cently tackled with semantic reasoning in some works (Andrés et al.,
2017; Gu, et al., 2017) with success, although pixel-based semantic
classification still remains an alternative to be checked (to the best of
our knowledge).

In this regard, this use case is focused on performing pixel classifi-
cation in Sentinel 2 products by means of a series of semantic reasoning
tasks with SWRL rules under the knowledge-base of RESEO. Therefore,
a set of rules have been constructed from a previous labelling process,

10
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where a series of thresholds were identified (on bands and NDVI) by
training a decision tree on several products of the same scenario, spread
across a year. These thresholds have been obtained with the ArcGIS*°
tool for discriminating the values of NDVI and Bands spectra, hence to
separate the ground information of the study area into different land
covers. In addition, colour mapping and class labelling were done to
complete the classification process.

Listing 7 SWRL Rule: R5
Pixel/(?pixel)

~ (?ndviPixelValue)

~ INDVI|(?ndviImage)

~ @(?pixel, ?ndviPixelValue)
~ [value|(?ndviPixelValue, ?ndviValue)

~ lpartOfRasterImage/(?ndviPixelValue, ?ndviImage)
~ PixelValue|(?band11PixelValue)

~ Band[11(?band1l1lImage)

~ [hasvalug(?pixel, ?band11PixelvValue)

~ (?bandllPixelValue, ?band11Value)

~ (?bandllPixelValue, ?bandllImage)
~ (?band4Pixe1Va1ue)

~ 04(?band4Image)

~ (?pixel, ?band4PixelValue)

~ @(?banMPixelValue, ?band4Value)

~ @(?band4PixelValue, ?band4Image)

~ [Pixelvalue|(?band2PixelValue)

~ Bandjo2 (?band2Image)

~ lhasValue/(?pixel, ?band2PixelValue)

~ ( ?band2PixelValue, ?band2Value)

~ |part0OfRasterImage|/(?band2PixelValue, ?band2Image)

~ swrlb:lessThanOrEqual(?ndviValue, 0.469)
~ swrlb:greaterThan(?band11Value, 0.120)

~ swrlb:lessThanOrEqual(?band4Value, 0.094)
~ swrlb:lessThanOrEqual(?band2Value, 0.056)

> (?pixel)

Listing 8 SWRL Rule: R11
Pixel/(?pixel)

~ PixelValuel(?ndviPixelValue)
~ INDVI|(?ndviImage)
~ lhasValue/(?pixel, ?ndviPixelValue)

~ ( ?ndviPixelValue, ?ndviValue)

~ |partOfRasterImage/(?ndviPixelValue, ?ndviImage)

~ swrlb:greaterThan(?ndviValue, 0.520)

-> Vegetation|(?pixel)

As a result, Table 9 contains the identified thresholds on pixel
observation attributes (Bands and NDVI), together with the labelled
classes, namely: Water, Bare Soil, Vegetation and Building. Column at
right contains an identifier (from R1 to R11) to define the correspond-
ing SWRL rule associated with each decision path in the classification
procedure. Examples of three of these representative rules are R1, R5
and R11, which are defined in Listings 6, 7 and 8, respectively. These
SWRL definitions show a common structure with a first block in the

10 Available in URL https://desktop.arcgis.com/.
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Green area in Teatinos (2016-2019)

Green area

60 60 ha

40 ha

Oha
Sentinel-2

o Level 1-C |
A Level 2-A

>
<

20 ha ‘

)
.

Green Area (ha)

Mar 2016 Jun 2016 Sep 2016 Dec 2016 Mar 2017 Jun 2017 Sep 2017 Dec 2017 Mar 2018 Jun 2018 Sep 2018 Dec 2018 Mar 2019 Jun 2019
Date

Fig. 5. Time series reflecting the green zone evolution in hectares of the university campus of Teatinos, from March 2016 to the date. Each point corresponds to a Sentinel 2
product for which, the observation area is used to compute the NDVI and to extract the number of green hectares.

Table 9
NDVI and Band thresholds calculated by decision tree.
Simplified rules Class Rule
B11 <= 0.120 NDVI <= 0.246 B04 == 0.114 Water Ri
B04 >0.114 Bare soil R2
B11 <= 0.120 NDVI >0.246 BO1 <= 0.040 Bare soil R3
BO1 >0.040 Vegetation R4
NDVI<=0.469 = i
BO4 <= 0.094 B02 <= 0.056 Bare soil R5
B11 >0.120 B02 >0.056 Vegetation R6
BO4 >0.094 B02 <= 0.232 Bare soil R7
B02 >0.232 Building R8
NDVI >0.469 NDVI <= 0.520 B12 <= 0.144 Vegetation R9
B12 >0.144 Bare soil R10
NDVI >0.520 Vegetation R11
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Fig. 6. Pearson’s correlation between the NDVI vegetation index and the temperature Fig. 7. Pearson’s correlation between the Moisture index and the temperature in the
in the university campus of Teatinos, Mélaga. university campus of Teatinos, Mélaga.
antecedent of semantic element declarations, a second block (also in in Table 9), and the labelled class in the consequent. For simplicity, the

antecedent) of conditional definitions (with numeric thresholds defined

11
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Fig. 8. Confusion matrix resulting from pixel classification in remote sensing imagery
driven by RESEO ontology.

Table 10
Accuracy scores of the classifier.
Precision Recall F1-score Support
Bare soil 0.95 0.95 0.95 2623939
Building 0.60 0.13 0.22 51854
Vegetation 0.82 0.89 0.85 710049
Water 0.98 0.97 0.97 94936
Accuracy 0.92 3480778
Macro avg 0.84 0.74 0.75 3480778
Weighted avg 0.92 0.92 0.92 3480778

remaining of rules are provided in supplementary material CKAN site,'!
although they can be easily extracted from the examples.

These SWRL rules are then incorporated to RESEO and used to
classify a test set on the selected image products, by means of reasoning
tasks with Pellet reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz,
2007)."? The confusion matrix obtained from this semantic classifica-
tion is shown in Fig. 8, resulting a global prediction accuracy of 92%.
More in detail, Table 10 contains, for each class and in general, the
precision, recall, f1-score and support registered for this classification.
Taking into account the high number of classified pixels (close to
3.5e+6), the resulting precision and recall are in general successful, as
only for class “building” there is a low recall, probably due to class
imbalance in the whole training dataset for this label.

5. Discussions

The development of knowledge-driven approaches represents an
active research line in the remote sensing community (Arvor et al.,
2019), since it offers potentials enough to provide human experts with
domain knowledge representation, support for data standardization
and semantic integration of sources. These functionalities are highly
valuable for the creation of advanced on-top applications.

In this sense, the capacity of ontologies to offer formal framework
for symbolic representation entails a new component in the associated
artificial intelligence processes, since they allow to make the expert
knowledge explicit (in such processes), hence contributing to the inter-
pretation of results. This is of especial importance in the field of remote

11 Available
senti.
12 Available at URLhttps://www.w3.0rg/2001/sw/wiki/Pellet.

in URL https://opendata.khaos.uma.es/organization/green-

12

Expert Systems With Applications 187 (2022) 115838

sensing imagery for Earth observation (Arvor, Durieux, Andrés, & La-
porte, 2013), where research and industry communities are expending
considerable efforts towards the knowledge extraction from sensed data
and the interpretation of image products. RESEO aims at collaborating
in this direction by offering an integration semantic model, as well
as by incorporating mechanisms for the symbolic representation and
standard access of data, in the specific field of remote sensing.

In terms of integration, a key aspect in RESEO design is the possibil-
ity of alignment with other interdisciplinary domains, such as: ecology,
agriculture, urbanism, geology, etc, which indeed will contribute to the
generation of new extended versions of this ontology.

With regards to symbolic representation and standard access, the
proposed semantic model allows the generation of well-defined APIs
and services, with the capacity of federated querying and data en-
richment with foreign variables, such as: meteorologic measures, plant
phenotype features or soil geo-morphology tastings. These features
incorporate added value in current analysis, as worked in the context of
the research project Green-Senti 2019 PP Smart Campus of the University
of Malaga. This project initiated the design and development of RE-
SEO, including the use cases described in Section 4 for demonstration
purposes.

Finally, concerning societal and economic implications, the Euro-
pean Commission identified data standardization and harmonization
in Earth observation as one of the main challenges to be tackled in
this field (BDVA, 2017), since they constitute central aspects in the
data value chain, from data acquisition and storage, to data usage for
supporting in business decision-making. In fact, the main players in
this field are currently large companies with capacity to access major
infrastructures, although new opportunities are appearing for SMEs in
respond to the emerging demand of remote sensing services. Initiatives
like the Green-Senti project and the RESEO ontology are focused on
contributing in this direction.

6. Conclusions

In this work, the RESEO ontology is proposed for the semantic
modelling of remote sensing data and meta-data, in the scope of Earth
observation. This ontology is conceived to cover multiple kinds of data
products of remote sensing imagery and their associated meta-data.
RESEO is indeed linked with other existing ontologies in the field of
Earth observation, as well as with ontologies devoted to meteorological
open data, so an enriched knowledge framework is obtained as a result.

The proposed ontology is developed in OWL 2 and it has been linked
with related external ontologies according to the same standard (OBOE,
SSN, TIME-OWL, AEMET, and GeoSPARQL). A series of mapping func-
tions have been developed for data consolidation in RDF, including
automatic storage in common repository and Endpoint service. From
this, a series of advanced SPARQL queries are set in form of API service
to promote the use from the research community.

On top of this semantic model, a series of pilot applications have
been generated in form of use cases on a selected area in the campus
university of Malaga (Spain). These use cases consist of: time series
analysis for environmental monitoring, multiple satellital data product
consolidation (Sentinel 2 versus Landsat 8), data integration for anal-
ysis enrichment, and semantic reasoning for land-cover classification.
RESEO has been shown to be useful to provide a knowledge framework
for the data integration and enriched analysis, in the scope of remote
sensing.

As future work, more data sources will be integrated in the ontology,
including more Earth observation satellites like MODIS or Proba-V, and
others types of data products involving hyper-spectral imagery from
UAVs. In addition, the integration and linkage of other ontologies is a
future task, since it will allow scaling the use cases to more complex
scenarios, such as global climate change, bio-habitats conservation,
forest monitoring, etc.


https://opendata.khaos.uma.es/organization/green-senti
https://opendata.khaos.uma.es/organization/green-senti
https://www.w3.org/2001/sw/wiki/Pellet
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