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A B S T R A C T

Automatic configuration techniques are widely and successfully used to find good parameter settings for
optimization algorithms. Configuration is costly, because it is necessary to evaluate many configurations on
different instances. For decision problems, when the objective is to minimize the running time of the algorithm,
many configurators implement capping methods to discard poor configurations early. Such methods are not
directly applicable to optimization problems, when the objective is to optimize the cost of the best solution
found, given a predefined running time limit. We propose new capping methods for the automatic configuration
of optimization algorithms. They use the previous executions to determine a performance envelope, which is
used to evaluate new executions and cap those that do not satisfy the envelope conditions. We integrate the
capping methods into the irace configurator and evaluate them on different optimization scenarios. Our results
show that the proposed methods can save from about 5% to 78% of the configuration effort, while finding
configurations of the same quality. Based on the computational analysis, we identify two conservative and two
aggressive methods, that save an average of about 20% and 45% of the configuration effort, respectively. We
also provide evidence that capping can help to better use the available budget in scenarios with a configuration
time limit.
1. Introduction

Many algorithms expose parameters that control their internal op-
eration and allow users to adapt their behavior to different scenarios.
Their performance depends on the chosen parameter setting (or con-
figuration), and algorithm configuration is the task of finding a good
or the optimal setting for a given set of inputs. Algorithms are often
configured manually in a trial-and-error process guided by the users’
experience. However, a manual search may be biased, can be difficult
in irregular parameters landscapes, e.g., when there are interactions
between parameters that are hard to foresee, and is time consuming.

The above problems may be overcome by an automated, system-
atic experimental approach and, hence, substantial effort has been
dedicated to the development of methods for automatic algorithm
configuration (Birattari, 2003; Hutter et al., 2009, 2011; Ansótegui
et al., 2009; López-Ibáñez et al., 2016a), which have been found to be
effective in many applications; see Hutter et al. (2010), KhudaBukhsh
et al. (2016) and López-Ibáñez and Stützle (2012) for some examples.
Although these methods solve a part of the problem, the configuration
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time remains a bottleneck, since they need to evaluate different param-
eter values on different (training) instances, and each evaluation often
takes a considerable amount of time.

There is a trade-off between the number of evaluations (or instances
evaluated) and the quality of the final configurations found, and so
reducing the effort will usually lead to worse configurations. A better
approach to reduce the configuration time is to evaluate the quality of a
configuration during its execution, and immediately stop it when poor
performance is expected. This approach has been applied previously to
the automatic configuration of decision algorithms (Hutter et al., 2009;
Pérez Cáceres et al., 2017a), where the performance of an algorithm is
measured by its running time and the goal of configuration is to min-
imize it. The key idea behind existing methods is to cap the execution
time, i.e. to determine a bound on the running time based on the best-
performing configuration found so far and, if the execution reaches the
running time bound, stop it and discard the current configuration.

For optimization problems, we usually execute an algorithm with
a predefined stopping criterion, and measure its performance by the
cost of the best found solution (assuming, without loss of generality,
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minimization of solution cost). Thus, existing capping methods are not
suitable for these scenarios. In this paper, we propose capping methods
for configuring optimization algorithms. The main idea is to use pre-
viously seen executions to determine a performance envelope for the
current execution. We then monitor the evolution of the performance
of each configuration, and stop it if at some point the conditions defined
by the performance envelope are violated. We present and evaluate an
implementation of such capping methods in the irace configurator.

The rest of this paper is organized as follows. Section 2 introduces
he notation used in this paper, the problem of automatic algorithm
onfiguration, and current available configurators. Section 3 presents
nd discusses related work. In Section 4 we introduce several new cap-
ing methods for optimization problems. Section 5 presents results of
xtensive computational experiments comparing the different methods,
nd discusses them. Finally, Section 6 concludes and presents some
uture research directions.

. Automatic algorithm configuration

Approaches to automatic algorithm configuration can be catego-
ized into online methods, which try to find the best parameter settings
uring the execution of the algorithm, and offline methods, which
ivide the process into training and test phases. In this paper we
ocus on offline methods. Offline methods search, during a training
hase, for the best parameter setting by evaluating the target algo-
ithm with different configurations. When this phase ends, the best
ound configurations can be used to solve the problem. Usually, offline
ethods use a set of training instances to configure the algorithm,

nd then evaluate the resulting configurations on a different set of
est instances. Therefore, it is important to select training instances
ith similar characteristics to the instances that will be solved by the

onfigured algorithm, either in the test phase or in production.
The offline algorithm configuration problem can be formalized as

ollows. Let  be a target algorithm with 𝑛 parameters 𝑝𝑖, 𝑖 = 1,… , 𝑛,
each one with domain 𝛩𝑖. The space of all parameter settings 𝛩 is the
ubset of 𝛩1 ×⋯ ×𝛩𝑛 of valid parameter combinations. Parameter do-
ains 𝛩𝑖 may have different types. Categorical parameters can assume
fixed number of values, and are often used to model discrete choices

uch as algorithmic components. Ordinal parameters have a natural
rdering but no definite distance; an example would be the choice
f a neighborhood in a local search when ordered by size. Numerical
arameters represent real or integer values, e.g. the numerical tolerance
n a mathematical solver, or the temperature in Simulated Annealing.

Given a set of instances 𝛱 and a metric 𝑐(𝜃, 𝜋) that measures the
performance of  with parameter setting (configuration) 𝜃 ∈ 𝛩 and
nstance 𝜋 ∈ 𝛱 as input, the algorithm configuration problem is to
ind a configuration 𝜃∗ ∈ 𝛩 that optimizes the expected performance
f  over instances 𝛱 . If  is stochastic, then 𝑐(𝜃, 𝜋) is a random

variable. There are different choices for the performance metric 𝑐. For
decision problems, usually the running time is used. For optimization
problems, it is common to use the cost of the best found solution, after
an execution with a given computational effort, such as running time
or number of iterations.

There are several tools for the automatic configuration of algo-
rithms. ParamILS (Hutter et al., 2009) is an iterated local search to
explore the parameter space. It repeatedly perturbs a certain number
of randomly chosen parameters and then applies a local search in a
neighborhood that changes one parameter at a time. SMAC (Hutter
et al., 2011) builds a random forest model from configuration runs to
predict the performance of new configurations on a given instance and
select the most promising ones for evaluation. The results are used to fit
the random forest model for the next iteration. GGA (Ansótegui et al.,
2009) is a gender-based genetic algorithm to evolve configurations. The
population is divided into competitive and non-competitive genders,
which guide the behavior of the recombination and mutation opera-
2

tions. A more recent version, GGA++ (Ansótegui et al., 2015), adds f
Algorithm 1: Iterated racing procedure
Input : Training instances 𝛱 , parameter space 𝛩,

performance metric 𝑐(𝜃, 𝜋), computational budget 𝐵.
Output: Set of best configurations 𝛩elite.

1 𝛩elite ← ∅
2 repeat
3 𝛩′

← sample(𝛩,𝛩elite)
4 𝛩elite ← race(𝛩′ ∪ 𝛩elite,𝛱, 𝑐)
5 until budget 𝐵 is exhausted
6 return 𝛩elite

non-parametric models to predict promising regions of the parameter
space.

The irace configurator (López-Ibáñez et al., 2016a) is an iterated
acing method based on the Friedman-Race (F-Race) proposed by Birat-
ari (2009) and the iterated F-Race (I/F-Race) proposed by Balaprakash
t al. (2007). Algorithm 1 shows the main steps of irace. The algorithm

maintains an elite set 𝛩elite ⊆ 𝛩 of the best found configurations,
which guides the generation of new configurations by the sample
procedure (line 3). Then, the new configurations and the elite ones are
evaluated by the race procedure (line 4) on a subset of the instances
𝛱 according to the performance metric 𝑐(𝜃, 𝑖). The result of race is
a new set of elite configurations. The elite set may be unchanged if
no better configuration is found. Sampling and racing alternates until
a given computational budget is exhausted. The number of iterations
and the available budget per iteration is defined at the beginning of
the execution. The budget can be set to either a maximum number
of evaluated configurations or, different from I/F-Race, a maximum
configuration time.

The sample procedure is based on the elite configurations 𝛩elite.
At the beginning, when 𝛩elite is empty, it samples the parameter
pace 𝛩 uniformly. In subsequent iterations, the elite configurations are
anked according to the observed quality in previous evaluations, and
teratively one of them is selected to generate a new configuration 𝜃,

where elite configurations of a higher rank have a higher probability of
being selected. Then, a new value of each parameter in 𝜃 is determined
based on the value of the selected elite configuration and on a truncated
normal distribution for continuous parameters, or a discrete probability
distribution for discrete parameters. The parameters of these distribu-
tions are adjusted over the iterations, such that with an increasing
number of iterations, the generated configurations get more similar to
those of their parents.

The race procedure starts evaluating each configuration on a subset
of the available instances. After executing the configurations on a
predefined number of instances, irace uses either the non-parametric
riedman test or the paired t-test to identify worse configurations to be
iscarded. The racing method in irace extends I/F-Race by reusing the
valuations from previous races within the current race and by prevent-
ng elite configurations from being discarded without considering all
heir evaluations from previous races. The surviving configurations are
valuated on another instance, and a new statistical test is performed.
his process is repeated until the budget of this iteration is exhausted,
r a minimum number of surviving configurations remains.

There are several studies using irace for configuring algorithms for
ifferent optimization problems (e.g Pagnozzi and Stützle, 2019; Blum
t al., 2015; Franzin and Stützle, 2019), or to minimize their running
ime, e.g. Pérez Cáceres et al. (2017c). See López-Ibáñez et al. (2016a)

or more applications and further details about irace.
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Fig. 1. Overview of the capping methods. Left: for each instance previous performance profiles are kept. Upper right: in the profile-based approach these performance profiles
are combined into a performance envelope. If the current performance profile (dashed line) leaves the envelope (solid line) it is capped. Lower right: in the area-based approach
profiles are combined into a maximum allowed area 𝐴max. If the total area of the current performance profile (dashed line) exceeds 𝐴max it is capped.
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3. Related work

Hutter et al. (2009) proposed capping methods for ParamILS to
be used for configuration scenarios minimizing running time. The
best configuration 𝜃′ of the current iteration of ParamILS is used to
determine a cut-off running time for subsequent executions. A new
configuration 𝜃 must be executed (and present better performance) on
the same instances that 𝜃′ has been executed to replace it and become
the new best configuration. If the time used by 𝜃 to solve a subset of
those instances exceeds the time used by 𝜃′ to solve all of them, 𝜃 is
iscarded before the complete evaluation. Hutter et al. (2009) call this
ethod trajectory-preserving capping, since it discards only configura-

ions that would be discarded after the complete evaluation. It reduces
he configuration time, but does not change the search trajectory. A
econd approach, called aggressive capping, considers not the best found
onfiguration of the current iteration, but the best configuration overall
∗. In this case, the cut-off time when evaluating a new configuration
is 𝑏 times the mean running time of 𝜃∗. Multiplier 𝑏 defines the

ggressiveness of the capping method. Although the aggressive capping
ethod may change the search trajectory, it can also lead to large

avings in the configuration time.
Based on the above ideas, Pérez Cáceres et al. (2017a) integrated

capping method for configuring decision algorithms into irace. Con-
ider a new configuration 𝜃 that will be executed on instance 𝜋𝑖 and was
reviously evaluated on instances 𝜋1, 𝜋2,… , 𝜋𝑖−1. The cut-off time 𝑡c is
iven by 𝑡c = 𝑖 ⋅ 𝑡elite

𝑖 + 𝑡min −(𝑖−1)𝑡𝜃𝑖−1, where 𝑡elite
𝑖 is the median running

ime of the elite configurations 𝛩elite on instances 𝜋1, 𝜋2,… , 𝜋𝑖, 𝑡𝜃𝑖−1 is
he average running time of configuration 𝜃 on instances 𝜋1, 𝜋2,… , 𝜋𝑖−1,
nd 𝑡min > 0 is the minimally measurable running time. The cut-off time
an be seen as the maximum time available for 𝜃 to improve over the
erformance of the elite configurations. Pérez Cáceres et al. (2017a)
lso proposed the following dominance-based elimination criterion. A
onfiguration 𝜃 is dominated if 𝑡elite

𝑖 + 𝑡min < 𝑡𝜃𝑖 . Whenever all con-
igurations have been evaluated on a new instance 𝜋𝑖, the dominated
onfigurations are eliminated.

The capping methods proposed for ParamILS (Hutter et al., 2009)
nd irace (Pérez Cáceres et al., 2017a) are designed for decision prob-
ems, when the goal is to minimize the running time of the target
lgorithm. Those capping methods cannot handle optimization scenar-
os, where the solution cost may be improved over time and, thus, there
s information about the progress (or lack thereof) of the algorithm. In
n optimization context, Karapetyan et al. (2018) propose an approach
o approximate the 1% best configurations of optimization algorithms
3

ased on short runs. They uniformly sample and evaluate 1% of the
onfiguration space, determining a performance envelope, which is the
ull defined by the worst solution cost obtained in those executions
t each point in time. Then, previously untested configurations are
xecuted. If, at some point in time, the cost of the best found solution
s more than 20% worse than the one defined by the performance
nvelope, the execution is stopped and the configuration is discarded. If
he configuration survives, it replaces the worst performing element of
he 1% pool (according to the final solution cost). Among the capping
ethods proposed here, we include this definition of performance enve-

ope as a particular case. Moreover, our capping methods are designed
o work within the existing algorithm configuration techniques, e.g. the
acing mechanism of irace, instead of relying on uniform sampling.

Capping methods for optimization scenarios analyze the perfor-
ance of the configurations during their execution, thus, they require

hat the configurations produce feasible solutions prior to completion
nd continuously produce improved solutions until completion. Cap-
ing methods are not useful for configuring algorithms that do not
atisfy these requirements, such as those that only return a single
olution, that need a long exploratory phase or are based on random
estarts. The ability of an optimization algorithm to produce as good
olution cost as possible at any point during its execution is called its
nytime behavior (Zilberstein, 1996; López-Ibáñez and Stützle, 2014).
ortunately, many practical optimization algorithms are anytime algo-
ithms. Some techniques used to find configurations that present good
nytime behavior are similar to those implemented by capping meth-
ds. For example, Branke and Elomari (2011) use a higher-level genetic
lgorithm to search for parameter settings of a lower-level genetic
lgorithm aiming to optimize its anytime behavior. To evaluate the
opulation of configurations, they analyze their performance profiles.
onfigurations that present the best solution cost for some time point
re ranked first. These configurations are removed from the population
nd the process is repeated, but now the best remaining configurations
re ranked second, and so on. The ranks are used to guide the selection
f configurations. Although their proposal is not a capping method, one
f our methods similarly builds an envelope by considering the best
olution cost found at any running time (effort) point.

López-Ibáñez and Stützle (2014) also explore the automatic config-
ration of algorithms to improve their anytime behavior. They model
his configuration task as a bi-objective optimization problem, consid-
ring the performance profiles as a set of nondominated bi-objective
oints. They use irace to find configurations that maximize the hyper-
olume of such nondominated sets. The results show that the proposed
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Fig. 2. Example of profile- and area-based capping behaviors.

techniques are effective in improving the anytime behavior of algo-
rithms for two different scenarios. We propose here an area-based
measure to determine the performance envelope (Section 4.2) that is
equivalent to the hypervolume metric used in López-Ibáñez and Stützle
(2014).

4. Capping for optimization scenarios

The capping methods proposed in this paper use the performance
profiles of previously seen configurations to determine a minimum
performance bound for new executions, and then stop poor performers
early. The performance profile of a run is given by the solution cost
as a function of the effort 𝑃 ∶ R+ → R, where 𝑃 (𝑡) = 𝑐 denotes the
ost 𝑐 of the best found solution after spending computational effort
. Any effort measure, e.g. the running time, number of iterations,
r number of objective function evaluations, can be used. Assuming
minimization problem and an anytime algorithm that iteratively

valuates solutions and remembers the best solution found, a profile
ill be a monotonically decreasing step function. Thus, in practice,
e only need to collect the points (𝑡, 𝑐) at efforts 𝑡 where 𝑐 decreases.
ig. 1 presents an overview of the capping method, which is applied
efore executing each configuration. The first step of this process is
o obtain all performance profiles of the previous executions on the
urrent instance. They are used to determine a performance envelope,
hich represents the minimum performance required for this instance.

f at some point the observed performance profile is worse than the
nvelope, the execution is stopped. Unlike capping methods for de-
ision problems, our methods do not cap after a fixed running time.
nstead, they monitor the progress of the execution and terminate it
hen appropriate.

We propose two different types of envelopes. The profile-based en-
elope is represented by a performance profile, which determines the
aximum allowed solution cost throughout the used effort. When using

his method to evaluate an execution, as soon as its performance profile
xceeds the envelope, i.e., the solution cost of the execution is worse
han the one defined by the envelope for some value of effort, the
xecution is capped (see Profile-based approach in Fig. 1). This approach

not only defines the limits in terms of the expected solution cost, but
also the acceptable behavior of the performance profile. For example,
it is not allowed to be worse than the envelope in the beginning of the
execution, e.g., by trying to diversify the search to find better solutions
at a later time in the execution. Hence, this approach implies that the
execution must show a clear good anytime behavior. In other cases, the
final solution cost is the only performance criterion that matters, and
allowing a worse performance in the beginning is not a problem, as long
as a good solution is found in the end. Stützle et al. (2012), for example,
studied parameter adaptation techniques for ant colony optimization
algorithms. Their results on the traveling salesperson problem show
that for some parameter settings, worse performance in the beginning
of the execution leads to better final solutions.

In the area-based envelope, instead of dealing directly with the per-
ormance profiles, we consider the area defined by them. In this case,
4

he area under the performance profiles of previous executions is used
Fig. 3. Aggregation scheme for elitist capping methods.

to determine a maximum area for the current execution. This maximum
area value is the envelope. The current execution will be capped if the
area of its performance profile exceeds the envelope, i.e. the maximum
area available (see Area-based approach in Fig. 1). As long as the
maximum area is not exceeded, the performance profile can present
different behaviors. For example, a configuration can produce worse
solutions in the beginning of its execution in comparison to previously
seen configurations, but produce better solutions towards the end of
the execution, maintaining the total area within the envelope. Fig. 2
illustrates this situation for the performance profile 𝑃 ′ of a running
execution. With a profile-based envelope 𝑃 , execution 𝑃 ′ would be
capped at effort 𝑡 = 4, since the solution cost of 𝑃 ′ at that point exceeds
he corresponding solution cost of envelope 𝑃 . However, when defining
he envelope as the area under 𝑃 at 𝑡 = 14, then 𝑃 ′ would not be
apped, since its area is always smaller than the envelope.

It is important to consider that an unsatisfactory performance of a
apped configuration on the current instance does not imply a similar
erformance on other instances. Therefore, instead of directly discard-
ng the configuration, we just stop the execution and return to irace

the cost of the best solution found. In other words, the configuration is
penalized by having a reduced execution effort, but it can compensate
this by presenting a better performance on other instances. The decision
of discarding configurations is delegated to irace.

4.1. Profile-based envelope generation

The profile-based methods define the envelope as a performance
profile. We propose two different strategies to compute the envelope:
elitist and adaptive. For both approaches, we first select a subset of
the non-capped previous executions on the current instance. Then, we
aggregate their performance profiles into a performance envelope. The
elitist envelope generation is based on the executions of configurations
from an elite set, while the adaptive strategy considers all previous
executions and discards some of them according to an aggressiveness
value. Another difference between elitist and adaptive strategies is
the behavior when evaluating elite configurations. Elitist strategies
use those configurations to determine the performance envelope, and
never cap executions of elite configurations. Adaptive methods, on the
other hand, do not differentiate configurations when determining the
envelope and when evaluating them. Therefore, adaptive strategies can

cap both elite and non-elite configurations.
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Fig. 4. Best (𝐵) and worst (𝑊 ) aggregation methods for profile-based envelopes.

.1.1. Elitist profile-based envelope generation
The elitist strategy uses only the best performing (elite) configu-

ations to define the envelope. In irace, the elite configurations are
those that survived the previous race. We divide the aggregation of the
previous executions for a fixed instance in two steps, as illustrated in
Fig. 3. Let us consider a set of 𝑛 configurations 𝜃1,… , 𝜃𝑛, where each
onfiguration 𝜃𝑖 has been evaluated 𝑚𝑖 times on the same instance. Let

be the space of all possible performance profiles and 𝑃𝑖𝑗 ∈ P be
he performance profile of the 𝑗th replication of 𝜃𝑖 on that instance.

e define the aggregated performance profile for configuration 𝜃𝑖 as
𝑖 = 𝐴𝑅(𝑃𝑖1, 𝑃𝑖2,… , 𝑃𝑖𝑚𝑖

), where 𝐴𝑅∶ 2P → P is an function that
ggregates the performance profiles of multiple runs of a configuration.
he profile-based envelope is defined as 𝑃 = 𝐴𝐶(𝑃1, 𝑃2,… , 𝑃𝑛), where
𝐶 ∶ 2P → P is a function that aggregates the performance profiles of
ultiple configurations.

Two possible approaches for defining 𝐴𝑅 and 𝐴𝐶 are the worst
ggregation function 𝑊 and the best aggregation function 𝐵. Function
∶ 2P → P generates a performance profile that selects, for each

ffort 𝑡, the pointwise maximum solution cost among all input perfor-
ance profiles. Given a set of performance profiles 𝑃1, 𝑃2,… , 𝑃𝑘, the
erformance profile generated by 𝑊 is given by

𝑊 (𝑃1,… , 𝑃𝑘)(𝑡) = max {𝑃1(𝑡),… , 𝑃𝑘(𝑡)}. (1)

nalogously, the best aggregation function 𝐵∶ 2P → P generates a
erformance profile that selects, for each value of effort 𝑡, the pointwise
inimum solution cost among all performance profiles, then

𝐵(𝑃1,… , 𝑃𝑘)(𝑡) = min {𝑃1(𝑡),… , 𝑃𝑘(𝑡)}. (2)

Aggregation methods 𝑊 and 𝐵 are illustrated in Fig. 4. There
re three different performance profiles to be aggregated (left side).
he aggregated performance profiles given by 𝑊 and 𝐵 functions are
hown on the right side of the figure. 𝑊 and 𝐵 form the hull of
he input performance profiles. Function 𝑊 produces the pessimistic
erformance (least aggressive profile), while function 𝐵 produces the
ptimistic performance (most aggressive profile).

Aggregation functions 𝐴𝑅 and 𝐴𝐶 may be different or the same. For
xample, if 𝐴𝑅 = 𝑊 and 𝐴𝐶 = 𝐵, then the envelope will be

𝑃 (𝑡) = 𝐴𝐶(𝐴𝑅(𝑃11,… , 𝑃1𝑚1
),… , 𝐴𝑅(𝑃𝑛1,… , 𝑃𝑛𝑚𝑛

))(𝑡)

= 𝐵(𝑊 (𝑃11,… , 𝑃1𝑚1
),… ,𝑊 (𝑃𝑛1,… , 𝑃𝑛𝑚𝑛

))(𝑡)

= min{max{𝑃11(𝑡),… , 𝑃1𝑚(𝑡)},… ,max{𝑃𝑛1(𝑡),… , 𝑃𝑛𝑚(𝑡)}}

(3)

We also propose a model-based aggregation function as follows.
iven the performance profile 𝑃 of a single run and a maximum cut-
ff effort 𝑡max (maximum budget for any run) such that 𝑃 (𝑡) ≥ 𝑃 (𝑡max),
𝑡 ≥ 0, let 𝑇 (𝑃 , 𝑐) be the smallest effort to reach target 𝑐 defined as

𝑇 (𝑃 , 𝑐) =

{

min{𝑡 ≥ 0 ∣ 𝑃 (𝑡) ≤ 𝑐}, if 𝑃 (𝑡max) ≤ 𝑐,
𝛼𝑡max, otherwise,

(4)

here 𝛼 ≥ 1 is a penalty factor applied when the performance pro-
ile does not reach the target, similar to the PARX penalization ap-
5

roach (Pérez Cáceres et al., 2017a). We now assume that the value e
Fig. 5. Adaptive aggregation for profile-based envelope.

of 𝑇 (𝑃 , 𝑐) for any randomly selected run 𝑃 of an algorithm is a ran-
dom variable  (𝑐) that follows an exponential distribution, which is
often a reasonable assumption for optimization algorithms (Hoos and
Stützle, 2005). Its empirical cumulative distribution function is given
by 𝐹 (𝑡; 𝜆) = Pr( (𝑐) ≤ 𝑡) = 1 − 𝑒−𝜆𝑡, where 𝜆 is the parameter of the
istribution. Given the performance profiles 𝑃1,… , 𝑃𝑘 of 𝑘 runs of the
lgorithm, we estimate the mean effort to reach target 𝑐 as 𝑇̄ (𝑐) =
𝑘
𝑖 𝑇 (𝑃𝑖, 𝑐)∕𝑘. Then, the maximum likelihood estimator for parameter
is 𝜆̂(𝑐) = 1∕𝑇̄ (𝑐) and we can determine the effort 𝑇𝑝(𝑐) required for
fraction 𝑝 ∈ [0, 1] of the executions not reaching target value 𝑐 by

etting 𝐹 (𝑇𝑝(𝑐); 𝜆) = 1 − 𝑝, which holds for 𝑇𝑝(𝑐) = − ln(𝑝) ⋅ 𝑇̄ (𝑐). Since
𝑝(𝑐) is monotone, it has an inverse 𝑇 −1

𝑝 (𝑡) that gives the expected 𝑐
eached after effort 𝑡 by at most a fraction 1 − 𝑝 of executions. We can
ow define a model-based aggregation as

𝑀(𝑃1,… , 𝑃𝑘; 𝑝)(𝑡) = 𝑇 −1
𝑝 (𝑡). (5)

If there is only one performance profile to be aggregated i.e. 𝑘 = 1,
ethods 𝑊 and 𝐵 produce the same performance profile, since they

imply select cost values for each value of effort from the available pro-
ile. In contrast, method 𝑀 computes the aggregated performance pro-
ile based on the exponential model, whose parameter can be estimated
ven with a single sample. For example, given a single performance
rofile 𝑃 to be aggregated with 𝑝 = 0.1 and 𝑇 (𝑃 , 𝑐) = 20 for a particular
arget cost 𝑐, the mean 𝑇̄ (𝑐) = 20 is multiplied by − ln(0.1) ≈ 2.3, leading
o an effort equal to 43 for the aggregated performance profile. The
ffort values required for the fraction 𝑝 not reaching all target costs are
omputed, producing an aggregated performance profile different from
he one used as input.

.1.2. Adaptive profile-based envelope generation
The adaptive strategy determines the envelope based on all previous

xecutions on the current instance, not only on the executions of elite
onfigurations. These performance profiles are ordered by the cost of
he best solution found, and the envelope is determined in such a way
hat only the best ones would not be capped. The number of such
on-capped performance profiles is determined by an aggressiveness
arameter 𝑎 ∈ [0, 1]. Given 𝑘 performance profiles sorted by the cost of
heir best solution found, we determine the most aggressive envelope
hat would cap a fraction 𝑎 of them. That is, the adaptive profile-based
nvelope generation is equivalent to the aggregation function

𝐷(𝑃1,… , 𝑃𝑘)(𝑡) = 𝑊 (𝑃1,… , 𝑃
⌈(1−𝑎)𝑘⌉)(𝑡), (6)

iven that 𝑃1, 𝑃2,… , 𝑃𝑘 are ordered by the cost of their best solu-
ion found. Fig. 5 shows an example with 4 performance profiles
𝐴, 𝑃𝐵 , 𝑃𝐶 , 𝑃𝐷. When sorting them, we get the ordered list
= (𝑃𝐷, 𝑃𝐴, 𝑃𝐶 , 𝑃𝐵). Given 𝑎 = 0.5, we select only the 2 best

erformance profiles and compute the most aggressive envelope that
ould not cap them by applying 𝑊 function (Eq. (1)). The resulting
nvelope is shown on the right side of Fig. 5.

Given a value of 𝑎 for the current iteration, we create an envelope
efore each execution, and use it to evaluate (and possibly cap) that
xecution. However, we cannot ensure that this value of 𝑎 will produce
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Fig. 6. Example of the performance profile prediction for adaptive profile-based
nvelope generation.

nvelopes that cap exactly a fraction 𝑎 of those executions. Therefore,
once the current iteration is finished, we adapt the value of 𝑎 based on
the number of executions capped, and then use the updated value to
compute the envelopes in the next iteration, in an attempt to reach a
user-defined aggressiveness goal 𝑎g.

Let 𝑎c be the fraction of executions capped in the previous iteration
of irace. Since the goal was to cap a fraction 𝑎g of those executions,
we increase 𝑎 to the lowest value that would have capped 𝑎g, if 𝑎c <
𝑎g − 𝜀; decrease 𝑎 to the highest value that would have capped 𝑎g, if
𝑎c > 𝑎g + 𝜀; or maintain 𝑎, otherwise, where 𝜀 ∈ [0, 1] is a user-defined
arameter that specifies the tolerance of the observed aggressiveness
eviation from the aggressiveness goal 𝑎g. For example, given 𝑎g = 0.3

and 𝜀 = 0.05, if in the previous iteration we capped 18 out of 100
executions, then the adaptation procedure would increase 𝑎, since 𝑎c =
18∕100 < 0.3 − 0.05, such that Eq. (6) would cap exactly 0.3 ⋅ 100 = 30
executions.

When increasing 𝑎, we can easily determine which value of 𝑎 would
cap the desired number of executions from the previous iteration by
adding performance profiles one at a time to those used by Eq. (6). The
case of decreasing 𝑎 is more complicated since we want to find the value
𝑎 that would not cap the desired number of executions. Because the
executions were capped, we do not know the performance profile until
the cut-off effort and, therefore, we cannot compute exactly the value
of 𝑎 that would not ever cap them. Instead, we predict the unknown
part of the performance profile and combine it with the known part
when calculating the value of 𝑎 that would not cap it.

To predict how a capped performance profile 𝑃c would behave from
the effort at which it was capped 𝑡c until the cut-off effort 𝑡max, we
consider all previous non-capped performance profiles on the same
instance, and compute from them a simple extrapolation. First, we
estimate the number of improvements 𝑠 of the objective function from
c to 𝑡max as the median number of improvements in the same range
ver all non-capped profiles. Next, we estimate the final solution cost
̂c(𝑡max) = 𝑟 ⋅ 𝑃c(𝑡c), where 𝑟 is the median of the improvement ratios
(𝑡max)∕𝑃 (𝑡c) between the solution cost at 𝑡c and the final cost at

max over all non-capped performance profiles. Finally, we estimate the
olution cost at each effort 𝑡𝑖 = 𝑡c + 𝑖(𝑡max − 𝑡c)∕(𝑠 + 1), with 𝑖 = 1,… , 𝑠,

as
𝑃c(𝑡𝑖) = 𝑃c(𝑡c) + 𝑖(𝑃c(𝑡max) − 𝑃c(𝑡c))∕𝑠. (7)

Fig. 6 presents an example of the performance profile prediction. On
the left side we can see the performance profile 𝑃c capped at 𝑡c = 91
with cost 𝑃c(𝑡c) = 50. Let us assume that 𝑟 = 0.8 and 𝑠 = 2, thus
the predicted final cost at 𝑡max = 100 is 𝑃c(𝑡max) = 50 ⋅ 0.8 = 40.

hen, we build 𝑠 = 2 intermediary points until 𝑡max. The first will
e at 𝑡1 = 𝑡c + 1 ⋅ (𝑡max − 𝑡c)∕(𝑠 + 1) = 91 + 9∕3 = 94 with cost
̂c(𝑡1) = 𝑃c(𝑡c) + 1 ⋅ (𝑃c(𝑡max) − 𝑃c(𝑡c))∕𝑠 = 50 + 1 ⋅ (−10∕2) = 45. The
econd point will be at 𝑡2 = 𝑡c +2 ⋅ (𝑡max − 𝑡c)∕(𝑠+1) = 91+ 2 ⋅ (9∕3) = 97
ith cost 𝑃c(𝑡2) = 𝑃c(𝑡c) + 2 ⋅ (𝑃c(𝑡max) − 𝑃c(𝑡c))∕𝑠 = 50+ 2 ⋅ (−10∕2) = 40.

The predicted performance profile, with the calculated points, can be
seen on the right side of Fig. 6.
6

Fig. 7. Example of area calculation.

4.2. Area-based envelope generation

The area-based envelope is defined as the maximum area available
for the execution. The area of a performance profile 𝑃 is

𝐴𝑃 = ∫

𝑡f

𝑡s
𝑃 (𝑡) − 𝑐min d𝑡, (8)

where 𝑡s and 𝑡f are the start and final effort values, respectively,
nd 𝑐min is a baseline cost. The start effort 𝑡s should be the same
or calculating the area of different performance profiles, to ensure

fair comparison between them. In our implementation, the target
lgorithms report the corresponding cost as soon as the first solution
s obtained. Then, when evaluating 𝑘 performance profiles, we define
s = max𝑖∈{1,…,𝑘} 𝑡𝑖s, where 𝑡𝑖s is the starting effort value of performance

profile 𝑖. The final effort 𝑡f is the cut-off effort (𝑡max) for finished
executions or the current effort of the execution in progress. Fig. 7
illustrates a performance profile and the respective value of area.

The area depends on the baseline cost 𝑐min. If 𝑐min is too low,
e obtain a larger area, which makes capping less aggressive; if it is

oo high, we may have negative areas, and possibly a too aggressive
apping. Ideally, we would like to set 𝑐min to the optimal solution cost
r a good lower bound. These are often unknown, thus we maintain for
very instance the best found solution cost and set 𝑐min to it.

Finally, we first compute the area of previous performance profiles
n the current instance, and then aggregate the areas into the envelope,
hich is represented here by the area budget 𝐴max. The current execu-

ion P will be capped as soon as 𝐴𝑃 > 𝐴max. Similar to the profile-based
ethods, in the area-based envelope generation we also use elitist and

daptive aggregation strategies.

.2.1. Elitist area-based envelope generation
Given all performance profiles of the elite configurations on the

urrent instance, the area-based elitist strategy calculates their area and
ses functions 𝐴𝑅 and 𝐴𝐶 to aggregate replications and configurations,
espectively. We use worst and best approaches for both 𝐴𝑅 and 𝐴𝐶
ggregation steps, replacing the pointwise behavior by the selection of
he largest area

𝑊 (𝑃1,… , 𝑃𝑘) = max{𝐴𝑃1 ,… , 𝐴𝑃𝑘}, (9)

r the smallest area

𝐵(𝑃1,… , 𝑃𝑘) = min{𝐴𝑃1 ,… , 𝐴𝑃𝑘}. (10)

.2.2. Adaptive area-based envelope generation
The area-based adaptive envelope generation is similar to the

rofile-based approach. We compute the area of all previous perfor-
ance profiles of the current instance, and select the area which would

ap a part of them, according to the aggressiveness parameter 𝑎 ∈ [0, 1].
n this case, the performance profiles are sorted by their area values.
iven a list of performance profiles 𝑃1, 𝑃2,… , 𝑃𝑘 ordered such that
𝑃𝑖 ≤ 𝐴𝑃𝑖+1 , the adaptive area-based envelope generation is given by

𝐷(𝑃 ,… , 𝑃 ) = 𝐴 . (11)
1 𝑘 𝑃
⌈(1−𝑎)𝑘⌉
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Fig. 8. Example of area prediction.

The aggressiveness is adjusted at the beginning of each iteration. It
increases or decreases 𝑎 according to the amount of capping reached
in the last iteration, the aggressiveness goal parameter 𝑎g ∈ [0, 1], and
the tolerance 𝜀.

As done in the profile-based approach, when the amount of capped
executions in the previous iteration is out of the range [𝑎g−𝜀, 𝑎g+𝜀], we
calculate the value of 𝑎 that would cap exactly the number of executions
needed to achieve the aggressiveness goal 𝑎g. The only difference with
respect to the profile-based approach is in the estimation required
when decreasing 𝑎. Here we need to estimate the area of the capped
performance profile 𝑃c by predicting its behavior after the capping
point (𝑡c, 𝑃c(𝑡c)). In the best case, the best possible solution would
have been found just at 𝑡c, such that 𝑃c(𝑡c) = 𝑐min, and thus the
remaining area would be zero. In the worst case, no solution better
than 𝑃c(𝑡c) would have been found until 𝑡max, thus the upper bound of
the unknown area would be (𝑃c(𝑡c)−𝑐min)⋅(𝑡max−𝑡c). Let 𝐴̂𝑃c = 𝐴𝑃c+𝐴̂ be
the (estimated) total area used by 𝑃c if it had not been capped, where
𝐴𝑃c is the known area until 𝑡c and 𝐴̂ ∈ [0, (𝑃c(𝑡c) − 𝑐min) ⋅ (𝑡max − 𝑡c)]
is the unknown area between 𝑡c and 𝑡max, which must be estimated.
Fig. 8 shows an example where the execution was capped at effort
𝑡c = 65 with 𝑃 (𝑡c) = 40. Then, the real area of this execution until
𝑡c is 𝐴𝑃c = 3200 and the remaining area is 0 ≤ 𝐴̂ ≤ 4000.

To estimate the value of 𝐴̂, we use the performance profiles of
non-capped previous executions on the current instance. For each
performance profile 𝑃 , we compute the real area 𝐴′ from 𝑡c to 𝑡max and
he upper bound 𝐴′′ = (𝑃c(𝑡c) − 𝑐min) ⋅ (𝑡max − 𝑡c), and then calculate the

ratio 𝐴′′∕𝐴′. We use the median ratio 𝑟 to estimate the remaining area
of the capped performance profile 𝑃c as 𝐴̂ = 𝑟 ⋅ (𝑃c(𝑡c) − 𝑐min) ⋅ (𝑡max − 𝑡c)
and its predicted area 𝐴̂𝑃c = 𝐴𝑃c + 𝐴̂. In the example of Fig. 8, by using
𝑟 = 0.7, the remaining area is estimated as 𝐴̂ = 2800, giving a predicted
total area of 𝐴̂𝑃c = 6000.

Table 1 summarizes the components of all the methods described in
this section. A complete capping method consists of an envelope type
(𝑃 or 𝐴), an envelope generation strategy (𝐸 or 𝐷), the corresponding
aggregation functions (𝑊 , 𝐵 or 𝑀 , when applied), and parameter
values (𝑝 and 𝑎g, when applied).

The capping methods proposed here are mostly independent of the
configurator, and can be applied whenever the following requirements
are met. First, the target algorithm must periodically report the progress
of the objective function. It must also report the effort if it is different
from wall-clock time, e.g., the number of evaluations. Second, the elitist
capping methods require that elite configurations are identified. Third,
the adaptive capping methods require to indicate when the aggressive-
ness parameter needs to be updated. The latter two requirements can be
satisfied by the configurator but may also be implemented in additional
external components.

When integrated with irace, the capping methods identify the elites
from the data already reported by irace, update the aggressiveness at
the end of each race (Algorithm 1), and do not apply capping in the
first race. This integration does not require any changes in irace except
using the capping methods as a wrapper around the target algorithm.
7

Table 1
Summary of capping methods proposed in this article.

Envelope type Strategy Parameters

Profile (𝑃 ) Elitist (𝐸) AR = {𝑊 ,𝐵,𝑀}, AC = {𝑊 ,𝐵}, 𝑝 ∈ [0, 1], 𝛼 ∈ [1,∞).
Adaptive (𝐷) 𝑎g ∈ [0, 1], 𝜀 ∈ [0, 1].

Area (𝐴) Elitist (𝐸) AR = {𝑊 ,𝐵}, AC = {𝑊 ,𝐵}.
Adaptive (𝐷) 𝑎g ∈ [0, 1], 𝜀 ∈ [0, 1].

5. Computational experiments

In this section, we detail the configuration scenarios, including the
target algorithms and the benchmark instances (Section 5.1). Then,
our first experiment evaluates how good the capping methods are in
saving effort during the tuning process, as well as in finding good
configurations (Section 5.2). We identified two conservative, robust
methods and analyzed their behavior in detail (Section 5.3). Finally, we
assess the contributions of the capping methods when using the total
execution time as budget for irace (Section 5.4).

5.1. Experimental setup

We evaluated the proposed capping methods on different configura-
tion scenarios together with irace version 3.1 with its default parameter
values. The capping methods have been implemented as a Python
3 script (tested with Python 3.6.8) that can be used together with
irace and does not require any changes to irace. The source code
and documentation are available at https://github.com/souzamarcelo/
capopt (De Souza et al., 2020). For the aggregation method using the
exponential model (Eqs. (4) and (5)), we used the penalty constant
𝛼 = 10. For the adaptive methods, we used an aggressiveness goal
𝑎g = 0.5 and a tolerance of the deviation from that goal 𝜀 = 0.05. When
experiments are replicated with different random seeds, the same initial
seed is used for all executions of irace in the same replication.

We selected six configuration scenarios from the literature. They
consist in heuristic algorithms to solve the traveling salesperson prob-
lem, graph coloring, bin packing, binary quadratic programming, and
an exact solver for mixed integer programming (MIP) applied to the
combinatorial auction winner determination problem. The instances
used for the training and test are always different. The input pa-
rameters are numeric (integer or real) and categorical. All heuristic
algorithms were implemented in C or C++ and compiled with the GNU
C/C++ compiler version 7.0.4 with maximum optimization. Table 2
summarizes the characteristics of each scenario: the budget used in the
experiments, whether the algorithm is deterministic or stochastic, the
unit and limit of the effort measure of the algorithm, the number of
integer, categorical, real, and conditional parameters of the algorithm,
and the number of training and test instances. We give further details
on each scenario below. All files to reproduce the experiments can be
found in the supplementary page (De Souza et al., 2021a), including
the source code of the capping methods and the target algorithms, the
training and test instances with the corresponding best known solution
costs, parameter description, and irace input settings for all scenarios.

ACOTSP This solver implements several ant colony optimization (ACO)
algorithms applied to the symmetric traveling salesperson problem
(TSP). All algorithms are described in Dorigo and Stützle (2004), and
the source code can be obtained in Stützle (2002) (we used ACOTSP
version 1.03). ACOTSP is part of the AClib benchmark library for algo-
rithm configuration (Hutter et al., 2014) and is widely used as a testbed
for studying automatic algorithm configuration (see López-Ibáñez and
Stützle, 2014; Pérez Cáceres et al., 2014, 2015, and López-Ibáñez et al.,
2018 for some examples).

This scenario has 11 parameters, 5 of them being conditional. We
used 60 s of wall clock time as termination criterion of ACOTSP. We
defined 2000 executions as budget for irace and used the instances

https://github.com/souzamarcelo/capopt
https://github.com/souzamarcelo/capopt
https://github.com/souzamarcelo/capopt
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Table 2
Summary statistics of the configuration scenarios. Column Det. indicates whether the
target algorithm is deterministic or stochastic.

Scenario Budget Det. Effort Parameters Instances

Type Limit Int Cat Real Cond Train Test

ACOTSP 2000 no time 60 s 4 3 4 5 50 200
HEACOL 2000 no checks 109 4 2 1 0 27 79
TSBPP 500 yes iterations 5000 3 2 1 0 20 500
HHBQP 2000 no time 20/30 s 10 3 1 7 9 10
LKH 2000 no time 10 s 12 9 0 0 50 250
SCIP 2000 yes time 30 s 0 207 0 0 50 50

provided in López-Ibáñez et al. (2016b), which consist of Euclidean
TSP instances of size 2000. A total of 400 instances are available, 200
for training and 200 for test. We selected 50 out of the 200 training
instances at random for the configuration step, and selected all 200 test
instances for the evaluation step.

HEACOL This scenario concerns the configuration of a hybrid evolu-
ionary algorithm (HEA) for the graph coloring problem (COL). This
lgorithm was proposed by Galinier and Hao (1999) and detailed
n Lewis (2016a). It combines a population of solutions, which are
volved by a problem-specific recombination operator, with a local
earch procedure. The source code of HEACOL is provided by Lewis
2016b).

The HEACOL scenario has 7 unconditional parameters. The termina-
ion criterion is a maximum number of constraint checks. A constraint
heck is counted whenever the algorithm requests some information
bout the instance, e.g., whether two vertices are neighbors. We used
termination condition of 109 constraint checks and a budget of

000 executions. For the training, we generated 27 instances, which
onsist of randomly generated graphs with all combinations of sizes
∈ {250, 500, 1000} and densities 𝑑 ∈ {0.1, 0.5, 0.9}, where each of pair

of vertices are made adjacent with probability 𝑑. For the test, we used
the 79 well known graph instances available in Trick (2018), with sizes
ranging from 11 to 1000 vertices.

TSBPP This scenario concerns a tabu search (TS) algorithm for the two-
and three-dimensional bin packing problems (BPP) (Delorme et al.,
2016) proposed by Lodi et al. (1999). The source code is described
in Lodi et al. (2004a) and is available in Lodi et al. (2004b).

This scenario has 6 unconditional parameters. The termination crite-
rion is the number of iterations of the tabu search. We used a maximum
of 5000 iterations. TSBPP is a deterministic algorithm. This scenario
also has the smallest parameter space. Because of that, we set a budget
of only 500 executions for irace. We used the instances of the two-
dimensional bin packing problem (2BPP) proposed by Berkey and Wang
(1987) and Martello and Vigo (1998), which are divided in ten different
classes. A complete description of these instances can be found in Lodi
et al. (1999). All 500 instances were used for the test phase, and 20 out
of them were selected for the training phase (we randomly selected two
instances of each class). Additional information about these and other
instances, as well as other approaches to solve the BPP can be found
in Delorme et al. (2018).

HHBQP This scenario consists in a hybrid heuristic (HH) algorithm to
solve the unconstrained binary quadratic programming (BQP)
(see Kochenberger et al., 2014 and Beasley, 1998). This algorithm
was automatically generated by De Souza and Ritt (2018a) using a
grammar-based automatic algorithm design technique based on algo-
rithmic components from the literature (Palubeckis, 2006; Glover et al.,
2010; Wang et al., 2012). The source code is available in De Souza and
Ritt (2018b).

The scenario has 14 parameters, with 7 being conditional. We used
a time limit of 20 s for the training executions, 30 s for the executions
in the test phase, and a budget of 2000 total executions for irace. For
8

the test phase, we used the 10 instances of size 2500 of Beasley (1998). b
They can be downloaded from Wiegele (2007b) and more details can
be found in Wiegele (2007a). For the training phase, we randomly
generated 9 instances with the same structure as Beasley’s instances.
We generated three instances for each size 𝑛 ∈ {2000, 2500, 3000},

ith a density of 0.1 and integer coefficients uniformly sampled within
−100, 100].

KH This scenario concerns the configuration of the Lin–Kernighan–
elsgaun (LKH) algorithm for the symmetric traveling salesperson
roblem (TSP). The LKH algorithm consists in an iterated local search
ased on the Lin–Kernighan heuristic (Lin and Kernighan, 1973). The
lgorithm and an effective implementation are described in Helsgaun
2000, 2009, 2018a). The source code is available in Helsgaun (2018b).
e used LKH version 2.0.9.
The LKH scenario has 21 unconditional parameters. We set a time

imit of 10 s as termination criterion, and a budget of 2000 total execu-
ions for irace. We used Euclidean TSP instances of sizes 1000, 1500,
000, 2500, and 3000. We randomly generated 50 training instances
10 for each size) and 250 test instances (50 for each size), using
he portgen instance generator from the 8th DIMACS Implementation
hallenge (Johnson et al., 2001).

CIP This scenario consists in the configuration of the Solving Con-
traint Integer Programs (SCIP), an open-source exact solver for mixed
nteger programming (Achterberg, 2009). We configure SCIP for solv-
ng the combinatorial auction winner determination problem (De Vries
nd Vohra, 2003). SCIP was previously configured in López-Ibáñez and
tützle (2014). We used the same version of SCIP (2.0.2) linked with
he linear programming solver SoPlex 1.5.0. We also set the maximum
emory to be used by SCIP to 350 MB.

We considered the same 207 unconditional categorical parameters
sed in López-Ibáñez and Stützle (2014). We set a time limit of 30 s
or each execution of SCIP, and a budget of 2000 total executions for
race. We used the MIP-encoded instances introduced in Leyton-Brown
t al. (2000). We randomly selected 50 training instances and 50 test
nstances with 200 goods and 1000 bids. Some configurations of SCIP
roduce infeasible solutions. We assign those configurations the worst
ossible cost value and do not use them to determine the performance
nvelopes.

Most of the experiments were performed using a single core of a
omputer with an 8-core AMD FX-8150 processor running at 3.6 GHz
nd 32 GB main memory, under Ubuntu Linux. The experiments of the
CIP scenario were performed using a single core of a computer with a
2-core AMD Ryzen 9 3900X processor running at 3.8 GHz and 32 GB
ain memory, under Ubuntu Linux.

.2. Evaluation of capping methods

The first experiment consists in the evaluation of all capping meth-
ds. For each method, we executed irace 20 times and computed the
otal effort used for the configuration process. Then, we executed the
irst ranked configuration of each irace execution on the set of test
nstances with 5 replications, and computed the average cost deviation
rom the best known solutions.

The results are shown in Table 3. In the method description (column
‘Capping method’’), the first letter indicates the envelope type (P for
rofile-based or A for area-based) of the capping method, followed
y the strategy (E for elitist or D for adaptive). In the case of elitist
ethods, the next two letters represent the aggregation functions (𝐵, 𝑊

r 𝑀) used, respectively, for aggregating over multiple replications of
configuration (𝐴𝑅) and for aggregating over multiple configurations
𝐴𝐶). In the case of methods with a user-defined parameter (𝑝 or 𝑎g), its
alue is given at the end of the description. For example, the method
EMW.1 represents the profile-based envelope, using the elitist strat-
gy, model-based function 𝑀 to aggregate replications, worst function

to aggregate configurations, and 0.1 for the parameter 𝑝 required

y the 𝑀 function. Column ‘‘r. e.’’. presents the average relative effort
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Table 3
Average relative effort and average solution cost deviation for each capping method. The three best values of each column are shown in bold.

Capping method ACOTSP HEACOL TSBPP HHBQP LKH SCIP

r. e. r. d. r. e. r. d. r. e. r. d. r. e. a. d. r. e. r. d. r. e. r. d.

No capping 100.0 0.33 100.0 4.14 100.0 1.31 100.0 49.72 100.0 0.04 100.0 0.04

PEWW 40.3 0.37 38.7 4.22 87.4 1.25 55.7 65.16 37.8 0.04 69.0 0.05
PEBB 22.3 0.52 25.2 4.48 61.9 1.27 25.1 58.38 24.3 0.08 21.7 0.11

PEMW.1 74.5 0.34 77.9 4.10 95.1 1.24 82.6 72.44 60.2 0.04 89.9 0.03
PEMW.3 51.4 0.35 61.5 4.16 92.1 1.28 66.7 63.52 46.4 0.04 75.8 0.05
PEMW.5 30.2 0.44 27.3 4.48 54.5 1.35 40.0 72.16 35.4 0.05 54.4 0.07

PEMB.1 50.0 0.32 58.5 4.11 86.7 1.22 53.7 67.19 40.4 0.04 28.6 0.12
PEMB.3 26.9 0.46 31.5 4.23 74.6 1.30 37.2 55.75 31.0 0.05 23.6 0.12
PEMB.5 21.8 0.48 23.5 4.49 44.6 1.33 25.8 61.40 24.0 0.07 21.6 0.12

PD.2 65.0 0.38 62.4 4.28 92.6 1.24 78.4 36.06 66.2 0.04 65.3 0.15
PD.4 63.7 0.38 61.9 4.27 88.3 1.28 74.6 44.71 62.1 0.04 63.9 0.16
PD.6 55.7 0.40 56.5 4.30 80.7 1.29 65.7 48.87 53.6 0.05 58.6 0.16
PD.8 43.7 0.41 47.9 4.39 73.9 1.37 54.3 57.26 39.8 0.05 48.6 0.16

AEWW 73.2 0.35 72.8 4.18 87.6 1.28 82.7 46.97 52.5 0.04 94.0 0.04
AEBB 47.3 0.38 53.0 4.18 58.6 1.35 34.1 68.56 33.8 0.06 62.9 0.08

AD.2 82.8 0.35 84.6 4.16 85.6 1.30 85.2 37.03 78.7 0.04 83.4 0.03
AD.4 77.9 0.35 81.8 4.16 71.5 1.26 72.9 37.48 72.4 0.04 80.3 0.06
AD.6 69.7 0.35 74.0 4.14 58.5 1.34 58.2 37.71 59.5 0.04 71.1 0.08
AD.8 55.3 0.36 62.1 4.21 52.6 1.45 41.9 54.13 43.5 0.04 61.6 0.10
T
R

required when using each capping method in comparison to the effort
required when configuring without capping. Column ‘‘r. d.’’. presents
the average relative deviation from the best known solutions, obtained
by executing the best found configurations on the test instances. In
the case of HHBQP, we report the average absolute deviation (column
‘‘a. d.’’.) from the best known solutions, following the practice of the
literature of UBQP (Palubeckis, 2006; Glover et al., 2010; Wang et al.,
2012). We say that a capping method presents better quality than
another if it presents a smaller deviation. We highlighted the three best
values of relative effort and deviation for each configuration scenario.

We observe that all capping methods reduce some amount of effort.
The reduction ranges from about 5% (method PEMW.1 on TSBPP) to
about 78% (method PEMB.5 on ACOTSP and SCIP, and method PEBB
on SCIP) of the effort required when configuring without capping. The
resulting configurations present competitive quality in comparison to
the one obtained without using capping. As expected, we can also ob-
serve that more aggressive methods (e.g. PEBB, PEMB.5 and PEMW.5)
save more effort, but usually in exchange of producing worse config-
urations. This is the case when using best (𝐵) instead of worst (𝑊 )
ggregation functions, as well as using more aggressive (higher) values
or the parameter 𝑝 of the exponential model and the aggressiveness
oal 𝑎g.

We also measured the number of training instances used by each
un of irace. For ACOTSP, HEACOL, TSBPP, LKH and SCIP, irace used
n average of 35%, 71%, 61%, 37% and 49% of the available instances,
espectively, with no more than 10% of variation over the different
apping methods. Thus, irace never needed to perform more than one
eplication per training instance, and methods 𝑊 and 𝐵 have no effect
hen aggregating replications. The model-based method 𝑀 has an
ffect even with a single replication, as explained in Section 4.1.1.
or scenario HHBQP, irace does use all training instances and thus
ometimes performs more than one replication per instance. In this case
ethods 𝑊 and 𝐵 for aggregating replications lead to different results.

Fig. 9 presents the trade-off between the average relative effort and
he average solution cost deviation of each capping method. It also
resents the Pareto frontier defined by the non-dominated methods,
onsidering relative effort and deviation as two distinct objectives of
he capping methods that must be minimized. We can see that most of
he Pareto-optimal methods are profile-based and elitist, except in the
HBQP scenario, where profile- and area-based adaptive methods are

he majority in the Pareto frontier.
We also observe that all capping methods present competitive re-
9

ults in the quality of the configurations found. The difference of
able 4
esults of the multiple comparison Dunn’s test, adjusted with the Bonferroni method.

Capping method No capping Capping method No capping

ACOTSP SCIP ACOTSP SCIP

PEWW ns ns PD.4 ns ***
PEBB *** ns PD.6 ** ***
PEMW.1 ns ns PD.8 *** **
PEMW.3 ns ns AEWW ns ns
PEMW.5 *** ns AEBB ns ns
PEMB.1 ns * AD.2 ns ns
PEMB.3 *** ns AD.4 ns ns
PEMB.5 *** * AD.6 ns ns
PD.2 ns ** AD.8 ns ns

Comparing the quality of the configurations produced using each capping method with
those obtained using no capping. Symbol ‘‘ns’’ means no significant difference, while
the asterisks denote the order of the p-values: (*) 𝑝 ≤ 0.01, (**) 𝑝 ≤ 0.001 and (***)
𝑝 ≤ 0.0001.

the observed relative deviations from the best known solutions in
comparison to those obtained without capping is always less than 1%
(and less than 100 of absolute deviation for HHBQP, whose objective
values are in the order of magnitude of 106). Even the most aggressive
methods (PEBB, PEMB.5, PEMW.5) produce acceptable configurations,
while saving more than half of the total configuration effort. We would
expect no capping would produce the best results, however, in some
cases the tuning process with capping found a better final configuration
(e.g. capping method PEMW.1 in scenarios HEACOL, TSBPP, and SCIP).
Since capped runs are penalized by returning the current cost, this can
lead irace to discard the corresponding configuration earlier and focus
the sampling of the parameter space on better configurations.

We have performed a non-parametric Kruskal–Wallis test to check
whether any capping method statistically dominates another in terms
of the quality of the produced configurations (Montgomery, 2012). The
results indicate statistically significant differences in the ACOTSP, HEA-
COL, LKH and SCIP scenarios (p-values of 1.01 × 10−23, 1.82 × 10−7,
1.93 × 10−3 and 2.97 × 10−22, respectively), while the null hypothesis
could not be rejected in the TSBPP and HHBQP scenarios (p-values of
0.99 and 0.09, respectively). We have also performed a post-hoc anal-
ysis using the Dunn’s multiple comparisons test (Dunn, 1964) to assess
the pairwise differences of the capping methods. We used a significance
level of 0.01, and the Bonferroni correction method (Dunn, 1961) to
control the familywise error rate. The HEACOL and LKH scenarios
presented statistical differences among distinct capping methods, but
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Fig. 9. Normalized configuration effort and quality of the resulting configurations for all capping methods.
o difference was identified between any capping method and config-
ring with no capping. For ACOTSP and SCIP, however, some of the
ost aggressive methods presented statistically worse configurations

han those obtained by configuring with no capping. Table 4 presents
hese results, and their statistical significance. We can see that the
ifferences are statistically more significant for ACOTSP. For the area-
ased methods, even the more aggressive approaches (e.g. AEBB and
D.8) produce solutions which are statistically not worse than those

ound without capping.

.3. Recommended methods

Based on the results discussed above, we can identify specific recom-
endations presented in Table 5. First, we selected two conservative,

obust capping methods (PEMW.1 and AD.4, which have low 𝑝 and
values, respectively, thus making them more conservative) that
10

𝑔

maintain the quality of the final configurations, but still save a rea-
sonable effort. Then, we selected two moderately aggressive methods
(PEMB.1, i.e., PEMB with the least aggressive 𝑝 value, and PEWW)
that save more effort, but sometimes find worse configurations than
tuning with no capping. Table 5 shows the average relative effort of
those methods for all six configuration scenarios, as well as their quality
loss on each configuration scenario. The quality loss is the difference
between the average cost deviation obtained using the capping method
and using no capping. We observe that all recommended methods
reduce the tuning effort by at least 20%, but still produce solutions of
acceptable quality. In some cases, the use of capping produced better
configurations than tuning with no capping. We also note that the
selected methods cover the different capping components, i.e. profile-
based elitist and area-based adaptive methods. In this section, we
analyze in detail the behavior of the recommended capping methods.
We used the visualization tool acviz (De Souza et al., 2021b).



Computers and Operations Research 139 (2022) 105615M. de Souza et al.

i
T

Table 5
Recommended capping methods.

Category Capping method Relative effort [%] Quality loss

ACOTSP HEACOL TSBPP HHBQP LKH SCIP

Conservative PEMW.1 80.0 0.01 −0.04 −0.07 22.72 0.00 −0.01
AD.4 76.1 0.02 0.02 −0.05 −12.24 0.00 0.02

Aggressive PEMB.1 53.0 −0.01 −0.03 −0.09 17.47 0.00 0.08
PEWW 54.8 0.04 0.08 −0.06 15.44 0.00 0.01
Fig. 10. Evolution of the automatic configuration of ACOTSP using the conservative capping methods.
Figs. 10 and 11 present the evolution of the configuration process
of ACOTSP with no capping, when using the conservative methods
PEMW.1 and AD.4 (Fig. 10) or the aggressive methods PEWW and
PEMB.1 (Fig. 11). We selected one of the irace executions at random
to produce this figure (the other executions present a similar behavior).
We plot the quality over the executions. Since we used a budget of 2000
total executions in the ACOTSP scenario, the 𝑥 axis ranges from 1 to
2000. The quality is the relative deviation (on a logarithmic scale) from
the best known solutions. A vertical dashed line marks the beginning
of each irace iteration with the respective budget used so far. We also
indicate if the execution was capped (+) or not (×), and the execution of
elite configurations. A blue circle represent the execution of a configu-
ration selected as elite in the corresponding iteration. A purple triangle
represents the execution of a configuration which became elite in the
last iteration, i.e. a final elite configuration. Executions of the best final
configuration are represented by a green star. This is the configuration
used to evaluate the quality of the irace run. In the case of capped
executions (+ marker), we executed them again until the cut-off effort,
.e. without capping it, to obtain the quality of the complete execution.
herefore, the quality values of capped executions are those which
11
would be obtained if they were not capped. Finally, the horizontal
lines in each iteration represent the median relative deviations of all
executions (green) and of the executions of elite configurations (orange)
obtained in that iteration.

The behavior of how the observed execution quality changes over
iterations is very similar for the different scenarios. We can see that
the capping methods are effective in identifying poor performers and
then stop executions that will not find the best solutions. Almost all
executions capped by the analyzed methods turned out to be bad
performers when executed until completion, as we observe in the
final quality of capped executions in Figs. 10 and 11. We can also
analyze the aggressiveness of the recommended methods by looking at
the amount of capped executions, which is clearly bigger in methods
PEWW and PEMB.1. Besides that, we observe that the separation be-
tween capped and non-capped executions is higher in the conservative
methods, indicating more tolerance in allowing configurations to run
until completion. On the other hand, in some iterations the aggressive
methods turn out to cap almost all executions of non-elite configura-
tions. Finally, for users seeking a conservative method, we recommend
to use PEMW.1, for those seeking an aggressive method, we recommend
to use PEMB.1.
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Fig. 11. Evolution of the automatic configuration of ACOTSP using the aggressive capping methods.
5.4. Time as budget

A common scenario is using a time limit for the budget of the
configuration process. We designed an experiment to evaluate the
benefits of using capping in these conditions. We defined a tight con-
figuration time limit of 21000 s for ACOTSP, 3200 s for HEACOL, 700 s
for TSBPP, 7000 s for HHBQP, 3500 s for LKH, and 21000 s for SCIP.
This means around 350 non-capped executions for ACOTSP, HEACOL,
HHBQP, LKH and SCIP, which had a budget of 2000 executions in pre-
vious experiments, and around 100 non-capped executions for TSBPP,
which had a budget of 500 executions. These budget values make the
configuration a challenging task.

When using the total execution time as budget, irace first estimates
the time required by a single execution by evaluating a few random
configurations. Based on this estimated time, it plans the iterations to
be performed and the number of executions in each of them. Every time
an iteration finishes, the time required by each previous execution is
used to update the time estimate and re-plan the next iterations. When
using capping, the time saved by early stopping poorly performing
executions becomes available to evaluate more configurations in the
next iterations. The redistribution of the saved time is performed by
irace considering the average time used so far in each execution. Thus,
irace implicitly uses the amount of capping done to plan the next
iterations. Thus, when using capping, we expect that the time saved
is used to further explore the configuration space.

We evaluated all capping methods in the described scenario with
5 independent runs of irace. Table 6 shows the percentage of increase
in the number of executions, generated configurations and evaluated
instances, in comparison to configuring with no capping. We observe
that the capping methods can help irace to make better use of the
12
available budget, since poor performers are discarded early and the
saved time can be used to further explore the configuration space.
When using capping, irace samples more configurations and performs
more executions during the tuning process. Besides that, it uses more
instances to evaluate the quality of the configurations. For example, the
increase in the number of configurations ranges from around 30% (less
aggressive method AD.2) to around 2250% (more aggressive method
PEMB.5). The corresponding increase in the number of total executions
exceeds 1500% in the most aggressive methods.

Table 7 presents the mean relative deviation (and the mean absolute
deviation for HHBQP) from the best known solutions when configuring
with each capping method and using the budget as a total configu-
ration time. These values were determined by running 5 replications
of the best configuration found in each irace run on the set of test
instances. We highlight in bold the deviation values less than the one
obtained by configuring with no capping. For most of the scenarios,
the configurations found by using capping performed better than those
obtained without capping. In HEACOL, TSBPP, HHBQP and LKH, the
use of capping allowed irace to find configurations competitive to those
obtained in the experiment with executions as budget (Table 3 and
Fig. 9), but using less computational effort.

Given the above results, we recommend using AEBB for scenarios
where the configuration budget is defined relative to the time of the
target algorithm. Although the percentage increase in configurations
and executions achieved by AEBB is more modest than for other
methods (Table 6), these additional executions lead to consistent im-
provements in quality for all scenarios evaluated here (Table 7). Thus,
the AEBB capping method improves the quality of the automatic tuning
of optimization algorithms in this type of scenario.
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Table 6
Percentage of increase in the number of executions, configurations generated, and
instances evaluated when running irace with total execution time as budget and using
each capping method, in comparison with using no capping.

Capping method Exec. [%] Config. [%] Inst. [%]

PEWW 193.2 203.2 19.0
PEBB 1598.2 2023.5 63.8

PEMW.1 49.2 50.7 1.0
PEMW.3 106.2 102.5 17.6
PEMW.5 264.7 298.6 29.1

PEMB.1 258.6 305.4 25.4
PEMB.3 627.4 753.2 45.3
PEMB.5 1792.1 2256.6 66.7

PD.2 61.1 56.4 12.8
PD.4 78.8 71.9 18.2
PD.6 108.7 95.3 22.0
PD.8 202.6 193.1 25.8

AEWW 55.1 55.1 4.6
AEBB 222.5 252.4 28.6

AD.2 33.9 31.1 7.6
AD.4 51.8 48.0 8.5
AD.6 92.4 85.2 24.5
AD.8 171.1 177.6 20.4

Table 7
Average deviation of the resulting configurations with total execution time as budget.
The values better than configuring with no capping are shown in bold.

Capping method ACOTSP HEACOL TSBPP HHBQP LKH SCIP

No capping 0.46 4.48 1.31 206.91 0.11 0.12

PEWW 0.51 4.12 1.31 81.37 0.05 0.09
PEBB 0.60 4.24 1.24 117.81 0.06 0.11

PEMW.1 0.41 4.29 1.31 98.58 0.05 0.09
PEMW.3 0.41 4.20 1.31 78.77 0.06 0.05
PEMW.5 0.56 4.18 1.31 89.93 0.06 0.09

PEMB.1 0.40 4.21 1.31 80.94 0.07 0.17
PEMB.3 0.54 4.18 1.24 93.26 0.07 0.13
PEMB.5 0.53 4.40 1.31 62.43 0.10 0.12

PD.2 0.43 4.18 1.38 72.82 0.10 0.23
PD.4 0.41 4.26 1.40 165.60 0.05 0.24
PD.6 0.42 4.25 1.31 35.62 0.09 0.24
PD.8 0.59 4.30 1.40 39.64 0.07 0.20

AEWW 0.40 4.17 1.24 60.30 0.08 0.13
AEBB 0.40 4.20 1.24 33.21 0.05 0.10

AD.2 0.39 4.09 1.24 84.22 0.06 0.13
AD.4 0.38 4.28 1.24 65.77 0.10 0.17
AD.6 0.44 4.15 1.24 67.05 0.08 0.18
AD.8 0.42 4.34 1.24 83.33 0.06 0.23

6. Concluding remarks

We have proposed capping methods that speed up the automatic
configuration of optimization algorithms. Previous methods (Hutter
et al., 2009; Pérez Cáceres et al., 2017b) were designed for the con-
figuration of decision algorithms and are not suitable for optimization
scenarios. The methods described in this article use the previous exe-
cutions to compute a performance envelope, which is used to evaluate
new executions and cap those with unsatisfactory performance. The ex-
perimental results show the effectiveness of the capping methods to re-
duce the computational effort of the automatic algorithm configuration,
while keeping the quality of the resulting configurations.

We identified two conservative (PEMW.1 and AD.4) and two ag-
gressive (PEMB.1 and PEWW) methods, which have been shown to be
robust and present good trade-offs between the saved effort and the
quality of the final configurations. Their average effort savings ranges
from 20% to 45% of the configuration time with no capping, and the
resulting configurations are comparable in terms of quality.

We also evaluated the proposed capping methods with the total ex-
13

ecution time as configuration budget. In this case, the capping methods
helped to discard poorly performing configurations and allow irace to
use the saved time to better explore promising regions of the parameter
space. We recommend AEBB for this type of scenario as it improves
the results over no capping in all benchmarks. These results indicate
that capping can also be helpful to scale the automatic configuration
techniques to challenging scenarios (Mascia et al., 2013; Styles and
Hoos, 2013).

Although the optimization scenarios are the primary focus of the
proposed capping methods, they can be used for the automatic con-
figuration of algorithms in other domains. If we can measure the
performance profile of an execution, we can apply the proposed ap-
proaches to the configuration process. For example, if we can monitor
how close a decision algorithm is to its termination, we can use
previous executions to compute a performance envelope and use it to
evaluate new executions. We can combine the approaches proposed
here with existing capping methods for decision algorithms and discard
configurations before exhausting the cut-off time, if the observed per-
formance profile is unsatisfactory. We also want to explore the use of
the capping methods in searching good parameter settings for computa-
tional simulations. In such scenarios, the evaluation of configurations
are costly and the use of capping can reduce the required computa-
tional effort for the automatic tuning. Finally, future work should also
explore how the choice of capping method and its parameters relates
to scenario features.
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