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a b s t r a c t 

In this investigation, the 2D flow between two horizontally positioned concentric cylinders (gravity per- 

pendicular to the axis of the cylinders), where the inner cylinder is kept at constant temperature T i higher 

than the outer border temperature T o , is analyzed. Buoyancy forces initiate the movement of the fluid and 

the generated flow is studied in a fixed geometry for values of Prandtl numbers ( Pr) between 0.01 and 1, 

and Rayleigh numbers ( Ra ) between 10 2 and 5 · 10 6 . To solve the problem, a Chebyshev-Fourier spectral 

code is developed in polar coordinates (r, θ ) respectively, and a complete map of steady-state solutions 

is obtained where regions with multiple solutions are identified. Later, a global stability study of the ob- 

tained stationary solutions is carried out, providing a transition curve to unstable areas as a function of 

the control parameters of the problem (Pr, Ra ) . Finally, to check the stability results, temporal evolution 

simulations are accomplished for several cases where dual solutions are presented, finding intermediate 

almost stationary solutions, and demonstrating that there exist typically single oscillating plume or dou- 

ble oscillating plume solutions (depending on the parameter space), where some of them have higher 

heat transfer coefficients, which may be interesting alternatives to improve heat exchange systems by 

means of passive control techniques. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Convection is a major feature of the dynamics of the oceans, 

he atmosphere, and the interior of stars and planets [1,2] . Natu- 

al convection systems often exhibit surprisingly regular large scale 

atterns. Examples are the solar granulation and mesoscale con- 

ection in the Earth’s atmosphere as visualized by the cloud pat- 

erns seen in satellite images. Evidently, the presence of large-scale 

egular structures at extremely large Reynolds and Rayleigh num- 

ers, often presumed in these systems to be asymptotically large, 

s compatible with a broad spectrum of highly chaotic motions at 

ntermediate scales. Unfortunately, this aspect of turbulent convec- 

ion cannot be easily investigated in laboratory experiments. 

Fluid motion driven by thermal gradients (thermal convection) 

s a common and important phenomenon in nature. Due to its the- 

retical interest and its various engineering applications such as 
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eat exchangers, thermal energy storage systems, cooling of elec- 

ronic components, transmission cables and solar thermal energy 

3] , natural convection heat transfer in a horizontal cylindrical an- 

ulus kept at constant surface temperature has been the subject of 

nterest of many researchers. Its simple geometry and well-defined 

oundary conditions allow to characterize the phenomenon by two 

imensionless parameters: the Prandtl number ( P r) which is the 

atio of viscous diffusivity to thermal diffusivity and the Rayleigh 

umber ( Ra ) which can be seen as the ratio of the gravitational

otential energy to the energy due to viscous dissipation and ther- 

al diffusion. The aspect ratio A ≡ D i /L which is the ratio of inner

ylinder diameter D i to the gap width L constitutes the last param- 

ter of the problem. 

Many fundamental aspects of patterns and their instabilities 

ave been studied intensively over the past five decades in the 

ontext of Rayleigh-Bénard convection (RBC). In a traditional RBC 

xperiment, a horizontal fluid layer of height d is confined be- 

ween two thermally well conducting, parallel plates. When the 

ifference �T = T b − T t between the bottom-plate temperature T b 
nd the top-plate temperature T t exceeds a critical value �T crit , the 

onductive motionless state is unstable and convection sets in. The 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Nomenclature 

A aspect ratio 

D diameter (m) 

J Jacobian 

L gap width between cylinders (m) 

P r Prandtl number 

Ra Rayleigh number 

Nu Nusselt number 

T temperature (K) 

A differential operator 

B differential operator 

f generic function in the Newton-Raphson solver 

f m 

mass force (N ·kg −1 ) 

q solution column vector 

u velocity field (m ·s −1 ) 

R cylinder radius ratio 

d layer height (m) 

g gravitational acceleration (m ·s −2 ) 

k thermal conductivity (W ·m 

−1 ·K 

−1 ) 

N number of discretization nodes 

p pressure (Pa) 

r radial coordinate (m) 

t time (s) 

u radial component of velocity field (m ·s −1 ) 

v azimuthal component of velocity field (m ·s −1 ) 

Abbreviations 

CVFEM control volume based finite element method 

FDM finite difference method 

FEM finite element method 

FVM finite volume method 

KG Kuehn & Goldstein 

LBM Lattice Boltzmann method 

MPS moving particle semi-implicit method 

RBC Rayleigh-Bénard convection 

S stable solution 

SPH smoothed particle hydrodynamics method 

SU dual stable-unstable solution 

U unstable solution 

UU dual unstable solution 

Greek Symbols 

α thermal diffusivity (m 

2 ·s −1 ) 

β thermal volumetric expansion coefficient (K 

−1 ) 

�T temperature difference (K) 

ε dimensionless distance 

λ complex eigenvalue in global stability analysis 

λw 

wavelength (m) 

∇ differential operator nabla 

ν kinematic viscosity (m 

2 ·s −1 ) 

ω vorticity (s −1 ) 

ξ Chebyshev discretization variable (radial coordinate) 

� temperature field with homogeneous boundary con- 

ditions ( K) 

� stream function (m 

2 ·s −1 ) 

ρ density (kg ·m 

−3 ) 

θ azimuthal coordinate 

Subscripts 

B Boussinesq 

BC boundary conditions 

b bottom 

c characteristic 

crit critical 
b

2 
eq equivalent 

H hydrostatic 

i inner, imaginary part 

j iteration index 

m marginal 

max maximum 

o outer 

r radial 

s steady 

t top 

z z-axis (perpendicular to r − θ domain) 

θ azimuthal 

Superscripts 
′ perturbation 

ˆ dimensionless form 

average 
T transpose 

implest pattern which can occur is that of straight, parallel con- 

ection rolls with a horizontal wavelength λw 

≈ 2 d (wave number 

≈ π/d). Such rolls can be found near onset; however, as the di- 

ensionless distance ε ≡ �T / �T crit − 1 increases, the patterns of- 

en become progressively more complicated, and thus also more 

nteresting. In their attempts to reach high Rayleigh numbers Ra, 

xperimental researches have focused on convection layers with 

mall aspect ratios (horizontal width to height) which do not per- 

it the realizations of spontaneous large-scale patterns in highly 

urbulent convection. In fact, typical high Rayleigh number exper- 

ments are carried out with an aspect ratio of the order unity or 

ess [4,5] . RBC is perhaps the most thoroughly investigated and un- 

erstood pattern-forming system. The experimental setup is sim- 

le in principle and the basic physical mechanism (buoyancy vs 

issipation), which can be described in terms of the Oberbeck- 

oussinesq equations, is well understood. 

The basic flow field from the natural convection heat transfer 

n a horizontal cylindrical annulus for low value of Ra consists of 

wo symmetric crescent-shaped eddies in which fluid rises near 

he inner hotter cylinder and sinks near the outer colder one. At 

igh Ra, however, several kinds of convective flows which are de- 

endent on P r and aspect ratio A can be developed. According to 

uehn and Goldstein [6] , the flow in a horizontal cylindrical an- 

ulus is steady over the range of Rayleigh number from 10 2 to 

0 5 . Kuehn and Goldstein [7] also experimentally studied the flow 

atterns at Rayleigh numbers from 2 . 2 · 10 2 to 7 . 7 · 10 7 , and they

ound that the plume above the inner cylinder began to oscillate 

hen Rayleigh number was near 2 · 10 5 and the entire plume was 

urbulent at Ra ≈ 2 · 10 6 . Their results also showed that the local 

eat transfer coefficient depended significantly on the eccentricity 

hile the overall heat transfer coefficients changed by less than 

0% with the change of eccentricity. Yoo [8] in his outstanding 

ork, reported the occurrences of dual solutions at Ra larger than 

 critical value. Using a vorticity-streamfunction formulation, he 

bserved dual steady solutions at Ra > Ra crit ≈ 3800 for wide gap 

nnuli ( A = 2 ). Similar results were provided later by Mizushima 

nd Hayashi [9] , Mizushima et al. [10] , Xin and Le Quéré [11] and

ercader et al. [12] . After the emergence of the nanofluids that 

ave been shown to improve heat transfer process effectively, nu- 

erous research works have been also devoted to study heat trans- 

er improvement in annuli systems using nanofluids [13,14] . 

In the last decades, a considerable amount of effort has been 

edicated to study natural convection instabilities and bifurcations 

n horizontal concentric annuli. Powe et al. [15] experimentally in- 

estigated the bifurcation of natural convection of air ( P r = 0 . 7 )

y visualizing flow patterns, and categorized the flow patterns ob- 
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Fig. 1. Sketch (left) and computational grid (right) of the problem. 
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ained by their experiments and accumulated results by other re- 

earchers in a parameter space of (Ra, R ) where R ≡ R o /R i = 1 +
 

2 /A ) is the cylinder radius ratio. This experiment was repeated 

nd the classification was confirmed by Dyko et al. [16] . Busse 

1] discussed the non-linear properties such as the dependence of 

he heat transport on Rayleigh and Prandtl numbers and the stabil- 

ty properties of thermal convection. Janssen and Henkes [17] an- 

lyzed the instabilities in three dimensional differentially-heated 

avities with adiabatic horizontal walls. Petrone et al. [18] per- 

ormed a stability analysis of numerical steady-state solutions, and 

rovided a detail of the bifurcation diagram near the imperfect bi- 

urcation for different radius ratio R = 1 . 2 , 1.4 and 2 at P r = 0 . 7 .

ngeli et al. [19] provided a critical review of buoyancy-induced 

ow transitions in horizontal annuli. Soucasse et al. [20] studied 

he transitional regimes of natural convection in a differentially 

eated cubical cavity under the effects of wall and molecular gas 

adiation. Other well-known instability of the convective flows is 

he flickering instability [21,22] . 

In the present research work an extensive numerical analysis 

as been implemented in order to obtain a complete steady-state 

olution P r − Ra map for a fixed aspect ratio of A = 1 . 25 . Further-

ore, a global stability analysis has been also performed and the 

arginal stability curve Ra crit = f (P r) has been obtained. Different 

egions with dual solutions have been identified and it is shown 

hat in the unstable region the solution always reaches an attrac- 

or that appears as a vertical oscillating plume which is anchored 

o the inner cylinder and whose spatial and temporal structure can 

e explained through the flickering instability [21] , although its de- 

elopment is very limited by the upper surface. 

. Governing equations 

The problem of buoyancy (gravitational) induced motion of a 

uid in a two-dimensional annulus is formulated using the Boussi- 

esq approximation to solve the governing equations of mass, mo- 

entum and energy. Note that in the Boussinesq approximation, 

ensity variations are assumed to have a fixed part and another 

art that has a linear dependence on temperature: 

B (T ) = ρ[ 1 −β( T − T o ) ] , (1) 

here T is the temperature at a point within the fluid, β the ther- 

al volumetric expansion coefficient and T o is the temperature of 
3 
he outer cylinder. Fig. 1 shows the geometry of the problem along 

ith the polar coordinate system adopted in which the radial coor- 

inate r is measured from the center of the system and θ is mea- 

ured clockwise from the upward vertical line. Moreover, the radial 

elocity u is positive radially outwards and the angular velocity v 
s positive in the clockwise direction. 

The governing equations for the natural convection in the re- 

ion between horizontal concentric cylinders for an incompressible 

uid can be written as 

 · u = 0 , (2) 

D u 

Dt 
= − 1 

ρ
∇ p + ν ∇ 

2 u + 

ρB (T ) 

ρ
f m 

, (3) 

DT 

Dt 
= −α ∇ 

2 T . (4) 

here ν is the kinematic viscosity, α is the thermal diffusivity, u = 

 ( r, θ ) e r + v ( r, θ ) e θ , D 
Dt ≡ ∂ 

∂t 
+ u · ∇ is the material derivative and 

 m 

is the body force per unit mass which corresponds with gravity 

eld for the case the annulus is not rotating. 

For the situation in which the fluid is quiescent ( u = 0 ) and at

niform temperature the above equations simplify as 

∇p H + ρ f m 

= 0 . (5) 

q. (5) reveals that we can redefine the pressure as p ∗ = p − p H 
nd the linear momentum equation can be written as 

D u 

Dt 
= − 1 

ρ
∇ p ∗ + ν ∇ 

2 u + g β( T − T o ) e y , (6) 

here f m 

= −g e y . According to the Fig. 1 , the linear momentum

quation can be written in polar coordinates as 

D u 

Dt 
= − 1 

ρ
∇ p ∗ + ν ∇ 

2 u + g β( T − T o ) ( cos θe r − sin θe θ ) , (7) 

The equations governing the phenomenon should also be de- 

uced from the stream function-vorticity ( � − ω) formulation. The 

elocity field is given as 

 = 

1 ∂�
e r − ∂�

e θ , (8) 

r ∂θ ∂r 
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hich automatically fulfils the incompressible constraint. The vor- 

icity field for the resulting 2D problem has only one component 

erpendicular to the problem sketch as ω = ω e z which is given by 

 = ( ∇ × u ) · e z = ∇ 

2 �, (9) 

Taking the curl of Eq. (7) and projecting onto the z-axis, the 

orticity equation is obtained as 

Dω 

Dt 
= ν ∇ 

2 ω + g β

[
1 

r 
cos θ

∂ 

∂θ
( T − T o ) + sin θ

∂ 

∂r 
( T − T o ) 

]
. (10) 

Furthermore, by setting the characteristic time and length of 

he problem as t c = 

L 2 

α and l c = L = R o − R i , respectively 

D 

Dt 
≡ α

L 2 
D 

D ̂

 t 
, ∇ 

2 ≡ 1 

L 2 
ˆ ∇ 

2 , ˆ T = 

T − T o 

T i − T o 
, r = L ̂  r , ω = 

α

L 2 
ˆ ω , 

� = α ˆ � (11) 

he non-dimensional equations that govern the problem are: 

ˆ  = 

ˆ ∇ 

2 ˆ �, (12) 

1 

P r 

D ̂  ω 

D ̂

 t 
= 

ˆ ∇ 

2 ˆ ω + Ra 

[
1 

ˆ r 
cos θ

∂ ̂  T 

∂θ
+ sin θ

∂ ̂  T 

∂ ̂  r 

]
, (13) 

D ̂

 T 

D ̂

 t 
= 

ˆ ∇ 

2 ˆ T . (14) 

here P r = 

ν
α and Ra = 

gβ L 3 ( T i −T o ) 
ν α are the Prandtl and Rayleigh 

umbers, respectively. 

If we change the convention of sign of the vorticity ( ω → −ω) 

nd use the free-fall velocity V f = 

√ 

g L β ( T i − T o ) instead of α/L as 

 characteristic velocity for scaling the velocity then the governing 

quations read 

ˆ  = − ˆ ∇ 

2 ˆ �, (15) 

D ̂  ω 

D ̂

 t 
= 

√ 

P r 

Ra 
ˆ ∇ 

2 ˆ ω −
[

1 

ˆ r 
cos θ

∂ ̂  T 

∂θ
+ sin θ

∂ ̂  T 

∂ ̂  r 

]
, (16) 

D ̂

 T 

D ̂

 t 
= 

1 √ 

P r Ra 
ˆ ∇ 

2 ˆ T , (17) 

hich are the equations we have solved in the present work and 

oincide with those appearing in [23] . 

The bi-harmonic equation for the streamfunction 

ˆ � is given 

y 

∂ ˆ ∇ 

2 ˆ �

∂ ̂  t 
+ J 

(
ˆ ∇ 

2 ˆ �, ˆ �
)

= 

√ 

P r 

Ra 
ˆ ∇ 

4 ˆ � + 

[
1 

ˆ r 
cos θ

∂ ̂  T 

∂θ
+ sin θ

∂ ̂  T 

∂ ̂  r 

]
, (18) 

∂ ̂  T 

∂ ̂  t 
+ J( ̂  T , ˆ �) = 

1 √ 

P r Ra 
ˆ ∇ 

2 ˆ T . (19) 

here J(η, ˆ �) ≡ 1 
ˆ r 

(
∂ ̂  �
∂θ

∂η
∂ ̂ r 

− ∂ ̂  �
∂ ̂ r 

∂η
∂θ

)
represents the convective 

erm. 

The boundary conditions on the two impermeable isothermal 

alls are given by 

ˆ = 

∂ ˆ �

∂ ̂  r 
= 0 , ˆ T = 1 , (20) 

n the inner cylinder ( ̂ r = R i /L ) and 

ˆ = 

∂ ˆ �

∂ ̂  r 
= 0 , ˆ T = 0 , (21) 

n the outer cylinder ( ̂ r = R o /L ). 
4 
In case symmetry with respect to the y axis is imposed, where 

nly half of the annulus is taken as the computational domain, the 

ollowing symmetric condition is applied along two vertical lines 

f symmetry at θ = 0 and θ = π : 

ˆ = 

∂ ˆ �

∂θ
= 

∂ ̂  T 

∂θ
= 0 . (22) 

The solution of the heat equation with the same boundary con- 

itions (which is only function of the radial coordinate) is an im- 

ortant reference to measure heat transfer efficiency of natural 

onvection process. Therefore, in order to measure the convergence 

f the system and compare our solutions with those provided by 

ther authors [6,24] , the local and average equivalent conductivity 

23,25] are defined as follows: 

 eq ( ̂ r , θ ) ≡ Nu 

Nu c 
= −ˆ r ln (R ) 

∂ ̂  T 

∂n 

, 

k̄ eq ( ̂ r ) ≡
∮ 

k eq ( ̂ r , θ ) ds 

2 π ˆ r 
= 

− ln (R ) 

2 π

∮ 
∂ ̂  T 

∂n 

ds, (23) 

here Nu c ≡ 1 
ln (R ) 

is the Nusselt number corresponding to the 

ure conductive flow and R = 

R o 
R i 

= 1 + 2 L 
D i 

= 1 + 

2 
A 

is the radius

atio. According to the geometric configuration we are dealing with 

 

∂ ̂ T 
∂n 

= 

∂ ̂ T 
∂r 

and ds = r dθ ), the above equation can be further re- 

uced to 

¯
 eq,i = 

− ln (R ) 

2 π( R − 1 ) 

∫ 2 π

0 

∂ ̂  T 

∂ ̂  r 
dθ . (24) 

or the inner cylinder ( ̂ r = 

R i 
L ), and 

¯
 eq,o = 

−R ln (R ) 

2 π( R − 1 ) 

∫ 2 π

0 

∂ ̂  T 

∂ ̂  r 
dθ . (25) 

or the outer cylinder ( ̂ r = 

R o 
L ). 

Fig. 2 shows the computational grid used for solving the prob- 

em where periodic boundary condition is employed in the az- 

muthal direction, θ . Additionally, Chebyshev discretization allows 

o radially concentrate the nodes near the walls ( ξ = ±1 ) in order 

o accurately solving both the thermal and velocity boundary lay- 

rs. 

. Numerical method 

In recent years, a number of numerical methods have been ap- 

lied to study natural convection in a horizontal cylindrical annu- 

us, such as finite element method (FEM) [26,27] , finite difference 

ethod (FDM) [28] , finite volume method (FVM) [29,30] , lattice 

oltzmann method (LBM) [31,32] , differential quadrature method 

33] , control volume based finite element method (CVFEM) [34] , 

oving particle semi-implicit method (MPS) [35] and a smoothed 

article hydrodynamics (SPH) method [36] . However, most of the 

revious studies did not consider the effect of the Prandtl number 

n the natural convection heat transfer in a horizontal cylindrical 

nnulus. The objective of the present work is to extend our knowl- 

dge of flow patterns in a horizontal concentric annulus for a wide 

ange of Rayleigh numbers ( 10 2 to 5 · 10 6 ) and Prandtl numbers 

0.01 to 1). 

We perform a spectral numerical method for the spatial vari- 

bles using Chebyshev and Fourier discretizations for the radial 

nd azimuthal variables, respectively. Boundary conditions are di- 

ectly implemented in the derivation matrices using the DM suite 

oolbox [37] . The dimensionless radial domain ( ̂ r ∈ [ R i /L, R o /L ] ) is

apped (see Fig. 2 ) in the Chebyshev domain ( ξ ∈ [ −1 , 1] ) using

he following path 

ˆ 
 = 

1 

2 

( ξ + 1 ) + 

R i 

L 
= 

1 

2 

( ξ + 1 ) + 

A 

2 

→ ξ = 2 ̂

 r − ( A + 1 ) . 

(26) 
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Fig. 2. Grid of the numerical domain. 
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Since the derivation matrices implemented in the DM suite re- 

uire Dirichlet boundary conditions for the temperature, we have 

ecomposed the temperature field as 

ˆ 
 ( ̂ r , θ, ˆ t ) = 

ˆ �( ̂ r , θ, ˆ t ) + 

ˆ T BC ( ̂ r ) = 

ˆ �( ̂ r , θ, ˆ t ) + 

(
R o 

L 
− ˆ r 

)

= 

ˆ �( ̂ r , θ, ˆ t ) + 

(
1 + 

A 

2 

− ˆ r 

)
. (27) 

ubstituting the above equation in the vorticity and temperature 

quations ( (15) –(17) ), we obtain 

ˆ  = − ˆ ∇ 

2 ˆ �, (28) 

D ̂  ω 

D ̂

 t 
= 

√ 

P r 

Ra 
ˆ ∇ 

2 ˆ ω −
[

1 

ˆ r 
cos θ

∂ ˆ �

∂θ
+ sin θ

∂ ˆ �

∂ ̂  r 

]
+ sin θ, (29) 

D ̂

 �

D ̂

 t 
− 1 

ˆ r 

∂ ˆ �

∂θ
= 

1 √ 

P r Ra 

(
ˆ ∇ 

2 ˆ � − 1 

ˆ r 

)
. (30) 

The main advantage of the above formulation is that the devi- 

toric temperature field 

ˆ �, has homogeneous Dirichlet boundary 

onditions at both the inner ( ̂ r = R i /L or ξ = −1 ) and outer ( R o /L

r ξ = 1 ) walls [38] . 

To reduce the size of the system to solve, the flow variables 

sed are ˆ � and 

ˆ �, and once defined the vector q = [ ̂  �, ˆ �] T , the

ystem of equations to solve can be written as 

 

∂q 

∂ ̂  t 
= f ( ̂ t , q ) , (31) 

ith 

 = 

(
ˆ ∇ 

2 0 

0 1 

)
, (32) 

nd 

 ( ̂ t , q ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

− 1 
ˆ r 

(
∂ ̂  �
∂θ

∂ ̂  ∇ 

2 ˆ �
∂ ̂ r 

− ∂ ̂  �
∂ ̂ r 

∂ ̂  ∇ 

2 ˆ �
∂θ

)
+ 

√ 

Pr 
Ra 

ˆ ∇ 

4 ˆ �

+ 

[ 
1 
ˆ r 

cos θ ∂ ̂  �
∂θ

+ sin θ
(

∂ ̂  �
∂ ̂ r 

− 1 

)] 
− 1 

ˆ r 

(
∂ ̂  �
∂θ

∂ ̂  �
∂ ̂ r 

− ∂ ̂  �
∂ ̂ r 

∂ ̂  �
∂θ

)
+ 

1 √ 

Pr Ra 

(
ˆ ∇ 

2 ˆ � − 1 
ˆ r 

)
+ 

1 
ˆ r 

∂ ̂  �
∂θ

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

(33) 

.1. Steady solver 

To obtain the steady solution [ ̂  �s , ˆ �s ] 
T of Eq. (31) , a Newton-

aphson solver has been implemented as 

 j+1 = q j −
[∇ q f (q j ) 

]−1 
f j = q j −

[
B (q j ) 

]−1 
f j , (34) 
5 
here f j = f ( ̂ t , q j ) and 

 ≡ ∇ q f = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− 1 
ˆ r 

(
∂ ̂  � j 

∂θ
∂ ̂ ∇ 2 
∂ ̂ r 

+ 

∂ ̂  ∇ 2 ˆ � j 

∂ ̂ r 
∂ 
∂θ

− ∂ ̂  � j 

∂ ̂ r 
∂ ̂ ∇ 2 
∂θ

− ∂ ̂ ∇ 2 ˆ � j 

∂θ
∂ 
∂ ̂ r 

)
+ 

√ 

Pr 
Ra 

ˆ ∇ 

4 1 
ˆ r 

cos θ ∂ 
∂θ

+ sin θ ∂ 
∂ ̂ r 

− 1 
ˆ r 

(
∂ ̂ � j 

∂ ̂ r 
∂ 
∂θ

− ∂ ̂ � j 

∂θ
∂ 
∂ ̂ r 

− ∂ 
∂θ

)

− 1 
ˆ r 

(
∂ ̂  � j 

∂θ
∂ 
∂ ̂ r 

− ∂ ̂  � j 

∂ ̂ r 
∂ 
∂θ

)
+ 

1 √ 
Pr Ra 

ˆ ∇ 

2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

,

(35) 

nd j marks the index for each iteration of the algorithm. It is 

orth mentioning that the steady solutions have been sought tak- 

ng advantage of their symmetry (anti-symmetric ˆ �s and symmet- 

ic ˆ �s ) with respect to the vertical axis ( θ = 0 ). It has been im-

lemented by means of folding the differentiation matrices, which 

as allowed a significant reduction of the required computing re- 

ources by solving only within the θ ∈ [0 , π ] range. A steady solu- 

ion is considered converged if max (| f j | ) < 10 −8 . 

.2. Unsteady solver 

To solve the unsteady problem a 4th order Runge-Kutta method 

as been implemented in the full domain (i.e. symmetry has not 

een imposed) as it is described in [39] . Defining the time step 

s �ˆ t , the time evolution Eq. (31) are solved following the rule 

where the superscript n defines the different time instants), 

 

n +1 = q 

n + A 

−1 1 

6 

�ˆ t ( k 1 + 2 k 2 + 2 k 3 + k 4 ) , (36) 

ith 

 1 = f ( ̂ t n , q 

n ) , (37) 

 2 = f ( ̂ t n + �ˆ t / 2 , q 

n + k 1 �ˆ t / 2) , (38) 

 3 = f ( ̂ t n + �ˆ t / 2 , q 

n + k 2 �ˆ t / 2) , (39) 

 4 = f ( ̂ t n + �ˆ t , q 

n + k 3 �ˆ t ) . (40) 

.3. Global stability analysis 

Once the steady-state solutions are obtained, [ ̂  �s , ˆ �s ] 
T , we can 

erform a global stability analysis of the solution just defining a 

mall variation of the solution around the steady-state solution, 

 = q s + q 

′ . (41) 
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Fig. 3. Comparison between the experimental local equivalent conductivity k̄ eq by Kuehn and Goldstein (KG) [6] with the current numerical results (model) at Ra = 4 . 7 · 10 4 

and Pr = 0 . 706 . 
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Table 1 

Comparison of the average equivalent conductivity k̄ eq obtained by the current 

model with the experimental results provided by Kuehn & Goldstein [6] where 

inner and outer values are displayed separately. Current results are likewise 

compared with other numerical solutions provided in literature [24] . 

k̄ eq 

Ra Pr A ≡ D i /L k̄ eq,i [6] k̄ eq,o [6] k̄ eq,io [24] k̄ eq,io 

(current) 

10 2 0.7 1.25 1.000 1.002 1.001 1.001 

10 3 0.7 1.25 1.081 1.084 1.082 1.082 

3 · 10 3 0.7 1.25 1.404 1.402 1.397 1.397 

6 · 10 3 0.7 1.25 1.736 1.735 1.715 1.715 

10 4 0.7 1.25 2.010 2.005 1.979 1.978 

2 · 10 4 0.7 1.25 2.405 2.394 2.374 

3 · 10 4 0.7 1.25 2.661 2.643 2.624 

5 · 10 4 0.7 1.25 3.024 2.973 2.958 2.958 

7 · 10 4 0.7 1.25 3.308 3.226 3.193 

10 4 0.5 1.25 1.950 1.955 1.924 

10 4 1.0 1.25 2.038 2.039 2.009 

10 4 5.0 1.25 2.069 2.066 2.039 

3 · 10 4 5.0 1.25 2.741 2.768 2.655 

5 · 10 4 5.0 1.25 3.036 3.088 2.976 

10 5 5.0 1.25 3.756 3.471 3.486 

10 4 10.0 1.25 2.070 2.067 2.040 

10 4 100.0 1.25 2.071 2.067 2.041 

s

s

e

r

4

s  

T

[  

p

s

t

c

o

t

t

1

d

f we define the perturbations q 

′ = [ ̂  � ′ , ˆ �′ ] T to be of the form, 

 

′ ( ̂ r , θ, ̂  t ) = 

˜ q ( ̂ r , θ ) e λ ˆ t , (42) 

he stability equations reduce to solving a generalized eigenvalue 

roblem of the form, 

 ̃

 q = λ A ̃

 q , (43) 

ith A and B differential operators defined previously and λ = 

r + i λi and 

˜ q denoting the complex eigenvalue and eigenvector, 

espectively. 

Unlike in the steady solver, symmetry has not been forced in 

he stability analysis. It means that steady solution q s has been 

reviously unfolded so that the stability analysis is applied over 

he full angular domain θ ∈ [ 0 , 2 π ] . 

.4. Validation 

For validation purposes the developed model has been solved 

sing a mesh of N r × N θ = 30 × 91 nodes (where 91 nodes span

alf of the angular domain). Its numerical solutions have been 

ompared with the experimental results presented by Kuehn and 

oldstein [6] . In Fig. 3 we can see the value of k eq at the inner and

uter surfaces for Ra = 4 . 7 · 10 4 and P r = 0 . 706 obtained from the

imulations made by the spectral code for different angular values 

 θ ), compared to the results obtained experimentally. It is noted 

hat the numerical predictions are consistent with the experimen- 

al results measured on the surfaces of the concentric cylinders in 

6] . 

Fig. 4 shows the results of the dimensionless temperature field 

s a function of the dimensionless radial coordinate inside the 

uid, for different values of θ compared to the experimental re- 

ults obtained for the same case in [6] . It presents an excellent 

greement. Finally, Table 1 summarizes the results of k eq measured 

arying the values of Ra and P r for A = 1 . 25 , and as it can be

een, values are obtained that vary in the third decimal place when 

hey are compared to those of [24] . It is worth noting that due to

onservation of energy any steady-state solution should verify that 

 eq,o = k eq,i and this is observed for our numerical results up to the 

fth decimal place. 

. Numerical results 

This section details the procedure to obtain the complete map 

f steady-state solutions and shows the regions in the parameter 
6 
pace where they are stable, which have been verified by a global 

tability study, as well as by solving the temporal evolution of the 

quations (28) –(30) . All the results presented in this research cor- 

espond to A ≡ D i /L = 1 . 25 . 

.1. Map of steady state solutions 

The first problem to be addressed is the determination of 

teady-state solutions in a P r − Ra map. This is shown in Fig. 5 .

o obtain this map, we have visited the different position of Ra ∈ 

10 2 , 5 · 10 6 ] and P r ∈ [0 . 01 , 1] dividing the map in 75 and 149

oints respectively according to a logarithmic scale. Therefore, this 

tudy aims to provide the steady state solution for 11175 cases in 

he range of Ra and P r used. Firstly, P r number is fixed and we in- 

rease the Ra number, solving the steady-state solution by means 

f Newton-Raphson iteration using as initial guess the result ob- 

ained for the previous Ra . After that sweep of the map, we repeat 

he process fixing Ra and increasing/decreasing P r numbers from 

0 −2 /1, respectively. This new sweep allows to obtain regions of 

ual steady-state solutions [40] . In Fig. 5 the different solutions are 
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Fig. 4. Comparison between the experimental dimensionless radial temperature (circles) by Kuehn and Goldstein [6] with the current numerical model (continuous line) at 

Ra = 4 . 7 · 10 4 and Pr = 0 . 706 . 

Fig. 5. Map of steady solutions for A = 1 . 25 in the (Pr, Ra ) space. Some of the solutions analysed later are marked with name S for stable solutions and U for unstable 

solutions. 
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arked, together with the special cases presented later. The solu- 

ions in the region hatched with lines sloping up to the right (blue 

ines) present a steady solution with one vertical plume emanating 

rom the upper part of the inner cylinder. In the region hatched 

ith lines sloping up to the left (red lines) the problem presents 

ultiple plumes. The solutions used to discuss the structures cre- 

ted are marked by points and named using letters, S means that 

he solution is stable and U if unstable. There are regions where 

wo steady-state solution coexist marked by two different letters, 

U or SU depending whether both solutions are unstable or one 

table and another unstable. Results of stability are discussed later. 

his map complements and fill the gaps of the work of [36] , where

hey presented only 24 different points in the Ra − P r domain (see 

ig. 10 ). 

Fig. 6 shows the stream function isocontours and isotherms of 

ll the steady-state solutions where only a single solution has been 
7 
ound (single hatch pattern). The solutions for low Ra present a 

tructure of two counter-rotating symmetrical vortices with respect 

o the y axis. For a given low Ra number ( Ra = 1 . 3397 · 10 2 ), in-

reasing the Prandtl number we find the transition from solution 

1 to S2, which basically increases the intensity of the rotation of 

he vortices and move their centers upwards. For P r = 0 . 8043 , in-

reasing the Ra number, the solutions present the same kind of 

tructure, but the intensity of the vortices increase and the cen- 

er climbs up over the vertical height of the center of the annulus 

see solutions S4 and S6). It can be also observed the appearance 

f an intense vertical plume where the temperature is maximum, 

laced on the y axis. For intermediate P r numbers ( P r = 0 . 0733 ,

he solution passes from a stable solution in which the typical two 

ounter-rotating vortices are deformed into four counter-rotating 

nes, to a solution where the flow is dominated by 6 counter ro- 

ating vortices (see transition from S3 to U2, U4). If the Rayleigh 
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Fig. 6. Steady solutions corresponding to the region of the map ( Fig. 5 ) where only single steady solutions have been found. S and U stand for stable and unstable steady 

solutions respectively. Dimensionless temperature ˆ T have been plotted through colormap whereas isocontours describe the dimensionless stream function ˆ � . 

8 
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umber is further increased, the vortices at the upper part scale up 

n intensity and dominate (U5), creating a vertical plume that com- 

licates further the structure of the flow in that region. It is worth 

oting that the temperature field near the inner surface shows an 

volution from 5 plumes (U1, U2, U3) to 2 (U4 and U5). Finally, 

hen Ra number is dominant (solution U6, for Ra = 3 . 2246 · 10 6 

nd P r = 0 . 1595 , the solution becomes a very intense plume flow-

ng from the upper part of the inner cylinder. This kind of solution 

an be referred to as upwards vertical plume, since at the vertical 

xis ( y axis) the plume flows in the vertical direction. 

Regarding the two regions of dual steady-state solutions (re- 

ions with double hatch pattern), we show in Fig. 7 the two 

teady-state solutions found for the cases UU1, UU2 y UU3. The 

rst case, UU1 corresponds to the region of dual solution for low 

alues of P r ( P r = 0 . 0128 ). Both solutions present basically the

ame structure with five plumes. Solutions UU2 to UU6 present 

wo steady-state solutions, one with a very intense upward ver- 

ical plume, and the other one with 3 plumes, one vertical and the 

ther one placed at θcrit ≈ 31 . 5 ◦. As we will discuss later, the so-

ution with the upward vertical plume is the real attractor for the 

nsteady solution. 

Fig. 8 shows the flow structure in the dual solution region SU. 

here is a steady solution, that is the solution with one upwards 

ertical plume, and there also are another unstable solution pre- 

enting two plumes at angles ≈ 31 . 5 ◦ as before. 

As we have shown in this section, the structure of the steady 

olutions obtained can be of a simple vertical plume or multiples 

lumes. The case of a single plume is easy to understand com- 

aring with the results shown in [21] for an axisymmetric case, 

41] for a 2D case of a variable density jet and [42] for a confined

D jet/wake. Buoyancy forces are so intense that, due to the geom- 

try of the problem, the boundary layer on the upper side of the 

nner cylinder starts to heat up the fluid creating a single planar 

et. The force that generates the 2D jet is the buoyancy force that 

ries to initiate the movement of the fluid upwards, and once the 

ovement has started, the flow becomes a planar variable density 

et similarly to the one described in [41] . For Prandtl numbers of 

he order of unity, thermal and viscous diffusion becomes of the 

ame order, and the described flow is created. However, for low P r

umbers, the viscous diffusion is much lower than the thermal dif- 

usion, allowing the appearance of more complicated structures. In 

hese cases, two plumes are created at approximate angles of 31.5 ◦

n both sides of the symmetry plane. This allows to create a de- 

cending flow at the mid plane that moves against the buoyancy 

orces. The structure created can be described as two very inter- 

elated counter-rotating vortices near the midplane. The stability 

haracteristics of these more easily destabilized situations are ana- 

yzed in the next section. 

.2. Global stability 

Once the map of steady-state solutions to the problem of natu- 

al convection between two concentric cylinders has been obtained 

nd described, it would be interesting to carry out a global stabil- 

ty analysis in order to elucidate the stability properties of each of 

he steady solutions found. To perform this task, the global stabil- 

ty equations described in Section 2 are used. Fig. 9 (a) shows the 

ost unstable mode for the case of P r = 0 . 0733 as a function of the

ayleigh number. It is detected that the change of sign of the ex- 

onent λ occurs approximately for the critical value Ra crit ≈ 2438 . 

he eigenvector structure (real part) of the most unstable mode is 

lso represented in Fig. 9 (b), (c) and (d) for the cases labelled S3,

2 and U4, respectively in the stability map. It can be seen that 

he structure is that of a sustained oscillation around the two 31.5 ◦

lumes. It is worth mentioning that while S3 and U2 solutions os- 
9 
illate with a given frequency λmax,i � = 0 , the last solution U4 only 

as a non-null (positive) real part in the eigenvalue. 

Finally, repeating the process for all the P r number studied we 

ave obtained the global stability map for the flow in this problem 

onfiguration ( A = 1 . 25 ). This is shown in Fig. 10 . The stability bor-

er (black continuous line) delimits the region of the P r − Ra map 

n which there is at least one stable steady solutions. As we will 

ee below, this stable solution turns out to be the physical solution 

f the steady problem. It is worth mentioning that below the sta- 

ility curve, the stable solutions are defined by a unique upwards 

ertical plume (hatch pattern with lines sloping up in blue color), 

ut for low values of P r ( P r ≤ 0 . 2 approximately) there is a small

egion of steady stable solutions with multiple plumes (hatch pat- 

ern with lines sloping down in red color). This numerical stabil- 

ty curve has been tested by means of unsteady numerical simula- 

ions in different points, obtaining the same values of Ra crit for the 

ransition, where the whole angular domain θ ∈ [ 0 , 2 π ] has been 

egarded (no symmetry imposed). As it will be shown in the fol- 

owing section by means of transient simulations, whenever there 

s a solution with a vertical plume structure, it will act as a flow 

ttractor. Therefore, the stability in the area of P r � 0 . 25 is dom-

nated by the stability of that solution and that is what is finally 

epresented in Fig. 10 . Fig. 10 also displays some cases of the sta- 

ility test by Yang et al. [36] accomplished by means of transient 

nalysis. According to them, four states are regarded (see legend of 

ig. 10 ): UP1 (unstable with one plume), UPM (unstable with mul- 

iple plumes), SP1 (stable with on plume) and SPM (stable with 

ultiple plumes). It can be observed that the region with stable 

olutions resembles with the stable region found in the current re- 

earch work. The only significant discrepancy is based on the ob- 

ervations made in the case where P r = 0 . 1 and Ra = 10 5 . Unlike

he conclusion drawn by the aforementioned authors, as far as we 

ave found, it seems to behave as an unstable solution, where the 

hysical solution is a sustained oscillation around the steady state 

olution. 

As we discussed previously, the typical flow structures may 

ontain a simple or multiple plumes. In the case of the simple 

lume, the buoyancy force creates the planar variable density jet. 

harawaj and Das [41] discussed that the only global instability 

hat appear in this flow is a ‘puffing’ plume (varicose instability) 

ut the one presented here is of sinuous type (see supplemen- 

ary material). This instability is created due to the competition be- 

ween the inertia and viscous forces in the shear layers of the pla- 

ar jet. The flow can be seen as an oscillation over the steady state 

olution (equilibrium solution) as it can be observed in Fig. 10 by 

ammisola et al. [42] . The case of multiple plumes have a more 

omplex equilibrium. The structure that appears on the upper part 

f the cylinder is formed by two ascending plumes placed at ap- 

roximately 31.5 ◦ on both sides of the symmetry plane and a de- 

cending flow at the mid plane creating two counter-rotating vor- 

ices. As we have discussed previously, these cases are mainly con- 

rolled by thermal diffusion, so when they are in equilibrium, the 

eat transfer created on both cylinders and the convection due to 

he counter-rotating vortices equilibrate. If Ra is increased over a 

hreshold, this heat transfer equilibrium is lost so the entire flow 

s destabilized, moving the solution to a single-point attractor as it 

s explained in the following subsection. The cause of the instabil- 

ty is created outside of the ascending jets, as it can be observed 

n figures 9 (b)-(c) where the structure of the most unstable mode 

or the same low Prandtl number ( P r = 0 . 0733 ) and three differ-

nt Rayleigh numbers are plotted. The eigenvector corresponding 

o the most unstable mode has their maxima at approximate an- 

les of 45 ◦ in the lower region of the ascending jets so those parts 

ill be the first destabilized to a new solution instead of oscillating 

round the steady state. 
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Fig. 7. Steady solutions corresponding to the region of the map ( Fig. 5 ) where two unstable steady solutions coexist (UU). Dimensionless temperature ˆ T have been plotted 

through colormap whereas isocontours describe the dimensionless stream function ˆ � . 
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.3. Unsteady solutions in the unstable region 

Having accurately determined the region of stability of steady- 

tate solutions it would be interesting to understand what is phys- 

cally happening in the unstable region. To this end, unsteady nu- 

erical simulations have been carried out in different regions. 
10 
Firstly, two specific cases of temporal evolution of the flow for 

oints included in dual solution regions will be studied. Fig. 11 

hows the results for P r = 0 . 2792 and Ra = 7 . 2025 · 10 4 , corre-

ponding to the dual SU1 solution. Each temporal evolution takes 

s initial solution the steady state solution of the two possible ones 

hat coexist in that region and, to accelerate the process, white 
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Fig. 8. Steady solutions corresponding to the region of the map ( Fig. 5 ) where two steady (stable and unstable solutions) coexist (SU). Dimensionless temperature ˆ T have 

been plotted through colormap whereas isocontours describe the dimensionless stream function ˆ � . 

Fig. 9. Evolution of the real and imaginary parts of the most unstable mode (mode with the biggest real part λmax ) (a) for Pr = 0 . 0733 . Real part of the eigenvector of the 

most unstable mode for steady solutions S3 (b), U 2 (c) and U 4 (d). 

11 
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Fig. 10. Stability map for A = 1 . 25 . The stable and unstable regions are separated by the marginal black curve Ra m = f (Pr) . The diagram provided in [36] is also shown using 

green and red symbols for the stable and unstable solutions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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oise of intensity 10 −4 is added to the stream-function with the 

ollowing form: 

= �s + sin 

[
π

(
ˆ r − A 

2 

)]
cos 

(
θ − π

2 

)
· 10 

−4 . (44) 

The solution in blue in Fig. 11 (g), being stable, remains on 

he same value of k̄ eq throughout the entire process as shown 

n Fig. 11 (a). The solution in red comes from the unstable solu- 

ion. Initially it causes some oscillations (b) until the corresponding 

uasi-steady-state solution with k̄ eq ≈ 3 . 38 dominates (c), whose 

hape has a double plume structure in angles ± 31.5 ◦ with respect 

o the y axis. After about 1200 (dimensionless) units of time, the 

olution becomes unstable and quickly switches to the stable so- 

ution (d)-(f). In Fig. 11 (h) it is presented the Poincaré map of the 

ime evolution of the solutions presented using as measurement 

arameters k̄ eq,i and k̄ eq,o . As it has been mentioned earlier, any 

teady state solution has to verify that k̄ eq,i = k̄ eq,o , so we have in- 

luded in the plot that line to show that the solutions have to lie

round it. The first case starts from the final steady solution and it 

ests there because the solution is stable. For the unstable case, 

t starts from a steady solution, jumps to an intermediate solu- 

ion ( Fig. 11 (c)) that has a greater value of k̄ eq and that is quasi-

teady (lie over the red line), to later return to the steady state 

olution characterized by one upwards vertical plume, that acts 

s an attractor of the solution in this particular case. The quasi- 

tationary intermediate solution has an equivalent average conduc- 

ivity of k̄ eq ≈ 3 . 38 that is around 10% higher than the final steady 

olution. The intermediate solution consists of a downward vertical 

lume, since the flow goes following the downright direction along 

he y axis. The above explanation is supported by a video, included 

s supplementary material, which displays the transient evolution 

f the dual solution (SU1). 

Secondly, the time evolution of the UU2 solution shown in 

ig. 12 will be analyzed. The same technique described in the pre- 

ious paragraph will be used, in which the problem is initialized 

rom each of the steady-state solutions present for P r = 0 . 2246 and
12 
a = 9 . 6490 · 10 4 by adding the same small perturbation to the 

tream function solution defined in Eq. (44) . The solution with only 

ne vertical plume ( Fig. 12 (a)–(d) and blue line in Fig. 12 (j)) leaves

he steady-state solution shown in Fig. 12 (a), and after approx- 

mately 400 (dimensionless) time units, the flow is destabilized 

nd starts oscillating and forming a flickering instability in the 

lume (see the video upload as supplementary material) whose 

tructure is shown in Fig. 12 (c)-(d). Similarly, if transient simu- 

ation is initiated from the second steady solution displayed in 

ig. 12 (e) it evolves until it finds again a quasi-steady-state solu- 

ion with two plumes ( ̄k eq ≈ 3 . 6 ), detailed in Fig. 12 (f). It remains

here for approximately 800 characteristic times, jumping to the 

ttractor solution, which in this area is characterized by an intense 

igh frequency oscillating plume ( Fig. 12 (h)-(i)). We plot again the 

oincaré map for both solutions in Fig. 12 (k) and (l). Both solu- 

ions start from the steady-state solution calculated by means of 

ewton-Raphson and move to the same attractor that corresponds 

o a vertical oscillating plume. Note that Fig. 12 (c)-(d) and (h)-(i) 

isplay the same oscillating vertical plume, where the oscillation 

mplitude and its center is the same in both cases. It is relevant 

o point out that the solution with multiple plumes ( Fig. 12 (e)-(i)) 

asses through a quasi-steady solution ( Fig. 12 (f) with k̄ eq ≈ 3 . 57 )

hich enhances by 10% the heat transfer process. 

Finally, it remains to answer the question of what is happening 

hroughout the unstable zone. As we have seen, in dual-solution 

egions, whenever a single plume solution could exist, it will al- 

ays provide the lower energy dissipation and would work as a 

asin attractor. We have checked the cases shown in Fig. 5 and 

or them, whenever the solution is in the region hatched with 

ines sloping up to the left (blue color), the final solution is always 

 vertical plume placed in the upper part of the inner cylinder. 

henever the solution is in the stable region shown in Fig. 10 , 

he vertical plume is stable, and in the unstable region the solu- 

ion presents a flickering instability. In the unstable region hatched 

ith lines sloping up to the left (red color) in Fig. 5 , the solution

resents multiple plumes. The final non-stationary solution is al- 

ays a solution that resembles the single vertical plume or multi- 
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Fig. 11. Transient evolution starting from the dual steady solution SU1 ( Pr = 0 . 2792 and Ra = 7 . 2025 · 10 4 ). As it can be seen in subfigure (a), transient simulation starting 

from the SU1 stable state remains stable in the form of an upward plume. However, if transient simulation is launched from the SU1 unstable steady solution (displayed 

in subfigure (b)) it evolves to an intermediate quasi-steady solution (subfigure (c) at ˆ t = 500 ) which through an asymmetric transition evolves to the final steady state 

(subfigure (f) at ˆ t = 1500 ) which is the same solution as the initial stable case displayed in subfigure (a). Subfigure (g) shows the time evolution of the average equivalent 

conductivity in both transient simulations. As expected, both simulations reach the same final solution (subfigures (a) and (f)). Subfigure (h) shows the Poincaré map of the 

SU1 unstable time evolution where the red line is the region where k̄ eq,i = ̄k eq,o . Blue line displays the path followed by the flow displayed in subfigures (b)–(f). As expected, 

all steady solutions are on the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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s

le plume solutions, depending on the (P r, Ra ) values used. From 

he physical point of view, one may think that solutions that mini- 

ize heat transfer between surfaces are the ones that will be can- 

idates to be the attractors of the system, but in the two examples 

bove it is observed that this is not always the case. In the cases 

isplayed in Figs. 11 (g) and 12 (j) it can be seen that of the dual so-

utions analyzed, the solution of multiple plumes always presents 

 k̄ eq lower than the final solution determined by the single plume 

ttractor. For this reason, k̄ eq is not a parameter that directly con- 
13 
itions the solution that nature selects, and a much more detailed 

tudy of all the possible non-stationary solutions that this prob- 

em presents should be performed. Furthermore, the fact that we 

ave found almost stationary solutions to the problem that im- 

rove heat transfer mechanism in this type of problem (remem- 

er that in this systematic study a constant value of L/D i = 0 . 8

as been maintained) allows us to suspect that geometric modi- 

cations can be made to the shape of the inner surface that will 

tabilize these solutions. This strategy, in case it was successful, 
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Fig. 12. Transient evolution starting from the dual steady solution UU2 ( Pr = 0 . 2246 and Ra = 9 . 6490 · 10 4 ). As it can be seen in subfigures (a)–(d) transient simulation 

starting from the first unstable steady solution (subfigure (a)) evolves towards a final sustained oscillation (subfigures (b)–(d)). Subfigures (e)–(i) represent the time evolution 

of the flow starting from the second unstable steady (displayed in subfigure (e)). Like in the first case, the second steady solution also evolves towards the same sustained 

oscillation but after passing through an additional intermediate quasi-steady state plotted in subfigure (f) at t̄ = 600 . This fact can be checked in subfigure (j). Subfigures 

(k) and (l) display the Poincaré maps for each simulation. It can be observed that final oscillations have the same amplitude and evolve around the same point located at 

k̄ eq ≈ 3 . 258 . 

14 
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an be used to improve the heat transfer process in real applica- 

ions. 

. Conclusions 

In this study, a systematic characterization of the steady-state 

olutions of the flow between two concentric cylinders heated at 

ifferent tem peratures, with a constant L/D i = 0 . 8 for a param-

ter space P r ∈ [0 . 01 , 1] and Ra ∈ [10 0 0 , 5 · 10 6 ] has been carried

ut. More than 110 0 0 steady-state solutions have been sought, be- 

ng, as far as the authors know, the most detailed study so far for 

his type of configurations. Generally, solutions for P r > 0 . 25 have a

ertical plume anchored to the top of the inner cylinder. However, 

hen P r < 0 . 25 , if Ra is low enough it shows a single plume which

volve to solutions with multiple plumes as Ra increases. An over- 

ll stability analysis has been performed on all the steady-state so- 

utions, and the value of the threshold Ra crit for each P r, for which

he solution becomes unstable, can be determined quite precisely. 

his supercritical transition presents a complex curve due to the 

omplicated 2 D structure of the steady-state solutions with respect 

o planar Rayleigh-Bénard problem. 

The stability diagram has been checked by means of time evo- 

ution simulations in different cases reproducing accurately the 

ransition. For some of the total cases studied, the temporal evo- 

ution shows that in the region in which one expects a simple in- 

ense buoyancy plume, this solution acts as an attractor, showing 

hat it is the dominant solution to be expected in nature (steady 

f unsteady). The region of multiple plumes is wider typically for 

 r < 0 . 25 . For low Ra numbers one expect to have one vertical

teady plume. There is a limit when those steady solutions become 

olutions with multiples plumes (2,3 or 6 plumes depending on 

he values of P r − Ra ). The lower the P r the more plumes appear

n the solution. In addition, if a single-plume solution exists, it will 

lways be the attractor of the system in both the unstable and sta- 

le region. However, if this solution does not exist, in the unstable 

egion we will find oscillating solutions with multiple plumes. 

Finally, the temporal evolution code developed here to observe 

he behaviour of the dual solution regions has been used and the 

xistence of quasi-steady intermediate solutions has been discov- 

red. They present heat transfer values almost 10% more intense 

han the final attractor for the same values of (P r, Ra ) , being good

andidates for a future realization of some type of passive control 

o improve heat transfer in this type of devices. As additional fu- 

ure work, it is expected to study the effects of the aspect ratio ( A )

n the stability map and, more specifically, to give new insights 

bout how it affects the evolution of the marginal curve Ra m 

. 
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