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Cellular networks are one of today’s most popular means of communication. This fact has made the
mobile phone industry subject to a huge scientific and economic competition, where the quality of
service is key. Such a quality is measured on the basis of reliability, speed and accuracy when delivering
a service to a user no matter his location or behaviour are. This fact has placed the users’ tracking
process among the most difficult and determining issues in cellular network design. In this paper, we
present an adaptive bi-phased evolutionary algorithm based on the takeover time to solve this problem.
The proposal is thoroughly assessed by tackling twenty-five real-world instances of different sizes.
Twenty-eight of the state-of-the-art techniques devised to address the users’ mobility problem have
been taken as the comparison basis, and several statistical tests have been also conducted. Experiments

have demonstrated that our solver outperforms most of the top-ranked algorithms.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Because of the affordability and easy accessibility of their ser-
vices, cellular networks have become one of the most widespread
means of communication. Actually, the GSM' association esti-
mated that in 2017 nearly 50% of the globe’s population was using
mobile communications services [ 1]. This has made the telephony
industry a highly competitive field, one in which the quality of
service is a determinant factor. This quality is reflected by how
quick and accurately a service is provided to a user; no matter
the type of the service and the location or the comportment of
this user are. Technically speaking, this depends on how fast and
well a mobile user can be located. In fact, like most of present-
day’s wireless networks (e.g. sensor [2], vehicular [3], etc.), the
principle of a cellular network is based on the mobility of its
users. This problem has become more crucial with the emergence
of the Internet of Things (IoT) and heterogeneous networks.

The importance of this task is even more accentuated since
all communications pass through a bandwidth. The bandwidth,
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therefore, is also a valuable resource, economically and techni-
cally speaking. As the number of subscribers has tremendously
increased, the optimal use of this resource has quickly become a
big issue. Actually, some studies have demonstrated that the com-
munication traffic generated when attempting to locate mobile
users engender more than 33% of the messages transiting via the
bandwidth [4]. All these evidences have made the users’ tracking
process one of today’s most crucial and determining tasks in
cellular networks.

Metaheuristics are efficient tools that can be employed to
tackle such complex problems. Evolutionary Algorithms (EAs)
are one of the most promising [5]. However, their efficiency is
greatly influenced by the quality of their parameters’ tuning.
This is generally done over many thorough and time-consuming
processes so that one can get the best configuration to a certain
problem. Besides, such tuning involves a profound understanding
of the algorithm utilised and the problem being solved [6]. So,
every change in the problem characteristics is likely to compro-
mise the effectiveness of the algorithm and a new tuning cycle
will be mandatory each time to retrieve the desired efficiency.
This restricts the utilisation of most of metaheuristics to skilled
professionals within abstract research rather than inexperienced
users in real-world environments.

To cope with this issue, much research effort is deployed to
design algorithms that can automatically adjust the value of the
algorithm parameters without involving an outer agent. Many
adaptation schemes have been already presented in the literature,
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but they can be categorised as deterministic, adaptive or self-
adaptive [7]. The adaptive policy is the one researched in this
work. The aim of an adaptation strategy is to find the adequate
balance between the algorithm’s exploitative and exploratory
capacities. The quality of this balance can be expressed in terms
of the convergence rate of the algorithm itself. Selection pressure
models are mathematical tools that permit studying/modelling
the convergence rate of a given algorithm subject to some selec-
tion method [8,9]. However, until now the use of such models
has been restricted to theoretical analysis and no practical use
has been done.

In this paper, we present an adaptive bi-phased evolutionary
algorithm for solving the Mobility Management Problem (MMP).
Unlike most of previous adaptive EAs, designed in the litera-
ture [10,11], the EA used in our approach does not guide the
current steps of adaptation on the basis of some information col-
lected from previous runs. Indeed, our approach utilises a math-
ematical model of the future expected algorithm convergence in
order to control the adaptation within the current iteration.

The robustness, efficiency and scalability of the proposal have
been assessed by solving twenty-five differently-sized realistic
instances of the problem. In addition, twenty-eight of state-of-
the-art solvers devised to address the same problem are taken as
a comparison basis, and numerous statistical tests have also been
conducted.

The remainder of the paper is structured as described. In
Section 2, we introduce fundamental concepts related to mobility
management, EAs’ adaptation and selection pressure models. In
Section 3, we carry out a literature review of mobility man-
agement solvers, the takeover models and the GA advances. In
Section 4, we present our approach. Sections 5-7 are consecrated
to the experimental study. Finally, we wrap up the paper in
Section 8.

2. Fundamental background

We present, all along this section, some introductory notions
about the management of users’ mobility in pre-5G networks,
adaptation and selection pressure models for EAs.

2.1. Management of user’s mobility in pre-5G networks

Mobility Management (MM) is about locating users to whom
a certain service (e.g. phone call, photo sharing, etc.) is destined.
Whatever the generation of network being used (e.g. 2G, 3G,
4G, etc.), this task is accomplished by some component in the
network’s system [12]. For each user, this element stores and
manages two pieces of mobility data: the cell containing the
user and the area (a group of cells designated with an identical
identifier) to which this cell belongs. Therefore, the mobile user
needs to update his identifier only when he penetrates a new
area and this by sending a Location-Update (LU) to the MM Core
(MMC) [13].

When a service (e.g. Skype call, Whatsapp message, etc.) is
destined to a user, the network must discover first in which cell
of the network the user is located. To do so, the MMC executes
a polling cycle in which paging messages are transmitted to all
cells within the user’s area. The way location update or paging
are carried out is defined by the MM scheme. Regarding this
evidence, the effectiveness of the MM task stands in how good
and efficient the used policy is for managing and minimising the
paging and LU costs.

Taking the LU task, for instance, two principal approaches
exist: static and dynamic (see Fig. 2.1). Within the dynamic ap-
proach, the LUs are based on the variability of the mobility
patterns and user calls. This requires usually the on-line gathering
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and processing of data, which consumes significant computing
resources. By contrast, the LUs in the static policy depend on
the changes of network’s topology (i.e. independent of user char-
acteristics), which allows an effective implementation and has
low computational needs. Therefore, the static strategy is the one
investigated here. This approach can be further classified into
four schemes: the location area, reporting cell, never-update and
always-update. The never and always-update schemes engender
either excessive costs of LU or paging. So, they are barely imple-
mented in real networks. That being said, the rest of the schemes
are those used in real-life scenarios [ 14]. Taking the location area
and Reporting Cell Schemes (RCS), both are investigated in the
literature but a real keen interest is noticeable for the second
scheme (see Section 3.1). Taking this into account, the RCS is
the one researched in this paper. In the case of this scheme, the
network’s cells are labelled as Reporting or Non-Reporting Cells
(RCs or NRCs). The mobile user performs an LU only if he/she
enters an RC, while in NRCs, he/she can move freely without
acknowledging a new location. The prior work in [14] has shown
that yet with knowledge from the network, finding the best
configuration of the RCs is an NP-hard problem [13].

Location Update
Static Dynamic
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Fig. 2.1. Location-update strategies in pre-5G cellular networks.

With consideration to the paging process, two policies exist:
standard and selective. In the standard paging strategies (e.g. blan-
ket polling), all cells of the user’s area are simultaneously paged,
while selective schemes consider some properties (e.g. velocity,
distance, etc.) when paging the user’s area cells. Previous study
in [14] has demonstrated that the selective paging strategies
require the collection of supplementary user information and a
modification of the system’s implementation, whereas the stan-
dard strategy does not necessitate further knowledge (e.g. user
location, etc.). This places it among the most functional and
widely used schemes [14]. Besides, another noteworthy fact is
that the standard scheme (blanket polling) is the one originally
implemented within the RCS. Thus, it is the one investigated
within this work.

The RCS was first devised by Bar-Noy and Kessler [15]. Then,
the Reporting Cell Problem (RCP) was modelled and formulated
as a binary optimisation problem by Ha¢ and Zhou [16]. In the
next sections, we introduce both the RCP solution representation
and mathematical formulation presented by the authors of that

paper.

2.1.1. Solution representation N
The RCP solution can be described as a binary vector X . Each
vector X = {xi1,...,Xxp} represents a unique configuration of

the network, where D is the network’s size. Each bit x, form X
(where k =1, ..., D) represents the status (i.e. RC or NRC) of the
k™ cell. If x;, = 1, the k™ cell is acknowledged as an RC, otherwise
(xx = 0), it is recognised as an NRC. Fig. 2.2 illustrates the standard
RCP solution representation.

¥ (o o

1st Cell  2nd Cell

[ )
Dth Cell

| s |
3n Cell

Fig. 2.2. Representation of an RCP solution.
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Fig. 2.3. Illustration of vicinity calculation.

2.1.2. Objective function
The RCP fitness function introduced by Ha¢ and Zhou [16] is
defined by Eq. (2.1).

4 D
min UX)=c.> L+ Py (2.1)

The fugction Q is used for evaluating the goodness of some
solution X, where L; represents the number of LUs performed
within the i reporting cell (¢ is the set of RCs in the network).
P; is the amount of paging operations performed within the j cell
(D is the number of the network’s cells). Lastly, V; is the vicinity
of the ji cell. The variable ¢ is used to reflect that the LU is
considered to be more significant than the paging cost. Thus, for
the sake of performing a reliable comparison with state-of-the-art
solvers, we utilise the same value of ¢ (¢ = 10) employed in all
works that tackled the RCP [1,4,17].

A cell’s vicinity is described as the maximum number of cells
that must be browsed when an incoming service is intended for
this cell. Besides, the way vicinity is computed depends on the
cell’s type (RC or NRC). The vicinity value of an RC is the number
of NRCs (including the RC itself) that can be reached from this
cell without going through another RC. This being said, an NRC
can be reached from several RCs. Consequently, the vicinity of an
NRC can be described as the highest vicinity value of the RCs from
where this NRC can be reached [13].

Fig. 2.3 illustrates an example of a configuration for a network
of forty cells with fifteen RCs (those marked with a dashed
contour). The vicinity of the 36/ NRC is the highest vicinity of its
neighbours: the 357, 26™ and 37" RCs. The values of the vicinity
for those cells are 5, 8 and 2, respectively. Therefore, the vicinity
of the 36™ NRC is 8.

2.2. Dynamic adaptation within EAs

The uniqueness of every optimisation problem lies in some
features that make it distinguishable from another problem (e.g.
epistasis, multi-modality and deceptiveness). This goes even fur-
ther since despite being within the same problem, each instance
might be different from another. Consequently, most metaheuris-
tics nowadays are problem and even instance-dependent. Indeed,
their effectiveness is greatly correlated with the quality by which
their parameters are tuned. This tuning is done through several
exhaustive phases to better fit the instance or the problem at
hand. Therefore, every change in the instance/problem features
may reduce the algorithm’s efficacy. Besides, such tuning involves
a profound knowledge about both the addressed problem and
the algorithm used. All these constraints restrain the utilisation
of hand-tuned (i.e static) algorithms to specialists within pure
theoretical research rather than inexperienced users in practical
real-life scenarios.

As a promising solution to this pitfall, dynamically adaptive
algorithms seem to be a good substitute to hand-tuned ones.
Adaptation within evolutionary algorithms is a tentative to make
the EA’s search process adjust to better fit the characteristics of
the optimisation problem being engaged. This stands in conceiv-
ing mechanisms that evolve the parameters’ values without an
outer intervention. Considering the problem and the algorithm at
hand, various parameters can be adapted and also several policies
can be employed to do so (see Fig. 2.4). Actually, many adaptation
schemes have been previously devised but all can be classified as
adaptive, deterministic and self-adaptive [7].

Adaptation Approaches in EAs
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Fig. 2.4. Dynamic adaptation strategies within EAs.

Adaptation in the deterministic approach tunes the value of a
certain parameter using a predefined equation. The noteworthy
fact in this scheme is that; to determine the adaptation, no
exchange of information is made between the algorithm and
another external agent. In contrast with the first strategy, the
adaptive approach is based on the feedback obtained from the
algorithm throughout the adaptation. Finally, in the self-adaptive
policy, both the problem’s variables and the parameters being
adjusted are encoded as an individual (i.e. solution) that evolves
by applying the algorithm’s operators [13]. In this work, we focus
on the adaptive scheme.

2.3. Selection pressure models within EAs

The efficacy of an evolutionary algorithm basically lies in its
ability of finding the appropriate balance between its exploitative
and exploratory capacities. A good measure of how this balance
evolves can be reflected by the convergence of the population
itself. Thus, the convergence rate is key in any evolutionary al-
gorithm. Indeed, much research effort has been made to design
some analytical approaches that allow the selection pressure evo-
lution of different selection methods to be studied. The majority
of the models presented in the literature are built upon the
following question; starting from a single best solution, how long
does it take to the latter to take over the entire population?
To answer this question, many models make two fundamental
assumptions. The first supposition is that no perturbation op-
erator is used and that the population evolves using only the
selection. The second assumption is that at the beginning of the
search process, the population contains only one copy of the best
individual. In light of this, two important concepts appeared, the
growth curve and the takeover time. Fig. 2.5 shows a concrete
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instance of these two concepts for a population undergoing a
binary tournament selection [9,18].

N____>___>____>___>___ _________________ b 4
| —Growth Curve _— i
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Fig. 2.5. Growth curve and takeover time.

Considering a population of N individuals, the growth curve
can be mathematically described as a function, f, that expresses
in terms of algorithm iterations, t, the number of copies of the
best individual, f(t), contained in the population, whereas the
takeover time can be described as the first iteration t,,.., where
the function f(to.er) = N. In other words, the takeover time can be
thought of as the time needed for the algorithm to fill the entire
population with the best individual.

3. Related work

In this section, we carry out a literature review of state-of-the-
art solvers proposed to tackle the MMP and also the mathematical
models for the growth curve and finally the GA’s advances.

3.1. Mobility management

The reporting cell scheme was firstly proposed by Bar-Noy
and Kessler in [15] and later formulated by Ha¢ and Zhou in [16]
as a binary problem. In both papers, the authors stated that the
RCP was NP-complete to solve, which encouraged the utilisation
of approximate search techniques instead of exhaustive ones.
Fig. 3.1 presents a literature review of the MMP’s solvers.

Considering the MMP’s objective function formulation and the
data used for assessing the devised solvers, the literature can be
divided into three groups of works, where the first one treats a
first formulation of the MMP’s fitness function and a set of 12
networks [1,4,29-31,34,35]. Although, it is to be noted that some
works of this 1% group treats additional instances [1,30,34]. The
second group uses a different MMP fitness function called “cost
per call arrival” and experiments are conducted on up to 6 net-
works [27,28,32,37,38,41,42,47-50]. The final group are isolated
works that use the MMP fitness function and all 12 networks
used by the 1% group and also some networks from those of
the 2" group [39,40,45,46], or only some networks from the 2™
group [44] or propose new networks [17]. In all the above-cited
works: (I) no one treated all the networks existing in the litera-
ture (i.e. those of the 1% and 2™ groups), (II) no one treated both
MMP’s fitness function (i.e. those of the 1% and 2™ groups), (III)
the number of state-of-the-art solvers considered as a comparison
basis is small (no more than 5) since no work compared its results
against all the solvers devised in the literature. All these shortfalls
do not ensure the encompassiveness and reliability of the ob-
tained results and conclusions. As far as the authors’ knowledge,
the work in [13] is the only one to have considered both MMP’s
objective functions, performed experiments on the largest set
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of networks (25 instances: those of the 1% and 2"¢ groups and
also proposed 7 new real-world-sized networks) and compared
its results against the largest set of solvers (26 algorithms).

Now, considering the experimental validation part, as shown
in Table 1, most of the works done on the MMP suffer from severe
shortfalls that make the reliability of their results more ques-
tionable. Indeed, some works use experiments’ and algorithms’
settings that are different from those used in the literature, and
then they even compare their results with those same works.
Also, the choice of the state-of-the-art solvers taken as a compar-
ison basis was not justified and those selected were very few, not
enough diversified and not the top-ranked ones. No explanation
of the choice of the treated networks was given and those se-
lected were neither diverse nor include large real networks. Most
of the works did not assess the devised algorithms based on other
criteria than efficiency. Furthermore, they do not report statistical
tests to assess the correctness of the results. Even when applied,
no justification of the choice of the tests was given, especially that
they have to be chosen carefully to ensure the reliability of the
conclusions. No thorough sensitivity analysis was made on the
devised approach to provide more understanding and explanation
about the strength/weakness of the proposal.

Regarding the above-highlighted pitfalls, for the sake of re-
liability, our work goes even further than what has been done
in [13] and the rest of the literature and this by considering both
MMP’s formulations. Furthermore, to ensure a fair and sound
comparison, we use, in our work, the same experiments’ and
algorithms’ settings as those employed in the literature we are
comparing with. We perform our experimentations on the largest
set of networks ever used, including the largest real-world net-
works ever studied in the literature (25 networks). Also, we
compare our approach against the largest, ever considered in the
literature, set of existing solvers (28 algorithms). The techniques
that we take as a comparison basis and the networks used during
the experimentations have been chosen carefully to be enough
encompassing and represent several properties and complexities.
This has been done to assess our approach based on several
criteria (e.g. efficiency, reliability and robustness) and prove with
certitude its efficiency. We go further by applying well-chosen
thorough statistical tests to prove the correctness of our results.
Finally, we perform a profound parameter-sensitivity analysis to
provide a further understanding of our proposal.

3.2. Takeover time models

The first papers to study the concept of takeover time of some
EAs using different selection methods were those of Goldberg
et al. in [51,52]. Since then, numerous mathematical models
have been introduced to express both takeover time and growth
curve for different structured and unstructured evolutionary al-
gorithms. Table 2 presents a literature review of the predominant
models that were previously devised.

Many studies like those in [60,63,64], have stressed that the
accuracy of a given model depends on the degree to which the
conditions of its use match the assumptions that were considered
during its design. Thus, the majority of the models in Table 2
as well as others in the literature are either restricted by the
type of algorithm they were designed for (e.g. structured EAs:
cellular [56-62] and distributed [63,64]), the type of problem
tackled (e.g. dynamic [8]) or their assumptions (e.g. the popula-
tion evolves using only the selection and no variation operators
are used like mutation, crossover, etc.). Keeping in mind these
facts, their accuracy will be weak in our case, since we are in-
vestigating an unstructured EA that evolves the population using
selection and variation operators (mutation and crossover) to
solve a static optimisation problem.
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Fig. 3.1. Literature survey of the MMP solvers [19-26].
Table 1
Experimental pitfalls in the MMP's literature.
Experiments’ and algorithms’ settings  Solvers compared with Chosen benchmarks Statistical tests Parameter sensitivity analysis
[24,28,36-38,42] [24,28,31,35-38,41,42,47] [1,24,28-32,36,37,39-48,50] [24,28-32,34-38,41-45,47,48,50] All
Table 2
Literature review of takeover models.
Envir.  Alg. structured Proposed in Based on Devised for
[53,54] Logistic formula /
[55] Studied the Logistic formula /
[56,57] Hypergraphs EAs with structured population
[58] Studied the hypergraphs and logistic formula models Structured populations (array and ring)
[59] / Toroidal cEAs
Yes [60] Stochastic mathematical model Asynchronous and synchronous EAs with structured population
Stationary [61] Idealised selecto-Lamarckian model Structured population-based EAs
[62] Punctuated equilibria model Cellular EAs
[60,63,64] Compared both hypergraph and logistic models in [53,56] /
[60,63,64] Another version of the logistic model called LOG2 Distributed EAs
[65] / /
No [66] / Genetic algorithm
[9,18] Rayleigh Distribution Population-based algorithms
Dynamic / [8,25] / /
Therefore, in our work we employ the model proposed in [9, Additionally, it enables the possibility of predicting the control

18]. It has many advantages over other models. First, it has parameter and estimating its value with a relatively low number
the benefit of being simple (i.e. it uses only a single value to of steps, but still maintaining a high level of exactness [18].
describe the behaviour of any population-based algorithm under Furthermore, it was designed with the ability to handle multiple
any selection method and even variation operators). Second, the types of selection such as proportional and tournament-based
entire model is governed by the value of only one parameter. ones. Finally, the assumptions made when proposing this model
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are similar to those used here, like selection with binary tourna-
ment and bit-flip mutation. All these factors increase the accuracy
of this model within our framework.

3.3. A bird’s eye view of the GA’s advances

Since Holland presented the GA in [67], many works have
been conducted on it leading to several advances. For so many
reasons, the enthusiasm for the GA was and still going inten-
sively that it is hard to enumerate all of these breakthroughs.
Indeed, several extensive surveys exist on each specific topic
where the GA has been studied such as hybridisation, applica-
tion domains (e.g. data mining, artificial intelligence, etc.), design
of its operators (e.g. crossover, mutation, etc.) [5], its variants
(e.g. parallelism, multi-objective, dynamic, etc.) [68] and count-
less other topics. Taking into consideration all of this, one of
the most noticeable GA advances are the LTGA (Linkage Tree
Genetic Algorithm) [69], LT-GOMEA (Linkage Tree Gene-pool Op-
timal Mixing Evolutionary Algorithm) [70], P3 (Parameter-less
Population Pyramid) [71], DSMGA-II (Dependency Structure Ma-
trix Genetic Algorithm II) [72] and the 3LOa (Linkage Learning
based on Local Optimisation algorithm) [73]. It is to be noted that
the analysis we provide here about each solver is made regarding
the original work where it has been proposed. Otherwise, we will
explicitly cite the work(s) that support(s) our statement(s).

Similarly, all the above-cited solvers use linkage learning.
Roughly speaking, the LT-GOMEA, P3 and the DSMGA-II are
greatly based on the original LTGA and partially inspired by
each other. However, LT-GOMEA uses a strategy for optimal gene
mixing based on computing the frequencies and probabilities
of the appearance of some substructures after recombination of
other given structures. The P3 uses a pyramid-like structure of
populations and has no parameter to tune, while the LTGA has
one parameter and the LT-GOMEA is parameterless. Taking the
DSMGA-II, it uses a new linkage tree called incremental linkage
sets and exploits the idea of optimal mixing taken from the LT-
GOMEA. At last, the 3LOa employs disturbances and local search
to check which genes are dependent on one another.

When going more into the details, one can see that the LTGA
takes advantage of the links between the problem’s variables
based on a linkage tree constructed using a hierarchical cluster-
ing algorithm, while the LT-GOMEA is based on both the link-
age tree and optimal mixing using the calculation of the fre-
quency/probability of appearance of substructures after variation.
Now, as to the P3, it uses a pyramid-like structure of popula-
tions and exploits the linkage tree using cluster algorithms. The
DSMGA-II employs pairwise incremental linkage model based on
a dependency structure matrix and variants of optimal mixing
called restricted and back mixing. Finally, the 3LOa is partially
inspired by P3. It disturbs and optimises the genotype with a local
optimisation algorithm. If this triggers any other genes, then they
are found to be dependent.

Each solver has been assessed for solving a set of problems.
The LTGA, LT-GOMEA, P3 and DSMGA-II have been applied for
solving deceptive trap functions (e.g. order-k deceptive, concate-
nated, folded, cyclic, etc.) and nearest-neighbour NK-landscapes.
Additionally, the LT-GOMEA has been used for solving the one-
max problem. Also, both P3 and DSMGA-II have been applied
for solving Ising spin glasses and MAX-SAT problems as well.
Finally, the 3LOa is assessed using overlapping problems, con-
catenations of deceptive functions, hierarchical problems and
discretised Rastrigin problem.

The experiments have highlighted several advantages of each
technique. For example, the P3 might require, in some cases,
smaller populations [74]. As for the LT-GOMEA, it appeared that
the resolution time and population size are smaller than basic
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GA or the EDA using univariate, marginal product structures or
linkage tree. Also, results showed that P3 does not require any
tuning. When it comes to the DSMGA-II, experiments demon-
strated that it requires fewer fitness evaluations to solve the
problem than other solvers such as the LT-GOMEA, hBOA and P3
do. Finally, the 3LOa employs the 3LO (Linkage Learning based
on Local Optimisation) which is a linkage learning technique that
does not report false linkage.

Bearing in mind that since our proposal attempts to enhance
the MMP’s solving, we will be comparing our approach with
techniques that were specifically designed or at least previously
applied to solve the MMP. This is done to avoid any scattered
comparison with other general-purpose algorithms that go be-
yond the scope of our work. Nonetheless, the LTGA, LT-GOMEA,
P3, DSMGA-II and the 3LOa could be also an interesting direction
to consider in the future so as to enhance the state-of-the-art of
MMP’s solving.

4. The proposed approach

In this section, we introduce the mathematical model used in
our work and then we explain our proposal’s search process. The
source code of the latter is accessible at.

4.1. The studied mathematical model: Rayleigh distribution

The model we use in our work is the one proposed in [9,
18]. It is based upon the cumulative function of the Rayleigh
distribution. This can be described as a function R that evolves
in terms of a given variable &, where & € [0, +4o00] and o
is a parameter, where o > 0. Eq. (4.1) defines the Rayleigh
probability density function, while the cumulative function of the
Rayleigh distribution can be formulated using Eq. (4.2).

Ri(e) = o e/ (4.1)

Ry(£) = 1 — e /2% (4.2)

Fig. 4.1 represents the cumulative function of the Rayleigh
distribution using several settings of the parameter o.
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Fig. 4.1. Cumulative distribution function of the Rayleigh distribution.

As can be seen in this figure, the growth curve shape is similar
to the one shown in Fig. 2.5. In addition, a systematic study
was made on this function in [9,18]. The authors of those works
found that using this model, more specifically the parameter’s
o value, some interesting properties like the algorithm’s conver-
gence speed can be expressed. An estimation of this parameter

2 The TD-EA source code: https://github.com/Zakaria-Dahi/TD-EA_for_MMP.
git.
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can be accurately computed using Eq. (4.3) and this by taking a 4.2. Search process
certain number of points, S, of the Rayleigh distribution.

The approach we present here is a Takeover Time-driven
adaptive bi-phased Evolutionary Algorithm (TD-EA) to tackle the
MMP. After the initialisation, the TD-EA’s iteration consists of the
cyclic application of selection, either an optimisation phase or
a local search, evaluation and replacement. Fig. 4.2 shows the
overall framework of our proposal and in the upcoming sections

Given this, the model based upon the Rayleigh distribution
can be defined using Eq. (4.4), where R(t) is the growth curve at
iteration t.

292
R(t)=1—e "/ (44)  we provide more details about each phase.
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Fig. 4.2. Flowchart of the TD-EA.
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4.2.1. Initialisation

The proposed TD-EA starts by g_e)nerating a population of N
binary individuals. Each individual X = {xq, ..., xp}, constitutes
a potential network configuration (i.e. solution), where D is the
number of cells in that network. Every single bit x; from a given
individual 7 represents the status (reporting or non-reporting)
of the j™ cell from the network. Fig. 4.3 exemplifies the canonical
representation of a population for the MMP.

X, (o [ me [ op )
1st Cell 2nd Cal Dih Cell

?2 [ 21 I 22 I ----- I T2.D ]
1st Cell 2nd Cal Dth Cell

Xy(Cova [ ave [ T v ]
1st Cell 2nd  Cell Ditn Cell

Fig. 4.3. Representation of the TD-EA’s population for the MMP.

This initial population is randomly generated. After that, the
quality of each individual is measured using the objective func-
tion described in Eq. (2.1). After, all the individuals are ranked ac-
cording to their respective fitnesses and then the best individual,
G, is extracted.

It is important to state that all the parameters’ values of the
TD-EA have been set based on our preliminary experiments or on
state-of-the-art works.

4.2.2. Selection

The selection phase is a step where a group of parents is
chosen to create the couples that will undergo either the opti-
misation phase or the local search. If the optimisation phase is
the one performed, we create % couples by selecting N parents,
whereas in the case the local search is the one achieved, we create
@ couples by choosing (N — M) parents (N > M). In our case
M is fixed to 100 individuals.

For both optimisation and local search phases, the parents are
selected by means of binary tournament. The process is reiterated
% times in the case of the optimisation phase and (N;—M) when
performing the local search. It should be kept in mind that in our
implementation of the binary tournament, no condition prevents
a parent from being selected more than once when creating a
couple.

4.2.3. Optimisation phase

The optimisation phase represents the main core of our pro-
posed approach. It consists in applying the mutation and
crossover on the % couples created during the selection phase. In
addition, a key feature of the optimisation phase is the adaption
of the mutation probability. The pseudo-code of Algorithm 1
illustrates the main steps of the optimisation phase which we will
break down in the sections below.

Algorithm 1. The Optimisation Phase

1: for every created couple do

2:  Crossover.

3:  Adaptation: genotype and phenotype-based.
4:  Mutation.

5: end for
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A. Crossover

This operator is ruled by the probability P.. For each couple,
a number o is randomly drawn from a Standard Uniform Distri-
bution (SUD). Afterwards, if w < P, the crossover is performed,
otherwise the parents of that couple are copied and considered
as new offspring. The crossover applied in our approach is a
two-point crossover.

B. Adaptation

State-of-the-art works conducted on the GA [6,13,75] and our
experiments have indicated that the principal parameter driving
the convergence of the GA is the mutation probability P,,. Thus,
this is the one that will undergo the adaptation.

The adaptation performed within our TD-EA is built upon
the hypothesis that the efficacity of an adaptation strategy lies
in its efficiency when dealing with three issues: When to adapt
(i.e. period of application of adaptation)? What should be the
direction of adaptation (i.e. increasing, decreasing or stabilising the
value)? What should be the amplitude of the adaptation (i.e. by how
much do we increase or decrease the value)?

Thus, in our present work we have designed a strategy that
deals with all these issues. First, we define the direction of the
adaptation using a phenotype-based strategy. Then, the amplitude
of the adaptation is set using a genotype-based strategy. Finally, for
both adaptation strategies, we define an application time. Every
single one of these steps is now described in more detail.

B.1. Phenotype-based adaptation

The main goal of this strategy is to decide the direction in
which (i.e. increasing, decreasing or stabilising) the P, value will
evolve during the succeeding iterations. For this purpose, we
exploit the information contained in the fitness function (i.e. phe-
notype) of the produced offspring. In fact, for every two offspring
previously-created by applying the crossover, a mutation is ap-
plied according to two values P, and « P, respectively. This will
generate four new mutated offspring which are evaluated and the
best two are kept.

This process is reiterated for every selected couple. Then, at
iteration t, if the number of offspring created by executing a
mutation according to the probability aP,, is greater than the
one produced using the probability P, the value of the mutation
probability for iteration t+41 will be increased using Eq. (4.5). Oth-
erwise, the mutation probability throughout the next iterations
will be decreased using Eq. (4.6). Note that « is an amplification
factor drawn within the interval [1.1,1.5], while y is an attenua-
tion parameter that is drawn from [0.5,0.9]. The Egs. (4.5) and
(4.6) are mainly based on some offline experiments and also
inspired from the “constant gain” and the “declining adaptive”
mutation schemes previously proposed in [76].

Pt + 1) = Pp(t).r (4.5)
Pt + 1) = Py(t).y (4.6)

It needs to be also noted that since the effect of employing
either the value P, or aP, can be seen immediately in the
fitness value during the evaluation phase, the phenotype-based
adaptation is performed in every one of the TD-EA’s iterations.

B.2. Genotype-based adaptation

A fitness-driven adaptation strategy has the benefit of guiding
the P, value in the next iteration towards a value that produces
better offspring (greedy evolution). However, it does not take the
population diversity into account, and in the long term it makes
the population collapse (converge). In fact, previous experiments
allowed us to deduce that the step sizes of adaptation (y and «)
are the main factors driving the algorithm’s convergence speed.
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Thus, we have designed a genotype-based adaptation that rules
the amplitude of adaptation of the mutation probability (values of
y and «) so as to prevent the population from collapsing.

This strategy is based on the information contained in the pop-
ulation evolution (i.e. genotype). Our approach here is similar to
the mathematical oracle presented in [9,77]. The idea is to adapt
the values of both variables y and « according to the algorithm’s
convergence speed. The latter is the value of the parameter o
defined in Eq. (4.3) of the Rayleigh model (see Section 4.1).

Concretely, in our case, S is the number of iterations in which
the variable & is computed. The value of the latter is the number
of sub-optimal solutions in the population. It is formulated using

Eq. (4.7), where t is the number of optimal solutions in the
population and N is the population’s size.

1— —).100 4.7
§(t) = ( N) (4.7)

Taking into consideration the definition of selection pressure
models given in Section 2.3, the growth curve gives the number of
copies of the best individual at a given iteration. However, in real
methods this is not possible since only one best individual is au-
thorised to evolve from one generation to another. So, the concept
of optimal solutions becomes relative in real-life techniques. For
this reason, in our approach the number of optimal solutions, t,
in the populatio_n) are designated as the individuals whose fitness
value is < nQ( G ) and > Q( G ), where n is a number > 1 and
Q( G) is the fitness value of the best individual in the ongoing
iteration. The value of the parameter »n can be set in compliance
with the problem addressed, but in our case it is set to 1.02.

Then, using the value of the computed variable o, we judge
if the TD-EA is converging too fast or too slow. Depending on
this judgement, the adaptation direction of both variables y and
« is decided. Firstly, we set three rules to define each state of
convergence: fast, slow and stable.

e State 1: 0 < ¢ = fast convergence.
e State 2: 0 > v = slow convergence.
e State 3: v < 0 < ¢ = stable convergence.

It is noteworthy to state that the variables € and v are bounds
defining the algorithm’s convergence state. In our case, v is set
to 60 when the size of the individual is smaller than or equal 36
bits (D <= 36), otherwise 50 (D > 36), while € is set to 70 no
matter what the individual’s size is. Then, depending on the state
of convergence, the direction of adaptation of y and « is decided.
We set three rules to manage this process.

e Rule 1: fast convergence = decrease both y and « using a
step .

e Rule 2: slow convergence = increase both y and « by a step
Q.

e Rule 3: stable convergence = keep both y and « constant.

For both parameters y and «, the adaptation starts exactly
from the middle of their respective intervals [0.5,0.9] and [1.1,1.5]
and the adaEtatlon step size, ¢, is kept constant. It is set to the
value OQ(TOS) V2 for 1 and % for o, where T is the total
number of iterations the TD- EA 1s authorised to perform. All of
this is done to give a fair chance to both values of y and « to
reach, in some extreme cases of constant decreasing or increasing,
the boundaries of their respective intervals.

It is essential to know that unlike the phenotype-based adap-
tation, the effect of the genotype-based one does not appear
immediately. In fact, a change in the population convergence
needs a certain number of iterations, S, in order to be noticeable.
So, the genotype-based adaptation is only applied each S itera-
tion. On the basis of the analysis that has been conducted in [9],
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S is set to 30 iterations. Fig. 4.4 shows an example of the resulting
evolution of the mutation probability when using both phenotype
and genotype-based adaptations.

P,, value

0 100 200 300 400 500
# Applications of genotype-based adaptation

Fig. 4.4. Evolution of the P, value when using both phenotype and
genotype-based strategies.

On the basis of the state-of-the-art studies [6,75], the value
of mutation probability evolves within the interval [1/D,0.5]. The
adaptation of the mutation probability starts from the middle of
that interval. This is done to a give a fair chance to the P, value to
reach the boundaries of its interval (in case of extreme continuous
increasing or decreasing evolution).

C. Mutation

In the same way as crossover, the mutation is also controlled
by a probability P,. For each two offspring produced by the
crossover, a number o is randomly drawn from an SUD. After
that, if w < Py, the mutation is executed on the current element
of that offspring, otherwise it is kept as it is. The mutation used
within our work is a bit-flip where a given element is mutated
by flipping its value to the opposite state.

4.2.4. Local search condition

The local search phase is achieved once the population stops
evolving and the algorithm stagnates. In other terms, it is
achieved once the takeover time is reached (see Section 2.3). Con-
sidering the definition of the genotype-based adaptation given
in Section 4.2.3, the stagnation of the population means that all
the individuals in the population are considered to be optimal.
Thus, the number of sub-optimal solutions, &, becomes null. By
substituting the value of & in Eq. (4.3), the convergence, o, of the
algorithm also becomes null. However, a thorough study allowed
us to find that in general once the o = 0, the fitness value
continues evolving over a given period. We realised that it obeys
a square root function of the individual’s size. In light of this, we
define the condition of applying the local search as the time when
o = 0 and remains null over S+/D iterations.

Once the local search condition has been fulfilled, the optimi-
sation phase is never performed again, and the algorithm starts
performing only local search in each iteration.

4.2.5. Local search phase

It is composed of two sub-local searches that are performed
in parallel. Each of them evolves a part of the population. The
first sub-local search evolves (N — M) individuals while the other
one evolves the remaining M individuals. After the local search
phase, the offspring produced are the union of the offspring
created by both sub-local searches. The pseudo-code of Algorithm
2 summarises the main phases of the local search steps and
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throughout the sections below we provide more details about
each of them.

Algorithm 2. The Local Search Phase

1: Perform in parallel the first and second local searches.
2: if condition of restart is fullfilled then

3: Restart.

4: end if

Note that when applying the local search for the first time, the
population is constituted by the best individual obtained so far in
the optimisation phase and ((N — M) - 1) new binary individuals
created randomly. The remaining M individuals are created using
the second sub-local search (see Section 4.2.5(B)).

A. The first sub-local search

It evolves (=M couples created within the selection phase
(see Section 4.2.2). It consists in sequentially applying a Half
Uniform Crossover (HUX) to each one of those couples. This is
governed by a probability P, whose value is identical to the one
utilised in the optimisation phase (see Section 4.2.3).

Considering two parents of some couple, the HUX exchanges
half the elements where the two parents differ. The elements
that will be exchanged are selected randomly according to a
uniform distribution. To perform the HUX on a given couple, two
conditions must be fulfilled. A number w is randomly generated
from an SUD. The first condition is fulfilled if @ < P, while
the other condition is that the number of elements that differ
between each two parents of that couple must be greater than
a threshold B. The latter was set to g based on state-of-the-art
studies that used the HUX [78].

B. The second sub-local search

The second local search is a heuristic we developed specifi-
cally to solve the MMP. It creates each time M new individuals
necessary to fill up the population. Those individuals are copies
of the best individual found in the previous iteration. However,
every one of those M individuals contains a unique combination
among all combinations possible for a specific neighbourhood. Six
neighbourhoods with equal sizes are considered. Each neighbour-
hood represents a group of cells from the network. A combination
of a certain neighbourhood consists of a unique set of states of the
cells from that neighbourhood.

Let us first start by defining the used neighbourhoods. Given
a network with a length of i cells. Each and every one of these
six neighbourhoods is an area with a length of % cells and 2 cells
width. Fig. 4.5 shows the neighbourhoods resulting for a network
of 6 cells width and 12 cells length.

Applied Soft Computing 116 (2022) 107992

Taking the first neighbourhood, {celly, cell,, cells, celly, cells,
cellg, cellys, cellyy, cellys, cellyg, celly7, cell;g}, as an example; a
combination of this neighbourhood could be for instance
{0,0,0,0,0,0,0,0,0,0,0, 1}. Using this neighbourhood defi-
nition, each neighbourhood contains 2¥ combinations. In each
iteration of the second sub-local search, we apply to all M copies
of the best individual one of these combinations. This procedure
is repeated in every TD-EA iteration until all combinations con-
tained in the first neighbourhood have been browsed. Then, the
same process is reiterated with the second neighbourhood, the
third one and so on. Once all the neighbourhoods have been
browsed, the second sub-local search is never applied again. Thus,
the local search phase will consist only of the first sub-local
search. Nevertheless, one should keep in mind that if the best
individual changes through iterations, the second sub-local search
is reiterated each time starting with the first neighbourhood.

C. Restart

It is a phase in which (N - 1) of the individuals are reinitialised.
We compare the population produced in the previous iteration
with the new offspring. If they are judged to be similar, the
threshold 8 used when performing the HUX crossover in the
first sub-local search is decreased by 1 each time. The restart
procedure is performed once the value of 8 reaches 0.

The restart step consists in keeping the best individual found
so far and randomly generating the (N - 1) remaining individuals.
This is done according to a cataclysmic probability ¢. The latter
was set to 0.6 on the basis of some offline experiments. For each
element of these (N - 1) individuals, a number w is randomly
drawn from an SUD. If w is lesser than or equal to o, the element
will be given 1 as a value, or else it will be set to 0. It needs to
be mentioned also that when performing the restart phase, the
value of the threshold 8 is again set to g.

4.2.6. Evaluation

Upon completion of either the optimisation phase or the local
search one, the quality of the produced offspring is measured
using the function represented by Eq. (2.1).

4.2.7. Replacement

The replacement is a phase in which the composition of the
population during the following iterations is decided. Our pro-
posal uses a (u + 1) generational elitist strategy. This means, the
best N individuals from the union of both the offspring produced
in the ongoing iteration and the population produced in the
previous iteration survive and the best individual G is updated.

The termination of the replacement step marks the ending of
an iteration of the TD-EA. The whole process is reiterated until
the maximum number of fitness evaluations is reached.

{
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Fig. 4.5. Neighbourhood configuration for a network of 12x6 cells.
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5. Experimental study and analysis

Throughout this section, first, we begin by describing the
experiments conducted to assess our proposal’s performances. Af-
terwards, we present and discuss the obtained numerical results.

5.1. Experiments’ conception and settings

Our experiments are executed in a cluster composed of nine-
teen machines. They are all run with a Linux OS. The cluster has
a computing power of ninety-four cores: sixteen machines have
three cores, one machine has eight cores and two machines have
forty-eight cores each. The High Throughput Computing (HTC)
framework is used to manage the cluster. The implementation has
been achieved using Matlab R2014a.

The proposal has been assessed based on its scalability, ef-
ficiency and robustness. This has been done by carrying the
experiments over twenty-five differently-sized realistic instances
(i.e. networks). In addition, the comparison has been performed
against twenty-eight state-of-the-art solvers designed to address
the MMP. The networks have been organised in three groups,
where the first collection consists of twelve networks (three
networks of each size: 4x4, 6x6, 8x8 and 10x 10 cells). These
instances were studied and used in [1,4,6,13,17,29-31,34,39,40,
43,45,46] and are accessible in>.

The second collection of instances includes six networks (one
network of each size: 4x4, 6x6, 8x8, 7x9, 9x11 and 19 cells).
They were studied in [13,28,32,33,37,38,41,42,44,46,48-50] and
obtainable in [42,44,50].

The third collection of instances consists of six real-world
scaled networks of sizes 12x12, 14x 14, 16x 16, 18x 18, 20x20
and 30x 30 cells. These instances were recently proposed in [13].
They were inspired from six months of real and diverse commu-
nication records that are accessible in [79]. Besides, we utilise
another network of 30x30 cells. This instance has been previ-
ously studied in [34,35] and is obtainable in®. It is also worth
mentioning that the TD-EA’s source code as well as all the test
cases used in our work are publicly available at’.

Each single one of these twenty-five networks is arranged as
D couples of attributes (L;, P;), where i 1,...,D and D is
the network’s size. P; and L; represent the paging and LU costs,
respectively, associated with the i cell.

To ensure a fair and reliable comparison, we used experimen-
tal settings similar to those used in all works addressing the MMP.
Therefore, we considered 175000 fitness evaluations as the stop
criterion of the experiments. The proposal evolves a population of
175 individuals and was run 1000 iterations over 30 executions.
All along the set of runs, various results are recorded like the
worst, the best, the mean and deviation of the fitness values.
It is also noteworthy that within the next sections, the words
“network” and “instance” denote the same signification.

5.2. Experiments’ results and analysis

All over this section, the obtained numerical results are pre-
sented. It is necessary to keep in mind that when reviewing the
literature, one can notice that the authors who have used the
first or the second collection of networks followed two strategies
of comparison. In the first one, some authors rank the solvers
by considering the best result they obtained over 30 runs. Thus,
neither the mean nor the deviation of fitness values is reported.

3 Collection 1: http://oplink.lcc.uma.es/problems/mmp.html.
4 Collection 3-B: http://arco.unex.es/rc/.%5C%5Credes%5C%5CTN-13-30x30.txt.

5 The TD-EA source code and test cases: https://github.com/Zakaria-Dahi/TD-
EA_for_MMP.git.
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Alternatively, in the second strategy, the authors sort the algo-
rithms by considering the mean of fitnesses achieved over all the
executions.

For the purpose of ensuring an equitable comparison, the
fitness deviation given in Tables 4, 5, 7 and 8 is calculated in the
same way as in papers where the solvers taken as comparison
basis were proposed. It is done using Eq. (5.1) and expressed as a
percentage, where “Best” is the best value obtained and “Mean”
is the average fitness value.

Mean
Dev% = —1).100
Best

Since the use of the first or the second strategy of comparison
depends on the availability of the information needed for each
type of comparison, it is important to state that the symbol “~”
in Tables 3-8 is used in case the corresponding value was not
provided in the literature. Finally, the metric “Rank” in Tables 4,
5, 7 and 8 represents the ranking of solvers on the basis of the
mean fitness value.

(5.1)

5.2.1. First collection of networks

Taking into account the first strategy, Table 3 shows the com-
parison between our proposal and state-of-the-art solvers. The
metric “# BRL” designates for how many networks a given solver
could reach the Best Result known in the Literature (BRL). Then
again, Tables 4 and 5 present the results of the comparison ac-
cording to the second strategy. By considering the metric “Mean”,
we highlighted, in bold, the best results.

It is worth stating also that even if the MMP is a single-
objective problem, some works have already used multi-objective
algorithms to solve it and have compared their results against
MMP’s single-objective techniques [1,4,17,29-31]. To do so, the
authors of these works split the MMP’s single-objective function
defined in Eq. (2.1) into two objective functions defined using
Egs. (5.2) and (5.3), where the variables are the same as those
used in Eq. (2.1). Then, multi-objective solvers such as NSGA-II
and SPEA2 are used to tackle the MMP as a bi-objective prob-
lem. Once the solving process done, a Pareto Front is obtained.
Inside the latter, the authors look for the solution(s) that best
minimise(s) the same MMP’s single-objective function that we
use in our work (i.e. defined in Eq. (2.1) and which can also
be formulated using Eq. (5.4)). For further details, please refer
to the original works [1,4,17,29-31]. Considering the fact that
these previously-cited works addressed the same MMP’s single-
objective function as the one studied in our work, we had to
include in our comparison the results they report when solving
the MMP using multi-objective solvers.

b2
. —>
min fi(X)= ZLi (5.2)
X ={x1,....xp} i—1
N D
_ min AX)=> Py (5.3)
X ={x1,....xp} j=1
. —_
_, min QUX)=cfi+hF (5.4)
X ={x1,....xp}

From results in Table 3, one can notice that the TD-EA outper-
formed 11 out of 14 solvers and obtained results as good as those
reached by 2 out of 14 state-of-the-art algorithms.

With due consideration to results in Tables 4 and 5, one can
remark that our TD-EA was able to outperform all the other state-
of-the-art techniques in 1 out of 12 networks (largest network:
network 1 of size 10x 10 cells). Here, also, the finding that needs
to be noticed is that, as far as the authors know, our TD-EA is
the first algorithm that reached this new best solution for this


http://oplink.lcc.uma.es/problems/mmp.html
http://arco.unex.es/rc/.%5C%5Credes%5C%5CTN-13-30x30.txt
https://github.com/Zakaria-Dahi/TD-EA_for_MMP.git
https://github.com/Zakaria-Dahi/TD-EA_for_MMP.git
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Table 3
Networks of 4x4, 6x6, 8x8 and 10x 10 cells: number of networks where the BRL has been reached.
Network
Solver 4x 4 cells 6x6 cells 8x8 cells 10x 10 cells # BRL
1 2 3 1 2 3 1 2 3 1 2 3
NOMAD [31] 98535 97156 95038 177 647 200069 175620 316328 301833 271637 404 447 371091 382180 3
CPLEX [31] 98535 97156 95038 181677 200990 186481 375103 351505 407 457 514504 468118 514514 3
GRASP [34] 98535 97156 95038 175072 184142 175500 316373 299616 270830 402376 369979 383321 3
PBIL [34] 98535 97262 95038 173804 182331 175564 313336 292667 265853 390489 362574 378033 4
GA [34] 98535 97156 95038 176032 182331 176994 312395 294391 265792 391025 364354 378926 4
ABC [34] 98535 97156 95038 175041 182331 176 148 312558 297560 268 366 396 456 366568 381725 4
OI-GA [6] 98535 97 156 95038 173701 182331 174519 311171 287149 264204 387104 359623 372938 8
DE [46] 98535 97156 95038 173701 182331 174519 308401 287149 264204 386681 358167 371829 9
HNN-BD [43] 98535 97156 95038 173701 182331 174519 308929 287149 264204 386351 358167 370868 9
SPEA2 [30] 98535 97 156 95038 173701 182331 174519 308702 287149 264204 386721 358392 370868 9
GPSO [43] 98535 97156 95038 173701 182331 174519 308401 287149 264204 385972 359191 370868 9
SS [39] 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357714 370868 11
NSGA-II [1] 98535 97156 95038 173701 182331 174519 308702 287149 264204 385927 357368 370868 11
TDEA_ 98535 97156 95038 _ 173701 182331 174519 307695 287149 264204 386474 _ 357368 370868 _ 11
2SA-cGA [13] 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357368 370868 12
Table 4 e R
Networks 1-3 of 4x4 and 6x6 cells: best, worst, average and fitness deviation. I "
T
|
Network Solver . |
OI-GA[6] ~ HNN-BD[43]  GPSO [43]  CPLEX [31] ~ NOMAD [31]  NSGA-II[1]  SPEA2[30] 2SA-cGA[I3] | TD-EA !
Best 98535 98535 98535 98535 98535 98535 98535 98535 | 98535 |
Worst 98535 - - - - - - 98535 I 98535 :
— Mean 98535.00 98627.00 98535.00 98535.00 100 366.00 98535.00 98535.00 98535.00 : 98535.00 |
Dev (%) - 0.09 0.00 0.00 2.54 0.00 0.00 0.00 I 0.00 :
Rank 1 2 1 1 3 1 1 1 : 1 |
Best 97 156 97 156 97 156 97 156 97 156 97 156 97 156 97 156 : 97 156 :
= Worst 97156 - - - - - - 97 156 | 97156 !
© ~ Mean 97 156.00 97 655.00 97 156.00 97 156.00 100 065.00 97 156.00 97 156.00 97 156.00 : 97 156.00 :
X Dev (%) - 0.51 0.00 0.00 2.92 0.00 0.00 0.00 , 000
= Rank 1 2 1 1 3 1 1 1 | 1 :
Best 95038 95038 95038 95038 95038 95038 95038 95038 195038 }
Worst 95038 - - - - - - 95038 : 95038
o Mean 95038.00 95751.00 95038.00 95038.00 100 131.00 95038.00 95038.00 95038.00 1 95038.00 :
Dev (%) - 0.75 0.00 0.00 4.30 0.00 0.00 0.00 : 0.00
Rank 1 2 1 1 3 1 1 1 | 1 !
|
Best 173701 173701 173701 181677 177 647 173701 173701 173701 : 173701 1
Worst 173701 - - - - - - 173701 1175241 :
— Mean 173701.00 174 690.00 174090.00 181677.00 189263.00 173701.00 173701.00 173701.00 : 173855.00 1
Dev (%) - 0.56 0.22 0.00 4.44 0.00 0.00 0.00 I 0.09 :
Rank 1 4 3 5 6 1 1 1 : 2 |
Best 182331 182331 182331 200990 200069 182331 182331 182331 : 182331 :
= Worst 182331 - - - - - - 182331 ;182331
© ~ Mean 182331.00 182 430.00 182 331.00 200990.00 221889.00 182331.00 182331.00 182 331.00 1182 331.00 :
b Dev (%) 0.00 0.05 0.00 0.00 6.27 0.00 0.00 0.00 : 0.00
© Rank 1 2 1 3 4 1 1 1 I 1 :
Best 174519 174519 174519 186481 175620 174519 174519 174519 w 174519 :
Worst 174519 - - - - - - 174519 : 174519
o Mean 174519.00 176 050.00 175 080.00 186 481.00 182289.00 174605.00 174711.00 174519.00 1174519.00 !
Dev (%) - 0.87 0.32 0.00 2.66 0.13 0.19 0.00 ' 0.00 :
Rank 1 5 4 7 6 2 3 1 T |
T |

instance. Moreover, in 6 out of 12 instances (all networks of size
4 x4 cells, network 2 and 3 of size 6x6 cells and network 2 of size
8x 8 cells), our TD-EA could get results as good as those obtained
by the best state-of-the-art algorithm.

Finally, in 5 out of 12 networks (network 1 of sizes 6x6 and
8x8 cells, network 3 of size 8 x8 cells, networks 2 and 3 of size
10x 10 cells), our approach is outperformed by only one of the
state-of-the-art algorithms. Again, it must be brought to light
that in those 5 out of 12 instances, the TD-EA is outperformed
by a different algorithm each time. Indeed, no algorithm could
outperform our approach in all these instances, while our TD-
EA is always ranked at a competitive position no matter the
algorithm that has outperformed it or the instances being solved
are.

12

5.2.2. Second collection of networks

Similarly to the first collection of networks, various works that
studied the second collection of networks also used either the
first or the second strategy of comparison. Therefore, as we did in
the previous section, Table 6 uses the first strategy (i.e. the best
solutions achieved) to compare our proposal against state-of-the-
art-algorithms, while Table 7 uses the second strategy (i.e. the
mean of the fitness values).

It is important to keep in mind that the majority of works that
studied the second collection of networks used a modified objec-
tive function known_gs cost per call arrival. This is described using
Eq. (5.5), where Q( X ) defines the objective function formulated
by Eq. (2.1), D is the number of cells in the network and P; is the
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Table 5 P
Networks 1-3 of 8x8 and 10x 10 cells: best, worst, average and fitness deviation. / M
T
Network Solver d :
OI-GA [6] ~ HNN-BD [43]  GPSO [43]  CPLEX [31]  NOMAD [31]  NSGA-Il [1]  SPEA2 [30]  2SA-cGA [13] |, TD-EA
|
Best 311171 308929 308401 375103 316328 308702 308702 307695 : 307695 !
Worst 312925 - - - - - - 312792 1312355
— Mean 312308.38 311351.00 310062.00 375103.00 326 008.00 308 859.00 308 822.00 310571.87 : 311213.32
Dev (%) - 0.78 0.53 0.00 2.19 0.05 0.06 0.95 | 1.14 :
Rank 7 6 3 9 8 2 1 4 J 5 |
Best 287149 287149 287149 351505 301833 287 149 287 149 287 149 I 287149 :
= Worst 289771 - - - - - - 287 149 | 287149
© N Mean 287236.41 287 149.00 287 805.00 351505.00 312497.00 287 149.00 287 149.00 287 149.00 1287 149.00 :
% Dev (%) - 0.00 0.22 0.00 2.59 0.00 0.00 0.00 : 0.00 1
© Rank 2 1 3 5 4 1 1 1 I 1 :
Best 264204 264204 264204 407 457 271637 264204 264204 264204 | 264204 :
Worst 265324 - - - - - - 264353 : 264786
a Mean 264533.16 264695.00 264475.00 407 457.00 289309.00 264396.00 264279.00 264257.47 1264288.83 !
Dev (%) - 0.18 0.10 0.00 3.09 0.09 0.07 0.02 1003 :
Rank 6 7 5 9 8 4 2 1 b3
|
Best 387104 386351 385972 514504 404447 385927 386721 385927 : 386474
Worst 394176 - - - - - - 388954 1 389441 :
— Mean 390531.47 387820.00 387825.00 514504.00 415740.00 387 416.00 387764.00 387148.03 : 386993.11
Dev (%) - 0.38 0.48 0.00 1.82 0.20 0.22 0.32 | 0.27 :
Rank 7 5 6 9 8 3 4 2 I 1 )
© Best 359623 358167 359191 468118 371091 357368 358392 357368 I 357368 :
Td Worst 370021 - - - - - - 361299 : 361575 1
o ~ Mean 362320.88 359036.00 359928.00 468 118.00 379725.00 358777.00 359077.00 359050.73 1359504.77 :
X Dev (%) - 0.24 0.20 0.00 1.31 0.16 0.12 0.47 : 0.60 |
= Rank 7 2 6 9 8 1 4 3 | 5 ;
Best 372938 370868 370868 514514 382180 370868 370868 370868 “ 370868 :
Worst 382155 - - - - - - 378121 I 377255
) Mean 376900.28 374205.00 373722.00 514514.00 391627.00 371349.00 371331.00 372854.10 : 374097.70 !
Dev (%) - 0.89 0.76 0.00 0.81 0.15 0.10 0.54 | 0.94 :
Rank 7 6 4 9 8 2 1 3 b5
|
\\ //
Table 6 R
Networks of 4x4, 6x6, 8x8, 7x9, 9x11 and 19 cells: number of BRLs reached.
Solver Network
4x4 cells 6x6 cells 8x8 cells 7x9 cells 9x11 cells 19 cells # BRL
HNN-BD [26,44] (we report the results given in [46]) - - - 123474 243414 - 0 among 2
GA [50] (we report the results given in [46]) 923883 229556 436283 - - - 0 among 3
ACO [50] (we report the results given in [46]) 923883 211291 436 886 - - - 0 among 3
DE [46] 92883 211278 436269 120904 243957 - 0 among 5
TS [50] (we report the results given in [46]) 92883 211278 436283 - - - 1 among 3
BABA [27] 85165 214312 459962 - - - 1 among 3
SA [42] - - - - - 5239 1 among 1
GA-SA [28] 92882 211273 436030 - - - 1 among 1
SS [39] 92833 211278 436269 120052 242914 - 2 among 5
2SA-cGA [13] 85165 214312 458474 123473 242990 5239 2 among 6
{ TD-EA 85165 214312 458474 123473 242990 5239 2 among 6 !

paging load associated with the i cell.

. —>
min X
=(X1,.4.,XD}

O(X)=

—
X

QX)

ZiD:] Pi

(5.5)

Giving consideration to Table 6 results, it is possible to ob-
serve that our TD-EA outperforms 9 out of 10 state-of-the-art
techniques by reaching 2 out of 6 BRLs. In addition, the TD-EA
is one of the three algorithms in the literature able to get a new
best result for the instance of 4x4 cells. Also, as far as we know,
our proposed TD-EA is one of the two algorithms in the literature
capable to attain 2 out of 6 BRLs.

Looking at the results in Table 7, one can notice that in 2
out of 5 instances (networks with sizes 4x4 and 7 x9 cells), our
proposal outperforms all state-of-the-art algorithms, while in 3
out of 5 networks (instances with sizes 6 x6, 8 x8 and 9x 11 cells),
the state-of-the-art solvers could outperform our TD-EA.

13

5.2.3. Third collection of networks

For the sake of performing a more complete analysis, we have
selected, based on the results in Tables 3-5, some of the best ap-
proaches devised to solve the MMP: the GPSO [43], the OI-GA [6],
the DE [46] and the 2SA-cGA [13] to compare them against our
proposal. All algorithms were executed in our hardware platform
to attempt solving the most realistic and complex scenarios in
our benchmark (the third collection of instances). Also, in this
same line of thoughts, one should bear in mind that network 1 of
size 30% 30 cells was inspired from six months of real and diverse
communication records [13], while network 2 of similar size was
previously researched in [34,35].

Table 8 shows the outcome of the aforementioned comparison.
Based on the metric “Mean”, we highlight the best results in bold.
It is paramount to state that the parameters of GPSO, OI-GA, DE
and 2SA-cGA used in our experiment are those utilised in the
original papers. In addition, the fitness deviation is computed
using Eq. (5.1) and is expressed in percentage. One can observe,
in this table, that our TD-EA could be competitive to state-of-the-
art algorithms in 6 out of 7 networks. Now, the noteworthy thing
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Table 7
Networks of 4x4, 6x6, 8x8, 7x9 and 9x 11 cells: best, worst, average and fitness deviation. e h
T
Network Solver “
GA [50] GA-PSO [41] GSO [32] DGSO [32] BPSO [33] PBVM [38] TS [50] ACO [50] DE [48] DEL [48] IDE [48] 2SA-cGA [13], TD-EA
" Best 12.252 - 12.252 12.252 - 12.252 12.252 12.252 - - - 11.234 : 11.234
?d Worst 12.373 - 12.252 12.252 - 12.273 12.252 12.252 - - - 11.234 111.234
< Mean 12253 - 12.252 12.252 - 12.255 12.252 12.252 - - - 11234 | 11234
é Dev (%) 0.006 - 0.000 0.000 - 0.008 0.000 0.000 - - - 0.000 1 0.000
Rank 3 - 2 2 - 4 2 2 - - - 1 : 1
" Best 11.471 - 11.426 11.426 11.471 11.471 11.471 11.471 11.471 11.471 11.471 11.636 : 11.636
?d Worst 12.030 - 11.471 11.471 11.471 11.573 11.471 11.471 11.471 11.471 11.471 11.636 , 11.636
© Mean 11511 - 11.456 11.432 11.471 11474 11.471 11.471 11471 11.471 11.471 11.636 1 11.636
& Dev (%) 0343 - 0.853 0.676 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000
Rank 5 - 2 1 3 4 3 3 3 3 3 6 6
.  Best 13.782 13.782 13.782 13.782 13.782 13.782 13782  13.782  13.782  13.782 13.782 14.483 | 14.483
?d Worst 14.671 13.947 14.102 13.883 13.893 14.042 13.999 14.007 13.923 13.892 13.782 14.495 : 14.483
o Mean  14.005 13.829 13.791 13.780 13.793 13.809 13791 13.860 13.798  13.784  13.782 14486 | 14.483
& Dev (%) 1619 0.000 0.497 0.037 0.034 0.045 0.071 0.569 0.116 0.014 0.000 0.019 : 0.000
Rank 10 8 4 1 5 7 4 9 6 3 2 12 1
. Best - - - - 34538 - - - - - - 34538 | 34.538
@ Worst - - - - 35.873 - - - - - - 34.681 1 34,538
o Mean - - - - 34576 - - - - - - 34549 | 34538
X Dev (%) - - - - 0.142 - - - - - - 0.036 | 0.000
Rank - - - - 3 - - - - - - 2 J 1
«  Best - - - - 42.969 - - - - - - 42969 ' 42.969
T Worst - - - - 44633 - - - - - - 43515 | 44413
—  Mean - - - - 43.423 - - - - - - 43171 1 43479
% Dev (%) - - - - 0.346 - - - - - - 0.145 | 0.366
@ Rank - - - - 2 - - - - - - 1 I3
r )
Table 8 P
Networks of 12x12-30x30 cells: best, worst, average and fitness deviation. . M
I
Network Solver : 1
OI-GA GPSO DE 2SA-cGA . TD-EA 1
|
2 Best 15023 16112 14767 14767 14767
ot Worst 15440 17277 14806 14780 l 14885 :
a Mean 15183.20 16693.73 14775.40 14767.87 : 14785.77 |
X Dev (%) 1.07 3.61 0.06 0.01 I 0.13 :
\n Rank 4 5 2 1 J 3 |
2 Best 18454 21838 17 308 17 308 ‘ 17 308 :
8 Worst 19158 23233 17358 17 395 | 17631
= Mean 18762.97 22509.67 17 333.40 17 329.43 I 17398.60 |
X Dev (%) 1.67 3.08 0.15 0.12 |052
- Rank 4 5 2 1 I 3 :
2 Best 26010 33479 23200 23199 | 23195 !
ot Worst 28562 38070 23394 23304 23885
© Mean 27310.27 35599.10 23254.90 23239.60 : 2331227
& Dev (%) 5.00 6.33 0.24 0.18 ! 0.51 }
- Rank 4 5 2 1 : 3 [
2 Best 32794 43084 26257 26257 | 26257 |
ot Worst 35747 47587 26429 26325 I 27429 :
® Mean 34343.17 45605.73 26 326.40 26278.33 | 26371.60
P Dev (%) 4.72 5.85 0.27 0.08 | 0.44 :
i Rank 4 5 2 1 J 3 )
2 Best 42779 54510 32486 32303 ! 32397 :
st Worst 46139 62318 32742 32593 | 33308
IS Mean 44537.10 59233.03 32554.47 3242450 1 3260597 |
é Dev (%) 411 8.66 0.21 0.38 : 0.65 |
N Rank 4 5 2 1 I 3 :
2 “ l
Td Best 117 342 153693 58944 61874 : 59150
= Worst 130824 184784 59462 64102 ) 61269 1
= Mean 121977.20 171554.73 59121.00 62982.67 I 6005853 }
2 Dev (%) 3.95 11.62 0.30 1.79 } 154
o Rank 3 4 1 3 I 2 )
o | |
‘ :
= : |
Td Best 6880903 8374708 5551632 5504949 . 5420485 !
F~ Worst 7378851 10052437 5604376 5581954 I 5472371 :
e Mean 7136752.50 9341891.47 5584741.43 5551192.63 | 5442 089.43 |
r‘; Dev (%) 3.72 11.55 0.60 0.84 l 0.40 :
Q Rank 4 5 3 2 : 1 |
1

\
/
-

14
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Fig. 5.3. Network with size of 16x 16 cells.

to be noticed is that the TD-EA was capable of outperforming
all state-of-the-art techniques in the largest instance used in our
study (900 cells). Besides, all the attained results are significant
like we will see in Section 5.3.

Figs. 5.1-5.6 exemplify the fitness value evolution in the best
execution performed by the TD-EA, 2SA-cGA, DE, OI-GA and the
GPSO for the different networks of this set. We can note in
these figures that the algorithms’ behaviour is not the same for
all instances. In fact, GPSO has a swift convergence speed that
becomes slow (even stagnates) after some iterations. During the
first iterations, the OI-GA’s convergence velocity is slow when
compared with the TD-EA or the GPSO. Nonetheless, while GPSO
starts to converge, the OI-GA keeps on evolving discontinuously
(i.e. with stagnation gaps). Unlike either OI-GA or GPSO, our TD-
EA and the 2SA-cGA have regular and continuous convergence
rates.

Now, regarding the MMP’s features, besides being an NP-hard,
multimodal binary problem, the results in Tables 3-5 and 8 show
the high scalability of its instances, where most solvers have
a tendency to efficiently solve small-sized networks and fail to
address average and high-dimensional ones. Also, on the basis of
Tables 6-8, even for small-sized problems, it appears that it is
not guaranteed to efficiently solve them. Actually, one can note
that most optimisers fail to tackle the smallest networks. This
might point out the high complexity (e.g. multimodality, trays,
etc.) of the MMP independently of the size of the network at
hand. Bearing in mind these properties, our proposal could be
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Fig. 5.6. Network with size of 30x30 (2) cells.

efficient when applied on problems with features similar to those
of the MMP. Except for these facts, very few can be said about the
MMP’s characteristics. Indeed, making reliable statements about
it implies a sophisticated theory and experiments on fitness and
landscape analysis. Indeed, the amount of work and its purpose
go beyond the topic of our contribution and should be treated in
a separated paper.

5.3. Statistical tests, results and analysis

All along this section, thorough statistical tests are carried
out to verify the statistical correctness of the results given in
Table 8. The distribution normality and variance homogeneity
of the data samples are checked using the Kolmogorov-Smirnov
and the Bartlett tests, respectively. In view of the results of both
aforementioned tests, we apply a Kruskal-Wallis as a variance
analysis test. This is done to discover whether the means of the
results got by every algorithm are different or not. Taking into
account the results of this last test, we apply a post-hoc test to
discover where the difference occurs and eventually find which
algorithm is the best.

All conducted tests are hypothesis tests, where St represents
the result of the statistical test, Pv is the probability value re-
turned by the test and ¢ is the significance level. All the tests
are executed using ¢ = 5% as a level of significance, and all are
applied to a sample of data. The latter represents the results
achieved by every algorithm for each instance over 30 executions.
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5.3.1. Analysis of variance: Kruskal-Wallis test

Table 9 gives the results found after performing a Kruskal-
Wallis test, where one can remark that for all networks’ sizes,
Hj has been rejected. Thus, a post-hoc test needs to be carried to
find out where the difference occurs and eventually deduce which
algorithm is the best.

Table 9
ANOVA test: the Kruskal-Wallis results.

Size Pv St Null-hypothesis
12x12 1.3638 10726 127.4542 Rejected
14x14 8.6423 107 128.3809 Rejected
16x 16 4.4679 10~ 115.6799 Rejected
18x18 25144 107°% 121.5319 Rejected
20x20 1.6754 10726 127.0363 Rejected

30x30 (1) 9.0572 10~3° 142.3056 Rejected
30%30 (2) 1.111 107%° 141.8897 Rejected

5.3.2. Post-Hoc test

To verify its null-hypothesis, the post-hoc executes a sequence
of comparisons between some reference algorithm (A) and a
second algorithm (B). Table 10 presents the obtained results.

Regarding the post-hoc test results, one can remark that they
confirm some of the results in Table 8. However, they provide a
clearer and more reliable interpretation of other results. Indeed,
one of the important things to be noticed is that in 5 out of 7
instances highlighted in green (12x12, 16x16, 18x 18, 30x30
(1) and 30x30 (2)), the post-hoc test failed to reject the null-
hypothesis that both 2SA-cGA and TD-EA are achieving the same
set of results. This supports the evidence that both algorithms are
having equal efficiency in terms of fitness value.

The same thing goes for the TD-EA and DE. In 5 out of 7 in-
stances highlighted in green (12x 12, 16x 16, 18 x 18, 20x20 and
30x30 (1)), the post-hoc test could not reject the null-hypothesis
that the results attained by both algorithms are similar. This fact,
again, supports the idea that both DE and TD-EA are achieving the
same efficiency in terms of fitness value.

6. TD-EA vs. 25A-cGA: A comparative study

In this section, we carry out a thorough theoretical and nu-
merical comparison between the approach we present here (TD-
EA) and the best solver (2SA-cGA) [13], encountered across the
literature.

6.1. Theoretical comparison

Both works, the one we conduct here and the one made
in [13], aim at devising new efficient solvers for the MMP. So, in
order to perform methodical, correct and constructive research
and for a reliable comparison with state-of-the-art solvers, it
is mandatory and unavoidable for us to follow, here, the same
experimental settings as those used in [13]. Technically speaking,
it is obligatory that in both works we use the same mathematical
formulation of the MMP, the same experimental parametrising,
benchmarks, comparison metrics, etc. Now, when going back to
the main contribution of both works: the algorithm we present
here (TD-EA) and the one devised in [13] (2SA-cGA), both al-
gorithms are totally independent and completely different from
each other at several levels. On the basis of the explanations given
all over both works and especially in Sections 4-6 of our paper
and Sections 3.2-3.10 and 4 in [13], we can cite, as an example
among many, of where these differences occur :

First, the “algorithms’ type”. The TD-EA we devise here is a
panmictic evolutionary algorithm, while the 2SA-cGA presented
in [13] is a cellular genetic algorithm. The TD-EA evolves a non-
structured population using a hybrid solver that combines an
evolutionary algorithm with a local search, while the 2SA-cGA
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evolves a structured population (toroidal-grid-like shaped) using
a genetic algorithm. On the basis of this first fact, many other dif-
ferences are noticeable between both proposals: (1) their struc-
ture, (2) search processes, (3) search operators, (4) paradigms
employed in each of them, (5) their parametrising, (6) the novel-
ties and contributions they contain, (7) their research conclusions,
etc. Let us, in what is coming, give further details about these
dissimilarities.

The “structure” and how the TD-EA and 2SA-cGA are built are
totally different. This includes their architecture, the sequencing
and the order in which their search operators are executed. This
leads us to the second point of divergence between the TD-EA and
2SA-cGA, which is their “search operators”. Actually, the latter is
one of the principal origins in the difference of structure. Both
the TD-EA and 2SA-cGA use search operators that are different in
terms of number (i.e. how many), type (i.e. the working mech-
anism) and placement (i.e. position inside the algorithm), etc.
Although, since both proposals can be classified as evolutionary
metaheuristics, naturally, the only point where both approaches
seem to partially join is the use of some “concepts” related to
evolutionary computing. These concepts are the initialisation,
selection, crossover, mutation, replacement and the application of
parameter’s adaptation at some moment in their execution. Still,
it is very important to note that these are “high-level” common
features, which means that it is nothing more than sharing the
“concept” or the “naming”. Indeed, even here, both the TD-EA
and 2SA-cGA perform such phases in a way that completely
differ from one another. As a matter of fact, technically speaking,
“When”, “Where” and “How” these steps are done is absolutely
different in each algorithm.

Considering the difference in their structures and search oper-
ators, another dissimilarity between the TD-EA and 2SA-cGA can
also be noted in their “search processes” which is a key element
in search algorithms. As a matter of fact, this means that both
solvers’ working mechanism and how they perform their search is
completely different. Now, with regard to all the aforementioned
divergence points that exist between both approaches, we can
find that they are the source of other fundamental differences
in the “paradigms employed” and those on which the TD-EA
and 2SA-cGA are based. This includes the philosophy of search,
structuring the population, hybridisation of algorithms and so
on. Also, the previously-cited dissimilarities are caused by those
same differences in the paradigms employed in the TD-EA and
2SA-cGA. Probably one of the most noticeable and undeniable
ones is the parameters’ adaptation. In fact, the 2SA-cGA adapts its
parameter on the basis of some basic offline formula, while the
TD-EA evolves its parameter on the basis of the future expected
behaviour of the algorithm and this using a mathematical oracle
based on two concepts: growth curve and takeover time.

Another important aspect in evolutionary computing is the
algorithm “parametrising” and especially search operators at all
levels. Here also, another difference can be noticed between the
TD-EA and the 2SA-cGA. All of these, lead us to the differences we
can find in the experimental level, which are the “results and the
research conclusions”. Indeed, it is clear that both proposals are
leading, in their own way, to separate, different and independent
research findings. Now, of course many other differences can be
found between both the solver we present here and the one
devised in [13], but just bearing in mind all the above dissim-
ilarities, one can note one final major difference between both
works : the “novelty” and the “contribution they contain”. Table 11
summarises some of the principal similarities and differences that
can be found between both the work we conduct here and the
one made in [13].
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Table 10
Post-hoc test results.

Algorithm A Algorithm B 12x12 14x14 16x 16 18x18 20x20 30x30 (1) 30%x30 (2)
TD-EA OI-GA 3.00 10-% 1.14 107 8.22 107% 3.07 10-% 9.59 10~% 5.96 10~ 1.03 10~
TD-EA_ - _____ GPSQ _ _ __ __ 2381071 _29910°%_ ___ 28510273 _ __ 643107 ___ 124101 ___ 5751070 __ 10510°%

! TD-EA 2SA-cGA 1.00 10~ 489 107 1.00 10~ 9.86 107! 2.99 10~ 6.04 10~ 5.31 10~
+ TD-EA DE 1.00 10~ 4.89 10~ 1.00 10~ 1.00 10~ 1.00 10~ 1.13 107" 1.64 107°% |
[o] ey N GPSO ~ " T 7 5171072 =7 7421072 "7 748107 T 7451072 "7 749107 77 749107 T 749 10°%
OI-GA 2SA-cGA 9.47 10710 1.57 10710 2.28 107% 1.28 10710 142 1072 7.49 10792 1.64 107%
OI-GA DE 222 107% 1.29 107% 2.73 107% 3.08 107% 2.38 107 1.84 10~ 5.31 1072
GPSO 2SA-cGA 1.83 107" 4.58 1020 5.11 107" 3.49 10720 757 1073 8.85 1077 257 1071
GPSO DE 151 1071 2211077 5.46 10714 7.72 10~ 5.20 10~ 225 107% 472 10777
2SA-cGA DE 1.00 10~ 1.00 10~% 1.00 10~ 9.23 10 1.53 1072 1.31 107% 1.43 107

Table 11
TD-EA vs. 2SA-cGA: a theoretical comparison.
Comparison part Comparison aspect Different Similar
Problem modelling X
MMP problem Mathematical formulation X
Experiments’ settings X
Experimental validation Comparlson.metrlcs X
Benchmark instances X
# SOTA the proposal is compared with X
Algorithm’s type X
Algorithm’s structure X
Algorithm’s search operators X
S Algorithm’s search process X
Contribution/Proposal Paradigms employed/ based on X
Parametrising X
Results and research conclusions/findings X
Novelties and contributions X

6.2. Numerical comparison

The numerical comparison between the TD-EA and 2SA-cGA
has been done over all the 25 networks of the 1%, 2" and
3™ collections. The comparison takes into account four criteria.
The first criterion is the efficiency in terms of statistical results
presented in Table 10 and mean values in Tables 3-8. On the basis
of the results in Tables 3-10, it is to bear in mind that regarding
the best result achieved all along 30 executions, both TD-EA and
2SA-cGA achieve identical results in 20 out of 25 instances, the
TD-EA outperforms the 2SA-cGA in 3 out of 25 instances and
the 2SA-cGA outperforms the TD-EA in 2 out of 25 instances.
Taking now the average of the results obtained throughout 30
executions, the TD-EA and the 2SA-cGA achieve similar results in
11 out of 24 instances, the TD-EA outperforms the 2SA-cGA in 5
out of 24 instances and the 2SA-cGA outperforms the TD-EA in 8
out of 24 networks. One should also keep in mind that based on
the average results in 30 executions, the TD-EA outperforms the
2SA-cGA in the two largest realistic networks ever studied in the
literature (900 cells): networks 1 and 2 of size 30x30 cells.

The second criterion is “# Hits”, which represents the number
of times (among 30 executions) the algorithm could reach the
best result known in the literature. The third criterion is “Exe-
cution time”. It represents the average time needed (in seconds)
for the algorithm to complete one execution. The last criterion,
“FE Needed”, represents the average number of fitness evalua-
tions needed for an algorithm to reach the best result known
in the literature. It is worth noting that the metric "FE Needed”
considers all the fitness evaluations between the “start” and the
“termination” of the algorithm (whether the 2SA-cGA or the TD-
EA) and it also includes the “total” number of fitness evaluations
performed by all the algorithm’s components (whether the 2SA-
cGA or the TD-EA). Indeed, considering the TD-EA for instance, the
“FE Needed” represents the average of the total number of fitness
evaluations performed by all the TD-EA’s components including
both the optimisation and local search phases.
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Table 12 and Fig. 6.1 represent the results of such comparison,
where the best results are emboldened and coloured in green.
Taking into account the metrics “efficiency” and “# Hits”, both
TD-EA and 2SA-cGA display approximately similar performances
with a tiny superiority for the 2SA-cGA over the TD-EA. In addi-
tion, regarding the criteria “Execution time” and “FE needed”, our
proposed TD-EA outperforms the 2SA-cGA. Indeed, in 4 networks
(16% of the cases), it reaches the BRLs more often than the 2SA-
¢GA does and in 14 instances (56% of the cases), the same times
as 2SA-cGA does. (II) In 16 instances (64% of the cases), our
proposal takes less fitness evaluations than the 2SA-cGA to reach
the BRLs. (III) In 19 instances (76% of the cases), our approach
execution time is shorter than the one of the 2SA-cGA.

Efficiency
- Statistical

- Fitness
TD-EA
N  25A-cGA

Vs \llf‘o% =
~" o
S\ "G

S
| b\\\

AN
%

log
FE Needed Execution Time

Fig. 6.1. TD-EA vs. 2SA-cGA: # hits, FE needed and execution time.

7. The TD-EA: A component efficiency analysis

In order to give further understanding of the source of the TD-
EA’s efficiency, we perform in this section a profound analysis
of the main components that constitutes our proposal. As it can
be seen in Section 4, the TD-EA has two principal constituents:
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TD-EA vs. 2SA-cGA.
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Networks Execution time (s) # Hits (among 30 exe) FE needed
TD-EA 2SA-cGA TD-EA 2SA-cGA TD-EA 2SA-cGA
4x4 (1) 630.943 824.125 30 30 2916.667 11600.000
4x4 (2) 739.072 814.656 28 28 3212500 14042.857
4x4 (3) 691.086 843.626 30 30 2811.667 10466.667
6x6 (1) 2241385 2918.756 27 30 23262.037 49800.000
6x6 (2) 2145.827 2832.698 30 30 8691.667 42 026.667
1% collection 6x6 (3) 2438.858 2798.797 28 28 11112.500 48014.286
8x8 (1) 6324.602 6841234 3 1 109468.000  114800.000
8x8 (2) 4951.019 6796.665 30 30 44881.267 78533.333
8x8 (3) 5041.298 6778.263 16 17 62509.250  101670.590
1010 (1) 8252.369 13021.427 0 1 None 114 800.000
10x10 (2) 9389.050 13238.905 1 1 171079.000 154 800.000
10x10 (3) 10437.926 15832.301 4 154711250 136 800.000
4x4 121.744 213.792 30 30 2718333 6466.667
6x6 340.090 595.567 0 0 None None
ond collection 8x8 6218.159 1423.710 0 0 None None
7x9 6747.040 1488.498 0 0 None None
9x11 14722.314 11644.408 0 0 None None
19 771.853 223.369 30 30 3406.667 15093.333
12x12 15399.197 15541.150 20 28 78120000 107785714
14x14 26190.939 26748.731 1 15 119175.000 137 600.000
16x16 40286.036 41458.463 3 0 97591.667 None
3" collection 18x18 61817.631 62525.031 6 8 109783.333  166550.000
20%20 93283.923 94295.348 0 1 None 165200.000
30%30 (1) 631712950  439778.120 0 0 None None
30%30 (2) 692930.790 453510530 1 0 174 825.000 None
the “optimisation” and the “local search” phases. The aim of our ~ Table 13 '
study is to make some hypothesis on whether the improvements Number _°f times Fhe local search phase 1S executed.
displayed by the TD-EA are due to the local search phase, the Collection  Size ~ Network  Min  Max  Average STD
optimisation phase or both. 1 0 0 0.000 0.000
The results of Table 13 represent the number of times (e.g. 4x4 § 8 8 g‘ggg 8‘888
maximum, minimum and average) the local search phase is exe- ; o o 0'000 0'000
cuted throughout the 30 runs of the TD-EA. As it can be seen, in ) 0 0 0.000 0.000
19 out of 25 instances (76% of the cases: green-shaded), the local 5t 6x6 3 0 0 0.000 0.000
search i.s not gxecuted. This means thaF Fhe TD.—EA only performs 1 1527 2291 1858400 215436
the optimisation phase and that its efficiency is due only to that 8x8 2 1006 2113 1599.900  229.836
component. In this same line of thoughts, we go further by trying 3 1616 2324 2044.967  175.802
to prove/reject such hypothesis. To do that, we executed the TD- 1 939 1539 1348.767  143.570
EA using the same experimental settings employed previously 10x10 2 655 1061 819567 7179
. b . L : 3 839 1743 1187.133  184.217
in our study (see Section 5.1). The only difference this time is
that we are discarding the local search phase. Technically speak- ‘éxg - 8 8 8'888 8'888
. . . . X - g B
ing, th.e TD-EA will execute only Fhe optimisation phase. In the Jna $x8 _ 0 0 0.000 0.000
following, we call this TD-EA’s variant as TD-EA-{LS}. 19 - 0 0 0.000 0.000
7x9 - 0 0 0.000 0.000
9x 11 - 0 0 0.000 0.000
The results in Table 14 are those obtained .when comparing 12x12 Z 0 0 0.000 0.000
both the TD-EA and the TD-EA-{LS} on the basis of several met- 14x14 - 0 0 0.000 0.000
rics. We can cite, as an example of these criteria, the “best”, the . 16x16 - 0 0 0.000 0.000
. . T -
“worst” and the “Mean” of the fitness value obtained through 30 3 ;gi;g g 8 8'888 g'ggg
executions. The metric A(Q) represents the difference between 1 0 0 0.000 0.000
the average fitness obtained by the TD-EA and the TD-EA-{LS} 30x30 2 0 0 0.000 0.000

(see Fig. 7.1). The metrics “# Hits” and “FE Needed” stand for the
number of times an algorithm (whether the TD-EA or the TD-EA-
{LS}) could achieve the best result known in the literature and
also what is the average of fitness evaluations needed to do so.
It is also worth noting that the metric "FE Needed” considers all
the fitness evaluations between the “start” and the “termination”
of the algorithm (whether the TD-EA or the TD-EA-{LS}) and it
also includes the “total” number of fitness evaluations performed
by all the algorithm’s components. Indeed, considering the TD-
EA for instance, the “FE Needed” represents the average of the
total number of fitness evaluations performed by all the TD-
EA’s components including both the optimisation and local search
phases, while for the case of the TD-EA-{LS}, it considers only the
optimisation phase.
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Finally, the metric “Hq” represents the results of the statis-
tical test, where “+” means that the null-hypothesis has been
accepted (i.e. the TD-EA and TD-EA-{LS} have similar mean ranks),
while “~" designates the alternative scenario. It is important to
bear in mind that green-shaded cells signify that both the TD-
EA and TD-EA-{LS} have similar results, while blue-shaded cells
mean that the TD-EA outperforms the TD-EA-{LS} and finally
red-shaded cells designates the opposite scenario.

On the basis of the metrics “Mean” and “A(Q)” in Table 14, one
can notice that in 7 out of 25 instances, both the TD-EA and TD-
EA{LS} achieve the same results. For the remaining instances, the
difference is barely noticeable. Although it is worth to mention
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Table 14
The TD-EA vs. TD-EA-{LS}.
Collection Size Network Algorithm Best Worst Mean Dev (%) A(Q) # Hits FE needed Ho
1 TD-EA 98 535.000 98 535.000 98535.000 0.000 0.000 30 2916.667 "
TD-EA-{LS} 98 535.000 98 535.000 98535.000 0.000 : 30 3301.667
4x4 2 TD-EA 97 156.000 97 156.000 97 156.000 0.000 0.000 28 3212.500 "
TD-EA-{LS} 97 156.000 97 156.000 97 156.000 0.000 : 30 3430.000
3 TD-EA 95 038.000 95 038.000 95038.000 0.000 182.600 30 2811.667 i
TD-EA-{LS} 95 038.000 100516.000 95 220.600 0.192 ! 29 2456.034
1 TD-EA 173701.000 175 241.000 173 855.000 0.090 154.000 27 23262.037 i
TD-EA-{LS} 173701.000 173701.000 173701.000 0.000 : 30 24266.667
6x6 2 TD-EA 182 331.000 182331.000 182 331.000 0.000 0.000 30 8691.667 4
TD-EA-{LS} 182331.000 182331.000 182 331.000 0.000 : 30 8820.000
st
1 3 TD-EA 174519.000 174 519.000 174519.000 0.000 0.000 28 11112.500 "
TD-EA-{LS} 174 519.000 174519.000 174519.000 0.000 : 30 10313.333
1 TD-EA 307 695.000 312355.000 311213.320 1.140 322,880 3 109 468.000 "
TD-EA-{LS} 307 695.000 312819.000 311536.200 1.248 : 1 76475.000
8x8 2 TD-EA 287 149.000 287 149.000 287 149.000 0.000 910.133 30 44881.267 B
TD-EA-{LS} 287 149.000 296 191.000 288 059.133 0.317 : 26 31742.308
3 TD-EA 264 204.000 264786.000 264288.830 0.030 172.037 16 62509.250 i
TD-EA-{LS} 264 204.000 265 324.000 264 460.867 0.097 : 15 36761.667
1 TD-EA 386 474.000 389441.000 386993.110 0.270 3354790 0 None B
TD-EA-{LS} 387 543.000 397 904.000 390 347.900 0.724 : 0 None
10x 10 2 TD-EA 357 368.000 361575.000 359504.770 0.600 1638.830 1 171079.000 B
TD-EA-{LS} 358 167.000 365 402.000 361 143.600 0.831 : 0 None
3 TD-EA 370868.000 377 255.000 374097.700 0.940 2519.567 4 154711.250 _
TD-EA-{LS} 370868.000 381160.000 376617.267 1.550 i 1 50925.000
Ax4 B TD-EA 11.234 11.234 11.234 0.000 0.000 30 2718.333 4
TD-EA-{LS} 11.234 11.234 11.234 0.000 : 30 2555.000
TD-EA 11.636 11.636 11.636 0.000 0 None
6x6 N TD-EA-{LS} 11.636 11.636 11.636 0.000 0.000 0 None +
TD-EA 14.483 14.483 14.483 0.000 0 None
2 8x8 N TD-EA-{LS} 14.483 14.536 14.491 0.054 0.008 0 None +
19 B TD-EA 13.679 13.679 13.679 0.000 0.000 30 3406.667 "
TD-EA-{LS} 13.679 13.679 13.679 0.000 : 30 3441.667
7%9 B TD-EA 34.538 34538 34538 0.000 0.261 0 None _
TD-EA-{LS} 34.538 41.000 34.799 0.754 i 0 None
TD-EA 42.969 44.413 43.479 0.366 0 None
9x11 N TD-EA-{LS} 42.969 44.450 43.561 1.377 0.082 0 None +
12x12 B TD-EA 14767.000 14 885.000 14785.770 0.130 1.003 20 78 120.000 4
TD-EA-{LS} 14767.000 14879.000 14784.767 0.120 ’ 18 70000.000
14x14 B TD-EA 17 308.000 17 631.000 17 398.600 0.520 6.867 1 119 175.000 "
TD-EA-{LS} 17 308.000 17 529.000 17 405.467 0.563 : 2 108 325.000
16x16 B TD-EA 23195.000 23885.000 23312.270 0.510 4337 3 97 591.667 i
31 TD-EA-{LS} 23199.000 23801.000 23307.933 0.470 : 0 None
18x18 B TD-EA 26257.000 27 429.000 26 371.600 0.440 39833 6 109783.333 X
TD-EA-{LS} 26257.000 26912.000 26331.767 0.285 : 4 147 612.500
TD-EA 32397.000 33308.000 32605.970 0.650 0 None
20520 N TD-EA-{LS} 32370.000 33028.000 32582.900 0.658 23.070 0 None +
1 TD-EA 59 150.000 61269.000 60058.530 1.540 52.603 0 None 4
30x30 TD-EA-{LS} 58 849.000 61343.000 60111.133 2.145 : 1 162 575.000
2 TD-EA 5420485.000 5472371.000 5442 089.430 0.400 3283597 1 174 825.000 "
TD-EA-{LS} = 5408 420.000 5472165.000 5438805.833 0.562 : 4 150587.500

that the largest differences are found in networks 8 x8 and 10x 10
of the 1% collection. This is quite logical since the results of
Table 13 show that those instances are the only ones where
the local search phase is executed. This supports the hypothesis
that the difference in the TD-EA’s efficiency might be due to the
optimisation phase.

Now, on the basis of the metric “# Hits”, both the TD-EA
and the TD-EA-{LS} achieve the same results in 10 out of 25
instances, while the TD-EA could outperform the TD-EA-{LS} in

19

9 instances and the TD-EA-{LS} could beat the TD-EA in 6 out
of 25 cases. Although, when considering the metric “FE needed”,
it can be seen that as the size of the instances increases, the
TD-EA-{LS} has a tendency to outperform the TD-EA and this
by reaching the best known results in the literature in much
smaller number of fitness evaluations. Despite the fact that it is
hard to make firm conclusions about the efficacy of stochastic
algorithms, we can confirm (with a reasonable confidence) that
in this particular study, the source of the efficiency of the TD-EA
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Fig. 7.3. Network 20x20 cells.

is mainly due to the optimisation phase. This being said, in some
cases (e.g. networks 8x8 and 10x 10 cells), it is also due to the
local search phase.

Figs. 7.2-7.13 represent the fitness evolution for both the TD-
EA and the TD-EA-{LS} when tackling instances of 4x4 - 30x30
cells. The figures have been created by choosing, on purpose,
executions where both the TD-EA and the TD-EA-{LS} end-up
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Fig. 7.4. Network 30x30 cells.
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reaching the same result or at least very close ones. Our goal is
to analyse the behaviour of both algorithms when providing the
same efficiency. As it can be seen in Figs. 7.2-7.13, the comport-
ment of both algorithms is very similar (even identical) in most
of the cases. Indeed, for almost all the networks, the TD-EA and
TD-EA-{LS} display the same convergence speed and the same
smooth fitness evolution at overall. All the above-mentioned facts
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support, once again, the hypothesis that in 76% of the cases, the
TD-EA's efficiency is coming from the “optimisation phase”.

Another important thing to notice in Table 14 is that removing
the local search has enhanced the efficiency of the TD-EA in the
two largest instances of 30x 30 cells. Indeed, for the 15 network
of size 30x30, the TD-EA-{LS} could reach a new best result
that has never been obtained by another solver in the literature
(including the TD-EA). For the 2" network of 30x 30 cells, the TD-
EA-{LS} reached a new value of the metrics “# Hits” and “Mean”
that has never been obtained in the literature (including by the
TD-EA).
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8. Conclusions and future work

In this work, we have presented a new adaptive evolutionary
algorithm based on takeover models for solving and addressing
the users’ mobility management issue in pre-5G telephony net-
works. Our proposed algorithm has been thoroughly assessed by
tackling 25 realistic instances of different sizes and organised
in three sets. Besides, the proposal has been compared with 28
state-of-the-art MMP’s solvers. The results’ significance has been
verified by carrying out thorough statistical tests.

The attained results have demonstrated that our TD-EA al-
gorithm is more efficient, scalable and robust than most of the
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state-of-the-art techniques and could also achieve very compet-
itive results compared to those of one of the top-ranked op-
timisers: the 2SA-cGA. Furthermore, our proposed solver could
manage to get new (i.e. never obtained before in the literature)
best solutions in some instances, obtain results as good as those
achieved by state-of-the-art algorithms in 5 instances and could
outperform every solver in the literature in 2 instances including
the largest network we have been using through our assessment.
Considering the third collection of networks, the statistical results
have shown similar efficiency between the TD-EA and two of the
top-ranked optimisers: 2SA-cGA and the DE. Our proposed TD-EA
could also beat the 2SA-cGA in the two most realistic and largest

networks ever studied in the literature (900 cells).

As for future work, we think that the use of LTGA [69], LT-
GOMEA [70], P3 [71], DSMGA-II [72] and the 3LOa [73] could be a
promising direction to explore so as to enhance the MMP’s state-
of-the-art solvers. Furthermore, we intend to test our proposal on
the real-world field and this by involving telephony operators.
Also, we seek to tackle larger realistic instances and include
communication traffic changes using SUMO (Simulation of Urban

Mobility) and OpenStreetMap platform.
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Appendix. List of acronyms

Table A.15 presents the set of all the acronyms used in the text.
It is also worth noting that one can find, in the text, the same

acronyms ending with an “s” that indicates the plural form.
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Table A.15
List of acronyms and their explanations.
Acronym Explanation
ACO Ant Colony Optimisation algorithm
BABA Binary Artificial Bat Algorithm
BRL Best Result known in the Literature
GA-PSO combined Particle Swarm Optimisation algorithm with the
Genetic Algorithm
DE Differential Evolution algorithm
DSMGA-II Dependency Structure Matrix Genetic Algorithm II
EA Evolutionary Algorithm
GA Genetic Algorithm
GPSO Geometric Particle Swarm Optimisation algorithm
GSO Group Search Optimiser
HNN-BD modified Hopfield Neural Network combined with Ball
Dropping technique
HUX Half Uniform Crossover
HTC High Throughput Computing
IoT Internet of Things
LU Location Update
LTGA Linkage Tree Genetic Algorithm
LT-GOMEA Linkage Tree Gene-pool Optimal Mixing Evolutionary
Algorithm
MM Mobility Management
MMC Mobility Management Core
MMP Mobility Management Problem
NSGA-II Non-dominated Sorting Genetic Algorithm II
NOMAD Nonlinear Optimisation with the Mesh Adaptive Direct
search algorithm
NRC Non-Reporting Cell
OI-GA Oscillatory-Increasing adaptive Genetic Algorithm
PSO Particle Swarm Optimisation algorithm
P3 Parameter-less Population Pyramid
RC Reporting Cell
RCP Reporting Cell Problem
RCS Reporting Cell Scheme
SS Scatter Search algorithm
SA Simulated Annealing
SUD Standard Uniform Distribution
2SA-cGA Stop-and-Start Adaptive cellular Genetic Algorithm
SPEA 2 Strength Pareto Evolutionary Algorithm 2
TS Tabu Search
TD-EA Takeover Time-Driven adaptive bi-phased Evolutionary
Algorithm
TD-EA-{LS} Takeover Time-Driven adaptive bi-phased Evolutionary
Algorithm without Local Search
3L0a Linkage Learning based on Local Optimisation algorithm
3L0 Linkage Learning based on Local Optimisation
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