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Abstract
The phase-space approach to quantization is extended to incorporate spinning particles with

Galilean symmetry. The appropriate phase space is the coadjoint orbit ℝ6×𝕊2. From two basic
principles, traciality and Galilean covariance, the Weyl symbol calculus is constructed. Then
the Galilean-equivariant twisted products of functions on this phase space are identified.

In the conventional description, the states of a quantum-mechanical, nonrelativistic particle are
identified to elements of the Hilbert space H 𝑗 = ℂ2 𝑗+1 ⊗ 𝐿2(ℝ3, 𝑑𝝃). Since the pioneering work by
Weyl [1], Wigner [2] and foremost, Moyal [3], phase-space realizations of such a physical system,
for 𝑗 = 0, have attracted considerable attention. In this letter we extend the phase-space approach
to cover spinning particles as well, within the framework of nonrelativistic mechanics.

Let 𝕊2 denote the manifold of states of a “classical spin”, i.e., the sphere. Let 𝑈 𝑗 be a physical
(i.e., projective) unitary representation of the Galilei group𝐺 on H 𝑗 , write 𝑔 · 𝐴 := 𝑈 𝑗 (𝑔)𝐴𝑈 𝑗 (𝑔−1)
for any operator 𝐴 on H 𝑗 , and let 𝑔 · 𝑢 denote the action of 𝐺 on the phase-space ℝ6 × 𝕊2, with
coordinates 𝑢 := (𝒒, 𝒑; 𝒏). By a “Stratonovich–Weyl correspondence” we mean a rule assigning to
every operator 𝐴 a function𝑊𝐴 on the phase space ℝ6 × 𝕊2, satisfying the following postulates:

(a) The correspondence is linear and one-to-one.

(b) Self-adjoint operators are mapped into real functions.

(c) The identity operator is mapped into the constant function 1.

(d) Traciality. For a suitable multiple 𝑑𝜇 𝑗 of the ordinary measure on ℝ6 × 𝕊2, the equation∫
𝑊𝐴 (𝑢)𝑊𝐵 (𝑢) 𝑑𝜇 𝑗 (𝑢) = Tr 𝐴𝐵 holds whenever both sides make sense.

(e) Covariance. 𝑊𝑔·𝐴 (𝑢) = 𝑊𝐴 (𝑔−1 · 𝑢) for 𝑔 ∈ 𝐺, 𝑢 ∈ ℝ6 × 𝕊2.

The problem of finding a Stratonovich–Weyl correspondence for a Galilean particle with arbi-
trary spin has an essentially unique solution. We collect first the necessary formulae for the Galilei
group. Lévy-Leblond’s notation [4] is employed throughout. A Galilean transformation, defined by

(𝑏, 𝒂, 𝒗, 𝑅) (𝒙, 𝑡) := (𝑅𝒙 + 𝒗𝑡 + 𝒂, 𝑡 + 𝑏),
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where 𝑏 ∈ ℝ, 𝒂, 𝒗 ∈ ℝ3, 𝑅 ∈ 𝑆𝑂 (3) and (𝒙, 𝑡) are spacetime coordinates, has inverse (𝑏, 𝒂, 𝒗, 𝑅)−1 =

(−𝑏, 𝑅−1(𝑏𝒗 − 𝒂),−𝑅−1𝒗, 𝑅−1). It acts on phase space [5] by:

(𝑏, 𝒂, 𝒗, 𝑅) · (𝒒, 𝒑; 𝒏) :=
(
𝑅(𝒒 − 𝑏

𝑚
𝒑) + 𝒂 − 𝑏𝒗, 𝑅 𝒑 + 𝑚𝒗, 𝑅𝒏

)
. (1)

Here 𝑚 is the mass of the particle.
It is well known that the projective representations of 𝐺 are restrictions of true representations

of central extensions 𝐺𝑚 of the universal covering group 𝐺 [4] (which we will denote also by 𝑈 𝑗 ).
They act on H 𝑗 (which can be thought of as momentum space for the 𝑗-spin particle) by:

[𝑈 𝑗 (𝑏, 𝒂, 𝒗, 𝑅 )Φ]𝑠 (𝝃) := exp
[
𝑖

ℏ

(𝑏 |𝝃 |2
2𝑚

− 𝝃 · 𝒂 + 1
2𝑚𝒂 · 𝒗

)] 𝑗∑︁
𝑡=− 𝑗

D
𝑗
𝑠𝑡 (𝑅 )Φ𝑡

(
𝑅−1(𝝃 − 𝑚𝒗)

)
, (2)

where 𝑅 ∈ SU(2), the covering group of SO(3), 𝑅 is the rotation matrix corresponding to 𝑅, and
the D

𝑗
𝑠𝑡 (𝑅) are the usual matrix elements ⟨ 𝑗 𝑠 | 𝜋 𝑗 (𝑅 ) | 𝑗 𝑡⟩ [6], where 𝜋 𝑗 denotes the irreducible

representation of SU(2) on ℂ2 𝑗+1, and 𝑠 = − 𝑗 , . . . , 𝑗 − 1, 𝑗 .
The system of factors is

𝜔𝑚 (𝑔, 𝑔′) =
𝑚

2ℏ
(−𝑏′𝒗 · 𝑅𝒗′ + 𝒗 · 𝑅𝒂′ − 𝒂 · 𝑅𝒗′)

if 𝑔 = (𝑏, 𝒂, 𝒗, 𝑅), 𝑔′ = (𝑏′, 𝒂′, 𝒗′, 𝑅′) belong to𝐺. It restricts nicely to the exponent of the canonical
commutation relations in Weyl form [1], on considering the subgroup of 𝐺 of elements such that
𝑏 = 0, 𝑅 = 1. We note that (1) comes naturally from Kirillov–Souriau theory [7, 8], as ℝ6 × 𝕊2 is
an orbit of the coadjoint action of 𝐺 corresponding to a Casimir element 𝑚 > 0.

By condition (a), we may write

𝑊𝐴 (𝑢) = Tr(𝐴 Γ 𝑗 (𝑢))

for some operator-valued function Γ 𝑗 on ℝ6 × 𝕊2. Now, by the tracial condition (d):

Tr 𝐴𝐵 =

∫
𝑊𝐴 (𝑢)𝑊𝐵 (𝑢) 𝑑𝜇 𝑗 (𝑢) =

∫
Tr(𝐴 · Γ 𝑗 (𝑢))𝑊𝐵 (𝑢) 𝑑𝜇 𝑗 (𝑢)

= Tr
(
𝐴

∫
𝑊𝐵 (𝑢) Γ 𝑗 (𝑢) 𝑑𝜇 𝑗 (𝑢)

)
,

which implies

𝐵 =

∫
𝑊𝐵 (𝑢) Γ 𝑗 (𝑢) 𝑑𝜇 𝑗 (𝑢) for any 𝐵.

Thus the tracial condition, which is obviously imposed to assure the equality of standard quantum-
mechanical and phase-space averages, has the important consequence that the correspondence
𝐴 ⇄ 𝑊𝐴 can be implemented with the same operator kernel Γ 𝑗 .

We now show that Γ 𝑗 (𝑢) is a tensor product of operators Δ 𝑗 (𝒏) acting on ℂ2 𝑗+1 and Π(𝒒, 𝒑)
acting on 𝐿2(ℝ3, 𝑑𝝃): Γ 𝑗 (𝒒, 𝒑; 𝒏) = Δ 𝑗 (𝒏) ⊗ Π(𝒒, 𝒑). Introduce the following functions over the
sphere:

𝑍
𝑗
𝑟𝑠 (𝒏) :=

√
4𝜋

2 𝑗 + 1

2 𝑗∑︁
𝑙=0

√
2𝑙 + 1

〈
𝑗 𝑙 𝑟 (𝑠 − 𝑟) | 𝑗 𝑠

〉
𝑌𝑙,𝑠−𝑟 (𝒏), (3)
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where 𝑌𝑙𝑚 denotes the usual spherical harmonics and
〈
𝑗 𝑙 𝑟 (𝑠 − 𝑟) | 𝑗 𝑠

〉
is a Clebsch–Gordan coef-

ficient. Using the well-known formula [6] for transforming spherical harmonics:

𝑌𝑙𝑚 (𝑅𝒏) =
𝑙∑︁

𝑛=−𝑙
D𝑙∗
𝑚𝑛 (𝑅)𝑌𝑙𝑛 (𝒏),

one derives [9], after some calculation:

𝑍
𝑗
𝑟𝑠 (𝑅𝒏) =

𝑗∑︁
𝑝,𝑞=− 𝑗

D
𝑗
𝑟 𝑝 (𝑅)D 𝑗∗

𝑠𝑞 (𝑅) 𝑍 𝑗𝑝𝑞 (𝒏).

Define

Δ 𝑗 (𝒏) :=
𝑗∑︁

𝑟,𝑠=− 𝑗
𝑍
𝑗
𝑟𝑠 (𝒏) | 𝑗𝑟⟩⟨ 𝑗 𝑠 |. (4)

As 𝑍 𝑗𝑟𝑠 = 𝑍
𝑗

𝑠𝑟 , the Δ 𝑗 are selfadjoint. One computes easily that

TrΔ 𝑗 (𝒏) = 1, (5a)

Tr
(
Δ 𝑗 (𝒎)Δ 𝑗 (𝒏)

)
=

4𝜋
2 𝑗 + 1

2 𝑗∑︁
𝑙=0

𝑙∑︁
𝑠=−𝑙

𝑌𝑙𝑠 (𝒎)𝑌 ∗
𝑙𝑠 (𝒏) =:

4𝜋
2 𝑗 + 1

𝐾 𝑗 (𝒎, 𝒏). (5b)

Here 𝐾 𝑗 is the reproducing kernel of the space of spherical harmonics of degree ⩽ 2 𝑗 . Now
introduce

Π(𝒒, 𝒑)Φ(𝝃) := 23 exp
(2𝑖
ℏ
𝒒 · ( 𝒑 − 𝝃)

)
Φ(2 𝒑 − 𝝃),

and compute [10, 11]:

TrΠ(𝒒, 𝒑) = 1, (6a)
Tr
(
Π(𝒒, 𝒑)Π(𝒒′, 𝒑′)

)
= (2𝜋ℏ)3 𝛿(𝒒 − 𝒒′) 𝛿( 𝒑 − 𝒑′). (6b)

We note that the geometrical meaning of the Π(𝒒, 𝒑) as reflection operators was only uncovered
some years ago by Grossmann [12] and Royer [13]. It is easily seen that the Π(𝒒, 𝒑) are self-adjoint.

From (5) and (6) it follows that the Γ 𝑗 (𝑢) = Δ 𝑗 (𝒏) ⊗ Π(𝒒, 𝒑) are selfadjoint, and

Tr Γ 𝑗 (𝑢) = 1, (7a)

Tr
(
Γ 𝑗 (𝑢)Γ 𝑗 (𝑢′)

)
=

4𝜋
2 𝑗 + 1

(2𝜋ℏ)3 𝛿 𝑗 (𝑢 − 𝑢′), (7b)

with an obvious meaning for 𝛿 𝑗 (𝑢 − 𝑢′).
Now, our initial set of postulates is readily seen to translate into the following conditions for the

family of operators Γ 𝑗 (𝑢):

(i) The Γ 𝑗 (𝑢) are selfadjoint;

(ii)
∫
ℝ6×𝕊2

Γ 𝑗 (𝑢) 𝑑𝜇 𝑗 (𝑢) = 1;
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(iii)
∫
ℝ6×𝕊2

Tr
(
Γ 𝑗 (𝑢) Γ 𝑗 (𝑢′)

)
Γ 𝑗 (𝑢′) 𝑑𝜇 𝑗 (𝑢′) = Γ 𝑗 (𝑢);

(iv) Γ 𝑗 (𝑔 · 𝑢) = 𝑈 𝑗 (𝑔) Γ 𝑗 (𝑢)𝑈 𝑗 (𝑔)−1, whenever 𝑔 = (𝑏, 𝒂, 𝒗, 𝑅) ∈ 𝐺 and 𝑔 · 𝑢 is given by (1),
with 𝑅 being the rotation determined by 𝑅 ∈ SU(2).

Taking
𝑑𝜇 𝑗 (𝑢) := (2𝜋ℏ)−3 2 𝑗 + 1

4𝜋
𝑑𝒒 𝑑 𝒑 𝑑𝒏,

the conditions (ii) and (iii) follow from (7). Now (iv) is verified by a direct calculation, using (2):

2−3 [𝑈 𝑗 (𝑏, 𝒂, 𝒗, 𝑅) Γ 𝑗 (𝒒, 𝒑; 𝒏)𝑈 𝑗 ((𝑏, 𝒂, 𝒗, 𝑅)−1)Φ]𝑠 (𝝃)

= 2−3 exp
[
𝑖

ℏ

(𝑏 |𝝃 |2
2𝑚

− 𝝃 · 𝒂 + 1
2𝑚𝒂 · 𝒗

)]
×

𝑗∑︁
𝑡=− 𝑗

D
𝑗
𝑠𝑡 (𝑅) [Γ 𝑗 (𝒒, 𝒑; 𝒏)𝑈 𝑗 ((𝑏, 𝒂, 𝒗, 𝑅)−1)Φ]𝑡 (𝑅−1(𝝃 − 𝑚𝒗))

= exp
[
𝑖

ℏ

(𝑏 |𝝃 |2
2𝑚

− 𝝃 · 𝒂 + 1
2𝑚𝒂 · 𝒗 + 2𝒒 · [ 𝒑 − 𝑅−1(𝝃 − 𝑚𝒗)]

)]
×

𝑗∑︁
𝑡,𝑢=− 𝑗

D
𝑗
𝑠𝑡 (𝑅) 𝑍

𝑗
𝑡𝑢 (𝒏) [𝑈 𝑗 ((𝑏, 𝒂, 𝒗, 𝑅)−1)Φ]𝑢 (2 𝒑 − 𝑅−1(𝝃 − 𝑚𝒗))

= exp
[
𝑖

ℏ

(𝑏 |𝝃 |2
2𝑚

− 𝝃 · 𝒂 + 1
2𝑚𝒂 · 𝒗 + 2(𝑅𝒒) · (𝑅 𝒑 + 𝑚𝒗 − 𝝃)

− 𝑏

2𝑚
|2𝑅 𝒑 + 𝑚𝒗 − 𝝃 |2 − (𝑏𝒗 − 𝒂) · (2𝑅 𝒑 + 𝑚𝒗 − 𝝃) − 1

2𝑚(𝑏𝒗 − 𝒂) · 𝒗
)]

×
𝑗∑︁

𝑡,𝑢,𝑣=− 𝑗
D
𝑗
𝑠𝑡 (𝑅) 𝑍

𝑗
𝑡𝑢 (𝒏)D

𝑗∗
𝑣𝑢 (𝑅)Φ𝑣 (2𝑅 𝒑 + 2𝑚𝒗 − 𝝃)

= exp
{
𝑖

ℏ

[
2
(
𝑅𝒒 − 𝑏

𝑚
𝑅 𝒑 + 𝒂 − 𝑏𝒗

)
· (𝑅 𝒑 + 𝑚𝒗 − 𝝃)

]} 𝑗∑︁
𝑣=− 𝑗

𝑍
𝑗
𝑠𝑣 (𝑅𝒏)Φ𝑣 (2𝑅 𝒑 + 2𝑚𝒗 − 𝝃)

= 2−3 [Γ 𝑗 (𝑅(𝒒 − 𝑏
𝑚
𝒑) + 𝒂 − 𝑏𝒗, 𝑅 𝒑 + 𝑚𝒗, 𝑅𝒏

)
Φ
]
𝑠
(𝝃).

The conclusion is that there exists a phase-space representation for the description of a non-
relativistic spinning particle, as a theory of “Wigner functions” over ℝ6 × 𝕊2. Full details of
such a theory for spin are given in [9]; there it is seen that the 𝑍 𝑗𝑠𝑠 (𝒏) are the Wigner functions
corresponding to the states | 𝑗 𝑠⟩.
Remark 1. The family Γ 𝑗 is essentially unique: unicity of theΠ comes from the Stone–von Neumann
theorem; in the definition of the Δ 𝑗 a few sign changes could be made, but it can be shown that only
the definitions (3) and (4) make physical sense.
Remark 2. In the modern approach to phase-space quantum mechanics [14–19] the Stratonovich–
Weyl correspondence is deemphasized in favor of the twisted product of two functions on phase
space, corresponding to the usual product of two operators. In that way the theory is formulated
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autonomously as a calculus of functions on phase space. The twisted product, denoted by ×, is
determined by the condition that 𝑊𝐴 ×𝑊𝐵 = 𝑊𝐴𝐵 for all operators 𝐴, 𝐵. Using the Stratonovich–
Weyl correspondence, we find:

( 𝑓 × ℎ) (𝑢) =
∫
ℝ6×𝕊2

∫
ℝ6×𝕊2

𝐿 𝑗 (𝑢, 𝑣, 𝑤) 𝑓 (𝑣) ℎ(𝑤) 𝑑𝜇 𝑗 (𝑣) 𝑑𝜇 𝑗 (𝑤)

where 𝐿 𝑗 (𝑢, 𝑣, 𝑤) := Tr
(
Γ 𝑗 (𝑢) Γ 𝑗 (𝑣) Γ 𝑗 (𝑤)

)
. For instance,

𝐿1/2(𝑢, 𝑣, 𝑤) = 16
(
1 + 3𝒏 · 𝒏′ + 3𝒏′ · 𝒏′′ + 3𝒏′′ · 𝒏 + 3

√
3𝑖[𝒏, 𝒏′, 𝒏′′]

)
× exp

(2𝑖
ℏ
(𝒒 · 𝒑′ − 𝒒′ · 𝒑 + 𝒒′ · 𝒑′′ − 𝒒′′ · 𝒑′ + 𝒒′′ · 𝒑 − 𝒒 · 𝒑′′)

)
,

if 𝑢 = (𝒒, 𝒑; 𝒏), 𝑣 = (𝒒′, 𝒑′; 𝒏′), 𝑤 = (𝒒′′, 𝒑′′; 𝒏′′).
The tracial condition becomes∫

ℝ6×𝕊2
( 𝑓 × ℎ) (𝑢) 𝑑𝜇 𝑗 (𝑢) =

∫
ℝ6×𝕊2

𝑓 (𝑢) ℎ(𝑢) 𝑑𝜇 𝑗 (𝑢),

and the covariance condition implies equivariance of the twisted product:

( 𝑓 × ℎ)𝑔 (𝑢) = ( 𝑓 𝑔 × ℎ𝑔) (𝑢) for all 𝑔 ∈ 𝐺, (8)

where 𝑓 𝑔 (𝑢) := 𝑓 (𝑔−1 · 𝑢). In fact, (8) is true for the larger group Sp(6;ℝ) ⋊ℝ6 of transformations
of phase space (or its twofold covering Mp(6;ℝ) ⋊ ℝ6, to be precise). The canonical generators
of this group are “distinguished” Hamiltonians, for which the quantum dynamics is rendered in the
phase space essentially in classical terms.
Remark 3. Formulas (6) need some justification, as the operators Π are not of trace class. We intend
to show elsewhere in the spirit of [20] that they hold in a distributional sense.
Remark 4. Generalization of the formalism developed here to any finite number of particles is
straightforward.

In summary, the Moyal phase-space formalism now provides a self-contained approach to non-
relativistic Quantum Mechanics, including both spatial and spin variables, which is fully covariant
under the Galilei group.

We are grateful to José Cariñena for helpful discussions.
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