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I. In the WWM formalism [1], it is well known that information about a quantum system is stored
in the “evolution function” or “twisted exponential”, this is to say, the solution of the (twisted
product) Schrödinger equation:

2𝑖
𝜕𝜒𝐻

𝜕𝑡
= 𝐻 × 𝜒𝐻; 𝜒𝐻 (0) = 1. (1)

Here 𝐻 denotes the classical hamiltonian of the system under consideration, 𝜒𝐻 is the corre-
sponding evolution function (then, 𝜒𝐻 is a function of time and phase-space coordinates) and ×
denotes the twisted product. We take units with ℏ = 2.

A Fourier transformation with respect to 𝑡 gives us the spectral projectors (“Wigner functions”)
for each value of the energy 𝐸 :

Π𝐻 (𝐸) =
1

4𝜋

∫
𝜒𝐻 (𝑡) exp(𝑖𝑡𝐸/2) 𝑑𝑡. (2)

The spectrum of 𝐻 is simply the support of Π𝐻 (𝐸) on the 𝐸-axis. We prove the following: the
evolution function may be expressed as a Feynman-type integral:

𝜒𝐻 (𝑢; 𝑡) =
∬

D[𝑥(𝜏)]D[𝑦(𝜏)] exp
[
− 𝑖

2

∫
(𝐻 (𝑥) − 2𝑦𝐽 ¤𝑦 + 2𝑥𝐽 ¤𝑦) 𝑑𝜏

]
(3)

where the phase-space trajectories have to fulfil 𝑥(0) = 𝑦(0), 𝑦(𝑡) = 𝑢; 𝑎𝐽𝑏 denotes the symplectic
product of the vectors 𝑎, 𝑏.

Proof.

𝜒𝐻 (𝑢; 𝑡) = lim
𝑁→∞

exp
(
− 𝑖𝑡

2𝑁

)
× · · · × exp

(
− 𝑖𝑡

2𝑁

)
=: 𝜒(𝑁)

𝐻
(𝑢; 𝑡),
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where

𝜒
(𝑁)
𝐻

(𝑢; 𝑡) = exp
(
− 𝑖𝑡

2𝑁

)
× 𝜒

(𝑁−1)
𝐻

(𝑢; 𝑡)

=

∬
𝑑𝑥𝑁 𝑑𝑦𝑁 exp

[
− 𝑖

2

( 𝑡
𝑁

𝐻 (𝑥𝑁 ) − 2𝑢𝐽𝑥𝑁 − 2𝑥𝑁𝐽𝑦𝑁 − 2𝑦𝑁𝐽𝑢
)]
𝜒
(𝑁−1)
𝐻

(𝑦𝑁 ) (4)

= · · · =
∫

· · ·
∫ 𝑁∏

𝑗=2
𝑑𝑥 𝑗 𝑑𝑦 𝑗 exp

{
− 𝑖

2

[ 𝑁∑︁
𝑗=1

𝑡

𝑁
𝐻 (𝑥 𝑗 ) +

𝑁∑︁
𝑗=2

2(𝑥 𝑗 − 𝑦 𝑗 )𝐽 (𝑦 𝑗+1 − 𝑦 𝑗 )
]}

with 𝑥1 = 𝑦2, 𝑢 = 𝑦𝑁+1; the limit of which expression we represent by (3). Here 𝑑𝑥 = (2𝜋)−𝑛 𝑑𝑥. □

II. (A classical interlude). In much the same way as the classical action is selected by the
Euler–Lagrange equations for the ordinary Lagrangian, we may regard the integrand in (3) as a
“Lagrangian” dependent on the variables 𝑥, 𝑦. The Euler–Lagrange equations give then:

¤𝑥c = 𝐽
𝜕𝐻

𝜕𝑥c
; ¤𝑦c =

1
2𝑥c . (5)

We remark that the first equations are nothing but Hamilton’s equations; then 𝑥c(𝜏) is a classical
trajectory governed by 𝐻 and 𝑦c(𝜏) = 1

2 (𝑥(𝜏) + 𝑥(0)); the trajectory is chosen in such a way that
𝑦c(𝜏) = 𝑢. A simple calculation gives for the phase in (3):

𝑔c(𝑢; 𝑡) =
∫ 𝑡

0

(
𝐻 (𝑥c) + 1

2𝑥c𝐽 ¤𝑥c)
)
𝑑𝜏 − 𝑥c(0)𝐽𝑢. (6)

Contrary to appearances, this function does not depend on 𝑥c(0). In classical mechanics 𝑔c
makes a lot of sense [2,3]. It may be directly related to the action associated to the trajectory 𝑥c(𝜏).
Let us introduce (𝑞(𝜏), 𝑝(𝜏)) = 𝑥c(𝜏); (𝑞𝑖, 𝑝𝑖) = 𝑥c(0); (𝑞 𝑓 , 𝑝 𝑓 ) = 𝑥c(𝑡); 𝜌 = 𝑞 𝑓 − 𝑞𝑖, 𝑢 = (𝑟, 𝑘).
Then we have:

𝑔c(𝑢; 𝑡) = 𝑔c(𝑟, 𝑘; 𝑡) = 𝑘𝜌 − 𝑆(𝑟 + 1
2𝜌, 𝑟 −

1
2𝜌; 𝑡), (7)

where 𝑆(𝑞 𝑓 , 𝑞𝑖; 𝑡) is the action and 𝑘 turns out to be 1
2
(
𝜕𝑆
𝜕𝑞 𝑓

− 𝜕𝑆
𝜕𝑞𝑖

)
(Legendre transformation).

Weinstein [2] calls 𝑔c the Poincaré generating function and proves its invariance under linear
canonical changes of coordinates. Using (7) one gets the following modified Hamilton–Jacobi
equation for 𝑔c:

𝜕𝑔c
𝜕𝑡

= 𝐻

(
𝑢 + 1

2
𝐽
𝜕𝑔c
𝜕𝑢

)
. (8)

III. Let us consider quadratic hamiltonians, of the form 𝐻 = 1
2
𝑡𝑢𝐵𝑢 + 𝑡𝑐𝑢 + 𝑑 where 𝐵 is a

symmetric 2𝑛 × 2𝑛 matrix, 𝑐 is a vector in ℝ2𝑛 and 𝑑 is a scalar constant. Now, clearly the usual
“trick” for quadratic hamiltonians allowing to calculate propagators by factoring out the classical
paths, works also in the present context. This will permit us to calculate with ease the evolution
function for any quadratic hamiltonian. We write it in the form:

𝜒𝐻 (𝑢; 𝑡) = 𝐹 (𝑡) exp
(
− 𝑖

2𝑔c(𝑢; 𝑡)
)
, (9)
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and calculate in turn 𝑔c(𝑢; 𝑡), 𝐹 (𝑡). We make the following Ansatz:

𝑔c(𝑢; 𝑡) = 𝑡𝑢 𝐺 (𝑡)𝑢 + 𝑡𝑢 𝑘 (𝑡) + 𝑣(𝑡). (10)

Let us define 𝐿 := 𝐽𝐵, 𝑅 := 𝐽𝐺. Replacing expression (10) in (9) gives:

¤𝑅 = 1
2 (𝐿−𝑅𝐿 +𝑅𝐿−𝑅𝐿𝑅); ¤𝑘 = 1

2 (1−𝐺𝐽)𝐵𝐽𝑘 + (1−𝐺𝐽)𝑐; ¤𝑣 = 𝑑− 1
8
𝑡𝑘𝐽𝐵𝐽𝑘 + 1

2
𝑡𝑐𝐽𝑘. (11)

The first of these equations is a variant of the “matrix Riccati equation” interesting in its own
right [4]. The solution is:

𝑅(𝑡) = −(Σ(𝑡) + 1)−1(Σ(𝑡) − 1), (12)

whereΣ(𝑡) solves ¤Σ = −𝐿Σ = −Σ𝐿, withΣ(0) = 1. From the group property 𝜒(𝑡)×𝜒(𝑡′) = 𝜒(𝑡+𝑡′)
one gets:

𝐹 (𝑡) 𝐹 (𝑡′) det1/2 𝐺 (𝑡 + 𝑡′) = 𝐹 (𝑡 + 𝑡′) det1/2(𝐺 (𝑡) + 𝐺 (𝑡′)), (13)

from which we infer: 𝐹 (𝑡) = det−1/2( 1
2 (Σ(𝑡) + 1)).

IV. Let us put in what follows 𝑐 = 0, 𝑑 = 0 for simplicity (as long as det 𝐵 ≠ 0, the general ease
may be brought to that form except for a trivial summand).

In order to calculate the Poincaré generating functions and spectra what remains to be done is, in
essence, the calculation of matrix exponentials. This can be greatly simplified using Williamson’s
classification theorem [5] for normal canonical forms. The solutions for 𝑛 = 1 are well known: see
Table 1.

Table 1:

Hamiltonian type Eigenvalues of 𝐿 Generating function Spectrum

1 real 2𝐻 th 𝑡
2 TAC

3, 4 null 𝐻𝑡 TAC

5 pure imaginary 2𝐻 tg 𝑡
2 DPP

The solutions for ℝ4 may be separated into two classes, in an obvious way, according to whether
the Hamiltonian decomposes in direct sum of two ℝ2-hamiltonians or not. The indecomposable
cases are given in Table 2.

In the tables TAC means transient absolutely continuous spectrum and DPP discrete pure point
spectrum [6]. Whenever 𝐻1, 𝐻2 appear it is to be reckoned that 𝐻 = 𝐻1 + 𝐻2 and the Poisson
bracket of 𝐻1 and 𝐻2 is zero.

We offer two comments:

(i) Calculation of 𝑔 is relatively simpler than calculation of the action 𝑆. This is due to its
canonical invariance. The simplicity of the evolution function relative to the usual propagator
may be traced back to that. Also the pre-exponential factor is computed much more easily.

(ii) We know very little about the singular case (det 𝐵 = 0, 𝑐 ≠ 0) when 𝑛 > 1.
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Table 2:

Hamiltonian type Eigenvalues of 𝐿 Generating function Spectrum

1 real 2𝐻1 th 𝑡
2 + 𝐻2𝑡 sech2 𝑡

2 TAC

2 complex
2𝐻1 sinh 𝑎𝑡 + 2𝐻2 sin 𝑏𝑡

cosh 𝑎𝑡 + cos 𝑏𝑡
TAC

4 null 𝐻𝑡 TAC

5 pure imaginary 2𝐻1 tg 𝑡
2 + 𝐻2𝑡 sec2 𝑡

2 DPP
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