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Abstract

The dynamical evolution is described within the phase-space formalism by means of the
Moyal propagator, which is the symbol of the evolution operator. Quadratic Hamiltonians on
the phase space are distinguished in that their Moyal bracket with any function equals their
Poisson bracket. It is shown that, for general time-independent quadratic Hamiltonians, the
Moyal propagators transform covariantly under linear canonical transformations; they are then
derived and classified in a fully explicit manner using the theory of Hamiltonian normal forms.
We present several tables of propagators. It is proved that these propagators belong to the Moyal
algebra of distributions, and that the spectrum of the Hamiltonian may be obtained directly as
the support of the Fourier transform of the Moyal propagator with respect to time. From that,
the quantum-mechanical problem for these Hamiltonians is in principle completely solved. The
appropriate path-integral formalism for phase-space quantum mechanics, leading back to the
same results, is outlined in appendix.

1 Introduction

The phase space approach to nonrelativistic Quantum Mechanics of spinless particles, also called
the Weyl-Wigner—Moyal (WWM) formalism, has of late received renewed attention [1]. In this
formalism, observables are directly given by symbols (functions or distributions) in the phase space
R?". These are univocally related to the operators in the ordinary formulations of quantum mechanics
by the Weyl correspondence rule. Information about the dynamics of a quantum-mechanical system
in the WWM description is stored in the evolution function, or Moyal propagator, i.e., the symbol
associated to the unitary evolution operator of the given system.

Here we present a completely explicit calculation of the evolution function for time independent
quadratic Hamiltonians, from which one may derive the Green’s functions. In a sense, this paper is a
continuation of the program set out by Moshinky and Winternitz [2] to solve Schrodinger equations
for Hamiltonians that are second order polynomials in position and momentum coordinates; these



authors went no further than n = 2. There is much advantage in using quantum theory in phase
space, as we shall see, because it allows full exploitation of the underlying canonical symmetry.

The structure of the paper is as follows. In Section 2 we review briefly the WWM formalism.
We introduce the Moyal propagators as the evolution functions in phase space and the spectral
projectors, and derive a formula to compute the Green’s functions in this formalism. Section 3 is
devoted to the study of the Moyal propagators of general quadratic Hamiltonians; general results
are given which are valid in the time-independent case. In Section 4, we proceed to the effective
calculation of the Moyal propagators for nonsingular homogeneous quadratic Hamiltonians. We
give a table of these Moyal propagators up to n = 5. Section 5 is devoted to the study of the singular
and inhomogeneous cases; we finish this Section with a couple of tables also. In Section 6 we deal
with the calculation of spectra.

We include two appendices. Appendix A is concerned with technical results which make the
present approach rigorous. In particular, we prove that the Moyal propagators are well-behaved
generalized functions belonging to an algebra under the twisted product, called the Moyal algebra,
and that the support of the Fourier transform of the Moyal propagator coincides with the spectrum
of the Hamiltonian. Appendix B outlines a Feynman path-integral approach to define the Moyal
propagator for an arbitrary Hamiltonian.

2 The WWM formalism

The Weyl map transforms a function or distribution f on the phase space R*" with coordinates g, p
into an operator W( f) by

W(f) = /Rzn Fflo,t)Qo,7)do dt (2.1)

(27)"
where J f is the ordinary Fourier transform of f. Throughout the paper, we use the convention that
h = 2. The operator kernel Q(o, T) is given by

Q(o, 1) =expli(c-Q+71-P)] =expli(c1Q1+---+0,0, +T1P1 ++- -+ 71, Pp)] (2.2)

where Q1,...,Qu, P1,..., P, are respectively the position and momentum operators in n dimen-
sions. The operators (2.2) satisfy the canonical commutation relations in Weyl’s form:

Q(o1,71) Q(o2,12) = Q(01 + 02, T1 +T2) exp[—i(o1 -T2 — 02 - T1)]. (2.3)

The map f — W(f) gives a one-to-one correspondence between functions (or distributions)
and operators. Since the product of operators is noncommutative, we must use a noncommutative
product of functions on phase space, corresponding to the product of operators, and usually called
the twisted product [3,4]. The twisted product of f and g will be written f X g; we demand that
W(f x g) =W(f)W(g) or equivalently f x g = W' [W(f)W(g)]. From (2.1) and (2.3) we find

(2711-)2n /thn f(q1,p1)g(q2, p2)

xexpli(q-p1-pP-q1+q1-P2—P1-92+42-p—p2-q)| dqidp1dq>dp>.
(2.4a)

(fxg)gq,p)=




We simplify the notation by introducing u' = (¢, p) = (q1,...,qn, P1,- - ., pn) Where u' is the
transpose of u, and the matrix

0o 1,
- [58)
where 1, is the n X n identity matrix. Now, (2.4a) can be written as
1
(fxg)(u)=—— / f(v)gw)expli(u'Jv +v'Iw + w'Ju)] dv dw, (2.4b)
(2m)" Jgn

where u'Jvy is the “symplectic scalar product” of u and v.

Quantum theory in phase space may be developed entirely in terms of the twisted product
without reference to the conventional formulation.

The Grossmann—Royer operators I1(z) may be defined [5] by:

1
Il(q, p) = s /Rzn exp[—i(q co+p- T)] Q(o,7)do dr, (2.5)

It can be proved that
(g, p)¥({) =2"explip({ - 9)|¥(2g - )

for wavefunctions ¥ defined on the position space. From (2.1) and (2.5) it follows that

1

W) = G

/ f(u)1(u) du. (2.6)
R2n
The utility of the Grossmann—Royer operators is shown by the identity
Tr[H(u) H(v)] =An)"6(u —v),
which implies the inversion formula:

f(u) =Te[W(f) I(u)]. (2.7)

In particular we find that

WH(WD)(Pal) () = (2 | TT(w) | W) = 2" /Rn Y2(q + Q) Yi(g - {) exp(ip-§)ds  (2.8)

and for ¥; = W, we recover, but for a constant factor, the time-honoured formula for “Wigner
functions” [6]. In general

W) = T11(a. p)A] = [ € 1T1(a.p)A 10 g
~2' [ explip- (- )l Qa-¢1415)de
- [ ewlip a1 1q+ berae. (29)



Let H be a time-independent classical Hamiltonian and let W(H) be the operator determined by
H via the Weyl correspondence. We shall always assume that W(H) is self-adjoint. The evolution
function or Moyal propagator associated to H is given by

_ o N ~ _@_Htz . HXHXH 4
Eu(u,t) =W [GXP( ZW(H)t)]—l D) 22.2!t+l 23.3! rr

The Fourier transform of Ey with respect to ¢ gives us the spectral projectors parametrized by
the energy E:

1 .
I'y(u,E) = E/REH(u’t) e"E2 s (2.10)

These are, but for a constant factor, the Wigner functions corresponding to wavefunctions which
are generalized eigenfunctions of W(H) with eigenvalue E. We prove this assertion for the simplest
case in which W (H) has a pure nondegenerate discrete spectrum. The twisted product of H and [ is

1 .
(H X T (E)) @) = 5 [ (# < Ea(0) @) €2 .
dr R
Making use of the phase space version of the Schrodinger equation:
- .0
(HxEg(t)(u) =2i E:H(u, t) (2.11)

(recall that z = 2), we get

_ 1 0 itE )2
(HXFH(E))(u)—E/R(Zl E_.H(u,t))e di
E .
= E /]%EH(II,Z‘) ellE/Z dt = EFH(U,E)

The second equality comes from integrating by parts. We have finally obtained that
(HxTy(E))(u) = ETy(u, E).
The Weyl transform of this equation is written
W(H)W('y(E)) = EW(I'y(E)).

Therefore, W(I'y(E)) is the orthogonal projector onto the proper subspace of W(H) with
eigenvalue E. If ¢ is the normalized eigenvector of W(H) with eigenvalue E, then I'y(u, E) is,
save for a constant factor, the Wigner function corresponding to ¢g.

The foregoing suggests that the spectrum sp H of W(H) is the support on the variable E of the
function (more correctly, the distribution-valued measure) I'y (u, E). We prove this in Appendix A.

Green functions, defined as transition amplitudes from the state |q;) at time 7o = O to the
state |gy) at time #, can be evaluated using the phase space Moyal propagator [7]. Writing
U(t) = e ™WH)/2 3 formal calculation gives

I\" [ _ (45+4i I
G(Qf,q,-,t):(ﬂ) / -:'H( f2 l’p;t)ep(qf q‘)/zdp.
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To see this, we observe that, by (2.9):

(&) / W WO (L, pr) eiraraap

4
1\~ . . +q; — +q;,+v
— (E) / ezp-(qf—qi)/Z/ e[p-v/2<qf qi ’U( ) ’ qf ql >dvdp
+q;—vVv +q;+v 1 . '
- [ L oo [P ) PR

q +q1_V qr+q;+v
:/ dv<f—|U(t)|fT>5(qf—qi+v)
={qr U@ 1 q:) =G(qr,qi,1).

We can now build a twisted functional calculus with the symbols, with an important difference:
its elements are concrete functions (or distributions) in phase space. The general formula for this is:

f*(H) IZ/Hf(E)FH(u,E) dE.
sp

Some important elements of a functional calculus are:

(a) The aforesaid evolution function or Moyal propagator:

EH(u;t):/ Ty(u;E) e B2 4E .
spH

(b) The resolvent function:

I'y(u, E
Ry(u; ) ::/ I;?L,/l)dE’
spH -

defined for A € C, A ¢ sp H, which verifies Ry(u; 1) X (H - 1) = 1.

(c) The twisted powers:

0"E
H*"(u) ::H><~-><H(u):/ E"Ty(u;E) dE = 2"" ——2|
spH ot =0

We finish this section by giving the law of evolution of the observables. In conventional quantum
mechanics, observables evolve in the Heisenberg picture according to:

F(l) — eth/ZF(O)e—th/Z.
If £(r) = W [F(t)], we have
f@t) = W2 F(0)e 2] = B5,(1) x £(0) X Ep(2), (2.12)

which is the corresponding law of motion for observables in phase-space quantum theory.



3 Quadratic Hamiltonians

The general expression for the n-dimensional quadratic Hamiltonian is given by
H(t) = %utB(t)u +u'c(t) +d(1),

where B(t) is a 2n X 2n symmetric matrix, ¢(z) is a 2n-vector, and d(¢) is a real function of 7.
Since the Hamiltonian is quadratic, the corresponding system of Hamilton equations is linear.
Therefore, the solution to the classical equations of motion has the form:

u(t, ty) = X(t,to)ug + a(t, ty), (3.1)

where X (1, t9) is a 2n X 2n matrix and u is given by the initial condition u (¢, t9) = u¢. Therefore,
2(to,t9) = 1, and a(ty,t9) = 0. The functions £ and a obey the following pair of differential
equations:

3(t,t9) = JB(1)Z(t, 1), (3.2a)
a(t,tg) =JB(t)a(t,tg) +Jc(1). (3.2b)

subject to the given initial conditions (the dot means d/dt). They can be written as:
t
2(t,t9) = exp(/ JB(1) dr),
fo

t
a(t, ty) = / 2(t,t)Je(r)dr.
fo
A symplectic matrix is a 2n X 2n matrix S for which S'JS = J. One can easily check that X(z, 7¢)
is symplectic for all 7. If we transpose (3.2a), omitting the dependence on time for simplicity, we
have
' =3'BY = -2'BJ.

We then obtain J
—(ZUx) =0,
2 t( )

that is, 2'JX = K, where K is a constant 2n X 2n matrix. Since X(#¢,#y) = 1, we find that K = J
and hence X(¢, ty) is symplectic.
We define the “Moyal bracket” {—, —} s as

{f.8m=-5(fxg—gx/f).

The quantum evolution law (2.12) may be written in differential form as a Heisenberg—Liouville

equation:
ou(t,t
P — 100, Hy

On the other hand, classical Hamiltonian mechanics gives:

ou(t,tp)

ot = {u(t’ tO)’H}P9



where {—, —}p denotes the Poisson bracket.
Letdf/dq;:=0f/0p;, 0f/0p; :=—0f]dq;. Then, if f or g is a polynomial, we have:
R ar1+»--+r2nf 3r1+---+r2ng

l
fxg:Z ‘ ‘ r 14 r 14
rl«"'an-6'”1"'82nu2nalul"'aznub’l

reN2n

by integration by parts; moreover, this formula holds as an asymptotic series in more general
cases [8]. In particular, for H quadratic, we get:

1 & 5
HXf=Hf+ilH, flp—5 O Byt
ij=1 R
62
fxH= Hf—z{Hf}p——Z By g ()
J

l]—

It is clear that {H, f}p = {H, f}uy for any f if and only if H is a polynomial at most quadratic
in the phase-space coordinates; this was first pointed out by Uhlhorn [9], and forms the starting
point for the deformation theory of Bayen et al [10]. Note that this corresponds to linear classical
dynamics. That property sets apart this particular class of Hamiltonians, as it makes feasible a fully
explicit solution of the corresponding quantum problem in phase space. In fact, it can be argued that
Moyal’s is the proper setting for Quantum Mechanics of quadratic Hamiltonians, as it allows one to
bring in the full power of canonical symmetry. The latter is hidden in the conventional formalism,
making the solution of the Schrodinger equation for quadratic Hamiltonians a painful business in
general.

There is another property that singles out quadratic Hamiltonians in R**: if we call “canonoid”
any coordinate transformation in phase space that preserves the form of Hamilton’s equations
corresponding to a given, fixed Hamiltonian, then the following holds: a transformation of R?" is
canonical if and only if it is canonoid for all quadratic Hamiltonians [11]. This result has been
recently extended to Banach symplectic spaces [12].

It is an open problem to see whether the link between the canonoid-canonical relationship
and the equality of Moyal and Poisson brackets generalizes to other phase spaces (homogeneous
symplectic manifolds) quantized a la Moyal (see for instance [13]).

The components of # in (3.1) must change with time according to the law of evolution of the
observables:

u(t,to) = 2y, (t,t0) X ug X Eg(t, tp),
or
En(t,to) X u(t, to) =ug X Eg(t, o).

Here the propagators Eg (¢, tp) still obey Eqn. (2.11), with Eg (7, 19) = 1.
From (3.1) we obtain:

0\
(Ep xu)(t,10) = (u - lfa—)dH(t, t0)
u

9
= (Z‘I(t, to)u + X7 (1,10)) = = X7 (1, 1), to))EH(t, to),  (3.4)

where d/0u denotes the gradient with respect to u.



Formula (3.4) can be written as

0=
E eI =2 = —i[(1 - u+ 2|2y
ou
If we multiply by %, this yields
02y

(1 +2)JW =—i[(Z - Du +a|Zy.

Now, assuming that (X + 1) is nonsingular (non-exceptional case), we have

o=
6—;’ =i[JE+ D) E-Du+I(E+1)a]Z2y.

This is a system of partial differential equations having the solution

By = F(t,19) exp[%(utGu + utk)] (3.5)

with
G=JE+D!'E-)=u-27C+1D7, (3.6a)
k=2JZ+1D7la=(J-0G)a. (3.6b)

The matrix G is symmetric. To prove it, we introduce = (X = 1)(Z + 1)~! which is the
“Cayley transform” of ¥ and note that G = JZ¥. Then:

Gl=-CEHU =1+ -y =+ 'y H Tl -u=ly s
—J1+ H -z hH=yc+D) -1 =Jf =0G.

In order to obtain F (¢, ) in (3.5), we need to use the Schrodinger equation (2.11). After some
calculation, one obtains

-1/2
1+2Z(¢,t ;
F(t.10) = [det(#) SiB(t0)/2 (37)
provided that the determinant does not vanish. The exponential term is given by
t
B(t,ty) = / [%ct(‘r)Jk(T, to) + %kt(r, t0)JB(1)Jk(T, 1) — d(‘r)] dr. (3.8)
Iy

Note that g vanishes when H is homogeneous of degree 2. Formulas equivalent to (3.5)—(3.8)
appeared already in [14]. We have rederived them for the benefit of the reader.

From now on, we shall suppose that B, ¢ and d do not depend on time, so as to obtain fully
explicit results. Under this assumption, equations (3.2) are easily solved, and their solutions are

(1) := 2(t,0) = Z(t + 19, 19) = &’ P, (3.92)
a(t) :=a(1,0) = a(t +19,t9) = (JB) '[exp(JBr) — 1]Jec = (2(1) - 1)B" L. (3.9b)



Equation (3.9b) makes sense only if det B # 0. On the other hand, if det B = 0, we have
1? 1
a(t)=|(t+JB—=+---+(JB)" ' —+--- |Jc,
2 n!
that we shall take as the meaning of (3.9b) by convention.

We next study the exceptional case. Let 7" be the Jordan canonical form of JB. Then, there
exists a nonsingular matrix S such that T = S~'JBS. Hence

e?B 11 =8el'sT 4557 =5 +1)57L.
Thus det(Z + 1) = det(e’? + 1). Therefore, if T has the eigenvalues A, . . ., A2, then
det(T+1) = (eM +1)--- (e +1). (3.10)
Thus, det(Z + 1) = 0 if and only if some factor (e**’ + 1) vanishes. In that case, ;¢ = (2n+ 1)7i or

. 2n+ )mi
= R .

Since ¢t must be real, A is thus purely imaginary. In such a case, the singularities of the Moyal
propagator will be equally spaced in time. This situation really occurs, as we shall see.

We present now a crucial result for the study of quadratic hamiltonians: covariance of the Moyal
propagators under linear canonical transformations.

Theorem 1. Let H = %utBu +u'c + d be a time-independent quadratic hamiltonian and let S be a

real 2n X 2n symplectic matrix. If we define a new Hamiltonian by H' := %utB’u +u'c’ +d with
B’ :=S'BS, ¢’ := S'c, then

Ep(u,1) = Ep(Su,1). (3.11)
Proof. According to (3.5) and (3.7),
1+3(0)\]"? .
B (u,t) = [det(T())] PO expL(u'G'u +u'k)], (3.12)
where
s/ = Bt _ JS'BSt _ STUBIS _ ¢-1,/Btg _ g-ly ¢ (3.13)
Therefore
1+ 1+2 1+%2
det( ) = det S_l( )S = det( ),
2 2
and

G=JZ+D)'(-D=J"=s+ D) I(s7IEs - 1)
=JS '+ D)= -1)§ = S'GS.



Thus

u'G'u =u'S'GSu = (Su)'G(Su),

k'=-G)d,
a’ = (JB) [exp(JB't) - 1]¢’ = (JS'BS) ! [S7!=S - 1]JS%
=S5 'UB) ' (=-1)Jec=5"a, (3.14)
and so
K=-5GS)Sa=(5US-5GS)Sa =Sk.
Hence

u'k’ =u'S'k = (Su)'k. (3.15)

To complete the proof, it remains to check that g8'(¢) = B(¢). This follows from:

c'Jk' = c'SJS'k = c'Jk,
k"JB'Jk' = k'SJS'BSJS'k = k'JBJk.

Together with (3.13)—(3.15), this proves (3.11). o
Corollary. H and H' have the same spectrum.

Proof. Note that Eqn. (2.10) implies that
FH/(u, E) = FH(Su, E),

and that the support on E of this function represents the spectrum of the corresponding hamiltonian.
Note also that the transformation H +— H’ is equivalent to the coordinate change u’ = Su. O

Theorem 2. Let H = %utBu +u'c + d be a time-independent quadratic Hamiltonian and uq =
(90, Po) a 2n-vector. If we define a new Hamiltonian by H' := u'Bu +u'c’ + d’ with ¢’ = Bug + ¢
and d’' = %uBBuo +ugc +d, then

Ep(u,t) = Eg(u +uo,1).

Proof. Eg:(u,t) is again given by (3.12), but in the present case B’ = B, so X’ = X and hence
G’ = J(2)F = J=¥ = G. Moreover, from (3.2b) and (3.6b) we get @’ = a + (X — 1)up and thus
k’ = k +2Guy. A tedious calculation now gives

B (1) = /t[%c't(r)Jk'(T) + %k’t(T)JB(T)Jk,(T) - d’] dr
0
= B(1) +/0 [MBG(T)HO + ugk(r)] dt = B(t) + uBG(t)uo + uf)k(t).

From this Eg/ (u, t) = Eg(u+ug, t) follows at once. As before, the spectra of H and H’ coincide. O

10



As an obvious corollary of Theorems 1 and 2, if S is a real symplectic matrix and uq a real
2n-vector, we have
g (u,t) =Ey(Su +uo, 1), (3.16)

where H’ is the quadratic Hamiltonian obtained by replacing # in H = %utBu +u'c+dby Su+uy.
Also, we have sp H = sp H’. In other words, for quadratic Hamiltonians, the Moyal propagator is
covariant and the spectrum is invariant under the group 1Sp(2n, R) of inhomogeneous canonical
transformations.

Equation (3.16) gives us a method to obtain the Moyal propagators for all the time independent
quadratic Hamiltonians. We may group these Hamiltonians in equivalence classes. H and H’
belong to the same class if and only if we can find an inhomogeneous symplectic transformation
connecting them. If we find the Moyal propagator for one representative of a class, we can find
the Moyal propagators of all Hamiltonians of the class from (3.16). Once we have found simple
representatives (called, in the homogeneous case, normal forms [15]) two main difficulties still
arise: one is to determine which class contains a given Hamiltonian; the other is to obtain the matrix
S relating this Hamiltonian with its corresponding normal form; however, we will not go into these
questions here. On the other hand, we reassert, the spectra of two Hamiltonians belonging to the
same class are identical.

A transformation from H into H" = H + d, d being a constant, shifts the spectrum sp H into
spH =spH+d={xe€R:x=y+d, y € spH}, as one can easily deduce from (3.8) and (2.10).
Here B (u,1) = Eg(u, t) e714/2,

At this point, we wish to remark that, given an homogeneous Hamiltonian H = %u‘Bu, there
exists a class of complex symplectic transformations B — B’ = S'BS, where B’ is again a real
symmetric matrix, so that H" = %utB’u is also a Hamiltonian. Moreover, the conclusion (3.11) of
Theorem 1 holds under this more general class of transformations. [However, if we are looking for
the class of complex symplectic transformations for which S'BS is real and symmetric for every
real symmetric B, we find that either § is real or else S = iM, where M is real. Such an M is not
symplectic, since M'JM = —J; but if we write

My M ~ -My —Mi;
M = s M = ’
(M21 Mzz) ( My M )

where M;; € R™" for i, j = 1,2, then M is symplectic.]

4 Classification of the Moyal propagators in the nonsingular case

In the present section, we consider those Hamiltonians H for which det B # 0. In that case, we can
write:
H=4u+B'¢)Bu+B'c)+d with d' =d-1ic'B'c,

so that H is equivalent to H" = %utBu + d’, and therefore the study of the quadratic Hamiltonians
whose quadratic form B is nonsingular can be reduced to the study of the nonsingular homogeneous
quadratic Hamiltonians.

Here, we intend to find the Moyal propagators of these Hamiltonians. After (3.11), we need
only obtain the Moyal propagators for the normal forms, which are simple representatives of the
equivalence by conjugacy classes. The normal forms have been classified and one can find an
extensive study of them in the literature. The classification begins with the following result.

11



Proposition 1. (i) If B is symmetric and A is an eigenvalue of J B, then so are —2, 1, —A and they
all have the same multiplicity. The eigenvalue 0 always appears with even multiplicity.

(1) Let A;, 1 < i < k, denote the eigenvalues of JB and let V; be the corresponding generalized
eigenspaces of JB, i.e.,
(A1 =JB)"v =0 iff veV; form;integer> 1.
Then each V; is invariant under JB, R*" = @le Vi and

k
det(11 — JB) = ﬂ(a )%, with d; =dimV; > m;.
i=1

(i11) The invariant subspaces V; are symplectically orthogonal:
vV =0 if veV, v eV A # 4, £4;.

Proof. Straightforward linear algebra. For instance, (i) follows from observing that the characteristic
polynomial of JB is even. O

According to items (ii) and (iii) of the Proposition, JB and therefore %JBI can be reduced
by blocks. This decomposition carries over to the quantum context: the propagator associated
to a decomposable matrix JB is given by the ordinary product of propagators corresponding to
each indecomposable block. The equality of ordinary and twisted products in this case follows
immediately from the definition of twisted product.

The classification theory of normal forms for linear canonical systems was initiated by William-
son [16] and developed by many others. Here we use the classification scheme due to Kogak [17].

The possibilities for the indecomposable blocks are:

(a) JB has two real eigenvalues @, —a (a > 0);

(b) JB has two purely imaginary eigenvalues i3, —if (8 > 0);

(c) JB has four distinct complex eigenvalues +a + i (a, 8 > 0).
We here present a list of the indecomposable normal forms.

(a) The eigenvalues are @, —a (@ > 0):

a

1 «a

M O) with M = o € Rk, (4.1)

JB:(O -M!

1 «a

(b) The eigenvalues are i3, —i8 (8 > 0). There are four inequivalent types:

A 0

1 A .
(i) JB:(% _OQt), with Q= A , R= B (4.2)

12



where O, R € RFK with k even, 1, = ((1) (1)), A= (g _68), and € = +1.

0 —-&f

u Vv 10 g
); v=l . , V= ' (43)

(i) JB=(_V e

where U,V € R with k odd, & = +1.

(c) The eigenvalues are +a + i3 (a, 8 > 0):

K 0 I, C

0 -K'

—p

JB = , with K= € R2P2k where ¢ = (¢
B «

| ) .44
I, C
A decomposable form is constructed simply as a direct sum of indecomposable forms, here

called “canonical blocks”. For instance, if Y and Z are two normal forms of dimensions 2m and 2n
respectively, their composition could be

Y O
However, if we construct the Hamiltonian as H = —%utJXu, the coordinates are ordered as
ut = (QI, . -,Qmapl,- . '7PM7qm+]7" -,Qm+napm+la- . -’pm+n)-
We shall maintain the convention that u' = (g1, ..., @msn» P1»---» Pmin), SO that the direct

sum (4.5) must be rewritten as

Y 0 Y, O

X = 0 7z 0 2 ’
Y 0 Y4 O
0 Zz 0 Z4

where Y; € R™", Z; € R™" (j = 1,2,3,4).
In general, if we call X the composition of s canonical blocks of the form Y; = (?1 );kz),
k3 Lr4
X

_ _ 2
k=1,...,s,then X = (X3 X,

), where each X; is a block diagonal direct sum of the Y ;. Note,

0 1,
-1, O

Now we proceed to the effective calculation of the Moyal propagators. Since the Hamiltoni-
ans considered in this Section are homogeneous, we have to obtain G and det((X + 1)/2) only.
Formula (3.6a) yields

in particular, that this convention preserves the form of J = ( ) under direct sums.

| eJBt -1 eJBt/Z _ e—JBt/Z JBt
= = = Jtanh —.
S+1 elBt 41 etBt/2 4 p—JBt/2 2

G=J

13



If JB is a canonical form, we can write JB = L + N where N is nilpotent and L can be one of

the following forms:

(i) diagonal as in (4.1);

(i1) block diagonal as in (4.2) and (4.4); here the blocks are equal to A and C respectively;

(iii) antidiagonal as in (4.3).

The function tanh z is analytic except when Imz = (2n + 1)7. Because N k =0, we have the

matrix-valued series expansion:

JB a1
tanh T = tanh — + nZ:; ) (—) (tanh z).

z=Lt/2

To elucidate the right hand side of (4.6), we examine the following three possibilities.

Case 1 L is diagonal as in (4.1). Then,

Lt 1 t
tanh? = L(— tanh %)

o

Note that [(1/a) L]?> = 1. The n-th derivative equals

d" (lIL dd;n o 2(tanh z) ifniseven,
(tanhz) = .
dz"| _p./ 14 | (tanhz)  if nis odd.
z=at/2

If we define gy (u,t) as

L+N
gn(u,t) = —utGu:—utJ(tanh 5 )u,
then
2 at at Htk1 dk-!
,1) = =H,tanh — + Hy rsech® — + - - - +
gu(u,1) = Htanh = + Hy 1 sech” 2 22k — 1)! dzk—!
Here

H = —%utJLu; H; := —%utJNu; andif n=2,...,k-1,

H,p = —iu'JN"P"*'u  where P"=

{lL if n is odd,
2

Obviously, H = H + H>.

14

z=at/2

1 if n 1s even.

(tanh 7).

(4.6)

4.7)

(4.8)



Case 2 L is block diagonal as in (4.2) and (4 4) If JB is given by (4.2), then

JBt d"
tanh — = L — tan(z,Bt) + Z ( ) NP - (tan z) (4.9)
dZ 7=Pt/2
where P" = (—1)(”‘1)/2(1/ﬁ)L if n is odd, and P" = (=1)"*2/2 1 if n is even.
To derive this formula, we recall that A = (2 _(’)8 ) and note that
tanh 0 _%ﬂt LY el tanh %’Bt 0 -l —Altan(lﬁt)
pe0 ) 2\i 1 0 —ipef\i 1) p TS
and so I’ 1
tanh > = L ,E tan(%,Bt). (4.10)

If, for simplicity, we write T = (1/8)L, we easily obtain that T2 =-1;T3=-T;T*=1. Itis
also clear that (4.10) can be written as

tanh(%,BtT) = Ttan(%ﬁt), (4.11)
and (4.11) implies that

d" d"
— (tanh z) = 77! - (tanz). (4.12)
dz"|_ g2 dz" 2=pt/2
Hence (4.9) follows. Also
,8 t" d’
gu(u,t)=— H1 tan — + 1— (tan z) (4.13)
B Z n! 2n— An—1 T nF dz" v=t/2

where Hy, ..., H; are defined here as in (4.8). Note that H = H| + H; again.

If JB is given by (4.4), then
1 0 T 0
t=elo S)eolo )

where T is a direct sum of 2k blocks of the form ((1) _01) After some calculation, we obtain that

d" fl,n1 +gl,nT 0
dz" Z:Lt/z(tanh Z) B ( 0 f2,n1 + gZ,nT) ’
where
o sin2y
Jin= 0yon-lx (cosh 2x + cos Zy) mat/2. y=pi/2
0" sin 2y
Eln = Gn (cosh 2x + cos 2y) c=at/2, y=pi)2
0" sin 2y
Jon = 0yon-lx (cosh 2x + cos Zy) =t /2, y=B1 )2
0" sin 2y
82 = Gn (cosh 2x + cos 2y) vm—at)2, y=pi/2

15



If W now denotes

0
I 0 10
W= where 12:(0 1),
I, O
then
k-1
JBt 1 /t\» fan"+g1nW"T 0
tanh — = —(— i ) . .
o 2 e n! 2) ( 0 (=1)" fo (W) + (=1)"gp, (W'T (4.14)

From this, gy (u,t) may be computed explicitly, but we shall omit the (rather complicated) general
formula. The lower-multiplicity cases are exhibited in Table 1.

Case 3 L is of antidiagonal form as in (4.3).

In this case, formulas (4.9) and (4.13) are reproduced. The proof goes as follows: tanh z is an
odd function and consequently only the odd powers of z will appear in its Taylor expansion on a
neighbourhood of 0. If we define K as (1/&8)L, then

0O --- 0 J
K = Co ] with J:(l 0),
J -« 00
and thus K2 = -1, K3 = -K, K* = 1; and
Lt t t L t
tanh7 = tanh%K = 8Ktan’% = ,E tan’%. (4.15)

From (4.15) a straightforward calculation gives (4.12), with T replaced by K, and hence we have
proved the validity of (4.9) and (4.13) in the present case.

From the preceding formulas, one can now write down the desired Moyal propagators.

Expression (4.13) becomes singular at t = (2m + 1)/, m an integer, as expected. However,
Ey(u, 2m + 1)x/B) is a well-defined distribution, a multiple of Dirac’s ¢ in fact, and the map
t — By (u,t) is everywhere continuous in the appropriate topologies (see Appendix A).

For the decomposable Hamiltonians, the matrix tanh(JBz/2) is obtained as a direct sum of the
expressions for the corresponding indecomposable summands of JB. To obtain det((X + 1)/2), we
have to find the eigenvalues of JB and then apply (3.10). The set of eigenvalues of JB is the union
of all the eigenvalues of each canonical block Yy, since JB may be written as a direct sum of these
blocks by permuting the ¢ and p coordinates. The details are straightforward.

As remarked before, if H can be written as a sum of Hamiltonians H = Hy(u) + - - - + Hg(uy),

where u = (uy,...,u ) and the several u; lie in symplectically orthogonal subspaces, then
X
Bn(,0) = | | it = || Zu(ui0). (4.16)
1<i<s 1<i<s

This circumstance extends to the singular case (det B = 0).
We end this section with a pair of useful results.
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Lemma 1. Let H) = %utAu and Hy = %utBu be two homogeneous quadratic Hamiltonians
of dimension 2n, where A and B are symmetric matrices. Then JB +— Hp is a Lie algebra
isomorphism. In particular, the classical Poisson bracket {H 4, Hg}p is identically zero if and only
if the commutator [JA, JB] vanishes.

Proof. We may write:

e = 2 G e~ s )~ ) ()

where d/du denotes the gradient, as before. Since 0H4/0u = Au and 0Hg/du = Bu, we obtain
{Hu,Hp}p =u'AJBu = —u'BJAu = tu'(AJB - BJA)u.

Assume now that the Poisson bracket is identically zero. We get equivalently JA/JB—JBJA =0. O

Theorem 3. Let H = %utBu be any homogeneous time-independent quadratic Hamiltonian. Then
the classical Poisson brackets {H, gy (u,t)}p and {H,Ey(u, t)}p are always zero.

Proof. Inthe expansion (4.6), all the terms commute since [L, N] = 0. It follows that {H,,, H,}p = 0
in all cases, and hence {H, gy (u,1)}p = 0. (We leave the details to the reader.) |

We remark that Theorem 3 is formally a corollary of the result [18]: {H, H*"}p = 0.
We summarize the results up to now in Table 1, which includes all nonsingular homogeneous
indecomposable types up to dimension n = 5. In Table 1, @ > 0, 8 > 0 and & = £1.

5 Classification of the Moyal propagators in the singular case

We study the homogeneous Hamiltonians first. In the homogeneous case, there are two indecom-
posable normal forms:

0 0
1 O
(a) JB:(% —(l)]t): U= ) , R= 0 ;
1 0 +1
u o0
(b) JB:(O —Ut)'

In case (a), U and R have %(k + 1) rows, where k is odd; in case (b), U has k + 1 rows, where k
is even.

In both cases JB is nilpotent: (JB)* # 0, (JB)**! = 0. The Taylor expansion of tanhz at z = 0
is
&0 22m (22m _ 1)

(2m)! Bom . ’

tanh z =
m=1

where B,,, are the Bernoulli numbers. Therefore

o JB L2 pam gm _ ) (JBt)Zm—l
anh — = ,
2 (2m)! WD)

m=1

7



Table 1: Nonsingular homogeneous Hamiltonians

n =1 (case a):

n =1 (case b):

n =2 (case a):

n =2 (case b):

n =2 (case c):

n =3 (case a):

n =3 (case b):

n =4 (case a):

n =4 (case b):

n =4 (case c):

n =15 (case a):

n =5 (case b):

Indecomposable Hamiltonians with det B # 0:

H=aqp; Eg(u,t) = sech %t exp(—é H tanh %t)

H = %s,@(qz +p?): By (u,t) = sec % exp(—[% Htan%).
H =H + Hy; Hy = a(q1p1 +q2p2), Hy = q1p2;
Ep(u,t) = sech’ %t exp(—é Hj tanh %t _u H, sech? o
H = H\ + Hy; H = B(q1p2 — q2p1), Ha = 56(q3 +q3);

3 1 at it t
By (u,t) = sec? ﬁ— exp(—B H, tan — — — H, sec? —).

2 2 2 2
H =H + Hy; Hi = a(q1p1 + q2p2), Hy = B(q1p2 — q2p1);
_ sinh at i sin St
Ey(u,t) = —exp(—— 1 -—-H )
cosh at + cos St @ coshar+cosBt B “coshat+cos Bt

H = H\ + Hy; Hi = a(q1p1 + q2p2 + q3p3), H2 = q1p2 + q2p3; Hz = q1p3;
. . .2

t t t t t t t
Ey(u,t) = sech’ il exp(—i H, tanh a_ v H, sech? a. Hj; tanh il sech® a_).

2 7" e , 2 2 4 2 L2
H = Hy + Hy; Hy = eB(3q5 — 193 + 503 — p1p3), Hy = q1p2 + qop3; Hy = —3&(q7 + p3);
Bt ( i Bt it 2B, it? Bt zﬂt)
—exp|——= Hjtan— — — Hp se — Hjtan —
g SP\mpHtan T thsee o 2 ¢ 7
H = H\ + Hy; Hy = a(q1p1 + q2p2 + q3p3 + q4p4),
Hy =qip2+qap3 +q3pa; H3 = qip3 + q2p4, Hy = q1pa;

Eu(u, 1) = sec®

at t
Ey(u,t) = sech4 — exp[—— H; tanh 7 - 5 H, se ch2 > + Z H; tanh 5 sech2 ad

+ﬁ H4(1 —4tanh? & Z " + 3tanh* 7)]

H = Hy+ Hy; Hy = B(q1p2 — 9201 + q3p4 — q4P3),
Hy = q1p3+ q2ps — 36(q3 + q2); H3 = —&(q1q4 — qzqa) H4 = 1e(q} +43):
Bt it 2,3 ﬁ 2ﬁt

1
EH(u,t)zsec4%exp[—BH1t ?_EHZ 2 4 H3tan 2 >
-3

it ,8 Bt
+—H(1+4t 2P 3 tant )]
24 an 2
H=H;+H,+H; H = a(q1p1 +q2p2 +q3p3 +qapa),
Hy = B(q1p2 — 9211 + q3p4 — q4p3), H3 = qip3 +qops, Ha = q2p3 — q1ps;

sinh at i sin Bt
En(u,1) = sexp|-LHy Ly, A
(coshat + cos Bt) a coshat+cosfBt B “coshat+cosft
y 1 +coshatcosfBt | sinh ot sin St ]
—ll 13 — Ul .
(cosh at + cos Bt)? (cosh at + cos Bt)?

H=H|+H; H =a(qp1 +q2p2+q3p3 + qaps + q5ps),
Hy = q1p2 + qap3 + q3pa+ qaps; H3 = qip3 + qapa + q3ps, Hy = q1pa + qaps, Hs = q1ps;
at i at it at it at at
Eg(u,t) = sech’ —ex [——H tanh — — — H, sech’? — + — H; tanh — sech? —
H(u,t) < p 1 S~ 5t > >

t t t t t
+’2—4H4(1 —4tanh27 +3tanh? C; ) - E15{5(2tanh% — 5tanh’® % +3tanh® %)]

H = H| + Hy; H = —eB(q195 — q2q4 + §q3 + Pp1ps — papa + %P%),
Hy = q1p2 + q2p3 + q3pa + qaps; Hy = —e(q193 — 343 + p3ps — 3p3).
Hy = q1ps+qa2ps, Hs = —5&(q} + p?

t j t it tif? t
EH(u,t)=secs;‘%exp[—éH1tan%—%H2s 2’%+%H3tan%se02ﬁ—
it t * t t
+12—4H4(1+4tan2’8 +3ta4ﬁ2)—ﬁHs(2tan%+5tan3ﬂ +3tan5’82)].
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Table 2: Singular homogeneous Hamiltonians

Indecomposable Hamiltonians with det B = O:

n=1: H= —%aqz; Eg(u,t) = exp(—éHt).

n=2. H=qipy— 5843 En(u,1) = eXp[_i(Ht - g(_) )

n=3: H=qip>+qp3— 3895 En(u, f)—exp[—E(Hf+3(§) (2613611—612)—E(§) 41)]-
n=3: H=qip2+q2p3; Eu(u,t) =exp(-5Ht).
n=4 H= 6]1p2+6]2p3+613p4-%££]ﬁ3;
1 17¢
En(u, t)—eXp[——(Ht+3( )(—2q1p4+28q4p2 8q3)+15( )(2q1q3 a3) - 315( )q?)l
n=5H=qip>+q2p3+4q3p4 +614P53— 5643
i 1/t
Ep(u,t) = eXp[——(Ht - 5(—) (2914 +2q2ps — 264395 + £q3)
2e 17¢ 62¢
3) (2a2as-2 “31sl3) s (5) )]
15( )(q2q4 4145 — 43) 315 (29193 — 43) - 7835 q
n=5H=qip2+qap3+q3ps+qaps;

Eu(u,t) = exp[——(Hl - %(—)3(2611134 + 2112P5))]~

where
V{-FIJ _J(k+1)/2 if k odd: case (a),
2 1 k)2 if k even: case (b).
Also,
L(k+1)/2] 2m 2m—1
N 42" — 1)t
gu(u;t) = Hit + m; @) By Hopm-1
where

Hy = ju'Bu; Hyyu_ = su'(BJBJ---JB)u.
~—

4m-3 factors

By applying formula (3.10), we obtain det((X£ +1)/2) = 1.

The analysis for the homogeneous decomposable case is exactly the same as when det B # 0; in
particular, (4.16) remains valid.

The study of the inhomogeneous singular Hamiltonians is more complicated. We cannot reduce
the study of the Moyal propagators to the homogeneous case. We know no general method to classify
these Hamiltonians into equivalence classes under coordinate changes of the type u’ = Su + ug, S
being a real symplectic matrix. Thus, we classify the Hamiltonians for each dimension and study
them case by case.

In Table 2, we list the singular homogeneous indecomposable types up to dimension n = 5. In
Table 3, we list representatives of the inhomogeneous singular Hamiltonians forn = 1 and n = 2
In all cases, @ > 0,8 > 0 and € = £1.

6 Spectral analysis

As we prove in Appendix A, the spectrum of a Hamiltonian H can be identified with the support
on E of the spectral projector I'y(u, E). A possible way to obtain properties of the spectra of
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Table 3: Singular inhomogeneous Hamiltonians

Inhomogeneous case: H = %u‘Bu +ctu;detB=0,c #0:
n=1: H=aq+bp;Ey(u,1)=exp(-5Hr).

1 i ea’® 3
n=1: H:—isq2+ap;EH(u,t)=exp[—§(Ht—ﬁt )]
n=2. H=aq+bq+epi+ fpr;Ep(u,t) =exp(-5Ht).
. 2

_n. _ 1.2 .= _ ! € 2 3 _€a” ;s
n=2 H=qp»-3&q;+api;Eu(u,1) = CXP[—E(Ht—‘ ﬁ(ﬁll - 2aq)r” - 210! )]
n=2: H= —%sq% +aq)+bp;+epy; Eg(u,t) = exp[—%(Ht - % t3)].

. 2+ /b2

n=2 H=-%eq? - 3&'q3+api +bpy; En(u,t) = exp[—%(Ht - % t3)].

n=2: H=H+H, H =aqps, Hy =aq + bpy;
- at i at it
Ey(u,t) = sech—exp(—— Htanh — — —Hg).
2 La 2 2
n=2: H=H +H;H =-3eB(q;+p3), H» =aqi +bpy;
_ Bt ( i Bt it
Egy(u,t) =sec —expl—— Hjtan — — — )
u(u,t) > €Xp phans -5
n=2 H=H +H);H =aqp), Hy=-3eq} +api;
t ] 1t it ]
EH(u,t)=sech%exp(—iH1tanh%—l—H2+ﬂt3).
a
n=2 H=H1+H2;H1=—%sﬂ(q§+p§),H2=—%s'q%+2ap1;
— Bt ( i Bt it iga” ,
HEy(u,t) =sec —exp|—— H;tan — — — H. +—t).
u(u,1) > €Xp pHany =5 o+ 50

the quadratic Hamiltonians is then to do Fourier analysis on the Moyal propagators studied here.
We show how this comes about for n = 1. From the previous tables we extract six representative
Hamiltonians, which cover all possible cases.

(1) Trivial:
H=0, Ey(u;t) =1.

Then I'y(u; E) = 6(E); sp H = {0}.
(i1) Free particle: .
H= %pz; Eg(ust) = exp(—%pzt).
Then I'y(u; E) = 6(%]92 —E);spH =R".
(iii) Free-fall Hamiltonian:
H=1ip*+q;  Eu(u;t) =exp[-L(Ht +1/24)].
From

1 .
Ai(x) = 7 / exp(ivx + %v3) dv,
R

we obtain
Ty(u; E) =23 Ai(2'3(H - E)); spH=R.
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(iv) Harmonic barrier:
t t
H = %(pz—qz); Eg(u;t) :sechiexp[—thanh 5]

Using Kummer’s formula

1 1
Fi(a,1,2) = ————— dpa=l(1 — 1)~ dt,
1Fi(a,1,2) F(a)F(l—a)/o et (1 —1)

one can show that
I'y(u; E) = %sech %e"‘HlFl(%(l —1iE),1,2iH)
and consequently sp H = R.
(v) Harmonic oscillator:

sec Sexp(—iHtan %) ifr# 2k + )7, k € Z,
H=1(p*+q»; Enust)= S S

(=D 2nis ift=Qk+1)m, k € Z.
Using the formula for the generating function of the Laguerre polynomials:

D L)y = (1-y) e/,
k=0

one gets:

Ty(u,E) = Z 26(E — (2k + 1)) (=1D)*Ly(2H) e7H
k=0
andspH ={1,3,5,7,...}, as expected (recall that 7 = 2).

(vi) Harmonic “antioscillator”:

sec s exp(—iHtan %) ift # 2k + )7, k € Z,

H=-1(p*+¢%); Eu(u;t) =
2 (=D)*2nis ift = 2k + 7, k € Z.

Although we have lumped together the two cases (v) and (vi) in Table 1, they must be carefully
distinguished now. We obtain the following proposition.

Proposition 2. Let S be a complex symplectic 2n X 2n matrix such that S = iM with M real. Let
H = %utB’u and H = %u‘Bu be two homogeneous Hamiltonians, subject to B = S'BS. Then
spH' = -spH.

Proof. Since (3.11) remains valid for complex S, and according to (3.5) and (3.7),

“1)2 .
exp|4(Su)'G(Su)|

1+X
By (u,t) =Ey(Su,t) = [det( 42- )

_1/2
= [det(1 ;Z)} exp|—4(Mu)'G(Mu)| = Ey(Mu,1),
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(where we have omitted the term with 8(#) which vanishes if the Hamiltonian is homogeneous).
Then,

1 . 1 - .
Ty (u,E) = — / B (u, 1) eE? dr = — / En(Mu, 1) e"t? dt =Ty (Mu, —E).
4 4
If we denote the support on E of I'y(u, E) by suppy I'u(u, E), we finally have:

spH' = suppy I (u, E) = suppy I'y(Mu, —E) = —spH. O

For the harmonic “antioscillator”’, we now obtain:

I'y(u;E) = i 26(E + (2k + 1)) (-1 Ly (-2H) e
k=0

andspH ={-1,-3,-5,-7,...}.

For n > 1, the calculation of Fourier transforms in the indecomposable cases becomes com-
putationally very difficult. In principle, we could obtain the spectra in the decomposable cases by
convolution of the spectral projectors for the indecomposable Hamiltonians. A very simple case is
the isotropic harmonic oscillator in R?", where we get:

n+k—-1

Cy(u;E) =2" Z(—nk( L )e—HLg—l(zH) S(E — (2k +n)).
k=0

Here L’Z‘l denotes the associated Laguerre polynomial of order n — 1 and degree k. Note that the
correct degeneration of levels is obtained.

7 Conclusion

The program set out by Moshinsky and Winternitz [2] may be implemented completely in the Moyal
formulation. This is better adapted to dealing with quadratic Hamiltonians because of its underlying
canonical symmetry. By use of formulas such as those developed in Section 2 and Appendix A,
all physical questions related to the corresponding dynamical problems can be treated directly from
our explicit formulas. If one is reluctant to abandon the conventional formalism, one can always
derive the Green functions from our Moyal propagators.
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A Quadratic Hamiltonians and the Moyal algebra

In this appendix, we examine the mathematical basis of the Moyal formalism more closely and estab-
lish the following results: the Moyal propagator for any nonsingular (time-independent) quadratic
Hamiltonian lies in the Moyal algebra of tempered distributions [4]; the operator corresponding to
such a Hamiltonian is self-adjoint, and its spectrum is given by the support (on E) of the Fourier
transform of the Moyal propagator.

The twisted product (2.4) of functions on R2" can be extended in a natural manner to certain
class of distributions on R?*. Let S(R?") denote the Schwartz space of smooth rapidly decreasing
functions on R?" and let 8’(R?") be its dual space of tempered distributions. Then if f, g € S(R?"),
we also have f x g € $(R?"); by duality, one can extend the twisted product to the case where
either f or g lies in 8’(R?"), in which case f X g is also a tempered distribution; and by a further
extension, both f and g can be tempered distributions provided at least one of them lies in

MR ={fe8R™) : fxh hxfe8R>™) whenever heS(R™)},

which turns out to be an involutive algebra of distributions under the twisted product, called the
Moyal algebra (with complex conjugation as the involution). For details of this extension, we refer
to [4].

If M(R?") is to be considered as a natural “algebra of observables” for phase-space Quantum
Mechanics, one must show that it contains the Moyal propagators Eg(u;¢) for a large class of
Hamiltonians H. We now show that this class includes all nonsingular quadratic Hamiltonians.
This is also a step in the proof of self-adjointness for W (H).

It is known that a tempered distribution 7' lies in M(R?") if and only if the corresponding
operator W(T) on L?(R") and its adjoint W(T)* = W(T) are defined on the dense subspace S$(R")
and leave S(R") invariant [4]. As in the calculation of the formula for the Green function, we find,
for ¥ € S(R"), that

1
(4m)"

WE @ = o [ sulhe ez eplie-n¥er vz @A

It thus remains to establish that W(Eg (1)) and W (2 (1)) W lie in S(R") whenever ¥ € S(R") for
suitable Hamiltonians H.

Theorem 4. If H is a nonsingular time-independent quadratic Hamiltonian, then Eg(t) lies in
M(R?) forall t € R.

Proof. If S is a real symplectic 2n x 2n matrix and ug € R?", it is clear that the change of
variables f(u) := f(Su +u) leaves S(R?") invariant, and from (2.4) we see that f x § = (f X g);
thus M(R?") is also invariant under f — f. By (3.16) it thus suffices establish the theorem for
H = %utBu, where JB is a simple representative of its symplectic conjugacy class. Moreover,
by (4.16), we may suppose that JB is indecomposable.

If JB is given by (4.1) or (4.4), we find that Ey(q, p;t) = exp(ip'Kq), where K denotes the
upper left n X n block of tanh(JBt/2). In these cases, (A.1) reduces to

WE I = s [ expls(14K0x) [ eol-5y(1 - K2 Y0 dydz, (A

(4m)"
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and W (Ep (1)) ¥ equals the right-hand side of (A.2) with K replaced by —K, so the desired follows
from the invariance of S(R") under the Fourier transform, provided that the matrices 1 + K are
nonsingular.

If JB is given by (4.2) or (4.3), then (A.1) reduces to a less simple form, since quadratic
exponential terms appear in the analogue of (A.2). However, since S(R") is stable under translations
and multiplication by exp[ %x‘F x|, for any real symmetric matrix F', one verifies that the same result
holds as in the previous cases: W(Eg(¢)) and its adjoint preserve S(R") provided that 1 — K and
1 + K are nonsingular.

From (4.6), one verifies that in all cases det(1 + K) det(1 — K) = det(1 + tanh(Lz/2)), where L
is the semisimple part of JB. From (4.7), (4.10) and (4.14), the value of D = det(1 + tanh(Lt/2))
can be computed for each of the indecomposable cases (a), (b), (c) of Section 4. The results are:

t
Case(a): D= secth(%),

Case (b): D = seCZk(%),

[(2 +2cosh @t cos Bt)? + (2 sinh at sin B1)?]*
(cosh at + cos Bt)% ’

Case(c): D=

Thus D does not vanish for any t, as required. (In case (b), the values t = (2m + 1)7/8, m integer,
deserve a comment: at such values, Zg(¢) is proportional to a ¢ distribution concentrated at a point,
which in any case lies in M(R?").) o

Now let H be a nonsingular quadratic Hamiltonian. From (3.3), it is clear that H € M(R?"). Let
Wo(H) denote the operator defined by (2.1) or (2.6) with f replaced by H, whose domain is S(R").
Moreover, Wy(Eg (1)), similarly defined as an operator with domain §(R") from the functional form
(3.5) by means of (A.1), forms a continuous group of operators on S(R") which extends to a group
U(t) of unitary operators on L?(R"). Let %W(H )t denote the generator of this unitary group. Then
clearly S(R") ¢ D(W(H)) and W(H)¥Y = Wy(H)Y for all ¥ € S(R"). By Theorem 4, the domain
S(R™) of Wy(H) is invariant under the unitary group U(?).

From a theorem of Taylor [19, Prop. B.3], we conclude that Wy(H) is essentially self-adjoint
and W (H) is its unique self-adjoint extension. Thus the functional calculus properties dealt with in
Section 2 are rigorously valid for nonsingular quadratic Hamiltonians.

The foregoing is also true for singular quadratic Hamiltonians; in fact, a theorem by Wang [20]
guarantees that if f is any real smooth function such that all its derivatives of order at least two are
bounded, then Z(u, t) exists as an element of M. The proof, however, is involved and demands
familiarity with the methods of pseudodifferential operator theory; this is why we chose to present
here an elementary proof within our sphere of interest.

Finally, we consider the spectrum of W(H), which we have denoted sp H. We show that this
coincides with suppz T'y. If ¥ € S(R"), let fip(u) := W' (|¥)(¥|)(u). From the formulas of
Section 2 we see that

1
(47)"

¥ Lexpl=iW (E)1/2)|0) = e [ ) S ) . (A3)
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By the spectral theorem, we may write

¥ [expl-iW (/21 1) = [ 2 da () (Ad)
spH
where py is the spectral measure associated to W [21].
Equation (2.10) defines a function I'y(E) with values in 8’(R?") or, more precisely, a 8’(R>")-
valued measure 'y (dE) for which:

(1) = /R e EP Ty (u, dE) (As)

where the integral in (A.5) extends, in fact, over suppy I'y. Define the complex measure vy by

dvy(E) = - fe(W)I'y(u,dE).

Clearly supp vy C suppy I'n. Then

/Rznfq:(u)EH(u,t)du:/R/Rzndu e_itE/zfxp(u)FH(u,dE):/Re_”E/Zdv\p(E).

Together with (A.3) and (A.4), this implies that the complex measures uy, vy have the same Fourier
transforms and hence coincide.

Since sp H = |Jy supp py [21], we thus obtain that sp H C suppg ['y.

On the other hand, if E € suppy 'y, I'u(dE) and therefore Wy (I'y (dE)) are not identically zero
on any neighbourhood V of E. Thus we can find ® € S(R") so that (® | Wo(['y(dE)) | P) # 0
on V. Since

(@ | Wo(Ty(dE) | @) = | folu) Tu(a dE) = dva(E),
we find that V N supp e = V Nsupp vep # 0 and hence VNsp H # (. Thus E € sp H. We conclude
that supp; 'y C spH.

We have proved that suppz I'y = sp H whenever W (H) is self-adjoint and Z(¢) € M(R?") for
all ¢. In particular, the methods sketched in Section 6 do indeed lead to the calculation of spectra in
our case.

We remark that the measure I'y (dE) is always discrete or absolutely continuous in the present
context. Thus the notation 'y (u, E) dE employed throughout the paper, instead of I'y(u, dE),
is justified. In the discrete case, the I'y(u, E) belong to S(R?"); otherwise, they are tempered
distributions that do not belong to the Moyal algebra.

B The path-integral form for the Moyal propagator
The ordinary exponential function can be defined as
e = Jim (1+x/N)N.

This gives an heuristic suggestion for the calculation of Moyal propagators. Let us write
Eg(u;t) = HTS w<n =H(u;t/N). Considering, for simplicity, a time-independent Hamiltonian, one
has

1? 1?

EH(u; %) =1- %H+O(ﬁ) = exp(—%) +0(ﬁ)'
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We conjecture then that

= () — Vi o—itH[2N o o —itH/2N _. 1. =(N) (.
Ey(u;t) —1\}1m e X--Xe = lim B, (u;1).

—00 N—eo

(N times)

The explicit form of EI(LIN)

will be omitted.)

itH _
Egv)(u;t) = [exp(—l—) X Egv 1)](u;t)

is calculated now, following [22]. (The subscripts under the integral signs

2N

= (27r)_2”//dyN dxy exp{=5[(t/N)H(yn) - 2u'Jyy — 2y} Jxy — 2x},Ju]} Egv_l)(xN; 1)

= (27T)_4”////dyN dxy dyn-1 dxy-i

x exp{~5[(t/N)H(yn) + (t/N)H(yn-1) = 2u'Jyn = 2y\Jxn — 2x\Ju

= 2x\Jyn-1 = 2y Jxnot — 2%y Jxy]} EI(L]N_Z) (Xxn-131)
N
j=1

N N
—L(Z(t/N)H(y,-) - ZZ(xEHJJ’i +yiJx; +x§Jx,-+1))] (B.1)

2 i=1 i=1

X exp

where we made the little trick of twisted-multiplying the last factor by 1, in order to get a more
rounded expression; also, we put X y+; = u.
Assume now that N is even. We rewrite the second part in the exponent in (B.1):

Gy =y\Jxi+ (2 -y)Ix2+ (y3—y2)'Uxz+--+ (yn —yn-1)Jxn
+ Xy YN+ (] —x3) U0 + (03 — x5)Uxg + -+ (Xno1 — X)) xy,

and apply the method of stationary phase to perform the integral over the x. That is, we equate to
zero the derivatives of the previous expression with respect to these x, which yields:
k-1
Xok =y1+ ) (¥2ise1 — Y2i),
i=1
N/2
Yo =u+ Y (yo1-yx), for 1<k<N/2. (B.2)
i=k
Instead of writing the resulting expression as an iterated integral over the y, we go over directly
to the continuous limit. Let us introduce the time parameter 7, such that 0 < 7 < ¢, and assume taht
X2 = X(121); X2k+1 = X(12k+1); Y& = y(7). The limit N — oo in the expression (B.2) gives the
following relations among the continuous trajectories x(7), X (7), y(7):

20 =y -5 [ 30 as = LXE,

f(T):u+%/OTy(s)ds:w+u.
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We find also
1 t
“]\;im "Gy =y(0)UE(t) +u'Jy(0) + 5 / (0)Jy(r)dr
—00 0

v /0 x(0) (1) dr - /0 X0 () de

1 ! 1
1 / Y5 () dr + ~u'Ty(0),
4 Jo 2

after some work (where %(y (0) + y(¢)) = u must be used).
We obtain, then, the following expressions for the Moyal propagator as a normalized integral
over paths:

i

EH(u;t)=//®[x(T)]@[y(T)] eXp( 2/0 [H(y (1)) = 2x (1) U2 (1) + 2y (1) V5 (1) ] dT)

with x(0) = u, (B.3)
Or:

zutwin) = [ Dy exo|-5{ [ 1HG©0)+ by@sol ar) +50)u] B4

The former is from (B.1); the latter comes from our stationary-phase calculation. In (B.4) one
has the condition %( y(0) + y(#)) = u. (Taking N odd in the argument leading to (B.4) is messier,
but the final result is the same.)

Formula (B.1) can be applied in principle to direct calculations of evolution functions, at least
in simple cases. The one example known to the authors of such a calculation, which gives the
evolution function for the harmonic oscillator again, may be found in [23]. On the other hand,
it is fruitful, as in conventional quantum mechanics, to examine the expansion of (B.4) around
classical paths. We can consider the expressions under the integral sign in the “integrands” of (B.3)
and (B.4) as Lagrangians of sorts. In the second case, for instance, the Euler—Lagrange equations
(d/dt)dL]dy = L/dy give:

0H/dy = -Jy,

to wit, Hamilton’s equations! We will denote by y.(7) a path obeying the classical dynamics with
%(ycl(O) + y.(t)) = u. The exponent of (B.4) for these paths:

gal(us1) =/0 [H(ya(1)) + 3ya(1)Uya(7)] dr +y(0)Ju

is obviously a symmetrical form of the classical action. One arrives as well at the last formula
from (B.3). Note that the “Lagrangian” under the integral sign in (B.3) or (B.4) is a singular one, so
it would seem that we are not entitled to use the Euler—Lagrange equations. The proper theory [24],
however, gives also in the present case Hamilton’s equations as a kind of necessary constraint.!

If the Hamiltonian is quadratic, the Moyal propagator can be calculated solely from the classical
paths, in much the same way as the path integral calculation proceeds for the propagator in the

I'We are indebted to José F. Carifiena for clarification on this point.
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standard theory, for quadratic Lagrangians. In effect, application of the method of stationary phase
in (B.4) gives at once:

En(u:t) = F(t) exp[—4ga(u:1)].

We leave it to the reader to check that in this case g is the same quantity that we have denoted gy
throughout the paper.

One can now calculate F(z) from the path integral, but it is easier to get it from the group
property of Zy (as noted in [25]). We obtain anew the basic formulas employed in the paper;
the details are omitted. Note that this derivation of the general form of the evolution function
for quadratic Hamiltonians gives immediately the preexponential factor, in contradistinction to our
method in Section 3.

It is also clear that we could employ the method of stationary phase in (B.3) or (B.4) to obtain the
point de départ of a semiclassical expansion of the Moyal propagator for arbitrary Hamiltonians [26].

References

[1] J.P. Dahl and M. Springborg, “Wigner’s phase space function and atomic structure. I. The hydrogen atom ground
state”, Mol. Phys. 47 (1982), 1001-1019;
M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, “Distribution functions in physics: fundamentals”,
Phys. Reports 106 (1984), 121-167;
S. Shlomo, “The Wigner transform and the semi-classical approximations”, Nuovo Cim. A 87 (1985), 211—223;
J. Javanainen, “Light-induced motion of trapped ions: III. Expansion around the recoilless solution”, J. Phys. B
18 (1985), 1549-1568;
D. P. Sankovich, “Weyl formalism and quantum stochastic processes”, Physica A 139 (1986), 437-454;
J. Kripfganz, “Phase space approach to real-time quantum evolution: towards non-equilibrium lattice field
theory”, J. Phys. A 20 (1987), 1447—-1454;
Y. S. Kim and W. W. Zachary, eds., The Physics of Phase Space, Lecture Notes in Physics 278, Springer, Berlin,
1987.

[2] M. Moshinsky and P. Winternitz, “Quadratic Hamiltonians in phase space and their eigenstates”, J. Math. Phys.
21 (1980), 1667-1682.

[3] J. C.T. Pool, “Mathematical aspects of the Weyl correspondence”, J. Math. Phys. 7 (1966), 66—76.

[4] J. M. Gracia-Bondia and J. C. Virilly, “Algebras of distributions suitable for phase-space quantum mechanics.
17, J. Math. Phys. 29 (1988), 869—879.

[5] A. Grossmann, “Parity operators and quantization of 5-functions”, Commun. Math. Phys. 48 (1976), 191-193;
A. Royer, “Wigner function as the expectation value of a parity operator”, Phys. Rev. A 15 (1977), 449—450.

[6] E.P. Wigner, “On the quantum correction for thermodynamic equilibrium”, Phys. Rev. 40 (1932), 749—759.

[7] J. M. Gracia-Bondia, “The Hydrogen atom in the phase-space formulation of quantum mechanics”, Phys. Rev. A
30 (1984), 691-697.

[8] R. Estrada, J. M. Gracia-Bondia and J. C. Virilly, “On asymptotic expansions of twisted products”, J. Math.
Phys. 30 (1989), 2789-2796.

[9] U. Uhlhorn, “On the connection between transformations in classical mechanics and in quantum mechanics and
the phase space representation of quantum mechanics”, Arkiv f6r Fysik 11 (1956), 87—100.

[10] F. Bayen, M. Flato, C. Frgnsdal, A. Lichnerowicz and D. Sternheimer, “Deformation theory and quantization. I,
I, Ann. Phys. 111 (1978), 61—110 and 111-151.

28



[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[25]

[26]

D. G. Currie and E. J. Saletan, “Canonical transformations and quadratic Hamiltonians”, Nuovo Cim. B 9 (1972),
143-153.

R. Schmid, “The quadratic Hamiltonian theorem in infinite dimensions”, J. Math. Phys. 29 (1988), 2010—2011.

J. M. Gracia-Bondia and J. C. Virilly, “Phase-space representation for Galilean quantum particles of arbitrary
spin”, J. Phys. A 21 (1988), L879-L893.

E. A. Akhundova, V. V. Dodonov and V. I. Manko, “Wigner functions of quadratic systems”, Physica A 115
(1982), 215—231.

V. L. Arnold, Les méthodes mathématiques de la mécanique classique, Mir, Moscow, 1976.

J. Williamson, “On an algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J.
Math. 58 (1936), 141-163.

H. Kogak, “Normal forms and versal deformations of linear hamiltonian systems”, J. Diff. Eqns. 51 (1984),
359—407.

F. Bayen and J. M. Maillard, “Star exponentials of the elements of the inhomogeneous symplectic Lie algebra”,
Lett. Math. Phys. 6 (1982), 491—497.

M. E. Taylor, Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs 22, Amer. Math.
Soc., Providence, RI, 1986.

X.-P. Wang, “Etude semiclassique d’observables quantiques”, Ann. Fac. Sci. (Toulouse) 7 (1985), 101—135.
J. A. Dieudonné, Eléments d ‘Analyse, tome 2, Gauthier-Villars, Paris, 1969.

F. A. Berezin, “Feynman path integrals in a phase space”, Usp. Fiz. Nauk 132 (1980), 497—548; also Sov. Phys.
Usp. 23 (1980), 763—788.

F. A. Berezin and M. S. Marinov, “Particle spin dynamics as the Grassmann variant of classical mechanics”,
Ann. Phys. 104 (1977), 336—362.

J. F. Carifiena, C. Lopez and N. Roman-Roy, “Origin of the Lagrangian constraints and their relation with the
Hamiltonian formulation”, J. Math. Phys. 29 (1988), 1143-1149.

J. M. Gracia-Bondia and J. C. Virilly, “Sums over paths adapted to quantum theory in phase space”, in The
Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds., Springer, Berlin, 1987; pp. 264—266.

M. A. Marinov, “Path integrals in quantum theory: an outlook of basic concepts”, Phys. Reports 60 (1980), 1—57.

29



