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Abstract

The dynamical evolution is described within the phase-space formalism by means of the
Moyal propagator, which is the symbol of the evolution operator. Quadratic Hamiltonians on
the phase space are distinguished in that their Moyal bracket with any function equals their
Poisson bracket. It is shown that, for general time-independent quadratic Hamiltonians, the
Moyal propagators transform covariantly under linear canonical transformations; they are then
derived and classified in a fully explicit manner using the theory of Hamiltonian normal forms.
We present several tables of propagators. It is proved that these propagators belong to the Moyal
algebra of distributions, and that the spectrum of the Hamiltonian may be obtained directly as
the support of the Fourier transform of the Moyal propagator with respect to time. From that,
the quantum-mechanical problem for these Hamiltonians is in principle completely solved. The
appropriate path-integral formalism for phase-space quantum mechanics, leading back to the
same results, is outlined in appendix.

1 Introduction
The phase space approach to nonrelativistic Quantum Mechanics of spinless particles, also called
the Weyl–Wigner–Moyal (WWM) formalism, has of late received renewed attention [1]. In this
formalism, observables are directly given by symbols (functions or distributions) in the phase space
ℝ2𝑛. These are univocally related to the operators in the ordinary formulations of quantum mechanics
by the Weyl correspondence rule. Information about the dynamics of a quantum-mechanical system
in the WWM description is stored in the evolution function, or Moyal propagator, i.e., the symbol
associated to the unitary evolution operator of the given system.

Here we present a completely explicit calculation of the evolution function for time independent
quadratic Hamiltonians, from which one may derive the Green’s functions. In a sense, this paper is a
continuation of the program set out by Moshinky and Winternitz [2] to solve Schrödinger equations
for Hamiltonians that are second order polynomials in position and momentum coordinates; these
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authors went no further than 𝑛 = 2. There is much advantage in using quantum theory in phase
space, as we shall see, because it allows full exploitation of the underlying canonical symmetry.

The structure of the paper is as follows. In Section 2 we review briefly the WWM formalism.
We introduce the Moyal propagators as the evolution functions in phase space and the spectral
projectors, and derive a formula to compute the Green’s functions in this formalism. Section 3 is
devoted to the study of the Moyal propagators of general quadratic Hamiltonians; general results
are given which are valid in the time-independent case. In Section 4, we proceed to the effective
calculation of the Moyal propagators for nonsingular homogeneous quadratic Hamiltonians. We
give a table of these Moyal propagators up to 𝑛 = 5. Section 5 is devoted to the study of the singular
and inhomogeneous cases; we finish this Section with a couple of tables also. In Section 6 we deal
with the calculation of spectra.

We include two appendices. Appendix A is concerned with technical results which make the
present approach rigorous. In particular, we prove that the Moyal propagators are well-behaved
generalized functions belonging to an algebra under the twisted product, called the Moyal algebra,
and that the support of the Fourier transform of the Moyal propagator coincides with the spectrum
of the Hamiltonian. Appendix B outlines a Feynman path-integral approach to define the Moyal
propagator for an arbitrary Hamiltonian.

2 The WWM formalism
The Weyl map transforms a function or distribution 𝑓 on the phase space ℝ2𝑛 with coordinates 𝒒, 𝒑
into an operator𝑊 ( 𝑓 ) by

𝑊 ( 𝑓 ) = 1
(2𝜋)𝑛

∫
ℝ2𝑛

F 𝑓 (𝝈, 𝝉)Ω(𝝈, 𝝉) 𝑑𝝈 𝑑𝝉 (2.1)

where F 𝑓 is the ordinary Fourier transform of 𝑓 . Throughout the paper, we use the convention that
ℏ = 2. The operator kernel Ω(𝝈, 𝝉) is given by

Ω(𝝈, 𝝉) = exp[𝑖(𝝈 · 𝑸 + 𝝉 · 𝑷)] = exp[𝑖(𝜎1𝑄1 + · · · + 𝜎𝑛𝑄𝑛 + 𝜏1𝑃1 + · · · + 𝜏𝑛𝑃𝑛)] (2.2)

where 𝑄1, . . . , 𝑄𝑛, 𝑃1, . . . , 𝑃𝑛 are respectively the position and momentum operators in 𝑛 dimen-
sions. The operators (2.2) satisfy the canonical commutation relations in Weyl’s form:

Ω(𝝈1, 𝝉1)Ω(𝝈2, 𝝉2) = Ω(𝝈1 + 𝝈2, 𝝉1 + 𝝉2) exp[−𝑖(𝝈1 · 𝝉2 − 𝝈2 · 𝝉1)] . (2.3)

The map 𝑓 ↦→ 𝑊 ( 𝑓 ) gives a one-to-one correspondence between functions (or distributions)
and operators. Since the product of operators is noncommutative, we must use a noncommutative
product of functions on phase space, corresponding to the product of operators, and usually called
the twisted product [3, 4]. The twisted product of 𝑓 and 𝑔 will be written 𝑓 × 𝑔; we demand that
𝑊 ( 𝑓 × 𝑔) = 𝑊 ( 𝑓 )𝑊 (𝑔) or equivalently 𝑓 × 𝑔 = 𝑊−1 [𝑊 ( 𝑓 )𝑊 (𝑔)]. From (2.1) and (2.3) we find

( 𝑓 × 𝑔) (𝒒, 𝒑) = 1
(2𝜋)2𝑛

∫
ℝ4𝑛

𝑓 (𝒒1, 𝒑1) 𝑔(𝒒2, 𝒑2)

× exp
[
𝑖(𝒒 · 𝒑1 − 𝒑 · 𝒒1 + 𝒒1 · 𝒑2 − 𝒑1 · 𝒒2 + 𝒒2 · 𝒑 − 𝒑2 · 𝒒)

]
𝑑𝒒1 𝑑 𝒑1 𝑑𝒒2 𝑑 𝒑2.

(2.4a)
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We simplify the notation by introducing 𝒖t = (𝒒, 𝒑) = (𝑞1, . . . , 𝑞𝑛, 𝑝1, . . . , 𝑝𝑛) where 𝒖t is the
transpose of 𝒖, and the matrix

𝐽 =

(
0 1𝑛

−1𝑛 0

)
,

where 1𝑛 is the 𝑛 × 𝑛 identity matrix. Now, (2.4a) can be written as

( 𝑓 × 𝑔) (𝒖) = 1
(2𝜋)2𝑛

∫
ℝ4𝑛

𝑓 (𝒗) 𝑔(𝒘) exp[𝑖(𝒖t𝐽𝒗 + 𝒗t𝐽𝒘 + 𝒘t𝐽𝒖)] 𝑑𝒗 𝑑𝒘, (2.4b)

where 𝒖t𝐽𝒗 is the “symplectic scalar product” of 𝒖 and 𝒗.
Quantum theory in phase space may be developed entirely in terms of the twisted product

without reference to the conventional formulation.
The Grossmann–Royer operators Π(𝒖) may be defined [5] by:

Π(𝒒, 𝒑) = 1
𝜋𝑛

∫
ℝ2𝑛

exp
[
−𝑖(𝒒 · 𝝈 + 𝒑 · 𝝉)

]
Ω(𝝈, 𝝉) 𝑑𝝈 𝑑𝝉, (2.5)

It can be proved that
Π(𝒒, 𝒑)Ψ(𝜻) = 2𝑛 exp

[
𝑖 𝒑(𝜻 − 𝒒)

]
Ψ(2𝒒 − 𝜻)

for wavefunctions Ψ defined on the position space. From (2.1) and (2.5) it follows that

𝑊 ( 𝑓 ) = 1
(4𝜋)𝑛

∫
ℝ2𝑛

𝑓 (𝒖) Π(𝒖) 𝑑𝒖. (2.6)

The utility of the Grossmann–Royer operators is shown by the identity

Tr
[
Π(𝒖) Π(𝒗)

]
= (4𝜋)𝑛 𝛿(𝒖 − 𝒗),

which implies the inversion formula:

𝑓 (𝒖) = Tr
[
𝑊 ( 𝑓 ) Π(𝒖)

]
. (2.7)

In particular we find that

𝑊−1 (|Ψ1⟩⟨Ψ2 |
)
(𝒖) = ⟨Ψ2 | Π(𝒖) | Ψ1⟩ = 2𝑛

∫
ℝ𝑛

Ψ2(𝒒 + 𝜻) Ψ1(𝒒 − 𝜻) exp(𝑖 𝒑 · 𝜻) 𝑑𝜻 (2.8)

and for Ψ1 = Ψ2 we recover, but for a constant factor, the time-honoured formula for “Wigner
functions” [6]. In general

𝑊−1(𝐴) = Tr
[
Π(𝒒, 𝒑)𝐴

]
=

∫
ℝ𝑛

⟨𝜻 | Π(𝒒, 𝒑)𝐴 | 𝜻⟩ 𝑑𝜻

= 2𝑛
∫
ℝ𝑛

exp[𝑖 𝒑 · (𝜻 − 𝒒)] ⟨2𝒒 − 𝜻 | 𝐴 | 𝜻⟩ 𝑑𝜻

=

∫
ℝ𝑛

exp[ 𝑖2 𝒑 · 𝝃]⟨𝒒 − 1
2𝝃 | 𝐴 | 𝒒 + 1

2𝝃⟩ 𝑑𝝃 . (2.9)
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Let 𝐻 be a time-independent classical Hamiltonian and let𝑊 (𝐻) be the operator determined by
𝐻 via the Weyl correspondence. We shall always assume that 𝑊 (𝐻) is self-adjoint. The evolution
function or Moyal propagator associated to 𝐻 is given by

Ξ𝐻 (𝒖, 𝑡) = 𝑊−1 [exp(− 𝑖
2𝑊 (𝐻)𝑡)

]
= 1 − 𝑖𝐻𝑡

2
− 𝐻 × 𝐻

22 · 2!
𝑡2 + 𝑖 𝐻 × 𝐻 × 𝐻

23 · 3!
𝑡3 + · · ·

The Fourier transform of Ξ𝐻 with respect to 𝑡 gives us the spectral projectors parametrized by
the energy 𝐸 :

Γ𝐻 (𝒖, 𝐸) =
1

4𝜋

∫
ℝ

Ξ𝐻 (𝒖, 𝑡) 𝑒𝑖𝑡𝐸/2 𝑑𝑡. (2.10)

These are, but for a constant factor, the Wigner functions corresponding to wavefunctions which
are generalized eigenfunctions of𝑊 (𝐻) with eigenvalue 𝐸 . We prove this assertion for the simplest
case in which𝑊 (𝐻) has a pure nondegenerate discrete spectrum. The twisted product of𝐻 and Γ𝐻 is

(𝐻 × Γ𝐻 (𝐸)) (𝒖) =
1

4𝜋

∫
ℝ

(𝐻 × Ξ𝐻 (𝑡)) (𝒖) 𝑒𝑖𝑡𝐸/2 𝑑𝑡.

Making use of the phase space version of the Schrödinger equation:

(𝐻 × Ξ𝐻 (𝑡)) (𝒖) = 2𝑖
𝜕

𝜕𝑡
Ξ𝐻 (𝒖, 𝑡) (2.11)

(recall that ℏ = 2), we get

(𝐻 × Γ𝐻 (𝐸)) (𝒖) =
1

4𝜋

∫
ℝ

(
2𝑖
𝜕

𝜕𝑡
Ξ𝐻 (𝒖, 𝑡)

)
𝑒𝑖𝑡𝐸/2 𝑑𝑡

=
𝐸

4𝜋

∫
ℝ

Ξ𝐻 (𝒖, 𝑡) 𝑒𝑖𝑡𝐸/2 𝑑𝑡 = 𝐸 Γ𝐻 (𝒖, 𝐸).

The second equality comes from integrating by parts. We have finally obtained that

(𝐻 × Γ𝐻 (𝐸)) (𝒖) = 𝐸 Γ𝐻 (𝒖, 𝐸).

The Weyl transform of this equation is written

𝑊 (𝐻)𝑊 (Γ𝐻 (𝐸)) = 𝐸 𝑊 (Γ𝐻 (𝐸)).

Therefore, 𝑊 (Γ𝐻 (𝐸)) is the orthogonal projector onto the proper subspace of 𝑊 (𝐻) with
eigenvalue 𝐸 . If 𝜙𝐸 is the normalized eigenvector of 𝑊 (𝐻) with eigenvalue 𝐸 , then Γ𝐻 (𝒖, 𝐸) is,
save for a constant factor, the Wigner function corresponding to 𝜙𝐸 .

The foregoing suggests that the spectrum sp𝐻 of 𝑊 (𝐻) is the support on the variable 𝐸 of the
function (more correctly, the distribution-valued measure) Γ𝐻 (𝒖, 𝐸). We prove this in Appendix A.

Green functions, defined as transition amplitudes from the state |𝒒𝑖⟩ at time 𝑡0 = 0 to the
state |𝒒 𝑓 ⟩ at time 𝑡, can be evaluated using the phase space Moyal propagator [7]. Writing
𝑈 (𝑡) = 𝑒−𝑖𝑡𝑊 (𝐻)/2, a formal calculation gives

𝐺 (𝒒 𝑓 , 𝒒𝑖, 𝑡) =
( 1
4𝜋

)𝑛 ∫
ℝ𝑛

Ξ𝐻

( 𝒒 𝑓 + 𝒒𝑖

2
, 𝒑; 𝑡

)
𝑒𝑖 𝒑·(𝒒 𝑓−𝒒𝑖)/2 𝑑 𝒑.
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To see this, we observe that, by (2.9):( 1
4𝜋

)𝑛 ∫
ℝ𝑛

[𝑊−1(𝑈 (𝑡))]
( 𝒒 𝑓 + 𝒒𝑖

2
, 𝒑; 𝑡

)
𝑒𝑖 𝒑·(𝒒 𝑓−𝒒𝑖)/2 𝑑 𝒑

=

( 1
4𝜋

)𝑛 ∫
ℝ𝑛

𝑒𝑖 𝒑·(𝒒 𝑓−𝒒𝑖)/2
∫
ℝ𝑛

𝑒𝑖 𝒑·𝒗/2
〈 𝒒 𝑓 + 𝒒𝑖 − 𝒗

2

��� 𝑈 (𝑡)
��� 𝒒 𝑓 + 𝒒𝑖 + 𝒗

2

〉
𝑑𝒗 𝑑 𝒑

=

∫
ℝ𝑛

∫
ℝ𝑛

〈 𝒒 𝑓 + 𝒒𝑖 − 𝒗

2

��� 𝑈 (𝑡)
��� 𝒒 𝑓 + 𝒒𝑖 + 𝒗

2

〉 ( 1
4𝜋

)𝑛
𝑒𝑖 𝒑·(𝒒 𝑓−𝒒𝑖+𝒗)/2 𝑑 𝒑 𝑑𝒗

=

∫
ℝ𝑛

𝑑𝒗
〈 𝒒 𝑓 + 𝒒𝑖 − 𝒗

2

��� 𝑈 (𝑡)
��� 𝒒 𝑓 + 𝒒𝑖 + 𝒗

2

〉
𝛿(𝒒 𝑓 − 𝒒𝑖 + 𝒗)

= ⟨𝒒 𝑓 | 𝑈 (𝑡) | 𝒒𝑖⟩ = 𝐺 (𝒒 𝑓 , 𝒒𝑖, 𝑡).

We can now build a twisted functional calculus with the symbols, with an important difference:
its elements are concrete functions (or distributions) in phase space. The general formula for this is:

𝑓 ×(𝐻) :=
∫

sp𝐻
𝑓 (𝐸) Γ𝐻 (𝒖, 𝐸) 𝑑𝐸.

Some important elements of a functional calculus are:

(a) The aforesaid evolution function or Moyal propagator:

Ξ𝐻 (𝒖; 𝑡) =
∫

sp𝐻
Γ𝐻 (𝒖; 𝐸) 𝑒−𝑖𝑡𝐸/2 𝑑𝐸.

(b) The resolvent function:

𝑅𝐻 (𝒖;𝜆) :=
∫

sp𝐻

Γ𝐻 (𝒖; 𝐸)
𝐸 − 𝜆 𝑑𝐸,

defined for 𝜆 ∈ ℂ, 𝜆 ∉ sp𝐻, which verifies 𝑅𝐻 (𝒖;𝜆) × (𝐻 − 𝜆) = 1.

(c) The twisted powers:

𝐻×𝑛 (𝒖) := 𝐻 × · · · × 𝐻 (𝒖) =
∫

sp𝐻
𝐸𝑛 Γ𝐻 (𝒖; 𝐸) 𝑑𝐸 = 2𝑛𝑖𝑛

𝜕𝑛Ξ𝐻

𝜕𝑡𝑛

����
𝑡=0
.

We finish this section by giving the law of evolution of the observables. In conventional quantum
mechanics, observables evolve in the Heisenberg picture according to:

𝐹 (𝑡) = 𝑒𝑖𝐻𝑡/2𝐹 (0)𝑒−𝑖𝐻𝑡/2.

If 𝑓 (𝑡) = 𝑊−1 [𝐹 (𝑡)], we have

𝑓 (𝑡) = 𝑊−1 [𝑒𝑖𝐻𝑡/2𝐹 (0)𝑒−𝑖𝐻𝑡/2] = Ξ∗
𝐻 (𝑡) × 𝑓 (0) × Ξ𝐻 (𝑡), (2.12)

which is the corresponding law of motion for observables in phase-space quantum theory.

5



3 Quadratic Hamiltonians
The general expression for the 𝑛-dimensional quadratic Hamiltonian is given by

𝐻 (𝑡) = 1
2𝒖

t𝐵(𝑡)𝒖 + 𝒖t𝒄(𝑡) + 𝑑 (𝑡),

where 𝐵(𝑡) is a 2𝑛 × 2𝑛 symmetric matrix, 𝒄(𝑡) is a 2𝑛-vector, and 𝑑 (𝑡) is a real function of 𝑡.
Since the Hamiltonian is quadratic, the corresponding system of Hamilton equations is linear.

Therefore, the solution to the classical equations of motion has the form:

𝒖(𝑡, 𝑡0) = Σ(𝑡, 𝑡0)𝒖0 + 𝒂(𝑡, 𝑡0), (3.1)

where Σ(𝑡, 𝑡0) is a 2𝑛 × 2𝑛 matrix and 𝒖0 is given by the initial condition 𝒖(𝑡0, 𝑡0) = 𝒖0. Therefore,
Σ(𝑡0, 𝑡0) = 12𝑛 and 𝒂(𝑡0, 𝑡0) = 0. The functions Σ and 𝒂 obey the following pair of differential
equations:

¤Σ(𝑡, 𝑡0) = 𝐽𝐵(𝑡)Σ(𝑡, 𝑡0), (3.2a)
¤𝒂(𝑡, 𝑡0) = 𝐽𝐵(𝑡)𝒂(𝑡, 𝑡0) + 𝐽𝒄(𝑡). (3.2b)

subject to the given initial conditions (the dot means 𝜕/𝜕𝑡). They can be written as:

Σ(𝑡, 𝑡0) = exp
(∫ 𝑡

𝑡0

𝐽𝐵(𝜏) 𝑑𝜏
)
,

𝒂(𝑡, 𝑡0) =
∫ 𝑡

𝑡0

Σ(𝑡, 𝜏) 𝐽𝒄(𝜏) 𝑑𝜏.

A symplectic matrix is a 2𝑛×2𝑛matrix 𝑆 for which 𝑆t𝐽𝑆 = 𝐽. One can easily check that Σ(𝑡, 𝑡0)
is symplectic for all 𝑡. If we transpose (3.2a), omitting the dependence on time for simplicity, we
have

¤Σt = Σt𝐵t𝐽 t = −Σt𝐵𝐽.

We then obtain
𝑑

𝑑𝑡
(Σt𝐽Σ) = 0,

that is, Σt𝐽Σ = 𝐾 , where 𝐾 is a constant 2𝑛 × 2𝑛 matrix. Since Σ(𝑡0, 𝑡0) = 1, we find that 𝐾 = 𝐽

and hence Σ(𝑡, 𝑡0) is symplectic.
We define the “Moyal bracket” {−,−}𝑀 as

{ 𝑓 , 𝑔}𝑀 := − 𝑖
2 ( 𝑓 × 𝑔 − 𝑔 × 𝑓 ).

The quantum evolution law (2.12) may be written in differential form as a Heisenberg–Liouville
equation:

𝜕𝒖(𝑡, 𝑡0)
𝜕𝑡

= {𝒖(𝑡, 𝑡0), 𝐻}𝑀 .

On the other hand, classical Hamiltonian mechanics gives:

𝜕𝒖(𝑡, 𝑡0)
𝜕𝑡

= {𝒖(𝑡, 𝑡0), 𝐻}𝑃,
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where {−,−}𝑃 denotes the Poisson bracket.
Let 𝜕 𝑓 /𝜕𝑞 𝑗 := 𝜕 𝑓 /𝜕𝑝 𝑗 , 𝜕 𝑓 /𝜕𝑝 𝑗 := −𝜕 𝑓 /𝜕𝑞 𝑗 . Then, if 𝑓 or 𝑔 is a polynomial, we have:

𝑓 × 𝑔 =
∑︁
𝑟∈ℕ2𝑛

𝑖𝑟1+···+𝑟2𝑛

𝑟1! · · · 𝑟2𝑛!
𝜕𝑟1+···+𝑟2𝑛 𝑓

𝜕𝑟1𝑢1 · · · 𝜕𝑟2𝑛𝑢2𝑛

𝜕𝑟1+···+𝑟2𝑛𝑔

𝜕𝑟1𝑢1 · · · 𝜕𝑟2𝑛𝑢2𝑛

by integration by parts; moreover, this formula holds as an asymptotic series in more general
cases [8]. In particular, for 𝐻 quadratic, we get:

𝐻 × 𝑓 = 𝐻 𝑓 + 𝑖{𝐻, 𝑓 }𝑃 −
1
2

2𝑛∑︁
𝑖, 𝑗=1

𝐵𝑖 𝑗
𝜕2 𝑓

𝜕𝑢𝑖𝜕𝑢 𝑗
,

𝑓 × 𝐻 = 𝐻 𝑓 − 𝑖{𝐻, 𝑓 }𝑃 −
1
2

2𝑛∑︁
𝑖, 𝑗=1

𝐵𝑖 𝑗
𝜕2 𝑓

𝜕𝑢𝑖𝜕𝑢 𝑗
. (3.3)

It is clear that {𝐻, 𝑓 }𝑃 = {𝐻, 𝑓 }𝑀 for any 𝑓 if and only if 𝐻 is a polynomial at most quadratic
in the phase-space coordinates; this was first pointed out by Uhlhorn [9], and forms the starting
point for the deformation theory of Bayen et al [10]. Note that this corresponds to linear classical
dynamics. That property sets apart this particular class of Hamiltonians, as it makes feasible a fully
explicit solution of the corresponding quantum problem in phase space. In fact, it can be argued that
Moyal’s is the proper setting for Quantum Mechanics of quadratic Hamiltonians, as it allows one to
bring in the full power of canonical symmetry. The latter is hidden in the conventional formalism,
making the solution of the Schrödinger equation for quadratic Hamiltonians a painful business in
general.

There is another property that singles out quadratic Hamiltonians in ℝ2𝑛: if we call “canonoid”
any coordinate transformation in phase space that preserves the form of Hamilton’s equations
corresponding to a given, fixed Hamiltonian, then the following holds: a transformation of ℝ2𝑛 is
canonical if and only if it is canonoid for all quadratic Hamiltonians [11]. This result has been
recently extended to Banach symplectic spaces [12].

It is an open problem to see whether the link between the canonoid-canonical relationship
and the equality of Moyal and Poisson brackets generalizes to other phase spaces (homogeneous
symplectic manifolds) quantized à la Moyal (see for instance [13]).

The components of 𝒖 in (3.1) must change with time according to the law of evolution of the
observables:

𝒖(𝑡, 𝑡0) = Ξ∗
𝐻 (𝑡, 𝑡0) × 𝒖0 × Ξ𝐻 (𝑡, 𝑡0),

or
Ξ𝐻 (𝑡, 𝑡0) × 𝒖(𝑡, 𝑡0) = 𝒖0 × Ξ𝐻 (𝑡, 𝑡0).

Here the propagators Ξ𝐻 (𝑡, 𝑡0) still obey Eqn. (2.11), with Ξ𝐻 (𝑡0, 𝑡0) = 1.
From (3.1) we obtain:

(Ξ𝐻 × 𝒖) (𝑡, 𝑡0) =
(
𝒖 − 𝑖𝐽 𝜕

𝜕𝒖

)
Ξ𝐻 (𝑡, 𝑡0)

=

(
Σ−1(𝑡, 𝑡0)𝒖 + 𝑖Σ−1(𝑡, 𝑡0)𝐽

𝜕

𝜕𝒖
− Σ−1(𝑡, 𝑡0)𝒂(𝑡, 𝑡0)

)
Ξ𝐻 (𝑡, 𝑡0), (3.4)

where 𝜕/𝜕𝒖 denotes the gradient with respect to 𝒖.
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Formula (3.4) can be written as

(Σ−1 + 1)𝐽 𝜕Ξ𝐻
𝜕𝒖

= −𝑖
[
(1 − Σ−1)𝒖 + Σ−1𝒂

]
Ξ𝐻 .

If we multiply by Σ, this yields

(1 + Σ)𝐽 𝜕Ξ𝐻
𝜕𝒖

= −𝑖
[
(Σ − 1)𝒖 + 𝒂

]
Ξ𝐻 .

Now, assuming that (Σ + 1) is nonsingular (non-exceptional case), we have

𝜕Ξ𝐻

𝜕𝒖
= 𝑖[𝐽 (Σ + 1)−1(Σ − 1)𝒖 + 𝐽 (Σ + 1)−1𝒂]Ξ𝐻 .

This is a system of partial differential equations having the solution

Ξ𝐻 = 𝐹 (𝑡, 𝑡0) exp
[
𝑖
2 (𝒖

t𝐺𝒖 + 𝒖t𝒌)
]

(3.5)

with

𝐺 = 𝐽 (Σ + 1)−1(Σ − 1) = 𝐽 − 2𝐽 (Σ + 1)−1, (3.6a)
𝒌 = 2𝐽 (Σ + 1)−1𝒂 = (𝐽 − 𝐺)𝒂. (3.6b)

The matrix 𝐺 is symmetric. To prove it, we introduce Σ♯ := (Σ − 1) (Σ + 1)−1 which is the
“Cayley transform” of Σ and note that 𝐺 = 𝐽Σ♯. Then:

𝐺 t = −(Σ♯)t𝐽 = (1 + Σt)−1(1 − Σt)𝐽 = (1 + 𝐽Σ−1𝐽−1)−1(1 − 𝐽Σ−1𝐽−1)𝐽
= 𝐽 (1 + Σ−1)−1(1 − Σ−1) = 𝐽 (Σ + 1)−1(Σ − 1) = 𝐽Σ♯ = 𝐺.

In order to obtain 𝐹 (𝑡, 𝑡0) in (3.5), we need to use the Schrödinger equation (2.11). After some
calculation, one obtains

𝐹 (𝑡, 𝑡0) =
[
det

(
1 + Σ(𝑡, 𝑡0)

2

)]−1/2
𝑒𝑖𝛽(𝑡,𝑡0)/2 (3.7)

provided that the determinant does not vanish. The exponential term is given by

𝛽(𝑡, 𝑡0) =
∫ 𝑡

𝑡0

[ 1
2𝒄

t(𝜏)𝐽𝒌 (𝜏, 𝑡0) + 1
8 𝒌

t(𝜏, 𝑡0)𝐽𝐵(𝜏)𝐽𝒌 (𝜏, 𝑡0) − 𝑑 (𝜏)
]
𝑑𝜏. (3.8)

Note that 𝛽 vanishes when 𝐻 is homogeneous of degree 2. Formulas equivalent to (3.5)–(3.8)
appeared already in [14]. We have rederived them for the benefit of the reader.

From now on, we shall suppose that 𝐵, 𝒄 and 𝑑 do not depend on time, so as to obtain fully
explicit results. Under this assumption, equations (3.2) are easily solved, and their solutions are

Σ(𝑡) := Σ(𝑡, 0) = Σ(𝑡 + 𝑡0, 𝑡0) = 𝑒𝐽𝐵𝑡 , (3.9a)
𝒂(𝑡) := 𝒂(𝑡, 0) = 𝒂(𝑡 + 𝑡0, 𝑡0) = (𝐽𝐵)−1 [exp(𝐽𝐵𝑡) − 1]𝐽𝒄 = (Σ(𝑡) − 1)𝐵−1𝒄. (3.9b)
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Equation (3.9b) makes sense only if det 𝐵 ≠ 0. On the other hand, if det 𝐵 = 0, we have

𝒂(𝑡) =
[
𝑡 + 𝐽𝐵 𝑡

2

2
+ · · · + (𝐽𝐵)𝑛−1 𝑡

𝑛

𝑛!
+ · · ·

]
𝐽𝒄,

that we shall take as the meaning of (3.9b) by convention.

We next study the exceptional case. Let 𝑇 be the Jordan canonical form of 𝐽𝐵. Then, there
exists a nonsingular matrix 𝑆 such that 𝑇 = 𝑆−1𝐽𝐵𝑆. Hence

𝑒𝐽𝐵𝑡 + 1 = 𝑆𝑒𝑇𝑡𝑆−1 + 𝑆𝑆−1 = 𝑆(𝑒𝑇𝑡 + 1)𝑆−1.

Thus det(Σ + 1) = det(𝑒𝑇𝑡 + 1). Therefore, if 𝑇 has the eigenvalues 𝜆1, . . . , 𝜆2𝑛, then

det(Σ + 1) = (𝑒𝜆1𝑡 + 1) · · · (𝑒𝜆2𝑛𝑡 + 1). (3.10)

Thus, det(Σ + 1) = 0 if and only if some factor (𝑒𝜆𝑘 𝑡 + 1) vanishes. In that case, 𝜆𝑘 𝑡 = (2𝑛 + 1)𝜋𝑖 or

𝑡 =
(2𝑛 + 1)𝜋𝑖

𝜆𝑘
.

Since 𝑡 must be real, 𝜆𝑘 is thus purely imaginary. In such a case, the singularities of the Moyal
propagator will be equally spaced in time. This situation really occurs, as we shall see.

We present now a crucial result for the study of quadratic hamiltonians: covariance of the Moyal
propagators under linear canonical transformations.

Theorem 1. Let 𝐻 = 1
2𝒖

t𝐵𝒖 + 𝒖t𝒄 + 𝑑 be a time-independent quadratic hamiltonian and let 𝑆 be a
real 2𝑛 × 2𝑛 symplectic matrix. If we define a new Hamiltonian by 𝐻′ := 1

2𝒖
t𝐵′𝒖 + 𝒖t𝒄′ + 𝑑 with

𝐵′ := 𝑆t𝐵𝑆, 𝒄′ := 𝑆t𝒄, then
Ξ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝑆𝒖, 𝑡). (3.11)

Proof. According to (3.5) and (3.7),

Ξ𝐻′ (𝒖, 𝑡) =
[
det

(
1 + Σ′(𝑡)

2

)]−1/2
𝑒𝑖𝛽

′ (𝑡)/2 exp
[
𝑖
2 (𝒖

t𝐺′𝒖 + 𝒖t𝒌′)
]
, (3.12)

where
Σ′ = 𝑒𝐽𝐵

′𝑡 = 𝑒𝐽𝑆
t𝐵𝑆𝑡 = 𝑒𝑆

−1𝐽𝐵𝑡𝑆 = 𝑆−1𝑒𝐽𝐵𝑡𝑆 = 𝑆−1Σ𝑆. (3.13)

Therefore
det

(1 + Σ′

2

)
= det

[
𝑆−1

(1 + Σ

2

)
𝑆

]
= det

(1 + Σ

2

)
,

and

𝐺′ = 𝐽 (Σ′ + 1)−1(Σ′ − 1) = 𝐽 (𝑆−1Σ𝑆 + 1)−1(𝑆−1Σ𝑆 − 1)
= 𝐽𝑆−1(Σ + 1)−1(Σ − 1)𝑆 = 𝑆t𝐺𝑆.
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Thus

𝒖t𝐺′𝒖 = 𝒖t𝑆t𝐺𝑆𝒖 = (𝑆𝒖)t𝐺 (𝑆𝒖),
𝒌′ = (𝐽 − 𝐺′)𝒂′,
𝒂′ = (𝐽𝐵′)−1 [exp(𝐽𝐵′𝑡) − 1]𝒄′ = (𝐽𝑆t𝐵𝑆)−1 [𝑆−1Σ𝑆 − 1]𝐽𝑆t𝒄

= 𝑆−1(𝐽𝐵)−1(Σ − 1)𝐽𝒄 = 𝑆−1𝒂, (3.14)

and so
𝒌′ = (𝐽 − 𝑆t𝐺𝑆)𝑆−1𝒂 = (𝑆t𝐽𝑆 − 𝑆t𝐺𝑆)𝑆−1𝒂 = 𝑆t𝒌 .

Hence
𝒖t𝒌′ = 𝒖t𝑆t𝒌 = (𝑆𝒖)t𝒌 . (3.15)

To complete the proof, it remains to check that 𝛽′(𝑡) = 𝛽(𝑡). This follows from:

𝒄′t𝐽𝒌′ = 𝒄t𝑆𝐽𝑆t𝒌 = 𝒄t𝐽𝒌,

𝒌′t𝐽𝐵′𝐽𝒌′ = 𝒌 t𝑆𝐽𝑆t𝐵𝑆𝐽𝑆t𝒌 = 𝒌 t𝐽𝐵𝐽𝒌 .

Together with (3.13)–(3.15), this proves (3.11). □

Corollary. 𝐻 and 𝐻′ have the same spectrum.

Proof. Note that Eqn. (2.10) implies that

Γ𝐻′ (𝒖, 𝐸) = Γ𝐻 (𝑆𝒖, 𝐸),

and that the support on 𝐸 of this function represents the spectrum of the corresponding hamiltonian.
Note also that the transformation 𝐻 ↦→ 𝐻′ is equivalent to the coordinate change 𝒖′ = 𝑆𝒖. □

Theorem 2. Let 𝐻 = 1
2𝒖

t𝐵𝒖 + 𝒖t𝒄 + 𝑑 be a time-independent quadratic Hamiltonian and 𝒖0 =

(𝒒0, 𝒑0) a 2𝑛-vector. If we define a new Hamiltonian by 𝐻′ := 1
2𝒖

t𝐵𝒖 + 𝒖t𝒄′ + 𝑑′ with 𝒄′ = 𝐵𝒖0 + 𝒄

and 𝑑′ = 1
2𝒖

t
0𝐵𝒖0 + 𝒖t

0𝒄 + 𝑑, then

Ξ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝒖 + 𝒖0, 𝑡).

Proof. Ξ𝐻′ (𝒖, 𝑡) is again given by (3.12), but in the present case 𝐵′ = 𝐵, so Σ′ = Σ and hence
𝐺′ = 𝐽 (Σ′)♯ = 𝐽Σ♯ = 𝐺. Moreover, from (3.2b) and (3.6b) we get 𝒂′ = 𝒂 + (Σ − 1)𝒖0 and thus
𝒌′ = 𝒌 + 2𝐺𝒖0. A tedious calculation now gives

𝛽′(𝑡) =
∫ 𝑡

0

[ 1
2𝒄

′t(𝜏)𝐽𝒌′(𝜏) + 1
8 𝒌

′t(𝜏)𝐽𝐵(𝜏)𝐽𝒌′(𝜏) − 𝑑′
]
𝑑𝜏

= 𝛽(𝑡) +
∫ 𝑡

0

[
𝒖t

0
¤𝐺 (𝜏)𝒖0 + 𝒖t

0
¤𝒌 (𝜏)

]
𝑑𝜏 = 𝛽(𝑡) + 𝒖t

0𝐺 (𝑡)𝒖0 + 𝒖t
0𝒌 (𝑡).

From thisΞ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝒖+𝒖0, 𝑡) follows at once. As before, the spectra of𝐻 and𝐻′ coincide. □
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As an obvious corollary of Theorems 1 and 2, if 𝑆 is a real symplectic matrix and 𝒖0 a real
2𝑛-vector, we have

Ξ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝑆𝒖 + 𝒖0, 𝑡), (3.16)
where 𝐻′ is the quadratic Hamiltonian obtained by replacing 𝒖 in 𝐻 = 1

2𝒖
t𝐵𝒖 + 𝒖t𝒄 + 𝑑 by 𝑆𝒖 + 𝒖0.

Also, we have sp𝐻 = sp𝐻′. In other words, for quadratic Hamiltonians, the Moyal propagator is
covariant and the spectrum is invariant under the group ISp(2𝑛,ℝ) of inhomogeneous canonical
transformations.

Equation (3.16) gives us a method to obtain the Moyal propagators for all the time independent
quadratic Hamiltonians. We may group these Hamiltonians in equivalence classes. 𝐻 and 𝐻′

belong to the same class if and only if we can find an inhomogeneous symplectic transformation
connecting them. If we find the Moyal propagator for one representative of a class, we can find
the Moyal propagators of all Hamiltonians of the class from (3.16). Once we have found simple
representatives (called, in the homogeneous case, normal forms [15]) two main difficulties still
arise: one is to determine which class contains a given Hamiltonian; the other is to obtain the matrix
𝑆 relating this Hamiltonian with its corresponding normal form; however, we will not go into these
questions here. On the other hand, we reassert, the spectra of two Hamiltonians belonging to the
same class are identical.

A transformation from 𝐻 into 𝐻′ = 𝐻 + 𝑑, 𝑑 being a constant, shifts the spectrum sp𝐻 into
sp𝐻′ = sp𝐻 + 𝑑 = { 𝑥 ∈ ℝ : 𝑥 = 𝑦 + 𝑑, 𝑦 ∈ sp𝐻 }, as one can easily deduce from (3.8) and (2.10).
Here Ξ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝒖, 𝑡) 𝑒−𝑖𝑑𝑡/2.

At this point, we wish to remark that, given an homogeneous Hamiltonian 𝐻 = 1
2𝒖

t𝐵𝒖, there
exists a class of complex symplectic transformations 𝐵 ↦→ 𝐵′ = 𝑆t𝐵𝑆, where 𝐵′ is again a real
symmetric matrix, so that 𝐻′ = 1

2𝒖
t𝐵′𝒖 is also a Hamiltonian. Moreover, the conclusion (3.11) of

Theorem 1 holds under this more general class of transformations. [However, if we are looking for
the class of complex symplectic transformations for which 𝑆t𝐵𝑆 is real and symmetric for every
real symmetric 𝐵, we find that either 𝑆 is real or else 𝑆 = 𝑖𝑀 , where 𝑀 is real. Such an 𝑀 is not
symplectic, since 𝑀 t𝐽𝑀 = −𝐽; but if we write

𝑀 =

(
𝑀11 𝑀12
𝑀21 𝑀22

)
, 𝑀 =

(
−𝑀11 −𝑀12
𝑀21 𝑀22

)
,

where 𝑀𝑖 𝑗 ∈ ℝ𝑛×𝑛 for 𝑖, 𝑗 = 1, 2, then 𝑀 is symplectic.]

4 Classification of the Moyal propagators in the nonsingular case
In the present section, we consider those Hamiltonians 𝐻 for which det 𝐵 ≠ 0. In that case, we can
write:

𝐻 = 1
2 (𝒖 + 𝐵−1𝒄)t𝐵(𝒖 + 𝐵−1𝒄) + 𝑑′ with 𝑑′ = 𝑑 − 1

2𝒄
t𝐵−1𝒄,

so that 𝐻 is equivalent to 𝐻′ = 1
2𝒖

t𝐵𝒖 + 𝑑′, and therefore the study of the quadratic Hamiltonians
whose quadratic form 𝐵 is nonsingular can be reduced to the study of the nonsingular homogeneous
quadratic Hamiltonians.

Here, we intend to find the Moyal propagators of these Hamiltonians. After (3.11), we need
only obtain the Moyal propagators for the normal forms, which are simple representatives of the
equivalence by conjugacy classes. The normal forms have been classified and one can find an
extensive study of them in the literature. The classification begins with the following result.
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Proposition 1. (i) If 𝐵 is symmetric and 𝜆 is an eigenvalue of 𝐽𝐵, then so are −𝜆, 𝜆̄,−𝜆̄ and they
all have the same multiplicity. The eigenvalue 0 always appears with even multiplicity.

(ii) Let 𝜆𝑖, 1 ⩽ 𝑖 ⩽ 𝑘 , denote the eigenvalues of 𝐽𝐵 and let 𝑉𝑖 be the corresponding generalized
eigenspaces of 𝐽𝐵, i.e.,

(𝜆𝑖1 − 𝐽𝐵)𝑚𝑖𝒗 = 0 iff 𝒗 ∈ 𝑉𝑖 for 𝑚𝑖 integer ⩾ 1.

Then each 𝑉𝑖 is invariant under 𝐽𝐵, ℝ2𝑛 =
⊕𝑘

𝑖=1𝑉𝑖 and

det(𝜆1 − 𝐽𝐵) =
𝑘∏
𝑖=1

(𝜆 − 𝜆𝑖)𝑑𝑖 , with 𝑑𝑖 = dim𝑉𝑖 ⩾ 𝑚𝑖 .

(iii) The invariant subspaces 𝑉𝑖 are symplectically orthogonal:

𝒗t𝐽𝒗′ = 0 if 𝒗 ∈ 𝑉𝑖, 𝒗′ ∈ 𝑉 𝑗 ; 𝜆𝑖 ≠ ±𝜆 𝑗 , ±𝜆̄ 𝑗 .

Proof. Straightforward linear algebra. For instance, (i) follows from observing that the characteristic
polynomial of 𝐽𝐵 is even. □

According to items (ii) and (iii) of the Proposition, 𝐽𝐵 and therefore 1
2𝐽𝐵𝑡 can be reduced

by blocks. This decomposition carries over to the quantum context: the propagator associated
to a decomposable matrix 𝐽𝐵 is given by the ordinary product of propagators corresponding to
each indecomposable block. The equality of ordinary and twisted products in this case follows
immediately from the definition of twisted product.

The classification theory of normal forms for linear canonical systems was initiated by William-
son [16] and developed by many others. Here we use the classification scheme due to Koçak [17].

The possibilities for the indecomposable blocks are:

(a) 𝐽𝐵 has two real eigenvalues 𝛼, −𝛼 (𝛼 > 0);

(b) 𝐽𝐵 has two purely imaginary eigenvalues 𝑖𝛽, −𝑖𝛽 (𝛽 > 0);

(c) 𝐽𝐵 has four distinct complex eigenvalues ±𝛼 ± 𝑖𝛽 (𝛼, 𝛽 > 0).

We here present a list of the indecomposable normal forms.

(a) The eigenvalues are 𝛼, −𝛼 (𝛼 > 0):

𝐽𝐵 =

(
𝑀 0
0 −𝑀 t

)
with 𝑀 =

©­­­­«
𝛼

1 𝛼
. . .

. . .

1 𝛼

ª®®®®¬
∈ ℝ𝑘×𝑘 . (4.1)

(b) The eigenvalues are 𝑖𝛽, −𝑖𝛽 (𝛽 > 0). There are four inequivalent types:

(i) 𝐽𝐵 =

(
𝑄 0
𝑅 −𝑄t

)
, with 𝑄 =

©­­­­«
𝐴

1 𝐴
. . .

. . .

1 𝐴

ª®®®®¬
, 𝑅 =

©­­­­«
0

. . .

0
𝜀12

ª®®®®¬
(4.2)
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where 𝑄, 𝑅 ∈ ℝ𝑘×𝑘 with 𝑘 even, 12 =

(
1 0
0 1

)
, 𝐴 =

(
0 −𝛽
𝛽 0

)
, and 𝜀 = ±1.

(i) 𝐽𝐵 =

(
𝑈 𝑉

−𝑉 −𝑈t

)
; 𝑈 =

©­­­­«
0
1 0

. . .
. . .

1 0

ª®®®®¬
, 𝑉 =

©­­­­«
−𝜀𝛽

. .
.

𝜀𝛽

−𝜀𝛽

ª®®®®¬
(4.3)

where𝑈,𝑉 ∈ ℝ𝑘×𝑘 with 𝑘 odd, 𝜀 = ±1.

(c) The eigenvalues are ±𝛼 ± 𝑖𝛽 (𝛼, 𝛽 > 0):

𝐽𝐵 =

(
𝐾 0
0 −𝐾 t

)
, with 𝐾 =

©­­­­«
𝐶

12 𝐶
. . .

. . .

12 𝐶

ª®®®®¬
∈ ℝ2𝑘×2𝑘 where 𝐶 =

(
𝛼 −𝛽
𝛽 𝛼

)
. (4.4)

A decomposable form is constructed simply as a direct sum of indecomposable forms, here
called “canonical blocks”. For instance, if 𝑌 and 𝑍 are two normal forms of dimensions 2𝑚 and 2𝑛
respectively, their composition could be

𝑋 =

(
𝑌 0
0 𝑍

)
. (4.5)

However, if we construct the Hamiltonian as 𝐻 = −1
2𝒖

t𝐽𝑋𝒖, the coordinates are ordered as
𝒖t = (𝑞1, . . . , 𝑞𝑚, 𝑝1, . . . , 𝑝𝑚, 𝑞𝑚+1, . . . , 𝑞𝑚+𝑛, 𝑝𝑚+1, . . . , 𝑝𝑚+𝑛).

We shall maintain the convention that 𝒖t = (𝑞1, . . . , 𝑞𝑚+𝑛, 𝑝1, . . . , 𝑝𝑚+𝑛), so that the direct
sum (4.5) must be rewritten as

𝑋 =

©­­­«
𝑌1 0 𝑌2 0
0 𝑍1 0 𝑍2
𝑌3 0 𝑌4 0
0 𝑍3 0 𝑍4

ª®®®¬ ,
where 𝑌 𝑗 ∈ ℝ𝑚×𝑚, 𝑍 𝑗 ∈ ℝ𝑛×𝑛 ( 𝑗 = 1, 2, 3, 4).

In general, if we call 𝑋 the composition of 𝑠 canonical blocks of the form 𝑌𝑘 =

(
𝑌𝑘1 𝑌𝑘2
𝑌𝑘3 𝑌𝑘4

)
,

𝑘 = 1, . . . , 𝑠, then 𝑋 =

(
𝑋1 𝑋2
𝑋3 𝑋4

)
, where each 𝑋 𝑗 is a block diagonal direct sum of the 𝑌𝑘 𝑗 . Note,

in particular, that this convention preserves the form of 𝐽 =
(

0 1𝑛
−1𝑛 0

)
under direct sums.

Now we proceed to the effective calculation of the Moyal propagators. Since the Hamiltoni-
ans considered in this Section are homogeneous, we have to obtain 𝐺 and det((Σ + 1)/2) only.
Formula (3.6a) yields

𝐺 = 𝐽
Σ − 1
Σ + 1

= 𝐽
𝑒𝐽𝐵𝑡 − 1
𝑒𝐽𝐵𝑡 + 1

= 𝐽
𝑒𝐽𝐵𝑡/2 − 𝑒−𝐽𝐵𝑡/2

𝑒𝐽𝐵𝑡/2 + 𝑒−𝐽𝐵𝑡/2 = 𝐽 tanh
𝐽𝐵𝑡

2
.
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If 𝐽𝐵 is a canonical form, we can write 𝐽𝐵 = 𝐿 + 𝑁 where 𝑁 is nilpotent and 𝐿 can be one of
the following forms:

(i) diagonal as in (4.1);

(ii) block diagonal as in (4.2) and (4.4); here the blocks are equal to 𝐴 and 𝐶 respectively;

(iii) antidiagonal as in (4.3).

The function tanh 𝑧 is analytic except when Im 𝑧 = (2𝑛 + 1) 𝜋2 . Because 𝑁 𝑘 = 0, we have the
matrix-valued series expansion:

tanh
𝐽𝐵𝑡

2
= tanh

𝐿𝑡

2
+
𝑘−1∑︁
𝑛=1

1
𝑛!

(𝑁𝑡
2

)𝑛 𝑑𝑛
𝑑𝑧𝑛

����
𝑧=𝐿𝑡/2

(tanh 𝑧). (4.6)

To elucidate the right hand side of (4.6), we examine the following three possibilities.

Case 1 𝐿 is diagonal as in (4.1). Then,

tanh
𝐿𝑡

2
= 𝐿

(
1
𝛼

tanh
𝛼𝑡

2

)
. (4.7)

Note that [(1/𝛼) 𝐿]2 = 1. The 𝑛-th derivative equals

𝑑𝑛

𝑑𝑧𝑛

����
𝑧=𝐿𝑡/2

(tanh 𝑧) =


1
𝛼
𝐿 𝑑𝑛

𝑑𝑧𝑛

���
𝑧=𝛼𝑡/2

(tanh 𝑧) if 𝑛 is even,

1 𝑑𝑛

𝑑𝑧𝑛

���
𝑧=𝛼𝑡/2

(tanh 𝑧) if 𝑛 is odd.

If we define 𝑔𝐻 (𝒖, 𝑡) as

𝑔𝐻 (𝒖, 𝑡) := −𝒖t𝐺𝒖 = −𝒖t𝐽
(
tanh

𝐿 + 𝑁
2

)
𝒖,

then

𝑔𝐻 (𝒖, 𝑡) =
2
𝛼
𝐻1 tanh

𝛼𝑡

2
+ 𝐻2 𝑡 sech2 𝛼𝑡

2
+ · · · + 𝐻𝑘 𝑡

𝑘−1

2𝑘−2(𝑘 − 1)!
𝑑𝑘−1

𝑑𝑧𝑘−1

����
𝑧=𝛼𝑡/2

(tanh 𝑧).

Here

𝐻1 := −1
2𝒖

t𝐽𝐿𝒖; 𝐻2 := −1
2𝒖

t𝐽𝑁𝒖; and if 𝑛 = 2, . . . , 𝑘 − 1,

𝐻𝑛+1 := −1
2𝒖

t𝐽𝑁𝑛𝑃𝑛+1𝒖 where 𝑃𝑛 =

{
1
𝛼
𝐿 if 𝑛 is odd,

1 if 𝑛 is even.
(4.8)

Obviously, 𝐻 = 𝐻1 + 𝐻2.
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Case 2 𝐿 is block diagonal as in (4.2) and (4.4). If 𝐽𝐵 is given by (4.2), then

tanh
𝐽𝐵𝑡

2
= 𝐿

1
𝛽

tan( 1
2 𝛽𝑡) +

𝑘−1∑︁
𝑛=1

1
𝑛!

( 𝑡
2

)𝑛
𝑁𝑛𝑃𝑛+1 𝑑

𝑛

𝑑𝑧𝑛

����
𝑧=𝛽𝑡/2

(tan 𝑧) (4.9)

where 𝑃𝑛 = (−1) (𝑛−1)/2(1/𝛽)𝐿 if 𝑛 is odd, and 𝑃𝑛 = (−1) (𝑛+2)/2 1 if 𝑛 is even.

To derive this formula, we recall that 𝐴 =

(
0 −𝛽
𝛽 0

)
and note that

tanh
(

0 −1
2 𝛽𝑡

1
2 𝛽𝑡 0

)
=

1
2

(
−1 −𝑖
𝑖 1

)
tanh

(
𝑖
2 𝛽𝑡 0
0 − 𝑖

2 𝛽𝑡

) (
−1 −𝑖
𝑖 1

)
= 𝐴

1
𝛽

tan( 1
2 𝛽𝑡),

and so
tanh

𝐿𝑡

2
= 𝐿

1
𝛽

tan( 1
2 𝛽𝑡). (4.10)

If, for simplicity, we write 𝑇 = (1/𝛽)𝐿, we easily obtain that 𝑇2 = −1; 𝑇3 = −𝑇 ; 𝑇4 = 1. It is
also clear that (4.10) can be written as

tanh( 1
2 𝛽𝑡𝑇) = 𝑇 tan( 1

2 𝛽𝑡), (4.11)
and (4.11) implies that

𝑑𝑛

𝑑𝑧𝑛

����
𝑧=(𝛽𝑡/2)𝑇

(tanh 𝑧) = 𝑇−𝑛+1 𝑑𝑛

𝑑𝑧𝑛

����
𝑧=𝛽𝑡/2

(tan 𝑧). (4.12)

Hence (4.9) follows. Also

𝑔𝐻 (𝒖, 𝑡) =
2
𝛽
𝐻1 tan

𝛽𝑡

2
+
𝑘−1∑︁
𝑛=1

1
𝑛!

𝑡𝑛

2𝑛−1 𝐻𝑛+1
𝑑𝑛

𝑑𝑧𝑛

����
𝑧=𝛽𝑡/2

(tan 𝑧) (4.13)

where 𝐻1, . . . , 𝐻𝑘 are defined here as in (4.8). Note that 𝐻 = 𝐻1 + 𝐻2 again.
If 𝐽𝐵 is given by (4.4), then

𝐿 = 𝛼

(
1 0
0 −1

)
+ 𝛽

(
𝑇 0
0 𝑇

)
,

where 𝑇 is a direct sum of 2𝑘 blocks of the form
(
0 −1
1 0

)
. After some calculation, we obtain that

𝑑𝑛

𝑑𝑧𝑛

����
𝑧=𝐿𝑡/2

(tanh 𝑧) =
(
𝑓1,𝑛1 + 𝑔1,𝑛𝑇 0

0 𝑓2,𝑛1 + 𝑔2,𝑛𝑇

)
,

where

𝑓1,𝑛 =
𝜕𝑛

𝜕𝑦𝜕𝑛−1𝑥

( sin 2𝑦
cosh 2𝑥 + cos 2𝑦

)����
𝑥=𝛼𝑡/2, 𝑦=𝛽𝑡/2

𝑔1,𝑛 =
𝜕𝑛

𝜕𝑥𝑛

( sin 2𝑦
cosh 2𝑥 + cos 2𝑦

)����
𝑥=𝛼𝑡/2, 𝑦=𝛽𝑡/2

𝑓2,𝑛 =
𝜕𝑛

𝜕𝑦𝜕𝑛−1𝑥

( sin 2𝑦
cosh 2𝑥 + cos 2𝑦

)����
𝑥=−𝛼𝑡/2, 𝑦=𝛽𝑡/2

𝑔2,𝑛 =
𝜕𝑛

𝜕𝑥𝑛

( sin 2𝑦
cosh 2𝑥 + cos 2𝑦

)����
𝑥=−𝛼𝑡/2, 𝑦=𝛽𝑡/2

.
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If𝑊 now denotes

𝑊 =

©­­­­«
0
12 0

. . .
. . .

12 0

ª®®®®¬
where 12 =

(
1 0
0 1

)
,

then

tanh
𝐽𝐵𝑡

2
=

𝑘−1∑︁
𝑛=0

1
𝑛!

( 𝑡
2

)𝑛 ( 𝑓1,𝑛𝑊𝑛 + 𝑔1,𝑛𝑊
𝑛𝑇 0

0 (−1)𝑛 𝑓2,𝑛 (𝑊𝑛)t + (−1)𝑛𝑔2,𝑛 (𝑊𝑛)t𝑇

)
. (4.14)

From this, 𝑔𝐻 (𝒖, 𝑡) may be computed explicitly, but we shall omit the (rather complicated) general
formula. The lower-multiplicity cases are exhibited in Table 1.

Case 3 𝐿 is of antidiagonal form as in (4.3).
In this case, formulas (4.9) and (4.13) are reproduced. The proof goes as follows: tanh 𝑧 is an

odd function and consequently only the odd powers of 𝑧 will appear in its Taylor expansion on a
neighbourhood of 0. If we define 𝐾 as (1/𝜀𝛽)𝐿, then

𝐾 =

©­­­­«
0 · · · 0 𝐽

0 · · · 𝐽 0
...

. . .
...

...

𝐽 · · · 0 0

ª®®®®¬
, with 𝐽 =

(
0 −1
1 0

)
,

and thus 𝐾2 = −1, 𝐾3 = −𝐾 , 𝐾4 = 1; and

tanh
𝐿𝑡

2
= tanh

𝜀𝛽𝑡

2
𝐾 = 𝜀𝐾 tan

𝛽𝑡

2
=
𝐿

𝛽
tan

𝛽𝑡

2
. (4.15)

From (4.15) a straightforward calculation gives (4.12), with 𝑇 replaced by 𝐾 , and hence we have
proved the validity of (4.9) and (4.13) in the present case.

From the preceding formulas, one can now write down the desired Moyal propagators.
Expression (4.13) becomes singular at 𝑡 = (2𝑚 + 1)𝜋/𝛽, 𝑚 an integer, as expected. However,

Ξ𝐻 (𝒖, (2𝑚 + 1)𝜋/𝛽) is a well-defined distribution, a multiple of Dirac’s 𝛿 in fact, and the map
𝑡 ↦→ Ξ𝐻 (𝒖, 𝑡) is everywhere continuous in the appropriate topologies (see Appendix A).

For the decomposable Hamiltonians, the matrix tanh(𝐽𝐵𝑡/2) is obtained as a direct sum of the
expressions for the corresponding indecomposable summands of 𝐽𝐵. To obtain det((Σ + 1)/2), we
have to find the eigenvalues of 𝐽𝐵 and then apply (3.10). The set of eigenvalues of 𝐽𝐵 is the union
of all the eigenvalues of each canonical block 𝑌𝑘 , since 𝐽𝐵 may be written as a direct sum of these
blocks by permuting the 𝑞 and 𝑝 coordinates. The details are straightforward.

As remarked before, if 𝐻 can be written as a sum of Hamiltonians 𝐻 = 𝐻1(𝒖1) + · · · + 𝐻𝑠 (𝒖𝑠),
where 𝒖 = (𝒖1, . . . , 𝒖𝑠) and the several 𝒖𝑖 lie in symplectically orthogonal subspaces, then

Ξ𝐻 (𝒖, 𝑡) =
∏

1⩽𝑖⩽𝑠
Ξ𝐻𝑖

(𝒖𝑖, 𝑡) =
×∏

1⩽𝑖⩽𝑠
Ξ𝐻𝑖

(𝒖𝑖, 𝑡). (4.16)

This circumstance extends to the singular case (det 𝐵 = 0).
We end this section with a pair of useful results.
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Lemma 1. Let 𝐻1 = 1
2𝒖

t𝐴𝒖 and 𝐻2 = 1
2𝒖

t𝐵𝒖 be two homogeneous quadratic Hamiltonians
of dimension 2𝑛, where 𝐴 and 𝐵 are symmetric matrices. Then 𝐽𝐵 ↦→ 𝐻𝐵 is a Lie algebra
isomorphism. In particular, the classical Poisson bracket {𝐻𝐴, 𝐻𝐵}𝑃 is identically zero if and only
if the commutator [𝐽𝐴, 𝐽𝐵] vanishes.

Proof. We may write:

{𝐻𝐴, 𝐻𝐵}𝑃 =

𝑛∑︁
𝑖=1

(
𝜕𝐻𝐴

𝜕𝑢𝑖

𝜕𝐻𝐵

𝜕𝑢𝑖+𝑛
− 𝜕𝐻𝐴

𝜕𝑢𝑖+𝑛

𝜕𝐻𝐵

𝜕𝑢𝑖

)
=

(𝜕𝐻𝐴

𝜕𝒖

) t
𝐽

(𝜕𝐻𝐵
𝜕𝒖

)
,

where 𝜕/𝜕𝒖 denotes the gradient, as before. Since 𝜕𝐻𝐴/𝜕𝒖 = 𝐴𝒖 and 𝜕𝐻𝐵/𝜕𝒖 = 𝐵𝒖, we obtain

{𝐻𝐴, 𝐻𝐵}𝑃 = 𝒖t𝐴𝐽𝐵𝒖 = −𝒖t𝐵𝐽𝐴𝒖 = 1
2𝒖

t(𝐴𝐽𝐵 − 𝐵𝐽𝐴)𝒖.

Assume now that the Poisson bracket is identically zero. We get equivalently 𝐽𝐴𝐽𝐵−𝐽𝐵𝐽𝐴 = 0. □

Theorem 3. Let 𝐻 = 1
2𝒖

t𝐵𝒖 be any homogeneous time-independent quadratic Hamiltonian. Then
the classical Poisson brackets {𝐻, 𝑔𝐻 (𝒖, 𝑡)}𝑃 and {𝐻,Ξ𝐻 (𝒖, 𝑡)}𝑃 are always zero.

Proof. In the expansion (4.6), all the terms commute since [𝐿, 𝑁] = 0. It follows that {𝐻𝑚, 𝐻𝑛}𝑃 = 0
in all cases, and hence {𝐻, 𝑔𝐻 (𝒖, 𝑡)}𝑃 = 0. (We leave the details to the reader.) □

We remark that Theorem 3 is formally a corollary of the result [18]: {𝐻, 𝐻×𝑛}𝑃 = 0.
We summarize the results up to now in Table 1, which includes all nonsingular homogeneous

indecomposable types up to dimension 𝑛 = 5. In Table 1, 𝛼 > 0, 𝛽 > 0 and 𝜀 = ±1.

5 Classification of the Moyal propagators in the singular case
We study the homogeneous Hamiltonians first. In the homogeneous case, there are two indecom-
posable normal forms:

(a) 𝐽𝐵 =

(
𝑈 0
𝑅 −𝑈t

)
: 𝑈 =

©­­­­«
0
1 0

. . .
. . .

1 0

ª®®®®¬
, 𝑅 =

©­­­­«
0

. . .

0
±1

ª®®®®¬
;

(b) 𝐽𝐵 =

(
𝑈 0
0 −𝑈t

)
.

In case (a), 𝑈 and 𝑅 have 1
2 (𝑘 + 1) rows, where 𝑘 is odd; in case (b), 𝑈 has 𝑘 + 1 rows, where 𝑘

is even.
In both cases 𝐽𝐵 is nilpotent: (𝐽𝐵)𝑘 ≠ 0, (𝐽𝐵)𝑘+1 = 0. The Taylor expansion of tanh 𝑧 at 𝑧 = 0

is

tanh 𝑧 =
∞∑︁
𝑚=1

22𝑚 (22𝑚 − 1)
(2𝑚)! 𝐵2𝑚 𝑧

2𝑚−1,

where 𝐵2𝑚 are the Bernoulli numbers. Therefore

tanh
𝐽𝐵𝑡

2
=

⌊(𝑘+1)/2⌋∑︁
𝑚=1

22𝑚 (22𝑚 − 1)
(2𝑚)! 𝐵2𝑚

( 𝐽𝐵𝑡
2

)2𝑚−1
,
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Table 1: Nonsingular homogeneous Hamiltonians
Indecomposable Hamiltonians with det 𝐵 ≠ 0:

𝑛 = 1 (case a): 𝐻 = 𝛼𝑞𝑝; Ξ𝐻 (𝒖, 𝑡) = sech
𝛼𝑡

2
exp

(
− 𝑖
𝛼
𝐻 tanh

𝛼𝑡

2

)
.

𝑛 = 1 (case b): 𝐻 = 1
2𝜀𝛽(𝑞

2 + 𝑝2); Ξ𝐻 (𝒖, 𝑡) = sec
𝛽𝑡

2
exp

(
− 𝑖
𝛽
𝐻 tan

𝛽𝑡

2

)
.

𝑛 = 2 (case a): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2), 𝐻2 = 𝑞1𝑝2;

Ξ𝐻 (𝒖, 𝑡) = sech2 𝛼𝑡

2
exp

(
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 sech2 𝛼𝑡

2

)
.

𝑛 = 2 (case b): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛽(𝑞1𝑝2 − 𝑞2𝑝1), 𝐻2 = 1
2𝜀(𝑞

2
1 + 𝑞

2
2);

Ξ𝐻 (𝒖, 𝑡) = sec2 𝛽𝑡

2
exp

(
− 𝑖
𝛽
𝐻1 tan

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 sec2 𝛽𝑡

2

)
.

𝑛 = 2 (case c): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2), 𝐻2 = 𝛽(𝑞1𝑝2 − 𝑞2𝑝1);

Ξ𝐻 (𝒖, 𝑡) = 2
cosh𝛼𝑡 + cos 𝛽𝑡

exp
(
− 𝑖
𝛼
𝐻1

sinh𝛼𝑡
cosh𝛼𝑡 + cos 𝛽𝑡

− 𝑖

𝛽
𝐻2

sin 𝛽𝑡
cosh𝛼𝑡 + cos 𝛽𝑡

)
.

𝑛 = 3 (case a): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3), 𝐻2 = 𝑞1𝑝2 + 𝑞2𝑝3; 𝐻3 = 𝑞1𝑝3;

Ξ𝐻 (𝒖, 𝑡) = sech3 𝛼𝑡

2
exp

(
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 sech2 𝛼𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tanh

𝛼𝑡

2
sech2 𝛼𝑡

2

)
.

𝑛 = 3 (case b): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝜀𝛽( 1
2𝑞

2
2 − 𝑞1𝑞3 + 1

2 𝑝
2
2 − 𝑝1𝑝3), 𝐻2 = 𝑞1𝑝2 + 𝑞2𝑝3; 𝐻3 = − 1

2𝜀(𝑞
2
1 + 𝑝

2
3);

Ξ𝐻 (𝒖, 𝑡) = sec3 𝛽𝑡

2
exp

(
− 𝑖
𝛽
𝐻1 tan

𝛽𝑡

2
− 𝑖𝑡

2
𝐻2 sec2 𝛽𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tan

𝛽𝑡

2
sec2 𝛽𝑡

2

)
.

𝑛 = 4 (case a): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3 + 𝑞4𝑝4),
𝐻2 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4; 𝐻3 = 𝑞1𝑝3 + 𝑞2𝑝4, 𝐻4 = 𝑞1𝑝4;

Ξ𝐻 (𝒖, 𝑡) = sech4 𝛼𝑡

2
exp

[
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 sech2 𝛼𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tanh

𝛼𝑡

2
sech2 𝛼𝑡

2
+ 𝑖𝑡

3

24
𝐻4

(
1 − 4 tanh2 𝛼𝑡

2
+ 3 tanh4 𝛼𝑡

2

)]
.

𝑛 = 4 (case b): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛽(𝑞1𝑝2 − 𝑞2𝑝1 + 𝑞3𝑝4 − 𝑞4𝑝3),
𝐻2 = 𝑞1𝑝3 + 𝑞2𝑝4 − 1

2𝜀(𝑞
2
3 + 𝑞

2
4); 𝐻3 = −𝜀(𝑞1𝑞4 − 𝑞2𝑞3), 𝐻4 = 1

2𝜀(𝑞
2
1 + 𝑞

2
2);

Ξ𝐻 (𝒖, 𝑡) = sec4 𝛽𝑡

2
exp

[
− 𝑖
𝛽
𝐻1 tan

𝛽𝑡

2
− 𝑖𝑡

2
𝐻2 sec2 𝛽𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tan

𝛽𝑡

2
sec2 𝛽𝑡

2

+ 𝑖𝑡
3

24
𝐻4

(
1 + 4 tan2 𝛽𝑡

2
+ 3 tan4 𝛽𝑡

2

)]
.

𝑛 = 4 (case c): 𝐻 = 𝐻1 + 𝐻2 + 𝐻3; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3 + 𝑞4𝑝4),
𝐻2 = 𝛽(𝑞1𝑝2 − 𝑞2𝑝1 + 𝑞3𝑝4 − 𝑞4𝑝3), 𝐻3 = 𝑞1𝑝3 + 𝑞2𝑝4, 𝐻4 = 𝑞2𝑝3 − 𝑞1𝑝4;

Ξ𝐻 (𝒖, 𝑡) = 4
(cosh𝛼𝑡 + cos 𝛽𝑡)2 exp

[
− 𝑖
𝛼
𝐻1

sinh𝛼𝑡
cosh𝛼𝑡 + cos 𝛽𝑡

− 𝑖

𝛽
𝐻2

sin 𝛽𝑡
cosh𝛼𝑡 + cos 𝛽𝑡

−𝑖𝑡𝐻3
1 + cosh𝛼𝑡 cos 𝛽𝑡
(cosh𝛼𝑡 + cos 𝛽𝑡)2 − 𝑖𝑡𝐻4

sinh𝛼𝑡 sin 𝛽𝑡
(cosh𝛼𝑡 + cos 𝛽𝑡)2

]
.

𝑛 = 5 (case a): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼(𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3 + 𝑞4𝑝4 + 𝑞5𝑝5),
𝐻2 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4 + 𝑞4𝑝5; 𝐻3 = 𝑞1𝑝3 + 𝑞2𝑝4 + 𝑞3𝑝5, 𝐻4 = 𝑞1𝑝4 + 𝑞2𝑝5, 𝐻5 = 𝑞1𝑝5;

Ξ𝐻 (𝒖, 𝑡) = sech5 𝛼𝑡

2
exp

[
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 sech2 𝛼𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tanh

𝛼𝑡

2
sech2 𝛼𝑡

2
+ 𝑖𝑡

3

24
𝐻4

(
1 − 4 tanh2 𝛼𝑡

2
+ 3 tanh4 𝛼𝑡

2

)
− 𝑖𝑡

4

48
𝐻5

(
2 tanh

𝛼𝑡

2
− 5 tanh3 𝛼𝑡

2
+ 3 tanh5 𝛼𝑡

2

)]
.

𝑛 = 5 (case b): 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = −𝜀𝛽(𝑞1𝑞5 − 𝑞2𝑞4 + 1
2𝑞

2
3 + 𝑝1𝑝5 − 𝑝2𝑝4 + 1

2 𝑝
2
3),

𝐻2 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4 + 𝑞4𝑝5; 𝐻3 = −𝜀(𝑞1𝑞3 − 1
2𝑞

2
2 + 𝑝3𝑝5 − 1

2 𝑝
2
4),

𝐻4 = 𝑞1𝑝4 + 𝑞2𝑝5, 𝐻5 = − 1
2𝜀(𝑞

2
1 + 𝑝

2
5);

Ξ𝐻 (𝒖, 𝑡) = sec5 𝛽𝑡

2
exp

[
− 𝑖
𝛽
𝐻1 tan

𝛽𝑡

2
− 𝑖𝑡

2
𝐻2 sec2 𝛽𝑡

2
+ 𝑖𝑡

2

4
𝐻3 tan

𝛽𝑡

2
sec2 𝛽𝑡

2

+ 𝑖𝑡
3

24
𝐻4

(
1 + 4 tan2 𝛽𝑡

2
+ 3 tan4 𝛽𝑡

2

)
− 𝑖𝑡

4

48
𝐻5

(
2 tan

𝛽𝑡

2
+ 5 tan3 𝛽𝑡

2
+ 3 tan5 𝛽𝑡

2

)]
.
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Table 2: Singular homogeneous Hamiltonians
Indecomposable Hamiltonians with det 𝐵 = 0:

𝑛 = 1: 𝐻 = − 1
2𝜀𝑞

2; Ξ𝐻 (𝒖, 𝑡) = exp(− 𝑖
2𝐻𝑡).

𝑛 = 2: 𝐻 = 𝑞1𝑝2 − 1
2𝜀𝑞

2
2; Ξ𝐻 (𝒖, 𝑡) = exp

[
− 𝑖

2

(
𝐻𝑡 − 𝜀

3

( 𝑡
2

)3
𝑞2

1

)]
.

𝑛 = 3: 𝐻 = 𝑞1𝑝2 + 𝑞2𝑝3 − 1
2𝜀𝑞

2
3; Ξ𝐻 (𝒖, 𝑡) = exp

[
− 𝑖

2

(
𝐻𝑡 + 𝜀

3

( 𝑡
2

)3
(2𝑞3𝑞1 − 𝑞2

2) −
2𝜀
15

( 𝑡
2

)5
𝑞2

1

)]
.

𝑛 = 3: 𝐻 = 𝑞1𝑝2 + 𝑞2𝑝3; Ξ𝐻 (𝒖, 𝑡) = exp(− 𝑖
2𝐻𝑡).

𝑛 = 4: 𝐻 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4 − 1
2𝜀𝑞

2
4;

Ξ𝐻 (𝒖, 𝑡) = exp
[
− 𝑖

2

(
𝐻𝑡 + 1

3

( 𝑡
2

)3
(−2𝑞1𝑝4 + 2𝜀𝑞4𝑝2 − 𝜀𝑞2

3) +
2𝜀
15

( 𝑡
2

)5
(2𝑞1𝑞3 − 𝑞2

2) −
17𝜀
315

( 𝑡
2

)7
𝑞2

1

)]
.

𝑛 = 5: 𝐻 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4 + 𝑞4𝑝5 − 1
2𝜀𝑞

2
5;

Ξ𝐻 (𝒖, 𝑡) = exp
[
− 𝑖

2

(
𝐻𝑡 − 1

3

( 𝑡
2

)3
(2𝑞1𝑝4 + 2𝑞2𝑝5 − 2𝜀𝑞3𝑞5 + 𝜀𝑞2

4)

+2𝜀
15

( 𝑡
2

)5
(2𝑞2𝑞4 − 2𝑞1𝑞5 − 𝑞2

3) +
17𝜀
315

( 𝑡
2

)7
(2𝑞1𝑞3 − 𝑞2

2) −
62𝜀
2835

( 𝑡
2

)9
𝑞2

1

)]
.

𝑛 = 5: 𝐻 = 𝑞1𝑝2 + 𝑞2𝑝3 + 𝑞3𝑝4 + 𝑞4𝑝5;

Ξ𝐻 (𝒖, 𝑡) = exp
[
− 𝑖

2

(
𝐻𝑡 − 1

3

( 𝑡
2

)3
(2𝑞1𝑝4 + 2𝑞2𝑝5)

)]
.

where ⌊ 𝑘 + 1
2

⌋
=

{
(𝑘 + 1)/2 if 𝑘 odd: case (a),
𝑘/2 if 𝑘 even: case (b).

Also,

𝑔𝐻 (𝒖; 𝑡) = 𝐻1𝑡 +
⌊(𝑘+1)/2⌋∑︁
𝑚=2

4(22𝑚 − 1)𝑡2𝑚−1

(2𝑚)! 𝐵2𝑚𝐻2𝑚−1

where
𝐻1 = 1

2𝒖
t𝐵𝒖; 𝐻2𝑚−1 = 1

2𝒖
t(𝐵𝐽𝐵𝐽 · · · 𝐽𝐵︸         ︷︷         ︸

4𝑚−3 factors

)𝒖.

By applying formula (3.10), we obtain det((Σ + 1)/2) = 1.
The analysis for the homogeneous decomposable case is exactly the same as when det 𝐵 ≠ 0; in

particular, (4.16) remains valid.
The study of the inhomogeneous singular Hamiltonians is more complicated. We cannot reduce

the study of the Moyal propagators to the homogeneous case. We know no general method to classify
these Hamiltonians into equivalence classes under coordinate changes of the type 𝒖′ = 𝑆𝒖 + 𝒖0, 𝑆
being a real symplectic matrix. Thus, we classify the Hamiltonians for each dimension and study
them case by case.

In Table 2, we list the singular homogeneous indecomposable types up to dimension 𝑛 = 5. In
Table 3, we list representatives of the inhomogeneous singular Hamiltonians for 𝑛 = 1 and 𝑛 = 2.
In all cases, 𝛼 > 0, 𝛽 > 0 and 𝜀 = ±1.

6 Spectral analysis
As we prove in Appendix A, the spectrum of a Hamiltonian 𝐻 can be identified with the support
on 𝐸 of the spectral projector Γ𝐻 (𝒖, 𝐸). A possible way to obtain properties of the spectra of
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Table 3: Singular inhomogeneous Hamiltonians
Inhomogeneous case: 𝐻 = 1

2𝒖
t𝐵𝒖 + 𝒄t𝒖; det 𝐵 = 0, 𝒄 ≠ 0:

𝑛 = 1: 𝐻 = 𝑎𝑞 + 𝑏𝑝; Ξ𝐻 (𝒖, 𝑡) = exp(− 𝑖
2𝐻𝑡).

𝑛 = 1: 𝐻 = − 1
2𝜀𝑞

2 + 𝑎𝑝; Ξ𝐻 (𝒖, 𝑡) = exp
[
− 𝑖

2

(
𝐻𝑡 − 𝜀𝑎2

24
𝑡3
)]

.
𝑛 = 2: 𝐻 = 𝑎𝑞1 + 𝑏𝑞2 + 𝑒𝑝1 + 𝑓 𝑝2; Ξ𝐻 (𝒖, 𝑡) = exp(− 𝑖

2𝐻𝑡).

𝑛 = 2: 𝐻 = 𝑞1𝑝2 − 1
2𝜀𝑞

2
2 + 𝑎𝑝1; Ξ𝐻 (𝒖, 𝑡) = exp

[
− 𝑖

2

(
𝐻𝑡 − 𝜀

24
(𝑞2

1 − 2𝑎𝑞2)𝑡3 −
𝜀𝑎2

240
𝑡5
)]

.

𝑛 = 2: 𝐻 = − 1
2𝜀𝑞

2
2 + 𝑎𝑞1 + 𝑏𝑝1 + 𝑒𝑝2; Ξ𝐻 (𝒖, 𝑡) = exp

[
− 𝑖

2

(
𝐻𝑡 − 𝜀𝑒2

24
𝑡3
)]

.

𝑛 = 2: 𝐻 = − 1
2𝜀𝑞

2
1 −

1
2𝜀

′𝑞2
2 + 𝑎𝑝1 + 𝑏𝑝2; Ξ𝐻 (𝒖, 𝑡) = exp

[
− 𝑖

2

(
𝐻𝑡 − 𝜀𝑎2 + 𝜀′𝑏2

24
𝑡3
)]

.
𝑛 = 2: 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼𝑞2𝑝2, 𝐻2 = 𝑎𝑞1 + 𝑏𝑝1;

Ξ𝐻 (𝒖, 𝑡) = sech
𝛼𝑡

2
exp

(
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2

)
.

𝑛 = 2: 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = − 1
2𝜀𝛽(𝑞

2
2 + 𝑝

2
2), 𝐻2 = 𝑎𝑞1 + 𝑏𝑝1;

Ξ𝐻 (𝒖, 𝑡) = sec
𝛽𝑡

2
exp

(
− 𝑖
𝛽
𝐻1 tan

𝛽𝑡

2
− 𝑖𝑡

2
𝐻2

)
.

𝑛 = 2: 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = 𝛼𝑞2𝑝2, 𝐻2 = − 1
2𝜀𝑞

2
1 + 𝑎𝑝1;

Ξ𝐻 (𝒖, 𝑡) = sech
𝛼𝑡

2
exp

(
− 𝑖
𝛼
𝐻1 tanh

𝛼𝑡

2
− 𝑖𝑡

2
𝐻2 +

𝑖𝜀𝑎2

48
𝑡3
)
.

𝑛 = 2: 𝐻 = 𝐻1 + 𝐻2; 𝐻1 = − 1
2𝜀𝛽(𝑞

2
2 + 𝑝

2
2), 𝐻2 = − 1

2𝜀
′𝑞2

1 + 𝑎𝑝1;

Ξ𝐻 (𝒖, 𝑡) = sec
𝛽𝑡

2
exp

(
− 𝑖
𝛽
𝐻1 tan

𝛽𝑡

2
− 𝑖𝑡

2
𝐻2 +

𝑖𝜀𝑎2

48
𝑡3
)
.

the quadratic Hamiltonians is then to do Fourier analysis on the Moyal propagators studied here.
We show how this comes about for 𝑛 = 1. From the previous tables we extract six representative
Hamiltonians, which cover all possible cases.

(i) Trivial:
𝐻 = 0, Ξ𝐻 (𝒖; 𝑡) ≡ 1.

Then Γ𝐻 (𝒖; 𝐸) = 𝛿(𝐸); sp𝐻 = {0}.

(ii) Free particle:
𝐻 = 1

2 𝑝
2; Ξ𝐻 (𝒖; 𝑡) = exp(− 𝑖

2 𝑝
2𝑡).

Then Γ𝐻 (𝒖; 𝐸) = 𝛿( 1
2 𝑝

2 − 𝐸); sp𝐻 = ℝ+.

(iii) Free-fall Hamiltonian:

𝐻 = 1
2 𝑝

2 + 𝑞; Ξ𝐻 (𝒖; 𝑡) = exp
[
− 𝑖

2 (𝐻𝑡 + 𝑡
3/24)

]
.

From
Ai(𝑥) = 1

2𝜋

∫
𝑅

exp(𝑖𝜈𝑥 + 𝑖
3𝜈

3) 𝑑𝜈,

we obtain
Γ𝐻 (𝒖; 𝐸) = 21/3 Ai

(
21/3(𝐻 − 𝐸)

)
; sp𝐻 = ℝ.
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(iv) Harmonic barrier:

𝐻 = 1
2 (𝑝

2 − 𝑞2); Ξ𝐻 (𝒖; 𝑡) = sech
𝑡

2
exp

[
−𝑖𝐻 tanh

𝑡

2

]
.

Using Kummer’s formula

1𝐹1(𝑎, 1, 𝑧) =
1

Γ(𝑎)Γ(1 − 𝑎)

∫ 1

0
𝑒𝑧𝑡𝑡𝑎−1(1 − 𝑡)−𝑎 𝑑𝑡,

one can show that

Γ𝐻 (𝒖; 𝐸) = 1
2

sech
𝜋𝐸

2
𝑒−𝑖𝐻1𝐹1( 1

2 (1 − 𝑖𝐸), 1, 2𝑖𝐻)

and consequently sp𝐻 = ℝ.

(v) Harmonic oscillator:

𝐻 = 1
2 (𝑝

2 + 𝑞2); Ξ𝐻 (𝒖; 𝑡) =
{

sec 𝑡
2 exp

(
−𝑖𝐻 tan 𝑡

2
)

if 𝑡 ≠ (2𝑘 + 1)𝜋, 𝑘 ∈ ℤ,

(−1)𝑘+12𝜋𝑖𝛿 if 𝑡 = (2𝑘 + 1)𝜋, 𝑘 ∈ ℤ.

Using the formula for the generating function of the Laguerre polynomials:
∞∑︁
𝑘=0

𝐿𝑘 (𝑥)𝑦𝑘 = (1 − 𝑦)−1𝑒𝑥𝑦/(𝑦−1) ,

one gets:

Γ𝐻 (𝒖; 𝐸) =
∞∑︁
𝑘=0

2𝛿(𝐸 − (2𝑘 + 1)) (−1)𝑘𝐿𝑘 (2𝐻) 𝑒−𝐻

and sp𝐻 = { 1, 3, 5, 7, . . . }, as expected (recall that ℏ = 2).

(vi) Harmonic “antioscillator”:

𝐻 = −1
2 (𝑝

2 + 𝑞2); Ξ𝐻 (𝒖; 𝑡) =
{

sec 𝑡
2 exp

(
−𝑖𝐻 tan 𝑡

2
)

if 𝑡 ≠ (2𝑘 + 1)𝜋, 𝑘 ∈ ℤ,

(−1)𝑘2𝜋𝑖𝛿 if 𝑡 = (2𝑘 + 1)𝜋, 𝑘 ∈ ℤ.

Although we have lumped together the two cases (v) and (vi) in Table 1, they must be carefully
distinguished now. We obtain the following proposition.

Proposition 2. Let 𝑆 be a complex symplectic 2𝑛 × 2𝑛 matrix such that 𝑆 = 𝑖𝑀 with 𝑀 real. Let
𝐻′ = 1

2𝒖
t𝐵′𝒖 and 𝐻 = 1

2𝒖
t𝐵𝒖 be two homogeneous Hamiltonians, subject to 𝐵′ = 𝑆t𝐵𝑆. Then

sp𝐻′ = − sp𝐻.

Proof. Since (3.11) remains valid for complex 𝑆, and according to (3.5) and (3.7),

Ξ𝐻′ (𝒖, 𝑡) = Ξ𝐻 (𝑆𝒖, 𝑡) =
[
det

(1 + Σ

2

)]−1/2
exp

[
𝑖
2 (𝑆𝒖)

t𝐺 (𝑆𝒖)
]

=

[
det

(1 + Σ

2

)]−1/2
exp

[
− 𝑖

2 (𝑀𝒖)t𝐺 (𝑀𝒖)
]
= Ξ𝐻 (𝑀𝒖, 𝑡),
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(where we have omitted the term with 𝛽(𝑡) which vanishes if the Hamiltonian is homogeneous).
Then,

Γ𝐻′ (𝒖, 𝐸) = 1
4𝜋

∫
Ξ𝐻′ (𝒖, 𝑡) 𝑒𝑖𝑡𝐸/2 𝑑𝑡 =

1
4𝜋

∫
Ξ𝐻 (𝑀𝒖, 𝑡) 𝑒𝑖𝑡𝐸/2 𝑑𝑡 = Γ𝐻 (𝑀𝒖,−𝐸).

If we denote the support on 𝐸 of Γ𝐻 (𝒖, 𝐸) by supp𝐸 Γ𝐻 (𝒖, 𝐸), we finally have:

sp𝐻′ = supp𝐸 Γ𝐻′ (𝒖, 𝐸) = supp𝐸 Γ𝐻 (𝑀𝒖,−𝐸) = − sp𝐻. □

For the harmonic “antioscillator”, we now obtain:

Γ𝐻 (𝒖; 𝐸) =
∞∑︁
𝑘=0

2𝛿(𝐸 + (2𝑘 + 1)) (−1)𝑘𝐿𝑘 (−2𝐻)𝑒𝐻

and sp𝐻 = { −1,−3,−5,−7, . . . }.
For 𝑛 > 1, the calculation of Fourier transforms in the indecomposable cases becomes com-

putationally very difficult. In principle, we could obtain the spectra in the decomposable cases by
convolution of the spectral projectors for the indecomposable Hamiltonians. A very simple case is
the isotropic harmonic oscillator in ℝ2𝑛, where we get:

Γ𝐻 (𝒖; 𝐸) = 2𝑛
∞∑︁
𝑘=0

(−1)𝑘
(
𝑛 + 𝑘 − 1

𝑘

)
𝑒−𝐻𝐿𝑛−1

𝑘 (2𝐻) 𝛿(𝐸 − (2𝑘 + 𝑛)).

Here 𝐿𝑛−1
𝑘

denotes the associated Laguerre polynomial of order 𝑛 − 1 and degree 𝑘 . Note that the
correct degeneration of levels is obtained.

7 Conclusion
The program set out by Moshinsky and Winternitz [2] may be implemented completely in the Moyal
formulation. This is better adapted to dealing with quadratic Hamiltonians because of its underlying
canonical symmetry. By use of formulas such as those developed in Section 2 and Appendix A,
all physical questions related to the corresponding dynamical problems can be treated directly from
our explicit formulas. If one is reluctant to abandon the conventional formalism, one can always
derive the Green functions from our Moyal propagators.
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A Quadratic Hamiltonians and the Moyal algebra
In this appendix, we examine the mathematical basis of the Moyal formalism more closely and estab-
lish the following results: the Moyal propagator for any nonsingular (time-independent) quadratic
Hamiltonian lies in the Moyal algebra of tempered distributions [4]; the operator corresponding to
such a Hamiltonian is self-adjoint, and its spectrum is given by the support (on 𝐸) of the Fourier
transform of the Moyal propagator.

The twisted product (2.4) of functions on ℝ2𝑛 can be extended in a natural manner to certain
class of distributions on ℝ2𝑛. Let S(ℝ2𝑛) denote the Schwartz space of smooth rapidly decreasing
functions on ℝ2𝑛 and let S′(ℝ2𝑛) be its dual space of tempered distributions. Then if 𝑓 , 𝑔 ∈ S(ℝ2𝑛),
we also have 𝑓 × 𝑔 ∈ S(ℝ2𝑛); by duality, one can extend the twisted product to the case where
either 𝑓 or 𝑔 lies in S′(ℝ2𝑛), in which case 𝑓 × 𝑔 is also a tempered distribution; and by a further
extension, both 𝑓 and 𝑔 can be tempered distributions provided at least one of them lies in

M(ℝ2𝑛) = { 𝑓 ∈ S′(ℝ2𝑛) : 𝑓 × ℎ, ℎ × 𝑓 ∈ S(ℝ2𝑛) whenever ℎ ∈ S(ℝ2𝑛) },

which turns out to be an involutive algebra of distributions under the twisted product, called the
Moyal algebra (with complex conjugation as the involution). For details of this extension, we refer
to [4].

If M(ℝ2𝑛) is to be considered as a natural “algebra of observables” for phase-space Quantum
Mechanics, one must show that it contains the Moyal propagators Ξ𝐻 (𝒖; 𝑡) for a large class of
Hamiltonians 𝐻. We now show that this class includes all nonsingular quadratic Hamiltonians.
This is also a step in the proof of self-adjointness for𝑊 (𝐻).

It is known that a tempered distribution 𝑇 lies in M(ℝ2𝑛) if and only if the corresponding
operator𝑊 (𝑇) on 𝐿2(ℝ𝑛) and its adjoint𝑊 (𝑇)∗ = 𝑊 (𝑇) are defined on the dense subspace S(ℝ𝑛)
and leave S(ℝ𝑛) invariant [4]. As in the calculation of the formula for the Green function, we find,
for Ψ ∈ S(ℝ𝑛), that

[𝑊 (Ξ𝐻 (𝑡))Ψ] (𝒙) = 1
(4𝜋)𝑛

∫
ℝ𝑛

∫
ℝ𝑛

Ξ𝐻 ( 1
2 (𝒙 + 𝒚), 𝒛; 𝑡) exp

[
𝑖
2 𝒛

t(𝒙 − 𝒚)
]
Ψ(𝒚) 𝑑𝒚 𝑑𝒛. (A.1)

It thus remains to establish that𝑊 (Ξ𝐻 (𝑡))Ψ and𝑊
(
Ξ𝐻 (𝑡)

)
Ψ lie in S(ℝ𝑛) whenever Ψ ∈ S(ℝ𝑛) for

suitable Hamiltonians 𝐻.

Theorem 4. If 𝐻 is a nonsingular time-independent quadratic Hamiltonian, then Ξ𝐻 (𝑡) lies in
M(ℝ2𝑛) for all 𝑡 ∈ ℝ.

Proof. If 𝑆 is a real symplectic 2𝑛 × 2𝑛 matrix and 𝒖0 ∈ ℝ2𝑛, it is clear that the change of
variables 𝑓 (𝒖) := 𝑓 (𝑆𝒖 + 𝒖0) leaves S(ℝ2𝑛) invariant, and from (2.4) we see that 𝑓 × 𝑔̃ = �( 𝑓 × 𝑔);
thus M(ℝ2𝑛) is also invariant under 𝑓 ↦→ 𝑓 . By (3.16) it thus suffices establish the theorem for
𝐻 = 1

2𝒖
t𝐵𝒖, where 𝐽𝐵 is a simple representative of its symplectic conjugacy class. Moreover,

by (4.16), we may suppose that 𝐽𝐵 is indecomposable.
If 𝐽𝐵 is given by (4.1) or (4.4), we find that Ξ𝐻 (𝒒, 𝒑; 𝑡) = exp(𝑖 𝒑t𝐾𝒒), where 𝐾 denotes the

upper left 𝑛 × 𝑛 block of tanh(𝐽𝐵𝑡/2). In these cases, (A.1) reduces to

[𝑊 (Ξ𝐻 (𝑡))Ψ] (𝒙) = 1
(4𝜋)𝑛

∫
ℝ𝑛

exp[ 𝑖2 𝒛
t(1 + 𝐾)𝒙]

∫
ℝ𝑛

exp[− 𝑖
2 𝒚

t(1 − 𝐾)t𝒛] Ψ(𝒚) 𝑑𝒚 𝑑𝒛, (A.2)
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and𝑊
(
Ξ𝐻 (𝑡)

)
Ψ equals the right-hand side of (A.2) with 𝐾 replaced by −𝐾 , so the desired follows

from the invariance of S(ℝ𝑛) under the Fourier transform, provided that the matrices 1 ± 𝐾 are
nonsingular.

If 𝐽𝐵 is given by (4.2) or (4.3), then (A.1) reduces to a less simple form, since quadratic
exponential terms appear in the analogue of (A.2). However, since S(ℝ𝑛) is stable under translations
and multiplication by exp[ 𝑖2𝒙

t𝐹𝒙], for any real symmetric matrix 𝐹, one verifies that the same result
holds as in the previous cases: 𝑊 (Ξ𝐻 (𝑡)) and its adjoint preserve S(ℝ𝑛) provided that 1 − 𝐾 and
1 + 𝐾 are nonsingular.

From (4.6), one verifies that in all cases det(1 + 𝐾) det(1 − 𝐾) = det(1 + tanh(𝐿𝑡/2)), where 𝐿
is the semisimple part of 𝐽𝐵. From (4.7), (4.10) and (4.14), the value of 𝐷 = det(1 + tanh(𝐿𝑡/2))
can be computed for each of the indecomposable cases (a), (b), (c) of Section 4. The results are:

Case (a): 𝐷 = sech2𝑘
(𝛼𝑡

2

)
,

Case (b): 𝐷 = sec2𝑘
( 𝛽𝑡

2

)
,

Case (c): 𝐷 =
[(2 + 2 cosh𝛼𝑡 cos 𝛽𝑡)2 + (2 sinh𝛼𝑡 sin 𝛽𝑡)2]𝑘

(cosh𝛼𝑡 + cos 𝛽𝑡)4𝑘 .

Thus 𝐷 does not vanish for any 𝑡, as required. (In case (b), the values 𝑡 = (2𝑚 + 1)𝜋/𝛽, 𝑚 integer,
deserve a comment: at such values, Ξ𝐻 (𝑡) is proportional to a 𝛿 distribution concentrated at a point,
which in any case lies in M(ℝ2𝑛).) □

Now let 𝐻 be a nonsingular quadratic Hamiltonian. From (3.3), it is clear that 𝐻 ∈ M(ℝ2𝑛). Let
𝑊0(𝐻) denote the operator defined by (2.1) or (2.6) with 𝑓 replaced by 𝐻, whose domain is S(ℝ𝑛).
Moreover,𝑊0(Ξ𝐻 (𝑡)), similarly defined as an operator with domain S(ℝ𝑛) from the functional form
(3.5) by means of (A.1), forms a continuous group of operators on S(ℝ𝑛) which extends to a group
𝑈 (𝑡) of unitary operators on 𝐿2(ℝ𝑛). Let 𝑖2𝑊 (𝐻)𝑡 denote the generator of this unitary group. Then
clearly S(ℝ𝑛) ⊂ D(𝑊 (𝐻)) and𝑊 (𝐻)Ψ = 𝑊0(𝐻)Ψ for all Ψ ∈ S(ℝ𝑛). By Theorem 4, the domain
S(ℝ𝑛) of𝑊0(𝐻) is invariant under the unitary group𝑈 (𝑡).

From a theorem of Taylor [19, Prop. B.3], we conclude that 𝑊0(𝐻) is essentially self-adjoint
and𝑊 (𝐻) is its unique self-adjoint extension. Thus the functional calculus properties dealt with in
Section 2 are rigorously valid for nonsingular quadratic Hamiltonians.

The foregoing is also true for singular quadratic Hamiltonians; in fact, a theorem by Wang [20]
guarantees that if 𝑓 is any real smooth function such that all its derivatives of order at least two are
bounded, then Ξ 𝑓 (𝒖, 𝑡) exists as an element of M. The proof, however, is involved and demands
familiarity with the methods of pseudodifferential operator theory; this is why we chose to present
here an elementary proof within our sphere of interest.

Finally, we consider the spectrum of 𝑊 (𝐻), which we have denoted sp𝐻. We show that this
coincides with supp𝐸 Γ𝐻 . If Ψ ∈ S(ℝ𝑛), let 𝑓Ψ (𝒖) := 𝑊−1( |Ψ⟩⟨Ψ|) (𝒖). From the formulas of
Section 2 we see that

⟨Ψ | exp[−𝑖𝑊 (𝐻)𝑡/2] | Ψ⟩ = 1
(4𝜋)𝑛

∫
ℝ2𝑛

𝑓Ψ (𝒖) Ξ𝐻 (𝒖, 𝑡) 𝑑𝒖. (A.3)
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By the spectral theorem, we may write

⟨Ψ | exp[−𝑖𝑊 (𝐻)𝑡/2] | Ψ⟩ =
∫

sp𝐻
𝑒−𝑖𝑡𝐸/2 𝑑𝜇Ψ (𝐸) (A.4)

where 𝜇Ψ is the spectral measure associated to Ψ [21].
Equation (2.10) defines a function Γ𝐻 (𝐸) with values in S′(ℝ2𝑛) or, more precisely, a S′(ℝ2𝑛)-

valued measure Γ𝐻 (𝑑𝐸) for which:

Ξ𝐻 (𝒖, 𝑡) =
∫
ℝ

𝑒−𝑖𝑡𝐸/2 Γ𝐻 (𝒖, 𝑑𝐸) (A.5)

where the integral in (A.5) extends, in fact, over supp𝐸 Γ𝐻 . Define the complex measure 𝜈Ψ by

𝑑𝜈Ψ (𝐸) =
∫
ℝ2𝑛

𝑓Ψ (𝒖)Γ𝐻 (𝒖, 𝑑𝐸).

Clearly supp 𝜈Ψ ⊂ supp𝐸 Γ𝐻 . Then∫
ℝ2𝑛

𝑓Ψ (𝒖) Ξ𝐻 (𝒖, 𝑡) 𝑑𝑢 =

∫
ℝ

∫
ℝ2𝑛

𝑑𝒖 𝑒−𝑖𝑡𝐸/2 𝑓Ψ (𝒖) Γ𝐻 (𝒖, 𝑑𝐸) =
∫
ℝ

𝑒−𝑖𝑡𝐸/2 𝑑𝜈Ψ (𝐸).

Together with (A.3) and (A.4), this implies that the complex measures 𝜇Ψ, 𝜈Ψ have the same Fourier
transforms and hence coincide.

Since sp𝐻 =
⋃

Ψ supp 𝜇Ψ [21], we thus obtain that sp𝐻 ⊂ supp𝐸 Γ𝐻 .
On the other hand, if 𝐸 ∈ supp𝐸 Γ𝐻 , Γ𝐻 (𝑑𝐸) and therefore𝑊0(Γ𝐻 (𝑑𝐸)) are not identically zero

on any neighbourhood 𝑉 of 𝐸 . Thus we can find Φ ∈ S(ℝ𝑛) so that ⟨Φ | 𝑊0(Γ𝐻 (𝑑𝐸)) | Φ⟩ ≢ 0
on 𝑉 . Since

⟨Φ |𝑊0(Γ𝐻 (𝑑𝐸)) | Φ⟩ =
∫
ℝ2𝑛

𝑓Φ(𝒖) Γ𝐻 (𝒖, 𝑑𝐸) = 𝑑𝜈Φ(𝐸),

we find that𝑉 ∩ supp 𝜇Φ = 𝑉 ∩ supp 𝜈Φ ≠ ∅ and hence𝑉 ∩ sp𝐻 ≠ ∅. Thus 𝐸 ∈ sp𝐻. We conclude
that supp𝐸 Γ𝐻 ⊂ sp𝐻.

We have proved that supp𝐸 Γ𝐻 = sp𝐻 whenever𝑊 (𝐻) is self-adjoint and Ξ𝐻 (𝑡) ∈ M(ℝ2𝑛) for
all 𝑡. In particular, the methods sketched in Section 6 do indeed lead to the calculation of spectra in
our case.

We remark that the measure Γ𝐻 (𝑑𝐸) is always discrete or absolutely continuous in the present
context. Thus the notation Γ𝐻 (𝒖, 𝐸) 𝑑𝐸 employed throughout the paper, instead of Γ𝐻 (𝒖, 𝑑𝐸),
is justified. In the discrete case, the Γ𝐻 (𝒖, 𝐸) belong to S(ℝ2𝑛); otherwise, they are tempered
distributions that do not belong to the Moyal algebra.

B The path-integral form for the Moyal propagator
The ordinary exponential function can be defined as

𝑒𝑥 = lim
𝑁→∞

(1 + 𝑥/𝑁)𝑁 .

This gives an heuristic suggestion for the calculation of Moyal propagators. Let us write
Ξ𝐻 (𝒖; 𝑡) = ∏×

1⩽𝑘⩽𝑁 Ξ𝐻 (𝒖; 𝑡/𝑁). Considering, for simplicity, a time-independent Hamiltonian, one
has

Ξ𝐻

(
𝒖;

𝑡

𝑁

)
= 1 − 𝑖𝑡

2𝑁
𝐻 +𝑂

( 𝑡2
𝑁2

)
= exp

(
−𝑖𝑡𝐻

2𝑁

)
+𝑂

( 𝑡2
𝑁2

)
.
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We conjecture then that

Ξ𝐻 (𝒖; 𝑡) = lim
𝑁→∞

𝑒−𝑖𝑡𝐻/2𝑁 × · · · × 𝑒−𝑖𝑡𝐻/2𝑁︸                          ︷︷                          ︸
(𝑁 times)

=: lim
𝑁→∞

Ξ
(𝑁)
𝐻

(𝒖; 𝑡).

The explicit form of Ξ(𝑁)
𝐻

is calculated now, following [22]. (The subscripts under the integral signs
will be omitted.)

Ξ
(𝑁)
𝐻

(𝒖; 𝑡) =
[
exp

(
−𝑖𝑡𝐻

2𝑁

)
× Ξ

(𝑁−1)
𝐻

]
(𝒖; 𝑡)

= (2𝜋)−2𝑛
∬

𝑑𝒚𝑁 𝑑𝒙𝑁 exp
{
− 𝑖

2 [(𝑡/𝑁)𝐻 (𝒚𝑁 ) − 2𝒖t𝐽𝒚𝑁 − 2𝒚t
𝑁𝐽𝒙𝑁 − 2𝒙t

𝑁𝐽𝒖]
}
Ξ
(𝑁−1)
𝐻

(𝒙𝑁 ; 𝑡)

= (2𝜋)−4𝑛
⨌

𝑑𝒚𝑁 𝑑𝒙𝑁 𝑑𝒚𝑁−1 𝑑𝒙𝑁−1

× exp
{
− 𝑖

2 [(𝑡/𝑁)𝐻 (𝒚𝑁 ) + (𝑡/𝑁)𝐻 (𝒚𝑁−1) − 2𝒖t𝐽𝒚𝑁 − 2𝒚t
𝑁𝐽𝒙𝑁 − 2𝒙t

𝑁𝐽𝒖

− 2𝒙t
𝑁𝐽𝒚𝑁−1 − 2𝒚t

𝑁−1𝐽𝒙𝑁−1 − 2𝒙t
𝑁−1𝐽𝒙𝑁 ]

}
Ξ
(𝑁−2)
𝐻

(𝒙𝑁−1; 𝑡)

= · · · = (2𝜋)−2𝑁𝑛
∫

· · ·
∫ 𝑁∏

𝑗=1
𝑑𝒚 𝑗 𝑑𝒙 𝑗

× exp
[
− 𝑖

2

( 𝑁∑︁
𝑖=1

(𝑡/𝑁)𝐻 (𝒚𝑖) − 2
𝑁∑︁
𝑖=1

(𝒙t
𝑖+1𝐽𝒚𝑖 + 𝒚t

𝑖𝐽𝒙𝑖 + 𝒙t
𝑖𝐽𝒙𝑖+1)

)]
(B.1)

where we made the little trick of twisted-multiplying the last factor by 1, in order to get a more
rounded expression; also, we put 𝒙𝑁+1 = 𝒖.

Assume now that 𝑁 is even. We rewrite the second part in the exponent in (B.1):

𝐺𝑁 := 𝒚t
1𝐽𝒙1 + (𝒚2 − 𝒚1)t𝐽𝒙2 + (𝒚3 − 𝒚2)t𝐽𝒙3 + · · · + (𝒚𝑁 − 𝒚𝑁−1)t𝐽𝒙𝑁

+ 𝒙t
𝑁+1𝐽𝒚𝑁 + (𝒙1 − 𝒙3)t𝐽𝒙2 + (𝒙3 − 𝒙5)t𝐽𝒙4 + · · · + (𝒙𝑁−1 − 𝒙𝑁+1)t𝐽𝒙𝑁 ,

and apply the method of stationary phase to perform the integral over the 𝒙. That is, we equate to
zero the derivatives of the previous expression with respect to these 𝒙, which yields:

𝒙2𝑘 = 𝒚1 +
𝑘−1∑︁
𝑖=1

(𝒚2𝑖+1 − 𝒚2𝑖),

𝒙2𝑘−1 = 𝒖 +
𝑁/2∑︁
𝑖=𝑘

(𝒚2𝑖−1 − 𝒚2𝑖), for 1 ⩽ 𝑘 ⩽ 𝑁/2. (B.2)

Instead of writing the resulting expression as an iterated integral over the 𝒚, we go over directly
to the continuous limit. Let us introduce the time parameter 𝜏, such that 0 ⩽ 𝜏 ⩽ 𝑡, and assume taht
𝒙2𝑘 = 𝒙(𝜏2𝑘 ); 𝒙2𝑘+1 = 𝒙̃(𝜏2𝑘+1); 𝒚𝑘 = 𝒚(𝜏𝑘 ). The limit 𝑁 → ∞ in the expression (B.2) gives the
following relations among the continuous trajectories 𝒙(𝜏), 𝒙̃(𝜏), 𝒚(𝜏):

𝒙(𝜏) = 𝒚(𝑡) − 1
2

∫ 𝑡

𝜏

¤𝒚(𝑠) 𝑑𝑠 = 𝒚(𝜏) + 𝒚(𝑡)
2

,

𝒙̃(𝜏) = 𝒖 + 1
2

∫ 𝜏

0
¤𝒚(𝑠) 𝑑𝑠 = 𝒚(𝜏) − 𝒚(0)

2
+ 𝒖.
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We find also

“ lim
𝑁→∞

”𝐺𝑁 = 𝒚(𝑡)t𝐽 𝒙̃(𝑡) + 𝒖t𝐽𝒚(0) + 1
2

∫ 𝑡

0
𝒙̃(𝜏)t𝐽 ¤𝒚(𝜏) 𝑑𝜏

+ 1
2

∫ 𝑡

0
𝒙(𝜏)t𝐽 ¤𝒚(𝜏) 𝑑𝜏 −

∫ 𝑡

0
𝒙(𝜏)t𝐽 ¤̃𝒙(𝜏) 𝑑𝜏

=
1
4

∫ 𝑡

0
𝒚(𝜏)t𝐽 ¤𝒚(𝜏) 𝑑𝜏 + 1

2
𝒖t𝐽𝒚(0),

after some work (where 1
2 (𝒚(0) + 𝒚(𝑡)) = 𝒖 must be used).

We obtain, then, the following expressions for the Moyal propagator as a normalized integral
over paths:

Ξ𝐻 (𝒖; 𝑡) =
∬

D[𝒙(𝜏)]D[𝒚(𝜏)] exp
(
− 𝑖

2

∫ 𝑡

0

[
𝐻 (𝒚(𝜏)) − 2𝒙(𝜏)t𝐽 ¤𝒙(𝜏) + 2𝒚(𝜏)t𝐽 ¤𝒙(𝜏)

]
𝑑𝜏

)
with 𝒙(0) = 𝒖, (B.3)

Or:

Ξ𝐻 (𝒖; 𝑡) =
∫

D[𝒚(𝜏)] exp
[
− 𝑖

2

(∫ 𝑡

0
[𝐻 (𝒚(𝜏)) + 1

2 𝒚(𝜏)
t𝐽 ¤𝒚(𝜏)] 𝑑𝜏

)
+ 𝒚(0)t𝐽𝒖

]
. (B.4)

The former is from (B.1); the latter comes from our stationary-phase calculation. In (B.4) one
has the condition 1

2 (𝒚(0) + 𝒚(𝑡)) = 𝒖. (Taking 𝑁 odd in the argument leading to (B.4) is messier,
but the final result is the same.)

Formula (B.1) can be applied in principle to direct calculations of evolution functions, at least
in simple cases. The one example known to the authors of such a calculation, which gives the
evolution function for the harmonic oscillator again, may be found in [23]. On the other hand,
it is fruitful, as in conventional quantum mechanics, to examine the expansion of (B.4) around
classical paths. We can consider the expressions under the integral sign in the “integrands” of (B.3)
and (B.4) as Lagrangians of sorts. In the second case, for instance, the Euler–Lagrange equations
(𝑑/𝑑𝑡) 𝜕𝐿/𝜕 ¤𝒚 = 𝜕𝐿/𝜕𝒚 give:

𝜕𝐻/𝜕𝒚 = −𝐽 ¤𝒚,
to wit, Hamilton’s equations! We will denote by 𝒚cl(𝜏) a path obeying the classical dynamics with
1
2 (𝒚cl(0) + 𝒚cl(𝑡)) = 𝒖. The exponent of (B.4) for these paths:

𝑔cl(𝒖; 𝑡) =
∫ 𝑡

0

[
𝐻 (𝒚cl(𝜏)) + 1

2 𝒚cl(𝜏)t𝐽 ¤𝒚cl(𝜏)
]
𝑑𝜏 + 𝒚(0)t𝐽𝒖

is obviously a symmetrical form of the classical action. One arrives as well at the last formula
from (B.3). Note that the “Lagrangian” under the integral sign in (B.3) or (B.4) is a singular one, so
it would seem that we are not entitled to use the Euler–Lagrange equations. The proper theory [24],
however, gives also in the present case Hamilton’s equations as a kind of necessary constraint.1

If the Hamiltonian is quadratic, the Moyal propagator can be calculated solely from the classical
paths, in much the same way as the path integral calculation proceeds for the propagator in the

1We are indebted to José F. Cariñena for clarification on this point.
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standard theory, for quadratic Lagrangians. In effect, application of the method of stationary phase
in (B.4) gives at once:

Ξ𝐻 (𝒖; 𝑡) = 𝐹 (𝑡) exp[− 𝑖
2𝑔cl(𝒖; 𝑡)] .

We leave it to the reader to check that in this case 𝑔cl is the same quantity that we have denoted 𝑔𝐻
throughout the paper.

One can now calculate 𝐹 (𝑡) from the path integral, but it is easier to get it from the group
property of Ξ𝐻 (as noted in [25]). We obtain anew the basic formulas employed in the paper;
the details are omitted. Note that this derivation of the general form of the evolution function
for quadratic Hamiltonians gives immediately the preexponential factor, in contradistinction to our
method in Section 3.

It is also clear that we could employ the method of stationary phase in (B.3) or (B.4) to obtain the
point de départ of a semiclassical expansion of the Moyal propagator for arbitrary Hamiltonians [26].
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