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a b s t r a c t

We introduce two families of values for TU-games: the recursive and bargaining values. Bargaining
values are obtained as the equilibrium payoffs of the symmetric non-cooperative bargaining game
proposed by Hart and Mas-Colell (1996). We show that bargaining values have a recursive structure in
their definition, and we call this property recursiveness. All efficient, linear, and symmetric values that
satisfy recursiveness are called recursive values. We generalize the notions of potential, and balanced
contributions property, to characterize the family of recursive values. Finally, we show that if a time
discount factor is considered in the bargaining model, every bargaining value has its corresponding
discounted bargaining value.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper we present two families of values for cooperative
ames with transferable utility (TU-games): the recursive values
nd the bargaining values. They belong to the broad family of effi-
ient, linear and symmetric values (ELS-values). The main feature
hat defines a recursive value, as its name suggests, is its recursive
ormulation: the payments within a coalition N with a number
f n players are determined by some distribution of the marginal
ontributions made by each player to the coalition and by the
ayments when there are n − 1 players. Each size of coalition
has its corresponding distribution coefficient αn, n = 1, 2, . . ..

In general, the coefficients αn are real numbers (even negative).
The family of bargaining values arises when αn ∈ [0, 1]. In that
case, this means that if coalition N forms, each player receives
a fraction αn of her contribution to the coalition, and the rest is
shared equally among the remaining players.

In a cooperative setting, a value expresses a particular way in
which players share the benefits of their cooperation. Following
the Nash program, one can determine a particular value either
through a set of properties that the value satisfies (the axiomatic
approach) or through a non cooperative game which reflects
a plausible negotiation process (the strategic approach). In the
latter case cooperative agreement is obtained as the equilibrium
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payoffs of the non cooperative game. The two approaches are con-
sidered as complementary and hopeful of mutual reinforcement.1
We use both approaches in the present paper. We see that the
simple recursive design of these values play a key role in their
axiomatic characterization and in their strategic support.

In the axiomatic approach, we find that recursiveness enables
the potential approach to be extended to the whole family of
recursive values. Hart and Mas-Colell (1989) introduce the notion
of potential of a game and prove that there is a unique poten-
tial function P and that the gradient of the potential yields the
Shapley (1953) value. Myerson (1980) introduces the property of
balanced contributions and shows that the Shapley value is charac-
terized by this property and by efficiency. Xu et al. (2016) extend
this approach, adjusting the notions of potential and balanced
contributions, to characterize the solidarity value. Following the
same approach, we show that each recursive value also admits
an adjusted potential Pα , that is, it can be obtained as the ad-
usted gradient of Pα . In the same way, we extend the property
f quasi-balanced contributions from Xu et al. (2016), defining
he α-balanced contributions property. Thus, it holds that a value
satisfies efficiency and the α-balanced contributions property if,
and only if, it coincides with the recursive value. In addition,
we show that adding the properties of positivity2 and coalitional
monotonicity3 suffices to characterize the family of all bargaining
values.

1 For a good survey on the Nash program readers are referred to Serrano
2005, 2008).
2 In monotonic games the payoffs of the players must be non-negative.
3 If the worth of a coalition increases, the payoffs of the members of such

oalition should not decrease.
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The term bargaining values comes from the fact that they
an be obtained as the subgame perfect equilibrium payoffs of
non-cooperative negotiation process. This strategic approach

omplements the axiomatic characterization given in the first
art of this work. We follow a multilateral negotiating procedure
resented in Hart and Mas-Colell (1996). There, it is proved
hat in games with transferable utility, when the probability of
reakdown vanishes, the payoffs associated with the equilibria
onverge to the Shapley value. When utility is not transferable,
n pure bargaining games, the equilibrium payoffs converge to
he Nash (1953) bargaining solution, and in the general case, the
quilibria payoffs converge to the consistent values introduced by
aschler and Owen (1989, 1992).
In the same paper (Hart and Mas-Colell, 1996, Section 6), the

egotiation procedure is generalized, expanding the set of values
upported by non-cooperative bargaining. Restricting the analysis
o the symmetric case in which the rules of negotiation do not
iscriminate against players by name, the values obtained include
he equal split value4 (all players receive the same); the egali-
arian Shapley values (which are convex combinations between
he Shapley value and the equal split value) considered also in
oosten (1996) and van den Brink et al. (2013); the solidarity value
onsidered in Sprumont (1990) and Nowak and Radzik (1994);
nd the family of solidarity values introduced by Casajus and
uettner (2014). In this paper we characterize all the values that
an be obtained with this alternating random proposer proto-
ol. We show that the parameters that determine each bargaining
alue are precisely the probabilities of its associated non-cooperative
argaining game.
We end this paper considering discounted values. These are val-

es that also depend on a specific parameter, which is called the
iscount factor d ∈ [0, 1]. The parameter d (given exogenously)
etermines the discounting of the available worth going from one
ound of negotiation to the next after a rejection of the proposal.
n Joosten (1996) the discounted Shapley values were introduced
s a parametric family, where the Shapley value is obtained when

= 1, and the equal split value when d = 0. In van den
rink and Funaki (2015), a bargaining game that implements
he family of discounted Shapley values is offered, by using the
idding mechanism given by Pérez-Castrillo and Wettstein (2001)
hat implements the Shapley value. In Calvo and Gutiérrez-López
2016), it is shown that the discounted Shapley values can be
btained by using the Hart and Mas-Colell bargaining model if
he time cost factor δ ∈ [0, 1] is considered. Note that it is
mplicitly assumed that the value should be obtained from a
egotiation process that takes place over time, and time spent
s costly. The main result obtained there is that when the risk of
reakdown, (1 − ρ), and the time cost factor, δ, are considered
imultaneously, the subgame perfect equilibria of the Hart and
as-Colell bargaining yields a discounted Shapley value, where

he discount is a function that depends on the time cost factor
nd the risk of breakdown. Namely,

=
δ (1 − ρ)

1 − δρ
.

Kawamori (2016) presents a parallel result with a similar variant
of the Hart and Mas-Colell model. In Calvo and Gutiérrez-López
(2018) this approach has also been extended to the discounted
solidarity values.

We prove that this result can be extended to the whole family
of bargaining values: the general (symmetric) bargaining proce-
dure of Hart and Mas-Colell yields a strategic support to every
discounted bargaining value. Therefore, discounted bargaining
values should not be considered as just another value within

4 Also called indistinctly in literature as egalitarian value.
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the family of bargaining values, but rather as their associated
discounted values that appear as soon as the time cost factor is
considered.

The paper is organized as follows. In Section 2, the recur-
sive and the bargaining values are introduced. Section 3 is de-
voted to the axiomatic approach. Section 4 considers the strategic
approach. Finally, Section 5 is devoted to the discounted values.

2. Recursive and bargaining values

First, we recall some preliminary notions.
Let U = {1, 2, . . .} be the (infinite) set of potential players.

A cooperative game with transferable utility (TU-game) is a pair
(N, v) where N ⊂ U is a non empty and finite set and v :

2N
→ R is a characteristic function, defined on the power set of

N , satisfying v(∅) = 0. An element i of N is called a player and
each non empty subset S of N is a coalition. The real number v(S)
is called the worth of coalition S, and is interpreted as the total
payoff that the coalition S, if it forms, can obtain for its members.
GN denotes the set of all cooperative TU-games with player set
N , and G the set of all cooperative TU-games. We write v when
there is no place for confusion. For each S ⊆ N , we denote the
restriction of (N, v) to S as (S, v). For the sake of simplicity, we
write S∪ i instead of S∪{i}, N \ i instead of N \{i}, and v(i) instead
of v ({i}). The cardinality of set S is denoted by its lowercase letter
s, when no confusion arise, i.e. |S| = s.

A value is a function ψ which assigns to every TU-game (N, v)
and every player i ∈ N a real number ψi (N, v), which represents
an assessment made by i of her gains from participating in the
game. For S ⊆ N and x ∈ RN we denote

∑
i∈S xi by xS .

Some well-known properties for values are the following.
Efficiency. A value ψ is efficient if

∑
i∈N ψi(N, v) = v(N), for all

games v ∈ G.
Linearity. A value ψ is linear if ψ(αv+βw) = αψ(v)+βψ(w)

for all real numbers α and β , and games v and w. When the
equality holds for α = β = 1 the value is said to be additive.

Anonymity. Let π be a permutation of the player set N . For any
S ⊆ N , define πS = {π (i) : i ∈ S}. The game (N, πv) is defined
by πv(πS) = v(S) for all S ⊆ N . A value ψ satisfies anonymity if
ψi(N, v) = ψπ (i)(N, πv) for all i ∈ N .

Equal treatment. Two players i, j ∈ N are said to be inter-
changeable in v if v(S ∪ i) = v(S ∪ j) for all S ⊆ N\{i, j}. A value
ψ satisfies the equal treatment property if ψi(N, v) = ψj(N, v)
when i and j are interchangeable in the game (N, v).

Equal treatment is a weaker property than anonymity. In the
literature, symmetry is referred to anonymity in some papers
and to equal treatment in others. However, as Malawski (2013)
points out, in the presence of efficiency and linearity, anonymity
and equal treatment are equivalent. For that reason, we use the
term ‘‘efficient, linear, symmetric value’’ (ELS-value) to describe an
efficient, linear value that satisfies anonymity or equal treatment.
There are several alternative characterizations of the family of
ELS-values on G. In all cases, the payment received by each player
sharing the grand coalition N depends on the values that can be
distributed in all subcoalitions S of N . To the best of our knowl-
edge, they are all given by Ruiz et al. (1998) and Driessen and
Radzik (2003) (see also Radzik and Driessen, 2016), Hernández-
Lamoneda et al. (2008), Chameni and Andjiga (2008), Chameni
(2012), and Casajus (2012).

We use here the Chameni’s characterization.
Let ∆i (S, v) = v(S) − v(S\i) be the marginal contribution of

player i ∈ S to coalition S ⊆ N .

Proposition 1 (Chameni, 2012). A value ξα on G is an ELS-value if,
and only if, there exists a sequence of parameters

((
αn
s

)n )
,
s=1 n=1,2...
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s ∈ R for all n and s, and αn

1 = 1, such that

α
i (N, v) =

∑
S⊆N
i∈S

(s − 1)!(n − s)!
n!

∆α
n
s |i (S, v) , (i ∈ N ⊂ U, v ∈ G) ,

(1)

where

∆α
n
s |i (S, v) = αn

s∆
i (S, v)+

1 − αn
s

s − 1

∑
k∈S\i

∆k (S, v) . (2)

One well-known example of ELS-value is introduced by Shap-
ey (1953). The Shapley value of the game (N, v) is the payoff
ector Sh(N, v) ∈ RN defined for each i ∈ N by

hi(N, v) =

∑
S⊆N
iϵS

(s − 1)!(n − s)!
n!

∆i (S, v) , (i ∈ N ⊂ U) , (3)

Alternatively, Sh(N, v) can be obtained recursively5 by

Shi(N, v) =
1
n
∆i(N, v) +

1
n

∑
j∈N\i

Shi(N\j, v), (i ∈ N) , (4)

starting with

Shi({i}, v) = v(i) (i ∈ N) .

We mention two more examples of values that can also be
obtained in a recursive way: the solidarity value and the equal split
alue.
Sprumont (1990, Section 5) introduces an example of a popu-

ation monotonic allocation scheme, defined recursively by

li(N, v) =
1
n
∆av(N, v) +

1
n

∑
j∈N\i

Sli(N\j, v), (i ∈ N ⊂ U) , (5)

tarting with

li({i}, v) = v(i), (i ∈ N) ,

here ∆av(S, v) is the average of the marginal contributions of
ll players of coalition S, that is

∆av(S, v) =
1
s

∑
k∈S

∆k(S, v), (S ⊆ N) .

The following formula

Sli(N, v) =

∑
S⊆N
iϵS

(n − s)! (s − 1)!
n!

∆av (S, v) , (i ∈ N ⊂ U) , (6)

is introduced by Nowak and Radzik (1994) in order to define what
they called the Solidarity value of the game (N, v). Calvo (2008)
shows that definitions (5) and (6) are equivalent.

The equal split value E is defined by

Ei(N, v) =
v(N)
n
, (i ∈ N ⊂ U) . (7)

It can be checked that (7) can be obtained recursively by

Ei(N, v) =
1
n

∑
k∈N\i

∆k(N, v)
(n − 1)

+
1
n

∑
k∈N\i

Ei(N\k, v), (i ∈ N ⊂ U) ,

(8)

tarting with

i({i}, v) = v(i), (i ∈ N) .

5 See Hart and Mas-Colell (1996).
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The above recursive formulation of these values introduces
the question about how many ELS-values can be obtained in this
way. To answer this question we introduce formally the notion of
recursiveness.

Definition 2. Let ξα be an ELS-value on G specified by((
αn
s

)n
s=1

)
n=1,2...

, with αn
1 = 1 for all n. ξα is said to be α- recursive

if, for all v ∈ G, it holds that

α
i (N, v) =

1
n
∆α

n
n |i(N, v) +

1
n

∑
k∈N\i

ξαi (N\k, v), (i ∈ N ⊂ U) . (9)

We show that recursive ELS-values appear when the parame-
ters αn

s are independent of n.

heorem 3. An ELS-value ξα is α-recursive if, and only if, αn
s= αn−1

s
or all s ≤ n − 1.

roof. Let (N, v) ∈ GN . By (1), it holds that

α
i (N, v) =

∑
S⊆N
iϵS

(n − s)! (s − 1)!
n!

∆α
n
s |i (S, v)

=
1
n
∆α

n
n |i(N, v) +

1
n

∑
S⊊N
iϵS

(n − s)! (s − 1)!
(n − 1)!

∆α
n
s |i (S, v) ,

nd∑
∈N\i

ξαi (N\k, v) =

∑
k∈N\i

∑
S⊆N\k
iϵS

(n − s − 1)! (s − 1)!
(n − 1)!

∆α
n−1
s |i (S, v)

=

∑
S⊊N
iϵS

(n − s) (n − s − 1)! (s − 1)!
(n − 1)!

∆α
n−1
s |i (S, v)

=

∑
S⊊N
iϵS

(n − s)! (s − 1)!
(n − 1)!

∆α
n−1
s |i (S, v) .

Then, ξα is recursive if, and only if, for all (N, v) ∈ G, it holds
that∑
S⊊N
iϵS

(n − s)! (s − 1)!
(n − 1)!

[
∆α

n
s |i (S, v)−∆α

n−1
s |i (S, v)

]
= 0 .

From (2), we have

∆α
n−1
s |i (S, v)−∆α

n
s |i (S, v)

=
(
αn
s − αn−1

s

)⎛⎝v(S\i) −
1

s − 1

∑
k∈S\i

v(S\k)

⎞⎠ .

Therefore, ξα is recursive if, and only if, for all (N, v) ∈ G, it
olds that∑
S⊊N
iϵS

(n − s)! (s − 1)!
(n − 1)!

(
αn
s − αn−1

s

)⎛⎝v(S\i) −
1

s − 1

∑
k∈S\i

v(S\k)

⎞⎠
= 0, i ∈ N. (10)

Take i, k ∈ N , and let v = uN\i\k, then expression (10) is
educed to:
1

n − 1

(
αn
n−1 − αn−1

n−1

)
= 0 ⇒ αn

n−1 = αn−1
n−1 .

By induction, assume that αn
s= αn−1

s , for all s ≥ r > 2. Take any
T ⊆ N with |T | = r − 1 and i ∈ T , and let v = uT\i. Expression
(10) and the induction hypothesis imply:
(n − r + 1)! (r − 2)! (

αn
r−1 − αn−1

r−1

)
= 0 ⇒ αn

r−1 = αn−1
r−1 .
(n − 1)!
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hus, we prove that αn
s= αn−1

s for all s ≤ n − 1 and all n. ■

Consequently, if an ELS-value is α-recursive, a sequence of real
numbers (αs)s=1,2,..., with α1 = 1 suffices to determine it. We call
all recursive ELS-values recursive values, and we denote them as
α .

efinition 4. Let (αs)s=1,2...be a sequence of real numbers with
1 = 1. The recursive value ϕα on G is defined by

α
i (N, v) =

∑
S⊆N
iϵS

(n − s)! (s − 1)!
n!

∆αs|i (S, v) , (i ∈ N ⊂ U) . (11)

By Theorem 3, the above definition is equivalent to

efinition 5. Let (αs)s=1,2...be a sequence of real numbers with
1 = 1. The recursive value ϕα on G is defined by

α
i (N, v) =

1
n
∆αn|i(N, v) +

1
n

∑
k∈N\i

ϕαi (N\k, v) , (i ∈ N ⊂ U) ,

(12)

tarting with
α
i ({i}, v) = v(i), (i ∈ N) .

Below we show a selection (not exhaustive) of recursive val-
es:
(a) The Shapley value, Sh, corresponds to the case when αs = 1,

or all s.
(b) The equal split value, E, corresponds to the case when αs =

, for all s > 1.
(c) The solidarity value, Sl, corresponds to the case when αs =

/s, for all s > 1.
(d) The egalitarian Shapley values (Hart and Mas-Colell, 1996;

oosten, 1996; van den Brink et al., 2013) are the class of all
onvex combinations between the Shapley value and the equal
plit value, Shθ = θSh + (1 − θ )E, for a fixed θ ∈ [0, 1]. They
correspond to the case when αs = θ . Note that the solidarity
value is not included in the family of egalitarian Shapley values.

(e) Casajus and Huettner (2014) introduce a family of values
called generalized solidarity values Soξ , for ξ ∈ [0, 1]. The two
xtreme points of that family are the equal split value, So1 = E

(when ξ = 1), and the Shapley value, So0 = Sh (when ξ = 0). In
the middle (when ξ = 1/2) is the solidarity value, So1/2 = Sl. It
turns out that Soξ corresponds to recursive value ϕα(ξ) where

αs (ξ) =
1 − ξ

(s − 2)ξ + 1
, (s > 1) .

This is a straightforward consequence of Casajus and Huettner
(2014, Corollary 4), and formula (11).

(f) The egalitarian solidarity values (Gutiérrez-López, 2020) are
the class of all convex combinations between the solidarity value
and the equal split value, Slθ = θSl+(1−θ )E, for a fixed θ ∈ [0, 1].
They correspond to the case when αs = θ/s, for all s > 1.

Next, we show some examples of ELS-values which are not
recursive values.

(g) Malawski (2013) introduces the family of procedural values.
He specifies a procedure for sharing the gains of cooperation
following a random order approach. We briefly recall its def-
inition. Let Π (N) be the set of all permutations of the set N .
Every π ∈ Π (N) induces an order on N . We denote by Pπ (i)
the set of all predecessors which come before i in the order π
(including i); that is, Pπ (i) = {j ∈ N : π (j) ≤ π (i)}. The marginal
contribution of player i in the order π is defined by mi,π (N, v) =[
v

(
Pπ (i)

)
− v

(
Pπ (i)\i

)]
. The procedure is as follows:

1. The players enter in random order π , with all orders being
equally probable.
100
2. There is a fixed set of parameters
(
αn
s

)n
s=1, where αn

1 = 1
and αn

s ∈ [0, 1] for all s ≥ 2, which specifies how to share the
marginal contribution of player i when she comes up in the order
π (i) = s.

3. Each player i in the order π receives a proportion αn
π (i) of

her marginal contribution, αn
π (i)mi,π (N, v), and the rest is shared

equally among the remaining predecessors, that is, each player j
(π (j) < π (i)) receives

(
1 − αn

π (i)

)
/ (π (i) − 1)mi,π (N, v).

4. The procedural value of a player is the expected value of the
income earned in each order, with all orders being equally likely.

Since in each order π , player i receives αn
π (i)mi,π (N, v), plus(

1 − αn
π (j)

)
/ (π (j) − 1)mj,π (N, v) from each of her successors (j :

π (j) > π (i)), the procedural value is given by (see Malawski,
2013; formula (2))

aNi =

∑
π∈Π

1
n!

⎛⎜⎝αn
π (i)mi,π (N, v) +

∑
j∈N

π (j)>π (i)

1 − αn
π (j)

π (j) − 1
mj,π (N, v)

⎞⎟⎠ .

(13)

However, under an easy manipulation of this formula, we
an also express any procedural value in terms of the Chameni’s
oefficients. Therefore, a procedural value turns out to be an ELS-
alue ξα with αn

1 = 1 and αn
s ∈ [0, 1] for all 2 ≤ s ≤ n. Actually, as

alawski points out (Section 4 in Malawski, 2013), it is possible
o obtain any ELS-value with this random order approach if we
llow that αn

s ∈ R for all 2 ≤ s ≤ n.
Finally, we show two ELS-values with αn

s /∈ [0, 1].
(h) The center of imputation set value6 (CIS) (see Driessen and

unaki, 1991), defined by

ISi(N, v) = v(i) +
1
n

[
v(N) −

∑
k∈N

v(k)

]
, (i ∈ N ⊂ U) .

This value corresponds to the case αn
2 = n − 1 and ans = 0 for

all 2 < s ≤ n. From this fact, it follows that the consensus value,
Cs =

1
2Sh +

1
2CIS, introduced by Ju et al. (2007), or any other

convex combination of Sh and CIS values, are not recursive values.
(i) The equal allocation of non separable cost value (ENSC) (see

Moulin, 1985), is the dual value of CIS, i.e.

NSC(N, v) = CIS(N, v∗),

here v∗ is the dual game of v defined as v∗(S) = v(N) − v(N\S)
or all S ⊆ N . This value corresponds to the case αn

n = n − 1 and
n
s = 0 for all 1 < s < n. Therefore, it also follows that convex
ombinations of CIS, ENSC and E values, considered in van den
rink and Funaki (2009), are not recursive values.
We end this section introducing the bargaining values. A re-

arkable feature of procedural values is that, for every coalition
, αn

s ∈ [0, 1]. This fact allows a nice interpretation for these
oefficients: if coalition S forms, each player i ∈ S receives
fraction αn

s of her marginal contribution ∆i (S, v), with the
est

(
1 − αn

s

)
∆i (S, v) being shared equally among the remaining

layers in the coalition. Thus, player i receives a share αn
s of

er own marginal contribution, plus a share
(
1 − αn

s

)
/ (s − 1)

f the marginal contribution of each of the other players in the
oalition. We call bargaining values all recursive values that satisfy
s ∈ [0, 1], and will be denoted by φα .

efinition 6. Let (αs)s=1,2...be a sequence of parameters with
1 = 1 and αs ∈ [0, 1] for all s. The bargaining value φα on G
s defined by

α
i (N, v) =

∑
S⊆N
iϵS

(n − s)! (s − 1)!
n!

∆αs|i (S, v) , (i ∈ N ⊂ U) .

6 This value is also called the equal surplus division value.
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Obviously, the family of bargaining values is nothing more
han the family of recursive procedural values. Apart from its
ntuitive interpretation in terms of redistribution of marginal con-
ributions, this family of bargaining values has a special interest,
ince we will prove latter that the payoffs given by each bargain-
ng value φα are precisely the equilibrium payoffs associated to
non-cooperative bargaining game, determined by the sequence
αs)s=1,2... that now will also have an interpretation in terms of
robabilities.

. Axiomatic approach

A significant consequence of recursiveness is that each recur-
ive value admits a simple potential representation and can be
haracterized by a generalization of the balanced contributions
roperty.
Hart and Mas-Colell (1989) introduce the notion of a potential

unction P for a cooperative game. The potential P is a real func-
ion P : G → R, with P(∅, v) = 0, such that

∑
i∈N ∆

iP(N, v) =

(N), where ∆iP(N, v) = P(N, v) − P(N\i, v), for all i ∈ N and all
N, v) ∈ G. An explicit representation of the potential in terms of
he game is given by:

(N, v) =

∑
S⊆N

(n − s)! (s − 1)!
n!

v(S) .

iven a value ψ on G, the contribution that a player imakes to the
ayoff of another player j is the difference between what j gets
n the game with and without i. We denote this contribution by
iψj(N, v) = ψj(N, v) − ψj(N\i, v). The balanced contributions
roperty was introduced in Myerson (1980): a value ψ on G

satisfies the balanced contributions property if

∆jψi(N, v) = ∆iψj(N, v), (i, j ∈ N ⊂ U, v ∈ G) .

Balanced contributions is a principle of reciprocity: what you con-
tribute to other is the same as what you get from the other. Two
noteworthy results are that the Shapley value can be obtained as
the gradient of the potential, i.e. ∆iP(N, v) = Shi(N, v), for every
game v ∈ G and player i ∈ N (Hart and Mas-Colell, 1989, Theorem
A); and that a value ψ on G satisfies efficiency and the balanced
contributions property if, and only if, ψ = Sh (Myerson, 1980,
Theorem 1).

Xu et al. (2016) extend this approach, revising the notions of
potential and balanced contributions, to characterize the solidar-
ity value Sl. Let P∗

: G → R be a function with P∗(∅, v) = 0. P∗ is
called an A-potential function if it satisfies∑
i∈N

[
∆iP∗(N, v) +

1
n
v(N\i)

]
= v(N), (i ∈ N ⊂ U, v ∈ G) .

As Xu et al. (2016) point out: ‘‘Comparing with the potential
function P by Hart and Mas-Colell (1989), an adjustment compen-
sation 1

nv(N\i) is added to the marginal contribution ∆iP∗(N, v)
for each player i ∈ N , to satisfy the efficiency normalization
condition of the A-potential function P∗’’ (page 88); and ‘‘The
adjustment implies precisely the factor of egalitarianism for the
Solidarity value’’. (page 87).

Proposition 7 (Xu et al., 2016; Theorem 3.2). There exists a unique
A-potential function P∗ on G. Moreover, it holds that

∆iP∗(N, v) +
1
n
v(N\i) = Sli(N, v), (i ∈ N ⊂ U; v ∈ G) .

Second, they introduce the notion of quasi-balanced contribu-
tions. A value ψ on G satisfies the quasi-balanced contributions
property if

∆jψi(N, v) −
1
n
v(N\i) = ∆iψj(N, v) −

1
n
v(N\j) .
101
Proposition 8 (Xu et al., 2016; Theorem 4.2). A value ψ defined on
G satisfies efficiency and the quasi-balanced contributions property
if, and only if, ψ = Sl.

We extend this adjustment approach for each recursive value.
First we show that if we add the compensation 1−αn

n−1 v(N\i) for
ach player i ∈ N , in the definition of the potential, we obtain that

each recursive value is the gradient of its corresponding adjusted
potential.

Definition 9. Let (αs)s=1,2,... be a sequence of real numbers with
α1 = 1. A function Pα : G → R, with Pα(∅, v) = 0, is called an
adjusted α-potential function if it satisfies∑
i∈N

[
∆iPα(N, v) +

1 − αn

n − 1
v(N\i)

]
= v(N), (N ⊂ U, v ∈ G) ,

(14)

From Definition 9, it follows that

nPα(N, v) −

∑
i∈N

Pα(N\i, v) = v(N) −
1 − αn

n − 1

∑
i∈N

v(N\i) .

Therefore, there is an equivalent recursive formulation for Pα:

Pα(N, v) =
1
n

[∑
i∈N

Pα(N\i, v) + v(N) −
1 − αn

n − 1

∑
i∈N

v(N\i)

]
,

(N ⊂ U, v ∈ G) , (15)

ith Pα(∅, v) = 0.
We show that Pα can also be expressed directly in terms of

he game v and the coefficients (as)s=1,2...:

roposition 10. For every game v ∈ G,

α(N, v) =
1
n
v(N) +

∑
S⊊N

(n − s)! (s − 1)!
n!

αs+1v(S), (N ⊂ U) .

Proof. We prove by induction on the cardinality of the player
set. The one player case, Pα(i, v) = v(i), is obvious. Assume that
or all i ∈ N it holds that

Pα(S, v) =
1
s
v(S) +

∑
T⊊S

(s − t)! (t − 1)!
s!

αt+1v(T ), (S ⊊ N) .

From (15) and the induction hypothesis,

Pα(N, v) =
1
n

[∑
i∈N

Pα(N\i, v) + v(N) −
1 − αn

n − 1

∑
i∈N

v(N\i)

]

=
1
n

[∑
i∈N

1
n − 1

v(N\i)

+

∑
i∈N

∑
S⊊N\i

(n − 1 − s)! (s − 1)!
(n − 1)!

αs+1v(S)

−
1 − αn

n − 1

∑
i∈N

v(N\i)

]
+

1
n
v(N)

=
1
n
v(N) +

1
n

⎡⎣∑
i∈N

αn

n − 1
v(N\i)

+

∑
i∈N

∑
S⊊N\i

(n − 1 − s)! (s − 1)!
(n − 1)!

αs+1v(S)

⎤⎦
=

1
n
v(N) +

1
n

⎡⎣∑ ∑ (n − 1 − s)! (s − 1)!
(n − 1)!

αs+1v(S)

⎤⎦

i∈N S⊆N\i
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=
1
n
v(N) +

1
n

[∑
S⊊N

(n − s) (n − 1 − s)! (s − 1)!
(n − 1)!

αs+1v(S)

]

=
1
n
v(N) +

∑
S⊊N

(n − s)! (s − 1)!
n!

αs+1v(S) . ■

Now we show that each recursive value ϕα can be obtained as
the adjusted gradient of Pα .

Theorem 11. Let (αs)s=1,2,... be a sequence of real numbers with
α1 = 1. Let ϕα be its associated recursive value. Then, it holds that

α
i (N, v) = ∆iPα(N, v) +

1 − αn

n − 1
v(N\i), (v ∈ G, i ∈ N ⊂ U) .

Proof. We prove by induction on the cardinality of the player set.
In the one player case, from (15), Pα(i, v) = v(i), so ∆iPα(i, v) =

v(i) = ϕαi (i, v).
Assume that for all S ⊊ N , and i ∈ S, it holds that

ϕαi (S, v) = ∆iPα(S, v) +
1 − αs

s − 1
v(S\i) .

By (15) and the induction hypothesis,

∆iPα(N, v) +
1 − αn

n − 1
v(N\i) = Pα(N, v) − Pα(N\i, v)

1 − αn

n − 1
v(N\i)

=
1
n

[∑
k∈N

Pα(N\k, v) + v(N) −
1 − αn

n − 1

∑
k∈N

v(N\k)

]

Pα(N\i, v) +
1 − αn

n − 1
v(N\i)

=
1
n

[
v(N) −

1 − αn

n − 1

∑
k∈N

v(N\k)

]
+

1 − αn

n − 1
v(N\i)

1
n

∑
k∈N\i

[Pα(N\k, v) − Pα(N\i, v)]

1
n

[
v(N) −

1 − αn

n − 1

∑
k∈N

v(N\k)

]
+

1 − αn

n − 1
v(N\i)

1
n

∑
k∈N\i

[
∆iPα(N\k, v) −∆kPα(N\i, v)

]
1
n

[
v(N) −

1 − αn

n − 1

∑
k∈N

v(N\k)

]
+

1 − αn

n − 1
v(N\i)

1
n

∑
k∈N\i

[
ϕαi (N\k, v) −

1 − αn−1

n − 2
v(N\k\i) − ϕαk (N\i, v)

+
1 − αn−1

n − 2
v(N\i\k)

]
1
n

[
v(N) −

1 − αn

n − 1

∑
k∈N

v(N\k)

]
+

1 − αn

n − 1
v(N\i)

1
n

∑
k∈N\i

ϕαi (N\k, v) −
1
n
v(N\i)

1
n

⎡⎣v(N) − αnv(N\i) −
1 − αn

n − 1

∑
k∈N\i

v(N\k)

⎤⎦
1
n

∑
ϕαi (N\k, v)
k∈N\i

102
=
1
n
∆α|i(N, v) +

1
n

∑
k∈N\i

ϕαi (N\k, v)

ϕαi (N, v) . ■

We also generalize the notion of quasi-balanced contributions.
o do this, we use a slightly different interpretation of the axiom.
Recall that when αn ∈ [0, 1] we can make an intuitive in-

erpretation of this coefficient: if coalition N forms, each player
receives a fraction αn of her marginal contribution ∆i(N, v),

with the rest (1 − αn)∆
i(N, v) being shared equally among the

remaining n − 1 players in the coalition. Correspondingly, every
player j ∈ N\i contributes to the payoff of player i with the
fraction (1−αn)/(n−1)∆j(N, v) of her own marginal contribution.
hus, two players i, j ∈ N are said to be in balance when the
utual contributions to their payoffs follow the same relationship

hat the fraction (1 − αn)/(n − 1) of their marginal contributions
o the worth of the coalition.

efinition 12. Let (αs)s=1,2,... be a sequence of real numbers with
1 = 1. A solution ψ on G satisfies the α-balanced contributions
roperty if it holds that

jψi(N, v) −∆iψj(N, v) =
1 − αn

n − 1

[
∆j(N, v) −∆i(N, v)

]
, (16)

or all i, j ∈ N ⊂ U , and v ∈ G.

In other words, the mutual impact on their payoffs follows
the same relationship as their productivities. The fraction (1 −

αn)/(n − 1) measures the amount of her own productivity that
each player shares with the others. When αn = 0, each player
shares all of it, being the maximum degree of solidarity between
them. Indeed, the recursive value ϕα corresponding to αs = 0,
or all s ≥ 2, is just the equal split value. The opposite is when
n = 1. In this case, each player reserves all her productivity
or herself. Accordingly, αs = 1, for all s, corresponds with the
hapley value.
Obviously, for the general case of recursive values, it could

appen that αn /∈ [0, 1]. In that case, the sign of (1 − αn)/(n − 1)
nly says whether the relationship between their productivity has
positive (direct) or negative (inverse) impact on their payment
alance.

roposition 13. Let (αs)s=1,2,... be a sequence of real numbers with
1 = 1. The associated recursive value ϕα satisfies the α-balanced
ontributions property.

roof. Let a game (N, v) ∈ G, and i, j ∈ N with i ̸= j. By definition
f Pα it is immediate that
iPα(N, v) −∆iPα(N\j, v) = ∆jPα(N, v) −∆jPα(N\i, v) .

By Theorem 11, we have that
jψi(N, v) −∆iψj(N, v) =

[
ϕαi (N, v) − ϕαi (N\j, v)

][
ϕαj (N, v) − ϕαj (N\i, v)

]
=(

∆iPα(N, v) +
1 − αn

n − 1
v(N\i)

)
−

(
∆iPα(N\j, v) +

1 − αn−1

n − 2
v(N\i\j)

)]
[(
∆jPα(N, v) +

1 − αn

n − 1
v(N\j)

)
−

(
∆jPα(N\i, v) +

1 − αn−1

n − 2
v(N\i\j)

)]
=

∆iPα(N, v) −∆iPα(N\j, v) −∆jPα(N, v) +∆jPα(N\i, v)
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1 − αn

n − 1

[
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]
. ■

heorem 14. Let (αs)s=1,2,... be a sequence of real numbers with
1 = 1. A value ψ defined on G satisfies efficiency and the α-
alanced contributions property if, and only if, ψ is the recursive
alue ϕα .

roof. We know that ϕα is efficient by construction. Then, by
roposition 13, it only remains to show uniqueness. Let ψ be
n efficient value on G satisfying α-balanced contributions. For
ny (i, v) ∈ G, efficiency implies that ψi(i, v) = v(i) = ϕαi (i, v).
ow, assume that ψ(T , v) = ϕα(T , v) for any game (T , v) with
T | < n. Let (N, v) ∈ G, i, j ∈ N with i ̸= j. Since ψ and ϕα

atisfy α-balanced contributions, subtracting expression (16) for
oth values, we obtain

i(N, v) − ψi(N\j, v) − ϕαi (N, v) + ϕαi (N\j, v)
= ψj(N, v) − ψj(N\i, v) − ϕαj (N, v) + ϕαj (N\i, v) ,

nd applying the induction hypothesis, ψi(N\j, v) = ϕαi (N\j, v)
nd ψj(N\i, v) = ϕαj (N\i, v), we have

i(N, v) − ϕαi (N, v) = ψj(N, v) − ϕαj (N, v), (i, j ∈ N) ,

hich, jointly with efficiency, implies ψi(N, v) = ϕαi (N, v), for all
∈ N . ■

To end this section, recall that the family of bargaining values
α is a strict subfamily of the recursive values ϕα , since the pa-
ameters (αs)s=1,2,... satisfy the additional restriction of αs ∈ [0, 1]
or all s. They are also a strict subfamily of the procedural values,
ince the parameters αs are independent of n. By combining the
roperties that characterize the recursive values with those that
haracterize the procedural values, we characterize the family of
argaining values.
We recall the Malawski characterization of the procedural val-

es. A TU-game is said to be monotonic if v(T ) ≤ v(S) whenever
⊆ S. We say that a value ψ satisfies positivity7 on G when

i(N, v) ≥ 0 for all monotonic games v ∈ G and all i ∈ N ⊂ U .
e say that a value ψ satisfies coalitional monotonicity on G when
i(N, v) ≥ ψi(N, w) for all i ∈ S ⊆ N if v,w ∈ G are such that
(S) > w(S) for S ⊆ N , and v(T ) = w(T ) otherwise.

roposition 15 (Malawski, 2013; Theorem 2). A value ψ on GN

atisfies efficiency, linearity, symmetry, positivity, and coalitional
onotonicity if, and only if, ψ is an ELS-value ξα with αn

s ∈ [0, 1]
for all s ≤ n.

In view of Proposition 15 and Theorems 14 and 3, two imme-
diate corollaries emerge.

Corollary 16. A value ψ on G satisfies efficiency, linearity, symme-
try, positivity, coalitional monotonicity, and α-recursiveness if, and
only if, ψ is a bargaining value φα .

orollary 17. A value ψ on G satisfies efficiency, α-balanced
contributions, positivity, and coalitional monotonicity if, and only if,
ψ is a bargaining value φα .

7 In the literature, this axiom has also been called monotonicity, and weak
onotonicity.
103
4. Strategic approach

This section sets out the alternating random proposer bar-
aining model and determines the family of symmetric values
btained from it. This non-cooperative approach has a long tradi-
ion in the literature. The idea is that after a process of negotiation
etween them, agents accept a value which is as simple and
ealistic as possible. This tradition begins with the Nash (1953)
emands game and continues with the alternating offers model
roposed by Stähl (1972) and Rubinstein (1982). Binmore (see
inmore and Dasgupta, 1987, ch. 4) shows that if the per-round
ime discount factor is close to one, then the outcome of the
nique subgame perfect equilibrium is close to the Nash (1953)
argaining solution. Binmore et al. (1986) (see also Roth, 1989)
ubsequently replace the time preferences (assuming that players
re indifferent as to the timing of an agreement) with the risk
f breakdown after the rejection of each proposal. In this, they
rove that when the probability of breakdown converges to zero
he equilibrium converges to the Nash bargaining solution. Hart
nd Mas-Colell (1996) extend the risk-of-breakdown model to the
eneral setting of n-person cooperative games without transfer-
ble utility (NTU-games). They show that the limits of equilibrium
ayoffs are the Shapley value in TU-games, the Nash bargaining
olution in pure bargaining problems, and the consistent value in
TU-games. In the same paper (Section 6) the bargaining rules
re modified, also allowing the responders to leave the game after
breakdown. This is the setting that we consider here.
It is worth mentioning that this is an approximate imple-

entation program, as the value is obtained at the limit. This is
pposite to an exact implementation, in which the equilibrium
ayoffs coincide exactly with the value. An exact implementation
f the Nash bargaining solution is given in Howard (1992), among
thers. Pérez-Castrillo and Wettstein (2001) provide a bidding
echanism for the Shapley value where players first bid for the
ight to be the proposer. Variations of the bidding mechanism are
roposed in Ju and Wettstein (2009) to implement the Shapley,
he consensus and the equal surplus values; in van den Brink
nd Funaki (2015) to implement the discounted Shapley values;
nd in van den Brink et al. (2013) to implement the egalitarian
hapley values.
In this paper we follow the alternating random proposer bar-

aining approach. Hart and Mas-Colell (1996, Section 6) consider
general multilateral bargaining procedure that players follow to
ind cooperative agreements. This is a sequential, noncooperative
ame where the proposer is chosen at random at each step
nd players drop out of the game randomly after proposals are
ejected. In the general case, the proposer is not necessarily the
nly player to drop out after a proposal rejection: a respondent
an also do so. We present here the general bargaining rules of
he Hart and Mas-Colell model only for the symmetric case in
U-games:

Let (N, v) ∈ GN be a TU-game. In each round there is a set
S ⊆ N of active players and a proposer i ∈ S. In the first
round the active set is S = N . The proposer is chosen at
random from S, with all players in S being equally likely to
be selected. The proposer makes a feasible offer aS,i ∈ RS ,
i.e.

∑
j∈N aS,ij ≤ v(S). If all members of S accept the offer (they

are asked in a prespecified order) then the game ends with
these payoffs. If the offer is rejected by even one member of
S, the game moves on to the next round where, the set of
active players is again S with probability 0 ≤ ρ < 1, and with
probability 1−ρ, a breakdown will occur: In this case, a player
k is chosen at random from S to drop out, with probability αs if
k = i, and (1 − αs) / (s − 1) if k ∈ S\i.8 Thus, player k receives
a payoff of zero and the set of active players becomes S\k.

8 Obviously, α ∈ [0, 1] and α = 1.
s 1
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The result in Hart and Mas-Colell (1996) for this symmetric
ase is the following:

roposition 18 (Hart and Mas-Colell, 1996, Propositions 1 and 9).
et v ∈ G be a monotonic TU-game. If ρ < 1, then there is a unique
ubgame perfect (SP) equilibrium. The proposals corresponding to an
P equilibrium are always accepted and are characterized by:
(E.1) aS,ii (ρ) = v(S) −

∑
j∈S\i a

S,i
j (ρ) for each i ∈ S ⊆ N; and

(E.2) aS,ij (ρ) = ρaSj (ρ) + (1 − ρ)

[
αsa

S\i
j (ρ)

+
∑

k∈S\i\j
1−αs
s−1 aS\kj (ρ)

]
for each i, j ∈ S with i ̸= j, and each

⊆ N;

here aS (ρ) =
1
s

∑
j∈S a

S,j (ρ). These proposals are unique and
onnegative. Moreover, these expected payoffs

(
aS (ρ)

)
S⊆N are in-

ependent of ρ and satisfy

S
i =

1
s
∆αs|i (S, v)+

1
s

∑
k∈S\i

aS\ki , (i ∈ S) , (17)

here

αs|i (S, v) = αs∆
i (S, v)+

1 − αs

s − 1

∑
k∈S\i

∆k (S, v) ,

starting with ai = v(i), for all i ∈ N.

Different specifications of parameters αs, s ≥ 1, yield different
values.

Applying Theorem 3, we obtain the following equivalence:

Proposition 19. Formula (17) is equivalent to

aNi =

∑
S⊆N
iϵS

(n − s)! (s − 1)!
n!

∆αs|i (S, v) , (i ∈ N) . (18)

Thus, the payoff allocations
(
aS

)
S⊆N satisfying (18) is just the

argaining value φα .
Hence, the symmetric bargaining procedure of Hart and Mas-

olell yields a strategic support to every bargaining value φα on the
class of monotonic games. It is noteworthy that the parameters
(αs)s=1,2... which determine each bargaining value φα are exactly
he probabilities of the proposer being dropped after a breakdown
n the bargaining game.

. Discounted values

A discounted value is a particular value that also depends on a
pecific parameter, which is called the discount factor d ∈ [0, 1].
s examples, the discounted Shapley values Shd were introduced
n Joosten (1996), and considered in Driessen and Radzik (2003),
nd Radzik and Driessen (2016). This is a parametric family of
alues where the two extreme values are Sh1(v) = Sh(v) and
h0(v) = E(v). Moreover, it holds that Shd(v) = Sh(vd), where the
iscounted game vd is defined by vd(S) = dn−sv(S), for all S ⊆ N .
In Calvo and Gutiérrez-López (2016), it is shown that the

iscounted Shapley values can be obtained in the Hart and Mas-
olell bargaining model if the time cost factor δ ∈ [0, 1] is
onsidered. That is, players have preferences over the time at
hich the agreement is reached. In particular, the preferences
ver the amount x obtained at period t ∈ {0, 1, 2, . . .} can be
epresented by δtx. This is a very natural assumption, as the
ime cost is a factor that should be taken into account because
egotiations take place over time.9 Each round requires time, and

9 Given a rate of interest r > 0, the discount factor is equal to δ = 1/(1+ r).
104
assuming that time is costly, should be natural and that players
prefer to reach agreements at the beginning of bargaining.

The main result obtained in Calvo and Gutiérrez-López (2016)
is that when the risk of breakdown, (1 − ρ), and the time cost
factor, δ, are considered simultaneously, the subgame perfect equi-
libria of the Hart and Mas-Colell bargaining yields as average
payoffs a discounted Shapley value Shd, where

d =
δ (1 − ρ)

1 − δρ
.

In Calvo and Gutiérrez-López (2018) this approach has also
been extended to the discounted solidarity values.

In this section we show that these results can be reproduced
for all bargaining values. Thus, the discounted bargaining values
φα,d should be considered as the discounted values that appear
as soon as the time cost is considered in the bargaining process.

Definition 20. A value ξα,d on G is a discounted ELS-value if, and
nly if, there exists a sequence of parameters

((
αn
s

)n
s=1

)
n=1,2...

,
ith αn

1 = 1 and αn
s ∈ R for all n, s ∈ N, and a discount factor

∈ [0, 1] such that

α,d
i (N, v) =

∑
S⊆N
i∈S

(s − 1)!(n − s)!
n!

dn−s∆
αns |i
d (S, v) , (i ∈ N, v ∈ G) ,

(19)

here

αns |i
d (S, v) = αn

s∆
i
d (S, v)+

1 − αn
s

s − 1

∑
k∈S\i

∆k
d (S, v) , (S ⊆ N), (20)

and

∆i
d (S, v) = v(S) − dv(S\i), (i ∈ S) . (21)

Proposition 21. Let δ ∈ [0, 1] be a time cost factor and (N, v)
be a monotonic TU-game. If 0 ≤ ρ < 1, then there is a unique
SP equilibrium for each specification of the parameters (ρ, δ). The
proposals corresponding to an SP equilibrium are always accepted,
and they are characterized by:

(E.1) aS,ii = v(S) −
∑

j∈S\i a
S,i
j for each i ∈ S ⊆ N; and

(E.2) aS,ij = ρδaSj + (1 − ρ)

[
αsδa

S\i
j +

∑
k∈S\i\j

1−αs
s−1 δa

S\k
j

]
for

each i, j ∈ S with i ̸= j, and each S ⊆ N;

where aS =
1
s

∑
j∈S a

S,j. Moreover, these are unique, nonnegative
roposals whose payoffs

(
aS

)
S⊆N satisfy

S
i = d

⎡⎣1
s
∆αs|i (S, v)+

1
s

∑
k∈S\i

aS\ki

⎤⎦ + (1 − d)
v(S)
s

, (22)

for all i ∈ S ⊆ N, where

d =
δ (1 − ρ)

1 − δρ
.

Proof. The proof follows the same lines used in Proposition 9
in Hart and Mas-Colell (1996). It is only necessary to replace the
term ‘‘expected payoffs’’ by ‘‘discounted expected payoffs’’ and
the same arguments apply here too. Hence, we omit it. In order to
obtain (22), note that the proposer i ∈ S offers each other player
j ∈ S\i her discounted expected payoff in case of rejection, and
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he proposer takes all the surplus. Therefore,

S,i
i = v(S) −

∑
j∈S\i

⎛⎝ρδaSj + δ (1 − ρ)

×

⎡⎣αsa
S\i
j +

1 − αs

s − 1

∑
k∈S\i\j

aS\kj

⎤⎦⎞⎠
= δρaSi + (1 − δρ) v(S) − δ (1 − ρ) αsv(S\i) − δ (1 − ρ)

×
1 − αs

s − 1

∑
j∈S\i

∑
k∈S\i\j

aS\kj .

Note that∑
j∈S\i

∑
k∈S\i\j

aS\kj +

∑
j∈S\i

aS\ji =

∑
k∈S\i

v(S\k) ,

and

(1 − δρ) v(S) = (1 − δ) v(S) + δ (1 − ρ) v(S)
= (1 − δ) v(S) + δ (1 − ρ)

×

⎡⎣αsv(S) +

∑
k∈S\i

1 − αs

s − 1
v(S)

⎤⎦ .

Hence,

aS,ii = δρaSi + (1 − δ) v(S)

+δ (1 − ρ)

⎡⎣αsv(S) +

∑
k∈S\i

1 − αs

s − 1
v(S)

⎤⎦
− δ (1 − ρ) αsv(S\i) − δ (1 − ρ)

×
1 − αs

s − 1

⎡⎣∑
k∈S\i

v(S\k) −

∑
j∈S\i

aS\ji

⎤⎦
= δρaSi + (1 − δ) v(S) + δ (1 − ρ)∆αs|iv(S)

+δ (1 − ρ)
1 − αs

s − 1

∑
j∈S\i

aS\ji

herefore, the expected payoff of player i is

S
i =

1
s

⎛⎝δρaSi + (1 − δ) v(S) + δ (1 − ρ)∆αs|i (S, v)

+δ (1 − ρ)
1 − αs

s − 1

∑
j∈S\i

aS\ji

⎞⎠
+

1
s

∑
j∈S\i

⎛⎝ρδaSi + δ (1 − ρ)

⎡⎣αsa
S\j
i +

1 − αs

s − 1

∑
k∈S\i\j

aS\ki

⎤⎦⎞⎠ ,

nd then,

(1 − δρ) aSi = (1 − δ) v(S) + δ (1 − ρ)∆αs|i (S, v)

+δ (1 − ρ)
1 − αs

s − 1

∑
j∈S\i

aS\ji

+δ (1 − ρ)

⎡⎣∑
j∈S\i

αsa
S\j
i +

1 − αs

s − 1

∑
j∈S\i

∑
k∈S\i\j

aS\ki

⎤⎦
ote that∑

∈S\i

aS\ji +

∑
j∈S\i

∑
k∈S\i\j

aS\ki =

∑
j∈S\i

(s − 1) aS\ji ,

hen

1 − δρ aS = 1 − δ v(S) + δ 1 − ρ ∆αs|i S, v
( ) i ( ) ( ) ( )
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+ δ (1 − ρ)
∑
j∈S\i

aS\ji ,

nd dividing by (1 − δρ), finally gives

S
i =

δ (1 − ρ)

(1 − δρ)

⎡⎣1
s
∆αs|i (S, v)+

1
s

∑
j∈S\i

aS\ji

⎤⎦ +
1 − ρ

1 − δρ

v(S)
s

= d

⎡⎣1
s
∆αs|i (S, v)+

1
s

∑
k∈S\i

aS\ki

⎤⎦ + (1 − d)
v(S)
s

,

where

d =
δ (1 − ρ)

1 − δρ
.

which is Eq. (22). ■

It is clear that when δ = 1 (22) reduces to (17), and when
δ = 0 it holds that aSi = v(S)/s = Ei(S, v).

Moreover, if αs = 1, for all s ≥ 1,

aSi =
v(S)
s

+
d
s

⎡⎣∑
k∈S\i

aS\ki − v(S\i)

⎤⎦ ,

hich defines the payoff configuration of the discounted Shapley
alue, which was introduced by Joosten (1996).
If αs = 1/s, for all s > 1, then

S
i =

v(S)
s

+
d
s

⎡⎣∑
k∈S\i

aS\ki −
1
s

∑
k∈S

v(S\k)

⎤⎦ ,

which defines the payoff configuration of the discounted solidarity
value, considered in Calvo and Gutiérrez-López (2018).

Notice that the payoff configuration
(
aS

)
S⊆N defined recur-

sively by (22) depends on game v, and parameters (αs)s=1,2,... and
d. Thus, below we write aN (d, v) as the payoff vector satisfying
(22) and aN (v) as the payoff vector satisfying (17). By construc-
tion, the payoff vectors aS are linear and efficient. This implies the
following proposition.

Proposition 22. For every game v ∈ G, and parameters (αs)s=1,2,...
nd d, it holds that aN (d, v) = aN (vnd ), where vnd (S) = dn−sv(S), for
ll S ⊆ N.

roof. The one player case is straightforward. Assume that the
roposition holds for n − 1 players. By induction, aN\k

i (d, v) =
N\k
i

(
vn−1
d

)
. By definition of vn−1

d , it holds that vnd (S) = dvn−1
d (S)

or all S ⊆ N\k. By linearity, it follows that
N\k
i

(
vnd

)
= daN\k

i

(
vn−1
d

)
.

herefore,

N
i (d, v) =

v(N)
n

+
d
n

⎡⎣∑
k∈N\i

aN\k
i (d, v)−

∑
k∈N

αk|i(N)v(N\k)

⎤⎦
=
v(N)
n

+
1
n

⎡⎣∑
k∈N\i

daN\k
i (d, v)−

∑
k∈N

αk|i(N)dv(N\k)

⎤⎦
=
v(N)
n

+
1
n

⎡⎣∑
k∈N\i

daN\k
i

(
vn−1
d

)
−

∑
k∈N

αk|i(N)dv(N\k)

⎤⎦
=
vnd (N)

n
+

1
n

⎡⎣∑
k∈N\i

aN\k
i

(
vnd

)
−

∑
k∈N

αk|i(N)vnd (N\k)

⎤⎦
= aNi (v

n
d ) . ■
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The meaning of the above proposition is that, if players dis-
ount payoffs for possible delays in agreements, it may be conve-
ient to replace game v by the discounted game vd. The reason is
uite intuitive: Players are bargaining over agreements that can
e delayed in time. Initially, they wish to share the worth v(N),
aking into account what each player would obtain eventually if a
layer i drops out of the game and players bargain over v(N\i) in
he next period, sharing the expected discounted worth dv(N\i).
gain, what they expect to obtain from v(N\i) is conditional
n what they would obtain if a further player j drops out of
he bargaining in a subsequent period, and they bargain over
(N\{i, j}), with an expected discounted worth of d2v (N\{i, j}),
nd so on. Therefore, any coalition S ⊆ N of size s < n, needs
− s periods of time, dropping players one by one, to be reached.
ence, the expected discounted worth to be shared is dn−sv(S).

heorem 23. Let
(
aN

)
N⊂U be a sequence of payoff vectors satis-

ying (22). Then, it holds that aN = φα,d(N, v), for all N ⊂ U,
here φα,d is the discounted bargaining value associated to the
equence (αs)s=1,2..., with αs ∈ [0, 1], and discount factor d =

(1 − ρ) / (1 − δρ).

roof. This is an immediate consequence of Proposition 22 and
he fact that φα,d(N, v) = φα(N, vnd ). ■

Hence, the general (symmetric) bargaining procedure of Hart
nd Mas-Colell (1996, Section 6) yields a strategic support to every
iscounted bargaining value φα,d on the class of monotonic games,
here αs ∈ [0, 1], for all s > 1 with α1 = 1, and d =

(1 − ρ) / (1 − δρ).
In summary, we have introduced a parameter d ∈ [0, 1]

nto the model which can be interpreted as the cost of delay
greements in bargaining. That parameter depends on the time
ost δ and the breakdown probability (1 − ρ) simultaneously. As
his cost of delay vanishes (d → 1), the payoffs converge to
he bargaining value φα , and when the cost of delay increases
d → 0), the payoffs converge to the equal split value E.

cknowledgments

The authors would like to thank two anonymous referees for
heir helpful comments and suggestions. Emilio Calvo is grateful
or financial support from the Spanish Ministerio de Economía,
ndustria y Competitividad [Grant No. ECO2016-75575-R], from
he Spanish Ministerio de Ciencia, Innovación y Universidades
Grant No. PID2019-110790RB-100] and from the Generalitat Va-
enciana, Spain under the Prometeo Excellence Program [Grant
o. 2019/095]. Esther Gutiérrez-López is grateful for financial
upport from the Ministerio de Economía y Competitividad, Spain
Grant No. ECO2015-66803-P] and Ministerio de Ciencia e Inno-
ación, Spain [Grant No. PID2019-105291GB-I00].

eferences

inmore, K., Dasgupta, P., 1987. The Economics of Bargaining. Blackwell, Oxford.
inmore, K., Rubinstein, A., Wolinsky, A., 1986. The Nash bargaining solution in

economic modelling. Rand J. Econ. 17, 176–188.
an den Brink, R., Funaki, Y., 2009. Axiomatizations of a class of equal surplus

sharing solutions for TU-games. Theory and Decision 67, 303–340.
an den Brink, R., Funaki, Y., 2015. Axiomatization and implementation of

discounted Shapley values. Soc. Choice Welf. 45, 329–344.
an den Brink, R., Funaki, Y., Ju, Y., 2013. Reconciling marginalism with egalitari-

anism: consistency, monotonicity, and implementation of egalitarian Shapley
values. Soc. Choice Welf. 40 (3), 693–714.

alvo, E., 2008. Random marginal and random removal values. Internat. J. Game
Theory 37, 533–564.
106
alvo, E., Gutiérrez-López, E., 2016. A strategic approach for the discounted
Shapley values. Theory and Decision 80 (2), 271–293.

alvo, E., Gutiérrez-López, E., 2018. Discounted Solidarity Values. Discussion
Papers in Economic Behaviour 0418, University of Valencia, ERI-CES.

asajus, A., 2012. Solidarity and Fair Taxation in TU Games. Working Paper,
Universität Leipzig, Wirtschaftswissenschaftliche Fakultät, No. 111.

asajus, A., Huettner, F., 2014. On a class of solidarity values. European J. Oper.
Res. 236, 583–591.

hameni, C., 2012. Linear efficient and symmetric values for TU-games: sharing
the joint gain of cooperation. Games Econom. Behav. 74, 431–433.

hameni, C., Andjiga, NG., 2008. Linear, efficient and symmetric values for
TU-games. Econ. Bull. 3 (71), 1–10.

riessen, TS., Funaki, Y., 1991. Coincidence of and collinearity between game
theoretic solutions. OR Spektrum 13, 15–30.

riessen, TS., Radzik, T., 2003. Extensions of hart and mas-colell’s consistency
to efficient, linear, and symmetric values for TU-games. In: Petrosyan, LA,
Yeung, DWK (Eds.), ICM Millennium Lectures on Games. Springer, Heidelberg,
Germany, pp. 147–166, Volume dedicated to the international congress of
mathematicians, game theory and applications satellite conference, August
2002. 14–17, Quindao, China.

utiérrez-López, E., 2020. Axiomatic characterizations of the egalitarian soli-
darity values. Math. Social Sci. http://dx.doi.org/10.1016/j.mathsocsci.2020.
04.005, DOI information:.

art, S., Mas-Colell, A., 1989. Potential, value and consistency. Econometrica 57
(3), 589–614.

art, S., Mas-Colell, A., 1996. Bargaining and value. Econometrica 64, 357–380.
ernández-Lamoneda, L., Juarez, R., Sanchez-Sanchez, F., 2008. Solution without

dummy axiom for TU cooperative games. Econ. Bull. 3 (1), 1–9.
oward, JV., 1992. A social choice rule and its implementation in perfect

equilibrium. J. Econom. Theory 56, 142–159.
oosten, R., 1996. Dynamics, Equilibria and Values Dissertation. Maastricht

University.
u, Y., Borm, P., Ruys, P., 2007. The consensus value: a new solution concept for

cooperative games. Soc. Choice Welf. 28, 685–703.
u, Y., Wettstein, D., 2009. Implementing cooperative solution concepts: a

generalized bidding approach. Econom. Theory 39, 307–330.
awamori, T., 2016. Hart-mas-colell implementation of the discounted Shapley

value. Theory and Decision 81 (3), 357–369.
alawski, M., 2013. Procedural values for cooperative games. Internat. J. Game
Theory 42, 305–324.

aschler, M., Owen, G., 1989. The consistent Shapley value for hyperplane
games. Internat. J. Game Theory 18, 389–407.

aschler, M., Owen, G., 1992. The consistent Shapley value for games without
side payments. In: R, Selten (Ed.), Rational Interaction. Springer-Verlag, New
York, pp. 5–12.

oulin, H., 1985. The separability axiom and equal-sharing methods. J. Econom.
Theory 36, 120–148.

yerson, R., 1980. Conference structures and fair allocation rules. Internat. J.
Game Theory 9, 169–182.

ash, JF., 1953. Two-person cooperative games. Econometrica 21, 128–140.
owak, AS., Radzik, T., 1994. A solidarity value for n-person transferable utility

games. Internat. J. Game Theory 23, 43–48.
érez-Castrillo, D., Wettstein, D., 2001. Bidding for the surplus: a non-cooperative

approach to the Shapley value. J. Econom. Theory 100, 274–294.
adzik, T., Driessen, TS., 2016. Modeling values for TU-games using generalized

versions of consistency, standardness and the null player property. Math.
Methods Oper. Res. 83, 179–205.

oth, A., 1989. Risk aversion and the relationship between Nash’s solution and
subgame perfect equilibrium of sequential bargaining. J. Risk Uncertain. 2,
353–365.

ubinstein, A., 1982. Perfect equilibrium in a bargaining model. Econometrica
50, 97–109.

uiz, LM., Valenciano, F., Zarzuelo, JM., 1998. The family of least square values
for transferable utility games. Games Econom. Behav. 24, 109–130.

errano, R., 2005. Fifty years of the Nash program, 1953-2003. Investig. Econ.
29, 219–258.

errano, R., 2008. Nash program. In: Durlauf, S., Blume, L. (Eds.), The New
Palgrave Dictionary of Economics, second ed. McMillan, London.

hapley, LS., 1953. A value for n-person games. In: HW, Kuhn, AW, Tucker (Eds.),
Contributions To the Theory of Games II. In: Annals of Mathematics Studies,
vol. 28, Princeton University Press.

prumont, Y., 1990. Population monotonic allocation schemes for cooperative
games with transferable utility. Games Econom. Behav. 2, 378–394.

tähl, I., 1972. Bargaining Theory. Economics Research Unit, Stockholm.
u, G., Dai, H., Hou, D., Sun, H., 2016. A-potential function and a non-cooperative

foundation for the solidarity value. Oper. Res. Lett. 44, 86–91.

http://refhub.elsevier.com/S0165-4896(21)00059-7/sb1
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb2
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb2
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb2
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb3
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb3
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb3
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb4
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb4
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb4
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb5
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb5
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb5
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb5
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb5
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb6
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb6
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb6
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb7
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb7
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb7
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb8
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb8
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb8
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb9
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb9
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb9
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb10
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb10
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb10
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb11
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb11
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb11
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb12
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb12
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb12
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb13
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb13
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb13
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb14
http://dx.doi.org/10.1016/j.mathsocsci.2020.04.005
http://dx.doi.org/10.1016/j.mathsocsci.2020.04.005
http://dx.doi.org/10.1016/j.mathsocsci.2020.04.005
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb16
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb16
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb16
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb17
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb18
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb18
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb18
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb19
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb19
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb19
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb20
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb20
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb20
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb21
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb21
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb21
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb22
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb22
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb22
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb23
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb23
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb23
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb24
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb24
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb24
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb25
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb25
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb25
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb26
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb26
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb26
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb26
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb26
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb27
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb27
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb27
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb28
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb28
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb28
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb29
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb30
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb30
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb30
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb31
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb31
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb31
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb32
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb32
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb32
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb32
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb32
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb33
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb33
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb33
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb33
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb33
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb34
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb34
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb34
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb35
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb35
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb35
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb36
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb36
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb36
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb37
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb37
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb37
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb38
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb38
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb38
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb38
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb38
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb39
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb39
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb39
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb40
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb41
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb41
http://refhub.elsevier.com/S0165-4896(21)00059-7/sb41

	Recursive and bargaining values
	Introduction
	Recursive and bargaining values
	Axiomatic approach
	Strategic approach
	Discounted values
	Acknowledgments
	References


