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Keywords: This study analyses the effect of non-trading periods on the forecasting ability of S&P500 index
Holiday effect range-based volatility models. We find that volatility significantly diminishes on the first trading
Weekend effect day after holidays and weekends, but not after long weekends. Our findings indicate that models
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that include autoregressive terms that interact with dummies that allow us to capture changes in
volatility levels after interrupting periods provide greater explanatory power than simple auto-
regressive models. Therefore, the shorter the length of the non-trading periods between two
JEL classification: tradu}g days, the.hlgher the overestimation of the volatility if this effect is not considered in
cs3 volatility forecasting.
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1. Introduction

Volatility is one of the key concepts in the financial literature. The estimation of volatility is crucial for analysts, portfolio
managers and professional traders. A large number of academic studies have focused on the study of different volatility models for
decades, such as GARCH and stochastic volatility models. However, following Chou, Chou, and Liu (2015), both models are in-
accurate and inefficient because they are based on the closing prices of the reference period, ignoring what happens to the evolution
of the prices throughout the trading session. Fiess and MacDonald (2002) note that the difference between the opening and closing
prices serves as a measure of the intradaily trend, while the difference between the high and low prices marks the intradaily trading
range and represents a measure of volatility. Parkinson (1980), Garman and Klass (1980) and Rogers, Satchell, and Yoon (1994),
among others, have demonstrated theoretically that range-based volatility estimators are more efficient than return-based volatility
estimators. In addition, Alizadeh, Brandt, and Diebold (2002) show theoretically, numerically, and empirically that range-based
volatility measures are highly efficient and approximately Gaussian and are robust to microstructure noise. Specifically, several
papers have highlighted empirically the superior forecasting performance of range-based volatility models when compared to tra-
ditional close-to-close volatility models in the stock market. Li and Weinbaum (2001) find overwhelming support for the extreme
value volatility estimators for the S&P 500 and S&P100 stock indices, in terms of bias and efficiency. Pandey (2002) obtains a similar
result for the S&P CNX Nifty. Shu and Zhang (2006) investigate, with S&P 500 index data, the relative performance of various
historical volatility estimators that incorporate daily trading range and conclude that all perform very well when an asset price
follows a continuous geometric Brownian motion. Furthermore, they observed that the range estimators are fairly robust toward
microstructure effects. Li and Hong (2011) employ weekly observations of S&P 500 to show the superiority of range-based auto-
regressive models to forecast the future volatility relative to GARCH models. Miralles-Marcelo, Miralles-Quirés, and Miralles-Quirds
(2013) analyse the forecasting ability of the CARR model proposed by Chou (2005) using the S&P 500. Their results show that the
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Parkinson model is better for upward trends and volatilities which are higher and lower than the mean, while the CARR model is
better for downward trends and mean volatilities. Wang, Hsu, and Liu (2014) demonstrate that the introduction of range volatility
estimators into the conditional variance of GARCH (1,1) improves the out-of-sample volatility forecasts of Nasdaq-100 stock index
returns with a daily horizon. A similar result is obtained by Molnar (2016), who conducted an empirical analysis on stocks, stock
indices and simulated data that shows that the range-GARCH (1,1) model performs significantly better than the standard GARCH
(1,1) model both in terms of in-sample fit and out-of-sample forecasting ability. Petnehazi and Gall (2018) use data from all current
constituents of the Dow Jones Industrial Average index to investigate the predictability of several range-based stock volatility es-
timators by applying recurrent neural networks and find that changes in the values of range-based estimators are more predictable
than those of the estimators using only daily closing values. Finally, Miralles-Quirés, Miralles-Quirés, and Nogueira (2019) analyse
the out-of-sample performance of different portfolio strategies using the returns and volatility forecasts from a VAR-ADCC-GARCH
approach and find a significant improvement in performance when returns standardised by the Garman—Klass volatility estimator are
used as endogenous variables in the said approach.

The above mentioned papers analyse the data as regular series, ignoring the role of non-trading periods on market volatility.
However, an increasing number of papers have focused on the analysis of the influence of interrupting periods on volatility. On the
one hand, there are some papers that address non-trading periods in a novel approach that is based on the use of data from related
markets that are open to forecast volatility in a market that is closed. Todorova and Soucek (2014) compare different approaches to
model the information flow arising during the closed market time for enhancing the predictive power of the standard volatility
forecasting HAR model for the Australian market. They perform this analysis by combining the Australian overnight returns with
realized volatility estimates of related assets from other markets that are open when the Australian exchange is closed. In a similar
way, Jayawardena, Todorova, Li, and Su (2016) adopt this new forecasting approach to predict Australian stock volatility by using
squared overnight returns, pre-open volatility of the same asset and realized volatilities of related assets from other markets.

On the other hand, other authors deal with non-trading periods using data from the same market. Hansson and Hordahl (2005),
estimate the conditional variance of daily Swedish OMX-index returns from 1984 to 1996 with stochastic volatility models and
GARCH models by allowing for weekend and holiday effects in the variance. They find that although the in-sample models that
incorporate weekend/holiday effects outperform models that do not allow for these effects, the volatility forecasting ability does not
increase when the effects are considered. Tsiakas (2010) analyses the economic gains of trading stocks around non-trading periods in
the US stock market from 1962 to 2005 and introduces a stochastic volatility model that distinguishes between weeknights, week-
ends, holidays and long weekends, and detects higher close-to-close volatility both in post-holidays and post-long weekends in
comparison to pre-holidays and pre-long weekends, respectively. In the same line, Wang and Hsiao (2010) examine the S&P 500 and
FTSE 100 indices from 1997 to 2008 using an adaptation of the GJR (1,1) model proposed by Glosten, Jagannathan, and Runkle
(1993), including the effects of weekends, weekday holiday periods, and half-day trading periods. They observe for both indices that
only weekday holiday periods and half-day trading periods have significant positive and negative impacts on the determination of the
expected daily volatility. Finally, Ly6csa and Molnédr (2017) have investigated the effect of non-trading days on heterogeneous
autoregressive volatility models in equity markets. They observe that realized volatility significantly decreases after weekends and
suggest incorporating an autoregressive coefficient into the models that interacts with a dummy that identifies whether a trading day
follows a weekend.

As we have shown, a growing body of financial literature studies how to model and forecast volatility of time series data con-
taining interrupting periods. This study aims to contribute to this research area by analysing volatility after non-trading periods using
range-based volatility measures, taking into account not only weekends, but also holidays and long weekends. As far as we know, no
study has analysed the influence of all these interrupting periods on the forecasting ability of range-based volatility models, so it is
our purpose herein to shed some light on how these models are affected when these effects are considered. The results obtained
indicate significant decreases in the level of volatility, especially after holidays; suggesting the importance of differentiating the type
of interrupting period when estimating range-based volatilities. The remainder of the work is organised as follows. Section 2 explains
briefly the range-based volatility estimators used in this study. Section 3 describes the data. Section 4 discusses the methodology and
presents the main empirical findings. Section 5 concludes.

2. Daily volatility estimators

Rogers et al., 1994, Li and Weinbaum (2001), and Chou et al. (2015), among others, have carried out comprehensive literature
reviews on extreme value volatility estimators." In this section, we briefly revise the range-based measures of volatility used in this
study, as well as their most important characteristics. In general, the main advantage of these measures regarding the close-to-close
standard deviation is that they take into account some kind of intraday information and, as a consequence, even if two consecutive
closing prices were the same, these measures could detect high intraday volatility.

The first range-based volatility measure we calculate is the estimator proposed by Parkinson (1980), whose main characteristic is
that it only uses the maximum and the minimum price of the trading day. The expression of the Parkinson measure in terms of
variance is the following:

1See Chou et al. (2015) for an updated and complete literature review of range-based volatility models, including range-based multivariate
volatility models and realized ranges and their application in finance, such as value at risk estimation, hedge, spillover effect, portfolio management
and microstructure issues.



A.-C. Diaz-Mendoza and A. Pardo North American Journal of Economics and Finance 52 (2020) 101124

1 m Y
o2, = _(Ln (_))
4Ln(2) I; 1)

where h, and [, correspond to the highest and the lowest daily price on day t, respectively. Following Chou et al. (2015), the efficiency
of the Parkinson (1980) estimator intuitively comes from the fact that the intraday price range gives more information regarding the
future volatility than two arbitrary points such as the closing prices.

The second measure we estimate is the Garman and Klass (1980) volatility estimator. This measure is considered an extension of
that proposed by Parkinson (1980) and is characterised by including the maximum, the minimum, the opening, and the closing prices
of the trading session. The expression of the Garman-Klass estimator is as follows:

1 h 2 2
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where o, corresponds to the opening price of the session on day ¢, and c, corresponds to the closing price of the session on day t.

Both Parkinson and Garman-Klass are estimators derived under the assumption of a driftless world. Rogers and Satchell (1991)
extended Parkinson (1980) by allowing the geometric Brownian motion to have a non-zero drift term, and obtain a measure that is
similar to the Garman-Klass measure in terms of efficiency. The expression of Rogers-Satchell is as follows:

cr,%s’[ =Ln (ﬁ)Ln (E)Ln (l—t)Ln (h)
¢ o ¢ o 3)

This measure presents a problem when the maximum or the minimum prices of the session coincide with the opening or closing
prices. Furthermore, this measure, like the two previous ones, does not address jumps during the night, and therefore underestimates
volatility.

Finally, the last volatility measure we have calculated is the Garman-Klass Yang-Zhang Extension. It is a merger of the Garman-
Klass measure (1980) and that of Yang-Zhang (2000). This volatility estimator takes into account the jumps during the night,
including in its formulation the closing price of the previous day. The expression of the Garman-Klass Yang-Zhang Extension is as
follows:

2 2 2
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where ¢, ; corresponds to the closing price on day t —1.

3. Data

Data from the Thomson Reuters portal have been used. Opening price, closing price, and the highest and the lowest prices traded
during the daily session have been extracted for the index S&P 500 from January 1, 1993 to December 31, 2017. This sample period
presents multiple scenarios that encompass periods of growth and economic crises. We have observed that the highest and lowest
prices recorded by the Thomson Reuters database only make reference to prices traded throughout the session. Therefore, if the
opening or closing prices are higher or lower than the highest and the lowest prices, the daily observations of the maximum and the
minimum prices have been corrected in order to avoid contradictions between prices, i.e. if the closing price is greater than the
highest price, then this price has been replaced by the closing price.

The original sample has been divided into two subsamples: from January 1, 1993 to December 31, 2015 and from January 1, 2016
to December 31, 2017. The first one has been used for in-sample estimations and the second one for out-of-sample forecast com-
parisons. Based on daily estimates, we have calculated the sample mean for each variance estimator where E refers to the method
used to calculate the daily variance estimator, i.e., E = P, GK, RS and GKYZ. Panel A of Table 1 reports summary statistics for all the
variance measures used in the analysis. The Parkinson and Roger-Satchell volatility estimators exhibit the highest and the lowest
sample means, respectively. The corresponding annualized volatilities (AV) are around 14% and can be considered as normal values
over long-periods for the S&P 500. The range of all the daily estimators is high in comparison with their means, and there are
important differences between the means and the medians in all the cases. It is important to note the role of serial correlation. The
first-order autocorrelation coefficients range from 0.357 to 0.597 and they are significant and positive at the 1% level in all the
measures. Following Lyécsa and Molnar (2017), if we assume the same dependence throughout the week, but we observe and ignore
a difference in volatility after the interrupting period, we will underestimate the dependence between weekdays and overestimate the
dependence after non-trading periods. Specifically, the in-sample period in our study contains 5791 range-based daily estimates in
which there are 51 holidays, 1047 weekends, and 153 long weekends. This implies that 21.6% of the trading days are interrupted by
more than one day.

Panel B of Table 1 reports the daily sample means after each type of interrupting period. We have considered three cases of non-
trading days: one day without trading (hereafter holiday), two consecutive days without trading (weekend), and three or more
consecutive days without trading (long weekend). All range-based estimators show low sample means after the three non-trading
periods considered, except for Parkinsonis. Panel B of Table 1 also provides the difference between the mean after each type of
interrupting period and the sample mean. The results obtained indicate notable decreases in the level of volatility, about —25%,
especially after holidays. However, in order to determine whether any of these differences between these mean values are statistically
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Table 1

Descriptive Statistics.
Panel A 5% Min Max AV m p(1)
PARK 0.964 0.011 42.884 15.52 0.409 0.597
GK 0.839 0.001 59.181 14.48 0.381 0.537
RS 0.820 0.001 64.073 14.32 0.333 0.357
GKYZ 0.854 0.001 59.887 14.61 0.386 0.550
Panel B 3‘%‘1{ %H—E 3§'W %W —E 3%,1, %1, —E
PARK 0.730 —23.4 0.974 1 1.046 8.2
GK 0.560 -27.9 0.765 -7.4 0.781 —5.8
RS 0.516 —30.4 0.716 —-10.4 0.707 —11.3
GKYZ 0.600 —25.4 0.782 —-7.2 0.817 —-3.7

Panel A reports summary statistics for all the variables used in the analyses. PARK, GK, RS, and GKYZ denote the measures proposed by Parkinson
(1980), Garman and Klass (1980), Roger and Satchell (1991), and Yang and Zhang (2000), respectively. 3§is the sample mean for each variance
estimator; Min and Max are the minimum and the maximum of the daily variance estimator; AV indicates the annualized volatility; m is the median;
and p(1) is the first-order autocorrelation coefficient. Panel B presents the means for each E variance estimator after each type of interrupting period.
6%y indicates the mean of the first trading day after a holiday; 87, indicates the mean of the first trading day after a weekend; 67 ; indicates the
mean of the first trading day after a long weekend, and % indicates the percentage difference compared to the sample mean of Panel A. All variance

estimators are scaled up by 10E +4 The sample period goes from January 1, 1993 to December 31, 2015 in which there are 51 holidays, 1,047
weekends, and 153 long weekends.

significant, the following dummy variable regression model has been estimated for each variance estimator:
Ghi=a+ Byt t—1) =214+ By It t—1) =31+ B [I(tt—1) >3]+ €, (5)

where the dummy variable [I (¢, t — 1) = 2] takes the value 1 if the difference between two consecutive trading days is 2 (holiday) and
zero otherwise; [I (¢, t — 1) = 3] takes the value 1 if the difference between two consecutive trading days is 3 (weekend) and zero
otherwise; and [I(t, t — 1) > 3] takes the value 1 if the difference between two consecutive trading days is higher than 3 (long
weekend) and zero otherwise.

The series are analysed by means of the least squares method taking into account both heteroskedasticity and autocorrelation
problems in the error term by using the Newey-West estimator for the variancecovariance matrix. A negative and significant coef-
ficient in whatever dummy would indicate that the volatility after the corresponding interrupting period is significantly lower than
the volatility on a trading day that is not preceded by one or more holidays. Table 2 presents the results of the estimation for each E
variance estimator considering the three types of non-trading periods. All the dummy coefficients that are significant are negative.
Coefficients of the dummy variables that capture the difference in the level of the variances after holidays and weekends (8 and )
are negative and significantly different from zero in GK, RS and GKYZ at the usual significance levels. It is interesting to note that the
variance after long weekends does not diminish in any estimator. Therefore, in general, both outcomes of Table 1 and 2 imply that in
order to study the fall in volatility after a non-trading period, it is recommendable to differentiate the type of interrupting period:
holiday, weekend or long weekend.

Table 2
Volatility after non-trading periods.
PARK GK RS GKYZ

Parameter Estimation t-statistic Estimation t-statistic Estimation t-statistic Estimation t-statistic
a 0.9610 13.6747°¢ 0.8611 13.2261¢ 0.8510 13.0934°¢ 0.8746 13.2319°¢
Bu —0.2307 —1.3948 —0.3007 —2.3802" —0.3352 —2.6837¢ —0.2750 —1.8876%
Bw 0.0133 0.2235 —0.0963 —2.2816" —0.1352 —2.4737° —-0.0927 —-2.2138°
B 0.0849 0.6146 —0.0800 —0.8518 —0.1437 —1.3543 —0.0575 —0.5834
R? 0.0001 0.0005 0.0008 0.0005
AlIC —13.9708 —14.1899 —13.9916 —14.1665
Sc —13.9662 —14.1853 —13.9870 —14.1619
HQC —13.9692 —14.1883 —13.9900 —14.1649

This table presents the estimates of the dummy regression variable model proposed in Eq. (5) for each E variance estimator with the Newey and West
correction. The estimations have been multiplied by 10E+5 to improve readability. PARK, GK, RS, and GKYZ denote the measures proposed by
Parkinson (1980), Garman and Klass (1980), Roger and Satchell (1991), and Yang and Zhang (2000), respectively. By, B, and 3, are the coefficients
of the dummy variables that identify the first trading day after a holiday, a weekend, and a long weekend. Superscripts a, b, and c indicate statistical
significance at the 10%, 5%, and 1% significance level, respectively. R? denotes the coefficient of determination; AIC stands for the Akaike in-
formation criterion; SC is the Schwarz criterion; and HQC denotes the Hannan-Quinn criterion. The sample period goes from January 1, 1993 to
December 31, 2015 in which there are 5791 observations.



A.-C. Diaz-Mendoza and A. Pardo North American Journal of Economics and Finance 52 (2020) 101124

4. Methodology and results
4.1. Methodology

This paper follows the idea proposed by Lydcsa and Molnar (2017) to address non-trading periods but applied to range-based
volatility measures. As we have previously mentioned, Ly6csa and Molnér (2017) study the realized volatility in the S&P 500 both on
consecutive trading days and after weekends, and observe that realized volatility significantly decreases after weekends. Further-
more, they document that realized volatility series present a high first-order autocorrelation coefficient. Combining these empirical
facts, they suggest that if we ignore the difference in volatility after weekends and assume the same dependence throughout the week,
we will underestimate the dependence in volatility between weekdays and overestimate the dependence in volatility between Friday
and Monday. To cope with this problem, they suggest incorporating an autoregressive coefficient into the heterogeneous auto-
regressive volatility model that interacts with a dummy that identifies whether or not a trading day follows a weekend. However,
given the outcomes obtained in Table 1 and 2, unlike Ly6csa and Molnar (2017), we have defined three dummy variables that identify
whether a trading day follows a holiday, a weekend or a long weekend. More specifically, for each range-based volatility estimator,
we have estimated two volatility models. The first one is an autoregressive model (AM) in which each E volatility estimator is a linear
function of p past lags:

P

of.=a+ z /%GEZJ_[. + &5y

i=1 6)

The second model (AMD) takes into account p autoregressive components and three first-order autoregressive coefficients that

interact with the three dummies described in section 3 in order to capture volatility changes that can appear after different non-
trading periods:

OR,=o+ Z '81"7;.:_1 + VyOp I t = 1) =2] + %yop It t — 1) =3] + y08,, [t t —1) >3] + & -
i=1
Note that this model allows autoregressive coefficients to differ between days following holidays, weekends, long weekends, and
days following a single trading day if the difference is 1.
Then, only for the best AM and AMD estimated models, we have calculated the forecast error by comparing the forecasted
volatility to actual volatility. Comparison of the forecast techniques takes place from January 1, 2016 to December 31, 2017.

4.2. Results

Tables 3 and 4 present the in-sample estimates of AM and AMD volatility models. These regression models have also been
estimated using both ordinary least squares and the Newey and West correction that accounts for heteroskedasticity and serial
correlation problems. The number of lags has been determined using Akaike info criterion (AIC), the Schwarz criterion (SC), and the
Hannan-Quinn criterion (HQC). The chosen AM and AMD models have been specified by introducing a five-order autoregressive
process.

Table 3
Autoregressive Models.
PARK GK RS GKYZ

Parameter Estimation t-statistic Estimation t-statistic Estimation t-statistic Estimation t-statistic
a 1.59E-05 3.2229¢ 1.51E-05 3.5072¢ 2.05E-05 3.8259¢ 1.50E-05 3.4981¢
B 0.3144 5.8661°¢ 0.2575 6.6442¢ 0.1451 3.0159¢ 0.2659 7.0788¢
B2 0.1313 2.7834¢ 0.1362 3.4003¢ 0.1566 4.1616° 0.1393 3.5039¢
Bs 0.1183 2.2306" 0.1032 2.2754° 0.0546 1.0076 0.1019 2.1347°
Ba 0.1462 2.7131¢ 0.2086 2.0735" 0.2438 2.0921° 0.2086 2.0930°
Bs 0.1248 1.7780% 0.1150 2.0844° 0.1497 3.2919° 0.1085 1.9514%
R? 0.4584 0.4144 0.2816 0.4249
Adj—R2 0.4579 0.4139 0.2810 0.4244
AIC —14.5824 —14.7230 —14.3201 -14.7177
SC —14.5755 —14.7161 —14.3132 —14.7108
HQC —14.5800 —14.7206 —14.3177 —14.7153

This table presents the estimates of the autoregressive model with the Newey and West correction proposed in Eq. (6) for each E variance estimator.
PARK, GK, RS, and GKYZ denote the measures proposed by Parkinson (1980), Garman and Klass (1980), Roger and Satchell (1991) and Yang and
Zhang (2000), respectively. Superscripts a, b, and c indicate statistical significance at the 10%, 5%, and 1% significance level, respectively. R?
denotes the coefficient of determination; Adj—R2 indicates the adjusted coefficient of determination; AIC stands for the Akaike information criterion;
SC is the Schwarz criterion; and HQC denotes the Hannan-Quinn criterion. The sample period goes from January 1, 1993 to December 31, 2015 in
which there are 5,791 observations.
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Table 4
Autoregressive Models considering non-trading periods.
PARK GK RS GKYZ

Parameter Estimation t-Statistic Estimation t-Statistic Estimation t-Statistic Estimation t-Statistic
a 1.52E-05 3.1638°¢ 1.38E-05 2.7187¢ 1.92E-05 3.0570°¢ 1.36E-05 2.7649°¢
B 0.3044 5.9890°¢ 0.3124 5.2758°¢ 0.1955 5.9975°¢ 0.3181 5.2563¢
B2 0.1178 2.5377¢ 0.1529 4.5276°¢ 0.1725 5.0603¢ 0.1538 4.6501°¢
Bs 0.1269 2.5374°¢ 0.0928 1.7272% 0.0485 0.7930 0.0922 1.6524%
B4 0.1492 2.7064¢ 0.2008 2.1527° 0.2398 2.1400° 0.2001 2.1676°
Bs 0.1320 1.7686" 0.1248 2.2571° 0.1555 3.8794¢ 0.1186 2.1367°
Yu —0.9286 —2.7941¢ —1.0114 —2.9341¢ —0.8819 —-2.1107° —0.9574 —2.6611¢
Yw 0.0672 1.0357 —0.2153 -2.1270° —0.2017 —1.5793 —0.1981 —2.0983"
YL 0.3282 1.84117 0.0181 0.0910 —0.1520 —0.5339 0.0464 0.2262
R? 0.4637 0.4277 0.2920 0.4365
Adj-R? 0.4630 0.4269 0.2910 0.4358
AIC —14.5913 —14.7450 —14.3335 —14.7372
SC —14.5809 —14.7347 —14.3232 —14.7269
HQC —14.5877 —14.7414 —14.3299 —14.7336

This table presents the estimates of the autoregressive model with the Newey and West correction proposed in Eq. (7) for each E volatility estimator.
PARK, GK, RS, and GKYZ denote the measures proposed by Parkinson (1980), Garman and Klass (1980), Roger and Satchell (1991) and Yang and
Zhang (2000), respectively. Superscripts a, b, and c indicate statistical significance at the 10%, 5%, and 1% significance level, respectively. R?
denotes the coefficient of determination; Adj-R? indicates the adjusted coefficient of determination; AIC stands for the Akaike information criterion;
SC is the Schwarz criterion; and HQC denotes the Hannan-Quinn criterion. The sample period goes from January 1, 1993 to December 31, 2015 in
which there are 51 holidays, 1047 weekends, and 153 long weekends.

The results for the estimation of Eq. (6) are presented in Table 3. The constant and all the autoregressive coefficients of each E
volatility estimator are statistically significant at the conventional levels, confirming the stylised fact known as persistence in vo-
latility (all B parameters are positive and significant). The coefficients of the lagged variables in the AM models decreased until lag 3
to increase again in lag 4. In general, the estimated models exhibit a high predictive power, with an adjusted R? that ranges from 28%
to 45%.

Table 4 presents the regression results for Eq. (7). The adjusted R* in AMD models slightly increases and the AIC, SC, and HQC
criteria decrease again in relation to the AM models presented in Table 3. The pattern observed for the (3 parameters is similar to that
observed in Table 3 for all the models. However, the new autoregressive coefficients for observations that follow a holiday (y,,) are
significant and negative in all the models. Furthermore, the coefficients for trading days that follow a weekend (y,,)are significant and
negative for GK and GKYZ measures but they are, in absolute terms, lower than those corresponding to post-holidays. As usual,
volatility diminishes after holidays and weekends but, surprisingly, not after long weekends. In this case, volatility rises (PARK
measure) or does not change (the rest of the estimators). These findings are in line with the reduction of volatility levels observed in
means after non-trading days (see Table 1), and suggest the importance of differentiating the type of interrupting period when
estimating range-based volatilities.

In order to give more robustness to our findings, we have estimated several methodological approaches. Firstly, Kambouroudis
and McMillan (2015) show that for the majority of the markets, long in-sample periods are not necessary in order to produce the most
accurate forecasts supporting the practitioners’/investors’ view. To provide additional strength to our results, we have re-estimated
all the models, eliminating 1000 observations (approximately four years of data). The magnitude and significance of the coefficients
estimated with the shorter in-sample period is almost identical to those reported in Tables 3 and 4, and, therefore, they are omitted
for the sake of brevity. Secondly, given that the data-generating process is unknown, we have calculated the simple average of the
four range-based estimators and performed a dummy regression model taking the average as the dependent variable. We have
observed significant and negative decreases in the volatility after weekends. Thirdly, as modelling variance can lead to results
sensitive to outliers, to make our results more robust we have estimated the model applying Weighted Least Squares where the
weights are reciprocal to the dependent variable (see Clement and Preve, 2019). The results obtained are in accordance with those
presented in Table 4, confirming that volatility decreases only after holidays and weekends.?

4.3. Forecast evaluation

Out-of-sample forecast comparisons are made using additional data from January 1, 2016 to December 31, 2017. The volatility
forecasting accuracy has been evaluated through the analysis of different loss criteria such as the Mean Squared Error (MSE), the
Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE). The model with the lowest values for each loss
criterion will be the best predictor of volatility. Furthermore, we have calculated the decomposition of the Mean Squared Forecast
Error into bias, variance and covariance proportions. In this case, the best model is that with the lowest bias and variance proportions

2 The results of these analyses are not included for the sake of brevity, but they are available from the authors upon request.
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Table 5
Out-of-sample forecast performance of competing models.
Panel A: AM Models MSE MAE MAPE BIAS VARIANCE COVARIANCE
PARK 0.0158 2.5384 2.7396 0.0801 0.1697 0.7502
GK 0.0152 2.3863 2.5627 0.0678 0.1877 0.7445
RS 0.0302 2.9906 7.2654 0.0595 0.2536 0.6869
GKYZ 0.0151 2.4296 2.0289 0.0701 0.1683 0.7617
Panel B: AMD Models MSE MAE MAPE BIAS VARIANCE COVARIANCE
PARK 0.0166 2.5395 2.6694 0.0744 0.1225 0.8030
GK 0.0152 2.3391 2.3890 0.0586 0.1386 0.8027
RS 0.0301 2.9356 7.0035 0.0546 0.2160 0.7294
GKYZ 0.0151 2.4052 1.9114 0.0618 0.1207 0.8174
Panel C: DM test MSE p-value MAE p-value MAPE p-value
PARK —1.0110 0.3120 —0.0405 0.9677 6.6677 0.0000
GK —0.0636 0.9493 2.2435 0.0249 7.5998 0.0000
RS 0.0635 0.9494 2.7011 0.0069 2.3909 0.0168
GKYZ —0.0984 0.9216 1.1504 0.2500 6.0293 0.0000

Panels A and B present the statistics of the out-of-sample forecast comparisons for each E volatility estimator. PARK, GK, RS, and GKYZ denote the
measures proposed by Parkinson (1980), Garman and Klass (1980), Roger and Satchell (1991) and Yang and Zhang (2000), respectively. MSE is the
Mean Squared Error and figures have been multiplied by 10E+7 to improve readability; MAE is the Mean Absolute Error and figures have been
multiplied by 10E+5 to improve readability; MAPE is the Mean Absolute Percentage Error; BIAS, VARIANCE and COVARIANCE are expressed in
percentage terms and have been calculated from the decomposition of the Mean Squared Forecast Error into Bias, Variance and Covariance pro-
portions. Panel C provides the statistic and p-value of the Diebold and Mariano tests (DM test) to compare forecasts between models AM and AMD
using different loss criteria (MSE, MAE and MAPE, respectively). The out-of-sample period goes from January 1, 2016 to December 31, 2017.

and with the majority of the error concentrated in the covariance proportion. In addition, Table 5 provides the Diebold and Mariano
(1995) test (DM test) for equal predictive accuracy between the AM and AMD models for each volatility estimator. Given the actual
series of volatility and the two competing predictions, DM tests the null hypothesis of equal accuracy, applying different loss criteria.
Specifically, the statistic tests that the mean difference between each loss criterion for the two predictions is zero.

Table 5 reports the out-of-sample forecast evaluation results. The MSE coefficient diminishes in the AMD models in all the cases
except for the Parkinson model, in which it slightly increases. The values of MAE and MAPE are the same or lower in the AMD model
when compared with the AM model. DM tests using MSE as the loss function do not show differences between the competing models.
However, using MAE or MAPE criteria, DM tests suggest that the AMD models provide superior forecasts of volatility than the AM
models. Furthermore, the decomposition of the Mean Squared Forecast Error in all the AMD models tends to concentrate most of the
inequalities between the forecasted and the actual series in the covariance proportions, and, consequently, tends to reduce the bias
and the variance proportions, suggesting that AMD models outperform AM models in predicting volatility. Therefore, Table 5 sup-
ports the conclusion that the range-based autoregressive volatility models that incorporate the effect of non-trading periods provide
more accurate forecasts than the corresponding models that do not incorporate these effects under every evaluation criterion for all
the volatility estimators. As a consequence, out-of-sample analysis confirms that the impact of the type of interrupting period is
relevant to volatility forecasting.

5. Conclusions

This study investigates the effect of non-trading periods on the measurement of the volatility of the S&P 500 index by using range-
based autoregressive volatility models during the period 1993 to 2015. It shows the importance of considering the interrupting
periods in several volatility estimators. Volatility significantly diminishes on the first trading day after a holiday or a weekend but,
surprisingly, this decrease in volatility is not observed on the first trading day after a long weekend. On these days, volatility rises or
remains at the same level. Out-of-sample findings indicate that volatility models that introduce autoregressive coefficients of vola-
tility estimators that interact with dummies in order to capture volatility changes that appear after holidays and weekends perform
better than simple autoregressive models in forecasting volatility. Therefore, the shorter the length of the non-trading periods be-
tween two non-consecutive trading days, the higher the overestimation of the volatility if this effect is not considered in volatility
forecasting. The forecasting improvement detected in this study may be relevant for subsequent research on portfolio allocation
analysis or when predicting Value-at-Risk.
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