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Abstract—An accurate and efficient formulation is presented for the
electromagnetic analysis of dielectric waveguide gratings under plane-
wave conical incidence. An arbitrary number of dielectric bars can be
placed inside each one-dimension periodic cell, including the effect of
dielectric losses. The reflectance of a dielectric waveguide grating under
conical incidence is compared with theoretical results presented by
other authors, finding a very good agreement. A single-layer reflection
filter has been designed centered at λ0 = 1.5µm whose spectral and
angular responses are shown. For this structure, the effect of the
asymmetry of the distribution of the refraction index in the reflectance
has been analyzed, observing a splitting of the reflection peak around
the design wavelength. Finally it is discussed the equivalence between
a volume grating and a shallow surface-relief grating, providing two
examples of designing prescriptions.

1. INTRODUCTION

The scattering of electromagnetic waves in periodic media plays
a central role in areas of physics and engineering as antennas
technology [1] or the development of artificial magnetic conductors [2].
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Both cases of one-dimensional [3] and two-dimensional [4–6] periodic
structures have been extensively treated in the technical literature.

Multilayered dielectric structures composed by homogeneous
layers [7] or containing a periodic variation along any of the dielectric
layers [8–12], have been subject of great interest for many years. In
such structures, leaky modes can be excited in suitable geometries,
producing total reflection at the resonance wavelengths. These guided-
mode resonance structures have recently been of considerable interest
for optics and microwave applications as passive signal processing
devices. Research in this field has the potential of producing a new
class of passive elements called resonant waveguide gratings with a
large number of applications. A few of these possible uses include
static and tunable spectral filters with arbitrarily narrow, controlable
linewidths, optical switches and modulators, polarizers, couplers, and
many other applications [13–17].

This paper describes the guidance and scattering characteristics
of dielectric waveguide gratings at conical incidence (also called three-
dimensional incidence), for the general case when the grating wave
vector is not contained in the plane of incidence. The analysis
extends a previous one [18] by considering an arbitrary number of
dielectrics inside the periodic cell in the dielectric grating under
plane-wave conical incidence. This formulation is applied to the
accurate electromagnetic analysis of the modal spectrum (propagation
constant and field distribution) of the modes in lossy dielectric periodic
media under three-dimensional plane wave excitation. It must be
emphasized that the complexity of the new method proposed in this
paper does not increase with the number of dielectric slabs present
in the unit cells, such as it usually happens with other classical
analysis techniques which are limited however to gratings with special
simple groove shapes [19–21]. Furthermore, the presence of losses in
the dielectric slabs can be easily considered by simply introducing a
complex permittivity in the formulation derived. In addition, it is
demonstrated the orthogonality relationship satisfied by such modes
in the case of lossless periodic dielectric media.

In order to analyze the reflectance response of a dielectric
waveguide grating when a linearly polarized plane-wave is incident on
the structure with arbitrary polarization, the linearly polarized plane-
wave has been decomposed into the E-Type and H-Type zero order
Floquet modes [22]. This decomposition has been particularized for
the most usual cases of incidence with TE or TM polarization, i.e., the
incident electric field being perpendicular or parallel to the plane of
incidence. The spectral response of a waveguide grating under three-
dimensional TE incidence is obtained and compared with theoretical
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results presented by other authors, finding a very good agreement.
Next, making use of the developed analysis method it has been
designed a single-layer reflection filter at normal TE incidence centered
at λ0 = 1.5µm with symmetrical line shape and low reflectivity out
of the resonance. The filter’s spectral and angular responses are
also shown. For this structure, the effect of the asymmetry of the
distribution of the refraction index in the reflection characteristics of
the waveguide grating filter has been analyzed. To this end, additional
dielectric slabs with different refraction index have been introduced
in the unit cell of a symmetric waveguide grating, thus conforming
an asymmetric structure, again without increasing the complexity of
the formulation developed. The spectral response of this asymmetric
configuration shows a splitting of the reflection peak into two new
resonances around the original resonant wavelength.

Finally, it is discussed if a given volume grating for optical
applications can be replaced by an equivalent surface-relief grating.
In particular, the case of volume gratings with small refractive index
difference has been considered (this could be accomplished by doping
the material), and an equivalent shallow surface-relief grating has
been found, which could be prepared by ion or chemical etching of
the material. Thus, in the last section two examples of designing
prescriptions to find the right equivalent grating are given, and the
limitation of this equivalence is discussed.

2. ANALYSIS METHOD

Figure 1 shows the geometry of a dielectric waveguide grating formed
by two homogeneous dielectric layers characterized by their refraction
index nh and thicknesses hh, and a periodic dielectric layer with
thickness hp and period D in the Y direction, formed by several
alternating dielectric bars homogeneous in the X axis with refraction
index npi and widths li, being i = 1, 2, 3 for the case of Fig. 1. An
arbitrary number of dielectric bars can be included in the elemental
cell. The waveguide grating is illuminated from the air region z < 0
by an arbitrary linearly polarized plane-wave with a wave vector given
by

k = k0 sin θ cosφ x̂ + k0 sin θ sinφ ŷ + k0 cos θ ẑ (1)

where k0 = ω
√

µ0ε0 is the wavenumber in free space, and θ and φ are
the elevation and azimuthal angles of the three-dimensional incident
plane-wave, respectively.

The fields are assumed to have a harmonic time dependence,
exp(jωt). Since the material in each dielectric layer is homogeneous
along the Z direction, the propagating modes in this direction have
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Figure 1. Scheme of a volume grating composed of two homogeneous
dielectric layers and one periodic dielectric layer with periodicity
D in the Y direction, formed by three alternating dielectric bars
homogeneous in the X axis.

an exponential dependence exp(−jβz), where β is the propagation
constant. Following the procedure described in a previous work [18],
the modes in the homogeneous regions employed in this work are
the well known Floquet harmonics with E-Type or TMy polarization
(denoted as ′), and H-Type or TEy polarization (denoted as ′′), which
are described as follows

ẽ
′h
p =

1√
Dβhpωεh

e−j(kxx+kypy)
[
−kxkyp x̂ +

(
k2

h − k2
yp

)
ŷ
]

(2)

h̃
′h
p =

−1√
D

e−j(kxx+kypy)x̂ (3)

ẽ
′′h
p =

ωµβhp√
D

(
k2

h − k2
yp

)e−j(kxx+kypy)x̂ (4)

h̃
′′h
p =

1√
D

e−j(kxx+kypy)


 −kxkyp(

k2
h − k2

yp

) x̂ + ŷ


 (5)

where εh = εrhε0 = n2
hε0, kh = k0

√
εrh, kx = k0 sin θ cosφ, βhp =√

k2
h − k2

x − k2
yp

and kyp is the Floquet wavenumber, given by

kyp = k0 sin θ sinφ +
2π

D
p ; p = 0,±1,±2, . . . (6)

The modes in the periodic regions are obtained using a vectorial
modal method previously developed in [23–25] for one-dimensional
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gratings, and in [4, 6] for the two-dimensional case. The mentioned
technique has been extended in this contribution for considering an
arbitrary number of dielectrics inside the periodic cell under conical
incidence excitation. In this method, the vector wave equation satisfied
by the transverse components of the magnetic field in the periodic
medium is expressed as an eigenvalue problem shown next
[
∇2

t + k2
0εr +

(∇tεr

εr

)
× (∇t × ◦)

]
hn = β2

nhn ⇒ Lhn = β2
nhn (7)

where L represents the differential operator governing the evolution
of the transverse magnetic field of the n-th mode along the Z axis,
βn is the propagation constant of such mode, and εr is the complex
relative permittivity of the medium (note that εr = εr(y)). It should
be emphasized that the use of a complex dielectric permittivity allows
to account in a rigorous manner (non-perturbative) the presence of
ohmic losses in the dielectric media. Following the well-known Method
of Moments [26], this eigenvalue equation can be expressed in a matrix
form if the modes in the periodic medium are expanded in terms of
an auxiliary basis whose modes satisfy an orthogonality relationship of
the form 〈

ẽp|h̃q

〉
= δpq (8)

where δpq is the Kronecker delta function. In the present formulation,
the modes corresponding to a homogeneous medium (Eqs. (2)–(5)) of
relative dielectric permittivity ε̃rb have been used as auxiliary basis
functions. Such modes have been adequately normalized according to

〈
ẽp|h̃q

〉
=

∫

CS

(
ẽ∗p × h̃q

)
× ẑ dS = δpq (9)

where CS represents in this case the cross section of the periodic cell
(∗ represents the complex conjugate operation). The next step in the
application of the Method of Moments is the expansion of the fields in
terms of the auxiliary basis modes,

hn =
∑

q

cqnh̃q (10)

where cqn are the complex coefficients of the modal expansion for the
transverse magnetic field of the n-th mode. Finally, the last step in
the application of the Method of Moments yields to the following linear
matrix eigenvalue problem:

∑
q

Lpqcqn = β2
ncpn (11)
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where Lpq are the matrix elements of the L operator, which are
obtained as follows:

Lpq = 〈ẽp|Lh̃q〉 =
∫

CS

(
ẽ∗p × L h̃q

)
× ẑ dS . (12)

The [L] matrix is infinitely-dimensional in the theory described
above when all the modes are included. In order to develop a realistic
method, it is necessary to work with a finite set of well-known auxiliary
fields to expand the modes in each periodic dielectric layer in terms of
the auxiliary basis modes. Therefore, numerical convergence tests must
be done by considering the number of auxiliary modes over meaningful
ranges, thus studying the stability of the solutions.

For the particular case of a one-dimensional periodic dielectric
medium with an arbitrary number of dielectrics inside the periodic
cell, the matrix elements of the L operator have been analytically
calculated [18]. From them, it can be easily noticed that the coupling
terms between E-Type and H-Type modes disappear for non-conical
incidence (φ = 90◦ or kx = 0), as it should be expected from previous
reported analysis [25, 27]. The numerical diagonalization of (11) yields
the propagation constants as well as the magnetic fields of the modes
in the periodic medium at each frequency point. Finally, the transverse
electric fields of the modes are related to the magnetic ones through
constraints directly derived from Maxwell’s equations [28].

In general, the modes in a periodic medium are not a conventional
orthogonal basis. But in the particular case of a lossless periodic
dielectric medium it has been found that the modes in such a medium
also satisfy an orthogonality relation of the form given in (9),

∫

CS

(
e∗p × hq

) × ẑ dS = δpq (13)

which can be easily derived from Maxwell’s equations and the Floquet’s
theorem, as it is demonstrated in the Appendix A.

After specifying the fields in all homogeneous and periodic
regions of the structure, the scattering parameters are obtained by
imposing the boundary conditions between adjacent layers, obtaining
the Generalized Scattering Matrix (GSM) at each interface between
adjacent layers of the structure, i.e., the amplitudes of the reflected
and the transmitted modes. Then, the GSM of the global structure
is constructed by means of the cascaded connection of the individual
GSMs of the interfaces, and the scattering matrices corresponding to
the propagation through the layers, following the technique described
by T. S. Chu [29]. The global GSM technique yields the amplitudes
of the scattered modes reflected and transmitted by the structure,



Progress In Electromagnetics Research, PIER 95, 2009 225

considering an incident plane wave with a unit amplitude and with
either E-Type or H-Type polarization.

In order to analyze the 3D scattering of a linearly polarized
plane-wave incident on a dielectric waveguide grating, the linearly
polarized plane-wave is decomposed into a linear combination of E-
Type (′) and H-Type (′′) zero order modes. This decomposition has
been particularized to the most usual cases of incidence with TE or
TM polarization, i.e., the incident electric field being perpendicular or
parallel to the plane of incidence, respectively.

In the described method for obtaining the scattering parameters
of the problem, the multimode scattering matrix of the structure
is infinitely-dimensional. In order to reduce the scattering problem
to a computationally suitable form, the individual layer multimode
scattering matrices were truncated at a finite size. Such a size must
be large enough to allow for an accurate calculation of the scattered
(reflected and transmitted) modes which are significant in the overall
solution, but small enough for computational efficiency issues. As a
consequence, both propagating and non-propagating (or evanescent)
modes are included in the GSM formulation. For each particular case,
a study of convergence must be also performed in order to reach an
accurate solution for the scattering parameters of the overall structure.

3. NUMERICAL RESULTS

In order to test the developed algorithm, the modal spectrum of an
infinite periodic dielectric medium under three-dimensional plane-wave
excitation is first examined, with two dielectric slabs within the unit
cell with the following parameters: D = 0.6λ0, np1 = 1.0, np2 = 1.6,
l1/D = 0.5676, l2/D = 0.4324, λ0 = 1.55 µm. In the calculations the
auxiliary system used was an infinite homogeneous dielectric medium
with ε̃rb = 1.0. For this example the convergence (in this case a 0.5%
of relative error) is reached with only 30 modes of the auxiliary basis,
taking 0.01 seconds per frequency point (in a PentiumIV@2.4GHz
processor). Fig. 2 shows the normalized electric field distribution of
the first (a) and second (b) modes along the characteristic cell of this
medium under three-dimensional plane wave excitation with θ = 45◦,
φ = 60◦. It can be observed that the first mode has an H-Type
structure, because the ey component is nearly zero for this mode.
For the second mode, it can also be appreciated that the tangential
component to the dielectric discontinuity (ex component) in continuous
in the plane of the discontinuity, while the normal component to the
dielectric discontinuity, which corresponds to ey, is discontinuous in
this plane.
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Figure 2. Distribution of the normalized transverse electric field for
the first (a) and second (b) modes along the characteristic cell of an
infinite periodic dielectric medium under three-dimensional plane wave
excitation at θ = 45◦, φ = 60◦, with two dielectric slabs within the unit
cell with the following parameters: D = 0.6λ0, np1 = 1.0, np2 = 1.6,
l1/D = 0.5676, l2/D = 0.4324, λ0 = 1.55 µm.

In the next example numerical studies of the spectral response of a
dielectric waveguide grating at conical incidence have been carried out
and compared to theoretical results obtained by other authors. The
problem under analysis is a periodic dielectric grating placed between
air (na = 1.0) and a dielectric substrate with refraction index ns = 3.5
(see Fig. 3). This structure was designed in [19] to be antirreflecting
for use at λ0 = 1.55µm when it is illuminated by a plane wave with
TE polarization at normal incidence (φ = 90◦, which means in this
case that the electric field is parallel to the X axis). The periodic layer
of thickness h = 0.401λ0 is formed by two dielectric slabs within the
unit cell, with np1 = 3.5, np2 = 1.0 and l1/D = 0.222, l2/D = 0.778.
In Fig. 3 it is shown the reflection power coefficient of the structure
(or reflectance, which is denoted as R), under TE illumination at
θ = φ = 45◦ as a function of the wavelength-to-period ratio; our results
are compared to those calculated by other authors [19], showing an
excellent agreement.

Next, making use of the developed method and applying the
guided-mode resonance properties of planar dielectric waveguide
gratings [10, 30], a single-layer reflection filter has been designed
centered at λ0 = 1.5µm, with symmetrical line shape and near-
zero reflectivity over appreciable wavelength bands adjacent to the
resonance wavelength. The filter is based on a single-layer waveguide
grating surrounded by air which is illuminated by a plane-wave under
normal TE incidence (φ = 90◦), with the following parameters (which
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Figure 3. Reflectance (R) of a dielectric grating under TE plane-
wave excitation at θ = φ = 45◦ and λ0 = 1.55 µm as a function of the
wavelength-to-period ratio. Parameters of the problem: hp = 0.401λ0,
np1 = 3.5, np2 = 1.0, l1/D = 0.222, l2/D = 0.778, na = 1.0, ns = 3.5.
Results obtained with the presented technique are represented with
solid line, in comparison with those presented in [19] showed with dots.
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Figure 4. TE spectral response of a waveguide-grating filter centered
at λ0 = 1.5µm. The filter is based on a single-layer waveguide
grating surrounded by air which is illuminated by a plane-wave under
normal TE incidence, with the following parameters: D = 1.17 µm,
hp = 0.5µm, np1 = 1.49, np2 = 1.5, l1/D = l2/D = 0.5.

satisfy the phase-match condition described in [18, 25] in the grating
at the resonance wavelength): D = 1.17µm, np1 = 1.49, np2 =
1.5, l1/D = l2/D = 0.5, h = 0.5µm. Fig. 4 shows the spectral
behavior of the waveguide grating around the resonance. Only the zero
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order Floquet mode propagates in air regions (all higher-order modes
are evanescent). Note that the waveguide grating filter produces a
symmetric spectral response in reflection with almost zero reflectance
over appreciable wavelength bands adjacent to the resonance peak (as
it can be also observed in the inset of Fig. 4). In Fig. 5 it is shown
the reflectance of this layer under conical plane-wave incidence at two
different wavelengths of (a) 1.5µm (resonance wavelength), and (b)
1.505µm (out of resonance). In Fig. 5(a) it can be observed the
rapid decrease of the reflection filter reflectance when the direction
of incidence is shifted from the design value θ = 0◦ (the reflectance
rapidly changes from 1 to 0), while the dependence with φ is smooth.
Moreover, in Fig. 5(b) it can be appreciated that out of the design
wavelength, when λ0 = 1.505µm, the directions of incidence that excite
a resonance move apart from the normal incidence. In this case, we
can observe that the resonance has moved from θ = 0◦, φ = 90◦ to
θ ∼ 0.29◦ when φ ∈ [70◦–90◦].

For the filter designed in Fig. 4, it has been analyzed the effect
of the asymmetry of the distribution of the refraction index with
respect to the center of the periodic cell in the reflectance of the
structure. To this end, it has been studied the spectral response of
a dielectric waveguide grating with the same thickness, periodicity
and average refraction index of the previous filter (see Fig. 4), but
with three dielectric materials in the periodic cell, being np1 = 1.49,
np2 = 1.495, np3 = 1.5, l1 = l2 = l3 = D/3. Thus, an additional

(b)(a)

Figure 5. Reflection coefficient R(θ, φ) of the grating of Fig. 4 for
TE conical plane-wave incidence, at two different wavelengths of (a)
1.5µm (resonance wavelength) and (b) 1.505µm (out of resonance).
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dielectric slab in the unit cell of the symmetric waveguide grating of
Fig. 4 has been introduced conforming an asymmetric structure. The
reflectivity of this new filter under normal TE incidence is represented
in Fig. 6, where it is observed a splitting of the reflection peak
into two new resonance peaks at 1.499µm and 1.501µm respectively.
The splitting of the reflection peak is associated with the rupture
of degeneracy of the +1 and −1 leaky-wave modes excited in the
waveguide grating due to the asymmetry of the relative permittivity
distribution with respect to the center of the periodic cell, which was
already observed in previous works [31–33]. In order to study this
phenomenon, the effect of introducing an additional dielectric in a
symmetric configuration in the unit cell of the waveguide grating of
Fig. 4 has been analyzed, obtaining a new symmetric reflection filter
with the same period, thickness and average refraction index than the
one described above, but with the following distribution of refraction
index along the periodic cell: np1 = np5 = 1.49, np2 = np4 = 1.4975,
np3 = 1.5, and l1 = l2 = l3 = l4 = l5 = D/5. The spectral response
obtained in this case is identical to that shown in Fig. 4 and has
been omitted because of brevity (the waveguide grating also presents a
unique resonance peak at λ0 = 1.5µm). For the three bar asymmetric
case a 3D plot representing the reflectance of the grating for TE conical
incidence is included in Fig. 7, at two different wavelengths of (a)
1.501µm (second resonance wavelength) and (b) 1.505µm. In Fig. 7(a)
the selectivity of the reflection filter is shown when the direction of
incidence is shifted from the design value at normal incidence (θ = 0◦,

1.490 1.495 1.500 1.505 1.510
0.0

0.2

0.4

0.6

0.8

1.0

R
e
fle

c
ta

n
ce

Wavelength(µm)

Figure 6. TE spectral response of a single-layer waveguide grating
with three dielectrics in the periodic cell surrounded by air with
the following parameters: D = 1.17 µm, hp = 0.5 µm, np1 = 1.49,
np2 = 1.495, np3 = 1.5, l1 = l2 = l3 = D/3, θ = 0◦.
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(a) (b)

Figure 7. Reflection coefficient R(θ, φ) of the grating of Fig. 6 for
TE conical plane-wave incidence, at two different wavelengths of (a)
1.501µm (second resonance wavelength) and (b) 1.505µm.

φ = 90◦). It can be observed that the reflectance changes rapidly
from 1 to 0 as a function of θ, while the response is smooth as a
function of φ. Furthermore, it can be appreciated in Fig. 7(b) that out
of the resonance wavelength, the resonance moves to θ ∼ 0.28◦ when
φ ∈ [70◦–90◦].

4. ANALYSIS OF SHALLOW SURFACE-RELIEF
DIELECTRIC GRATINGS

Dielectric waveguide gratings may present difficulties in their
manufacturing technological process when applied in the optical
frequency range. From a practical point of view, the physical
implementation of the described reflection filter, centered around
1.5µm, could be performed by using silica as the high refraction index
material (np1(SiO2) = 1.5), and doped silica as the low refraction
index one (with np2 = np1 − δ, being δ = 0.01). In this section,
it is analyzed the use of an equivalent reflection filter manufactured
engraving periodic shallow grooves over the surface of an homogeneous
dielectric layer of refraction index n = 1.5 (see the inset in Fig. 8),
which could be manufactured using a combination of photolithographic
and, etching techniques and conformal coatings. The depth of the
groove t necessary for obtaining the same resonance wavelength in a
given modulated periodic structure depends on the modulation of the
refraction index of the waveguide grating filter.
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The analysis of the surface-relief grating has been carried out
considering that the structure is the combination of a homogeneous
layer with a thickness h-t and refractive index np1, and that on top of
it, a periodic layer of thickness t and refraction index values of 1 and
np1 is placed. For the symmetrical reflection filter at normal incidence
considered above in Fig. 4 (whose thickness is h = 0.5µm), Fig. 8
shows the variation of the relative groove depth t/h of an equivalent
surface-relief grating which provides the same resonance wavelength
than the modulated periodic layer (λ0 = 1.5µm), as a function of the
modulation of the refraction index in the periodic cell ((np1−np2)/np1).
Thus, a surface-relief grating with an adequate depth can give the same
spectral response as the waveguide grating filter for normal incidence.

We are interested in predicting the groove depth which provides
the same spectral response than an equivalent periodic grating. For the
case analyzed in Fig. 8, a quasi-linear dependence of the relative groove
depth t/h has been observed with respect to the modulation of the
refraction index over the range of modulation analyzed, whose linear
fit is shown in this figure. Nevertheless, the results of a similar study
are shown in Fig. 9 for another dielectric material of higher refraction
index np1 = 1.92. Again, it can be observed a linear dependence of the
relative groove depth with respect to the modulation of the refraction
index, showing the linear fit a lower slope in this case. In fact, the
higher the refraction index of the surface-relief grating, the lower the
slope in the linear fit observed. This tendency can be explained using
a variational theory [34] for the resonance condition detailed in [12]
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Figure 8. Study of the equivalence between a given modulated
periodic structure and an equivalent surface-relief grating providing
the same resonance wavelength, corresponding to a dielectric material
with np1 = 1.5.
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Figure 9. Study of the equivalence between a given modulated
periodic structure and an equivalent surface-relief grating providing
the same resonance wavelength, corresponding to a dielectric material
with np1 = 1.92.

for both gratings, and making equal the resonance wavelength in the
modulated periodic layer and in the equivalent surface-relief grating.
The same resonance condition in both equivalent structures is achieved
if the wave vector in the direction of periodicity βg of the waveguide
grating is also the same. Following a scalar approximation for the
modes in a periodic grating [34], the wave vector in the perturbed
problem (periodic layer with modulation of the refraction index δ
or surface-relief grating with relative groove depth t/h) βg can be
approximated as follows

βg = βh + k0

∫
S(n− nh)Ψ2dS∫

S Ψ2dS
(14)

where S is the waveguide cross section, βh is the wave vector of an
unperturbed problem consisting of an homogeneous dielectric layer
of refraction index nh = np1 and width h, and Ψ is the transverse
component of the electric field in the perturbed problem, i.e., in the
periodic grating. Then, if the periodic modulated layer and the surface-
relief grating must have the same wavevector βg, it implies that

∫ h

0
(np2 − np1)Ψ2dz =

∫ t

0
(1− np1)Ψ2dz . (15)
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If we approximate Ψ inside the grating by a uniform field we obtain

(np2 − np1)Ψ2

∫ h

0
dz=(1− np1)Ψ2

∫ t

0
dz⇒(np2 − np1)h=(1− np1)t,

(16)
or

t/h =
np1

np1 − 1
(np1 − np2)

np1
. (17)

This approximation yields a slope of 3.0 for the first material analyzed
of np1 = 1.5, and a slope of 2.09 for the second material of np1 = 1.92.
This approximation provides the same tendency for the slope of the
linear fit in Fig. 8 and Fig. 9 obtained with a rigorous analysis.
However, a rigorous study must be performed at each particular case
to obtain the right equivalence.

Finally, it has been studied the reflectance at conical plane-wave
incidence of the equivalent surface-relief dielectric grating with a groove
depth of t = 0.02 µm, which provides the same resonance wavelength
of the modulated periodic layer of Fig. 4 at normal TE incidence.
The analysis has been carried out at two different wavelengths: (a)
1.5µm (resonance wavelength) and (b) 1.505µm (out of resonance). In
Fig. 10(a) it can be checked that this equivalent surface-relief grating
shows total reflection at normal incidence, as it was also observed for

(a) (b)

Figure 10. Reflection coefficient R(θ, φ) of a surface-relief grating
with a groove depth of t = 0.02µm, equivalent to the modulated
periodic layer of Fig. 4, for TE conical incidence, at two different
wavelengths of (a) 1.5µm (resonance wavelength) and (b) 1.505µm
(out of resonance).
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the modulated periodic layer in Fig. 5(a), although a slightly less sharp
dependence with θ can be observed. In Fig. 10(b) it can be appreciated
that out of the design wavelength, the resonance moves to θ ∼ 0.29◦
when φ ∈ [70◦–90◦], as it happens in Fig. 5(b), but with a smoother
angular dependence on both θ and φ.

5. CONCLUSION

In this work it is presented a formulation for the rigorous
electromagnetic analysis of plane-wave diffraction by one-dimensional
periodic dielectric gratings under the most general condition of conical
incidence (three-dimensional incidence). In each elemental periodic
cell an arbitrary number of losses dielectric slabs can be inserted.
The propagation constant and the fields in a one-dimensional periodic
dielectric medium are determined as the numerical solution of a linear
eigenvalue problem. The scattering parameters of the dielectric grating
are then obtained by imposing the boundary conditions in terms
of the GSM formulation. The developed theory has been tested
for conical incidence by comparison to numerical results previously
obtained by other authors, showing an excellent agreement. As an
example, making use of the guided-mode resonance properties of planar
dielectric waveguide gratings, a symmetrical reflection filter at normal
TE incidence has been designed using two dielectric materials in the
periodic cell for a central wavelength of λ0 = 1.5µm, showing near-
zero reflectivity over appreciable wavelength bands adjacent to the
resonance wavelength. For this filter, it is shown the effect of varying
both angles θ and φ in the reflectance response of the structure at two
different wavelengths. It has been analyzed the effect of the asymmetry
of the relative permittivity distribution with respect to the center of the
periodic cell for this filter at normal TE incidence, observing a splitting
of the reflection peak into two resonance peaks around the resonance
wavelength predicted by the classical phase-match condition. Finally, a
study of the equivalence between a given modulated periodic structure
and an equivalent shallow surface-relief grating providing the same
resonance wavelength has been performed, showing a linear dependence
of the relative groove depth t/h with respect to the modulation of the
refraction index in the equivalent modulated grating. Our conclusion
is that the slope of the linear fit depends on the refraction index of the
surface-relief grating, which implies that a study of this dependence
must be performed at each particular case.
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APPENDIX A. ORTHOGONALITY RELATIONSHIP IN
A LOSSLESS PERIODIC DIELECTRIC MEDIUM

In this appendix, the orthogonality relationship satisfied by the modes
in a lossless periodic dielectric medium is demonstrated. Following
the same procedure described by Collin [28] for a shielded guide,
let Htn, Etn and Htm, Etm be the transverse fields for two linearly
independent solutions of Maxwell’s equations in a lossless periodic
dielectric medium. The curl equations for the electric field of the n-th
mode and its conjugate for the m-th mode are given by

∇×En=−jωµHn (A1)
∇×E∗m=jωµH∗

m (A2)

where Hn, En and Hm, Em are the total fields, i.e., both the transverse
and axial components. Scalar multiplying the above equations by H∗

m
and Hn, respectively, and adding gives

H∗
m ×∇×En + Hn ×∇×E∗m = 0 . (A3)

Scalar multiplying the curl equations for Hn, H∗
m by E∗m, En and

adding gives a similar result in a lossless dielectric media (εr = ε∗r),
but with the roles of E and H interchanged,

E∗m ×∇×Hn + En ×∇×H∗
m = 0 . (A4)

Subtracting these equations we obtain the following relationship:
∇ × (En × H∗

m + E∗m × Hn) = 0. Now, making use of the relation
∇ = ∇t+ẑ ∂/∂z, and using the two-dimensional form of the divergence
theorem, we obtain

∮

C
n× (En ×H∗

m + E∗m ×Hn) dl

= j(βn − βm)
∫

CS
ẑ× (Etn ×H∗

tm + E∗tm ×Htn) dS (A5)

where CS represents the cross section of the periodic cell and C
represents the contour of the cell. It can be easily proven that the
contour integral vanishes since it can be decomposed into four line
integrals: on one hand, the two line integrals for constant x coordinate
are identical in a medium not dependent on x, but with a sign reversal
due to the inversion in the direction of integration, so both terms cancel
each other; on the other hand, the line integrals along the lines y = y0

and y = y0 + D also cancel each other, because the fields only differ in
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a phase term, given by the Floquet’s theorem:

Etn(y0 + D)=Etn(y0)e−jkynD (A6)

Htn(y0 + D)=Htn(y0)e−jkynD (A7)

Nevertheless, the above mentioned phase terms cancel when
substituting the fields in the line integrals, so finally these line integrals
also cancel each other. Thus, we obtain

j(βn − βm)
∫

CS
ẑ× (Etn ×H∗

tm + E∗tm ×Htn) dS = 0 (A8)

It is convenient to write the expression for the transverse fields in the
following form

Htn = hn(x, y)e−jβnz (A9)

Etn = en(x, y)e−jβnz (A10)

where hn, en are the transverse modal vector functions of the
transverse coordinates x, y. Introducing these expressions in (A8)
we obtain

j(βn − βm)
∫

CS
ẑ× (en × h∗m + e∗m × hn)dS = 0 (A11)

since the common exponential terms can be cancelled. To show that
each term is equal to zero separately, we consider two solutions En,Hn

and E′m,H′
m, where E′m,H′

m is the same mode considered previously,
but depending on z according to exp(+jβmz) rather than exp(−jβmz).
This corresponds to a reversal in the direction of propagation, and,
consequently, the direction of the transverse magnetic field is reversed;
that is, E′tm = em exp(+jβmz), H′

tm = −hm exp(+jβmz). The
equation corresponding to Eq. (A11) is now given by

j(βn + βm)
∫

CS
ẑ× (en × (−h∗m) + e∗m × hn)dS = 0 (A12)

Addition of (A11) and (A12) gives
∫

CS
(e∗m × hn)× ẑ dS = 0 , m 6= n (A13)

which is the desired orthogonality relationship satisfied by the non-
degenerate modes in a lossless periodic dielectric medium (see (13)).
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