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Abstract: Central metabolic pathways may play a major role in the virulence of pathogenic fungi.
Here, we have investigated the susceptibility of a Candida parapsilosis mutant deficient in trehalase
activity (atc1A/ntc1A strain) to the azolic compounds fluconazole and itraconazole. A time-course
exposure to itraconazole but not fluconazole induced a significant degree of cell killing in mutant
cells compared to the parental strain. Flow cytometry determinations indicated that itraconazole
was able to induce a marked production of endogenous ROS together with a simultaneous increase
in membrane potential, these effects being irrelevant after fluconazole addition. Furthermore, only
itraconazole induced a significant synthesis of endogenous trehalose. The recorded impaired capacity
of mutant cells to produce structured biofilms was further increased in the presence of both azoles,
with itraconazole being more effective than fluconazole. Our results in the opportunistic pathogen
yeast C. parapsilosis reinforce the study of trehalose metabolism as an attractive therapeutic target and
allow extending the hypothesis that the generation of internal oxidative stress may be a component
of the antifungal action exerted by the compounds currently available in medical practice.

Keywords: fluconazole; itraconazole; ROS; mitochondrial activity; trehalase; trehalose; Candida
parapsilosis

1. Introduction

Although Candida albicans remains the most prevalent species of Candida responsible
for both superficial and invasive candidiasis, which mainly affects the immunodebilitated
population [1-3], another group of opportunistic yeasts belonging to the genus Candida
and referred to as “non-albicans” has emerged in recent years as responsible for numerous
nosocomial outbreaks [3,4]. The taxonomical complex C. parapsilosis has an increasing
clinical incidence, being the second or third most frequently isolated, depending on the
geographic region studied [5-7]. As a matter of fact, although infections caused by C. para-
psilosis generally have lower morbidity and mortality rates than C. albicans, they pose a
serious threat in patients undergoing intensive surgery and in those harboring catheters
and other implants due to the formation of tenacious biofilms [5-8].

A number of important pathobiological characteristics are markedly different between
C. albicans and C. parapsilosis. They encompass virulence capacity, the susceptible patient
groups that develop septicemic infections or mechanisms of antifungal sensitivity, and
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drug resistance [5,6,8-10]. Thus, C. parapsilosis is unable to form true hypha and lacks any
distinctive sign of a sexual cycle [5,6,8]. Regarding antifungal treatments, there are also
considerable differences depending on the outbreaks and the countries analyzed. Generally,
echinocandins appear to be less effective on certain clinical isolates, while other variants
are resistant to azoles [5-9]. This scenario constitutes a major therapeutic drawback due to
the limited arsenal of antifungals currently available [11].

In the search for new antifungals, central nutritional pathways, in particular those
involved in glucose metabolism, have emerged as interesting targets [12,13]. In fact, the
non-reducing disaccharide trehalose has been proposed as a preferred candidate for the
design of alternative antifungal therapies, considering the wide evidence collated from the
highly prevalent pathogenic fungi C. albicans, Cryptococcus neoformans, and Aspergillus spp.,
among others [14-16]. Regarding the genus Candida, the trehalose biosynthetic pathway
(TPS1 and TPS2 genes) has received preferential attention, as it is a main virulence factor
involved in normal glucose growth, tissue adhesion, resistance to oxidative stress, and
macrophage death or hypha formation in tpsl-null mutants [17-19].

Trehalase activity, which is the hydrolase responsible for trehalose cleave-off, is also
a component contributing to pathogenicity in C. albicans and C. glabrata [20-22]. In the
case of C. parapsilosis, we have previously disrupted the two genes (ATC1/NTC1) encoding
trehalase activity in this yeast [10,23]. The resulting homozygous mutant showed a severe
deficiency in cell growth as well as an impaired ability to infect cells and to form consistent
biofilms [23]. We have examined here the fungicidal sensitivity of this null mutant to the
azoles FLC and ITC compared to its isogenic parental strain. Our results support the use of
the ATC1 and NTC1 genes as interesting targets for the design of new antifungals.

2. Materials and Methods
2.1. Strains and Growth Conditions

The C. parapsilosis strains used in this study have been reported elsewhere [10,23].
Liquid cultures were grown at 37 °C by shaking in YPD medium consisting of 2% peptone,
1% yeast extract, and 2% glucose. Solid media contained 2% agar. Time-course growth in
liquid medium was measured by monitoring cell density at ODgg or by direct cell counting
in a TC-20 cell counter (BioRad, Hercules, CA, USA). Cell viability was determined in
samples diluted appropriately with sterile water by plating in triplicate on solid YPD after
incubation for 1-2 days at 37 °C. Between 30 and 300 colonies were counted per plate.
Survival rates were normalized to control samples (100% viability). Colony growth in solid
medium was tested by spotting 5 puL from the respective ten-fold dilutions onto YPD agar.
Then, the plates were incubated at 30 °C and scored after 24 or 48 h.

2.2. Preparation of Cell-Free Extracts

After exposure to different stresses, samples from the cultures were harvested and
resuspended at known densities (10-15 mg/mL, wet weight) in the extraction buffer,
100 mM 4-morpholine-ethanesulfonic acid (MES) pH 6.0, containing 5 mM cysteine and
0.1 mM phenyl methyl sulphonyl fluoride (PMSF). Cellular suspensions were transferred
into small pre-cooled tubes (1.0 cm diameter) with 1.5 g Ballotini glass beads (0.45 mm
diameter). The cells were broken by vigorously vibrating the tubes in a vortex mixer. The
tubes were rapidly cooled in ice. Then, the crude extract was centrifuged at 10,000x g
for 5 min, and the pellet was resuspended in the same buffer at the initial density. For
antioxidant assays, the supernatant fraction obtained was filtered through Sephadex G-
25 NAP columns (Amersham Pharmacia Biotech AB, Staffanstorp, Sweden) previously
equilibrated with 50 mM K-phosphate buffer, pH 7.8, to remove low-molecular-weight
compounds.

2.3. Enzymatic Assays

Acid trehalase was measured by incubating 50 pL of cell-wall pellet with 200 pL of
200 mM trehalose prepared in 200 mM sodium citrate pH 4.5 containing 2 mM EDTA.
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The reaction for neutral trehalase activity contained 50 pL of cell-free extract (25-100 pg
of protein) and 200 pL of 200 mM trehalose prepared in 25 mM MES pH 7.1, 125 uM
CaCl,. The assay mixtures were incubated at 30 °C for 30 min and stopped by heating in a
water bath at 100 °C for 5 min. The glucose released was determined by using the glucose
oxidase—peroxidase method. The specific activity is expressed as nmol of glucose released

min~! mg of protein_l.

2.4. ROS and Membrane Potential Determination by Flow Cytometry

Intracellular ROS formation by flow cytometry with dihydrofluorescein diacetate
(DHF) was measured following the procedure described in [24] with the additional modifi-
cations indicated elsewhere [23]. Mitochondrial membrane potential was also determined
by flow cytometry using Rhodamine 123 as fluorochrome. DHF and Rhodamine 123 were
added to the samples at a final concentration of 40 uM and 20 puM, respectively, and in-
cubated at 37 °C for 30 min. After treatment with Rhodamine 123, the cells were washed
twice with PBS to remove excess of fluorochrome. Fluorescence intensity was determined
using the EPICS XLMCL4 cytometer (Beckman Coulter, Nyon, Switzerland) equipped with
an argon ion laser with an excitation power of 15 mW at 488 nm. Forward scatter (FSC)
and side scatter (SSC) were analyzed on linear scales, while the analyses of green (FL1)
fluorescence intensity were made on a logarithmic scale. Analysis gates were set around
debris and intact cells on an FSC vs. SSC dot plot. Fluorescence histograms corresponding
to 5000 cells were generated using the gated data. Data acquisition and analysis were
performed using WINMDI software (available from http:/ /facs.scripps.edu, accessed on
13 January 2022).

2.5. Biofilm Formation

C. parapsilosis biofims were obtained in vitro on the surface of 96-well polystyrene
microtiter plates as described previously [25]. Briefly, 100 pL of the standardized mutants
of C. parapsilosis suspension (1 x 10° blastoconidia/mL) in RPMI 1640 was allowed to
adhere and form biofilms at 37 °C for 24 h. After biofilm formation, the medium was
aspirated, and non-adherent cells were removed by washing three times with sterile PBS.
Quantification of biofilms was performed by (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide) (MTT, Sigma Chemicals, Saint Louis, MO, USA) reduction assay. MTT
was prepared as a saturated solution at 0.5 g L~! in PBS, filter-sterilized though 0.22 pm
pore-size filters, aliquoted, and stored at —70 °C. An aliquot of the MTT stock solution was
thawed prior to each assay, and 10 mM menadione (Sigma Chemicals, Saint Louis, MO,
USA) in acetone was added to give a final concentration of 25 uM. An aliquot of 100 uL of
the MTT-menadione solution was added to each well, and the plates were incubated for 2 h
at 37 °C. The metabolic activity of sessile C. parapsilosis cells was assessed quantitatively by
measuring absorbance in a microtiter plate reader (Asys Jupiter) at 540 nm. The tetrazolium
salt that accumulated after MTT reduction by cellular dehydrogenases was proportional to
the number of viable cells present in the biofilm.

3. Results
3.1. Cell Survival Rate of C. parapsilosis after Treatment with Azoles

In C. parapsilosis, a single gene encodes both enzymes called neutral trehalase (Cp-
NTC1) and acid trehalase (CpATCI) [10,23]. Enzymatic assays revealed the lack of any
detectable trehalase activity (lower than 0.3 units/mg protein) during the growth cycle on a
glucose-containing medium (YPD) of a homozygous C. parapsilosis null mutant atcIA/ntc1A
(Table 1), obtained by the simultaneous disruption of the two individual genes [23].

These results provide further support on the inability of these mutant cells to mobilize
endogenous trehalose or to hydrolyze exogenous disaccharide during their growth cy-
cle [23]. Then, the corresponding MICs values for both the parental and atc1A/ntc1A strains
were calculated as 0.5 ng/mL for fluconazole (FLC) and 0.15 ug/mL for itraconazole (ITC),
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following the EUCAST protocol. The susceptibility of C. parapsilosis to these two azolic
compounds has been chosen as the main objective of this study.

Table 1. Specific activities corresponding to neutral (Ntclp) and acid (Atclp) trehalases measured
during growth in YPD displayed by the parental strain (Cp) and the trehalase-deficient null mutant
(atc1A/ntc1A) of C. parapsilosis. Identical samples were harvested and prepared at the indicated
intervals, and the enzymatic activities were measured as described in Methods. Results are the mean
=+ SD of one representative experiment of two performed in triplicate.

Neutral Trehalase (Ntclp) 2 Acid Trehalase (Atclp) 2
Time (h)
Cp atclA/ntclA Cp atclAIntclA
1 225+£09 <0.3 27+03 <0.3
5 18.3 £ 0.7 <0.3 39+02 <0.3
10 127 £0.3 <0.3 8.1+05 <0.3
24 6.8 £0.2 <0.3 9.7+ 07 <0.3

2 Values are expressed as nmol glucose min~! (mg protein)~'.

The potential toxic effect triggered by the addition of ITC and FLC has been deter-
mined in YPD-grown active cells of the C. parapsilosis parental strain and the isogenic
trehalase-deficient null mutant. Considering that azoles are mainly fungistatic com-
pounds, a time-length quantification of viable cells was monitored upon the application
of 1.0 pg/mL FLC (2x MIC) and 0.3 pg/mL ITC (2x MIC). Lower doses did not cause a
significant decrease in cell viability. As shown in Figure 1A, exposure to these antifungal
concentrations had virtually no effect after 1 h, and only a gradual dose-dependent reduc-
tion in the level of viable cells could be recorded (Figure 1A). This loss was only evident
after 10 h of incubation in the two cell types, being more pronounced in atc1A/ntc1A cells
and maintained until 24 h, whereas at this time, the viability of parental cells had largely
been recovered (Figure 1A). A similar profile of azole susceptibility was confirmed by
spotting 10-fold cell suspensions containing the antifungal on solid YPD plates (Figure 1B).
For the sake of clarity, only aliquots taken at 10 and 24 h are shown. As can be seen, an
inhibitory effect of ITC on colonial growth was evident after 10 h of treatment, whereas at
24 h, a remarkable recovery was evident (Figure 1B).
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Figure 1. Time-course effect of FLC and ITC on cell survival recorded in the parental strain of
C. parapsilosis (Cp) and the trehalase-deficient null mutant atc1A/ntc1A. YPD-grown cultures of the
two strains were exposed to the indicated doses of antifungals and incubated at 37 °C. Identical
samples (107 cells/mL) were harvested at the indicated times. (A) Viability in liquid medium was
determined after appropriate dilution with sterile water by plating in triplicate on solid YPD and
incubating for 2-3 days at 37 °C. A control sample was left without treatment (100% viabilily). The
experiment was repeated twice with similar results, and the values shown are the mean + standard
deviation of three independent determinations. The difference between the mean values obtained
was statistically significant at p < (0.05) (*), p < (0.01) (**) according to the Mann-Whitney range test.
(B) Ten-fold cell suspensions containing the specific compound were spotted (5 uL) on YPD plates,

which were scored after 48 h.
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Cp

Geometric Mean
Control = 15.9
H,0, =1794.3
FLC=18.4
ITC=41.9

atc1/ntc1

Geometric Mean
Control =18.8
H,0, =126.8
FLC=20.7

ITC =53.5

3.2. Level of ROS Formation and Mitochondrial Activity after Addition of Fluconazole
and Itraconazole

Induction of internal oxidative stress acts as an additional component of the fungi-
cidal effect triggered by some antifungals, i.e., Amphotericin B, against highly prevalent
pathogenic yeasts such as Candida species, although this mechanism does not appear to be
operative with other agents examined, such as Micafungin [26,27]. However, the universal
validity of this factor has yet to be extended to other members of the antibiotic and drugs
families endowed with antifungal activity, as well as against other important infectious
fungi, such as Aspergillus or Cryptococcus [24,28,29].

Since the information on this topic in the case of azoles is inconclusive, we monitored
both the endogenous production of ROS by staining with DHF and the mitochondrial
membrane potential with rhodamine (see Methods) in YPD-exponential cultures of the two
C. parapsilosis strains, which were treated for 1 h with ITC and FLC. A positive oxidative
stress control (H,O, 50 mM) was included in the assays (Figures 2 and 3). As shown in
Figure 2, upon the addition of H,O,, the endogenous levels of ROS increased significantly
in the parental and atc1A/ntc1A C. parapsilosis strains, although the fraction of cells able to
produce ROS was clearly lower in the mutant. However, exposure to FLC did not induce
any relevant change in the basal level of ROS compared to the control sample (gray area)
in the two strains analyzed (Figure 2). In contrast, the addition of 0.3 ug/mL ITC caused
a clear rise in the intracellular content of ROS, with no appreciable differences between
parental and mutant cells (Figure 2).

H,0, 50mM FLC 1.0 pg/ml

ITC 0.3 ug/ml
150 150 150
il
i
# !
v \I © I‘r &
OE J \ ;S 1 j‘ i §
z o Jxk = jm"”’j '\' =
FLt:H -4 FL1-H
10* 10* 104
H,0, 50mM FLC 1.0 ug/ml ITC 0.3 ug/ml
150 150 150

Ne Cells

Ne Cells
Ne Cells

FL1-H

10* 10* 100

Figure 2. Endogenous ROS formation after the addition of FLC (red histograms) and ITC (orange
histograms). Exponential yeast-like cells of the two C. parapsilosis strains were grown in YPD medium
overnight, resuspended in PBS buffer, and then treated with the two antifungals for 1 h at 37 °C. H,O,
50 mM (green histograms) was introduced as a positive marker for oxidative stress. The samples
were analyzed with dihydrofluorescein (DHF) by flow cytometry as described in Methods. Control
assays correspond to the gray area, and identical aliquots were treated with 1.0 pg/mL FLC and
0.3 ug/mL ITC.

The data obtained from the simultaneous determination of mitochondrial activity are
presented in Figure 3. The positive control (H,O,) showed a weak increase in membrane
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Cp

Geometric Mean
Control =433.5
H,0, =859.9

FLC =326.6

ITC =542.0

atc1/ntc1

Geometric Mean
Control =237.3
H,0, =759.6

FLC =333.2

ITC =598.9

potential, which was slightly higher in the atc1A/ntc1A mutant. Remarkably, the alterations
caused in the mitochondrial activity of parental cells by the presence of ITC were practically
negligible, whereas in the atc1A/ntc1A cells, a marked increase could be recorded (orange
area) (Figure 3). As occurred with ROS, the addition of FLC had an undetectable effect on
the mitochondrial membrane potential (Figure 3). Therefore, the toxic effect triggered by
ITC on C. parapsilosis cells deficient in trehalase activity (Figure 1) could be explained, at
least in part, by the generation of endogenous oxidative stress, which was manifested by
both an increased production of ROS and mitochondrial activity (Figures 2 and 3).

H,0, 50mM FLC 1.0 ug/ml ITC 0.3 ug/ml
150 150 150
i "
R W
5 ) :
2 \ 2 /. 2
| i N N
FL1-H 104 FL1-H 10* FL1-H e
H,0, 50mM FLC 1.0 ug/ml ITC 0.3 ug/ml
150 150 150

Ne Cells
Ne Cells

Ne Cells

FL1-H 10*

FL1-H

FL1-H 104

Figure 3. Determination of mitochondrial membrane potential after treatment with FLC and ITC.
Equivalent cell samples harvested from actively growing cells were treated with the azoles for 1 h at
37 °C and immediately analyzed by flow cytometry using Rhodamine 123 (20 uM) as described in
Methods. For other details, see Figure 2.

3.3. Effect of Antifungal Treatment on Trehalose Synthesis

In relevant pathogenic fungi, the endogenous accumulation of trehalose is a contrib-
utory factor of virulence [14-16,30] and plays a main protective role of cellular integrity
against oxidative stress as well as coping with treatment with various antifungals, partic-
ularly AmB [31]. Therefore, the content of this non-reducing disaccharide has also been
quantified in exponential cultures of both strains in response to specific exposure to FLC
and ITC. As shown in Table 2, the basal level of trehalose was higher in the null mutant
than in the parental cells, reflecting the lack of a functional trehalase (Table 1). However,
only the specific addition of ITC was able to induce some increase in intracellular trehalose
content, while the effect of FLC addition was weaker (Table 2).
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Table 2. Effect of ITC and FLC on the trehalose content on FLC- and ITC-treated cells of C. parapsilosis.
YPD-growing exponential yeast cells (ODggg = —0.8-1.0) of the two studied strains were exposed
at 37 °C for 1 h with the indicated concentrations of FLC or ITC. Trehalose content was measured
as described in Methods. The data represent the mean £ SD of three independent determinations.
Statistically significant differences (*** = p < 0.001) were recorded with respect to an untreated control
according to the Mann-Whitney U test.

Trehalose (nmol (mg wet wt)—1)

Treat t
reatmen Cp atclA/ntc1A
Control 4.8+ 05 3.3+0.2
Fluconazole (1.0 pg/mL) 6.3 £ 0.2 *** 49 £ 0.2 ***
Itraconazole (0.3 ng/mL) 9.6 £ 0.3 *** 7.2+ 0.3

3.4. Level of Biofilm Formation in Trehalase-Deficient Mutant of C. parapsilosis

Infections that give rise to the formation of highly-structured stable biofilms are fre-
quently associated to high rates of morbidity and mortality in hospitalized patients [32].
Drug-resistant biofilms have become a worrying sanitary concern, since therapeutic treat-
ment is problematic [32-34]. In C. parapsilosis, the disruption of genes encoding trehalase
activity results in a clear reduction in the ability to form biofilms [23]. According to Figure 4,
when prefixed sessile cells of the two strains were incubated in the presence of FLC or ITC,
they underwent a significant decrease of the biofilm-dependent metabolic activity, which
was more profound in atc1A/ntcIA cells compared to the parental strain (Figure 4). Again,
ITC was more effective than FLC regarding loss of biofilm formation; this difference was
greater in C. parapsilosis cells than in mutant cells (Figure 4). An exposure to an oxidant
(H,0,) was also able to induce a reduction of preformed biofilms (Figure 4). These prelim-
inary data support the introduction of antibiotic lock therapy to eradicate active fungal
biofilms that adhere on indwelling medical devices [27,32-35].



J. Fungi 2022, 8, 371

9of 12

150-
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Figure 4. Biofilm formation by the parental strain of C. parapsilosis and the trehalase-deficient null
mutant atc1A/ntc1A. Biofilms were preformed for 24 h in 96-well plates. At this moment, FLC, ITC,
and HyO, were added at the indicated concentrations. Metabolic activity was quantified after 24 h by
XTT reduction assay. Results are expressed as mean =+ standard deviation of two experiments with
five replicates for each group. Statistically significant differences (* = p < 0.05; *** = p < 0.001) were
recorded with respect to an untreated control according to the Mann-Whitney U test.

4. Discussion

The arsenal of currently available antifungal compounds is insufficient to deal with
the dramatic increase in invasive fungal infections recorded in recent decades, which is
mainly associated to the expanding immunocompromised population [1-3]. Furthermore,
the growing isolation of strains resistant to conventional antibiotics as well as the frequent
identification of nosocomial outbreaks of fungal species traditionally classified as innocuous
largely complicates this scenario. In fact, the mortality rates caused by C. albicans in
bloodstream and hospital-acquired infections can reach up to 40-50% [1,36]. Therefore, the
development of novel, more potent, and safer antifungal compounds is an urgent clinical
need [11].

Among other therapeutic strategies, several groups have explored the introduction
of biochemical and genetic alterations in several key nutritional pathways as potentially
interesting antifungal targets [12,13,15]. In fact, the amphotericin B-induced fungicidal
effect on C. albicans is mediated by the Hogl pathway [27]. In this context, enzymes
involved in trehalose metabolism have been chosen as a preferential candidate to target new
antifungals [14,16], since this disaccharide is absent in mammals and plays an important
role as a virulence factor in prevalent pathogenic fungi, including a consistent defensive
response against clinical antifungals [31]. This protective capacity of trehalose during in
vivo infections has recently been extended to bacteria [37].

Although trehalose hydrolysis has received less attention with respect to the biosynthe-
sis of disaccharide, recent evidence supports a major role of trehalases in the pathogenicity
of several species of Candida [10,20-22]. In this study, we have analyzed the hypothetical
toxic effect of two azoles, FLC and ITC, against a C. parapsilosis null mutant atc1A/ntc1A,
which lacks any enzymatic detectable trehalase activity (Table 1). The correct disruption
of both individual genes was also confirmed by the higher basal content of endogenous
trehalose recorded in the mutant (Table 2). These azoles were chosen because the relevant
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C. parapsilosis strains display lower in vitro susceptibility to echinocandins with high MIC
values [9], and azoles are recommended as preferred therapeutic antifungals [5-7]. Notably,
although the antifungal sensitivity has not been yet determined in the single atc1A and
ntc1A mutants, the double-homozygous atcIA/ntc1A null strain suppressed the resistance
to oxidative and heat stress displayed by the atc1A mutant and decreased its degree of
virulence [10,23].

According to our results, the involvement of trehalase enzymes in the virulence of
C. parapsilosis should also encompass a role in resistance to antifungal treatments. Thus,
the lack of a functional trehalase causes a time-course loss of viable cells induced by FLC
and ITC (Figure 1), which reaches a maximum degree after 10 h of incubation, the toxic
effect of ITC being higher than that of FLC (Figure 1). Further recovery (24 h) suggests
that the action of both azoles is essentially fungistatic. Although our data are not entirely
conclusive, they support a mechanism dependent, at least in part, on the mitochondrial
respiratory pathway in the case of ITC, which is able to induce a conspicuous formation of
endogenous ROS together with the increase of mitochondrial potential (Figures 2 and 3).
Likewise, the inability of FLC to generate a similar internal oxidative stress would explain
its inability to elicit a significant degree of cell killing in C. parapsilosis (Figures 1-3). The
production of intracellular ROS triggered by Amphotericin B has been demonstrated as a
universal factor of virulence in several pathogenic fungi [26], but an equivalent mechanism
regarding azoles appears to be less evident, although in Aspergillus fumigatus, ITC is able
to induce the production of mitochondrial ROS [29]. Moreover, a common pathway of
oxidative-damage cellular death has been proposed to explain the fungicidal mechanism
developed by distinct classes of compounds [28].

The formation of structured biofilms on indwelling devices aggravates the risk of
patients from suffering clinical infections [32-34]. C. parapsilosis frequently develops persis-
tent biofilms on intravenous catheters, which tend to withstand the exposure to AmB and
azoles [38]. Remarkably, the homozygous disruption of NTC1 and ATCI genes in C. parap-
silosis itself decreases the capacity to form biofilms [23], suggesting that trehalase might be
involved in the development of active biofilms. This reduction was further enhanced by
the addition of the two azoles with the effectiveness of ITC being greater than that of FLC
(Figure 4). The inclusion of intense oxidative exposure also induced a clear impairment
in the metabolic activity of prefixed sessile cells (Figure 4). Collectively, our data support
the research on central metabolic pathways as promising antifungal targets, although this
proposal needs to be strengthened with evidence gathered from other compounds as well
as by the screening of molecules capable of inhibiting key enzymes in fungal metabolism.
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AmB  Amphotericin B

FLC  Fluconazole
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PBS  Phosphate-Buffered Saline
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