УДК 539.231

НИЗКОТЕМПЕРАТУРНАЯ ПЛАЗМА МАГНЕТРОННОГО РАЗРЯДА

И.Ш. НЕВЛЮДОВ, Д.В. ГУРИН, В.Н. ГУРИН, К.Л. ХРУСТАЛЕВ

Харьковский национальный университет радиоэлектроники, Украина

Поступила в редакцию 10 октября 2018

Аннотация. В статье исследуется низкотемпературная плазма магнетронного разряда устройства, используемого для синтеза диэлектрических пленок реактивным катодным распылением [1]. Целью исследования является определение температурных характеристик частиц плазмы и распыленного вещества, а также механизма образования химической связи между распыленными атомами и молекулами активного газа. Исследование состава и энергетических параметров плазмы, а также химический состав полученных при распылении частиц вещества, проведен спектроскопическим методом. Количественный состав определялся масс-спектрометром для определения состава распыленных частиц.

Ключевые слова: магнетронная камера, масс-спектрометрия, азотная плазма, распыление, аргоновая плазма.

Abstract. The article investigates a low-temperature plasma of the magnetron discharge of a device used for the synthesis of dielectric films by reactive cathode sputtering. The aim of the study is to determine the temperature characteristics of plasma particles and a sputtered substance, as well as the mechanism for the formation of a chemical bond between sputtered atoms and active gas molecules. A study of the composition and energy parameters of the plasma, as well as the chemical composition of the particles obtained by sputtering, was carried out by a spectroscopic method. The quantitative composition was determined by a mass spectrometer to determine the composition of the sputtered particles.

Keywords: magnetron chamber, mass spectrometry, nitrogen plasma, atomization, argon plasma.

Doklady BGUIR. 2018, Vol. 118, No. 8, pp. 93-100 Low-temperature plasma magnetron discharge I.Sh. Nevliudov, D.V. Gurin, V.N. Gurin, K.L. Khrustalev

Введение

Для производства солнечных элементов преобразования солнечной энергии в электрическую. применяют различные методы защиты поверхности кремниевых пластин от внешних воздействий. Одним из методов защиты поверхности преобразователя солнечной энергии в электрическую является покрытие поверхности диэлектрическими пленками с низкими коэффициентами поглощения и отражения солнечного света. Оно может осуществляться методом реактивного катодного распыления с использованием магнетронной камеры [2]. Поскольку в процессе напыления растущая пленка подвергается воздействию низкотемпературной плазмы, актуальным является определение механизма образования химической связи между распыленными атомами и молекулами, а так же область протекания реакции, определение технологических параметров, что позволяет выбрать оптимальное расстояние от камеры распыления до поверхности подложки [3]. Значение этих факторов позволяет активно влиять на качество синтезируемых пленок.

К величинам, определяющим параметры распыления, относятся температура плазмы, концентрация ионов и электронов в плазме, концентрация и вид соединения, в котором находится в разряде распыленное вещество. Перечисленные величины могут бить определены спектроскопическими методами. Так, в работе [4] качественный спектральный анализ использовался для определения порогового катодного распыления. Метод атомной абсорбции

применялся для исследования распределения концентрации атомов алюминия по нормали к мишени при катодном распылении алюминиевой мишени в тлеющем разряде при давлении аргона 13,3 Па.

В ходе исследования определены абсолютные концентрации и температуры частиц плазмы магнетронного разряда по данным о ее излучении. Исследовалась аргоновая, азотная и кислородная плазмы разряда. Наряду с основными компонентами – атомарными и ионными линиями A_r 1,2 или молекулярными полосами второй положительной системы азота $N_2(2^+)$ и первой отрицательной системы молекулярного иона $N_2(2^+)$ – в плазме разряда присутствовали атомарные линии распыляемого вещества – нейтрального кремния. Молекулярные примеси давали полосы в ультрафиолетовой области, и их интенсивности возрастали при увеличении давления.

Параметры плазмы разряда

Плазма магнетронного разряда неравновесна: электронная температура не превышает 5·10⁴ К, а температура тяжелых частиц не превышает несколько сотен градусов. Концентрация возбужденных и ионизированных атомов ниже равновесных вследствие высвечивания и диффузионных потерь заряженных частиц.

Согласно корональной модели процессы возбуждения и ионизации являются столкновительными, а процессы девозбуждения и рекомбинации – излучательными. Возбуждение некоторого уровня «К» происходит из основного состояния, его опустошение – спонтанным излучением. Столкновительное девозбуждение, а также каскадные излучательные переходы при низких давлениях не играют большой роли.

Температура и концентрация электронов в разряде определены из зависимостей N_o / N_e от T_e , представленных на рис. 1. Зависимость N_o / N_e от температуры электронов представлена на рис. 2. Аналогичные зависимости получены для азотной и кислородной плазмы. Электронная температура аргоновой, азотной и кислородной плазмы при давлении 0,0665 Па имеет значение $(16-20)\cdot 10^3$ К и падает при повышении давления до 1,33 Па, принимая значение $12\cdot 10^3$ К (рис. 3).

Рис. 1. Функции возбуждения $\langle Q_{x} \rangle$ линий 1,2: $1 - \langle Q_{x} \rangle A_{2} 2\lambda = 4426 \text{ Å}$;

Рис. 2. Рабочие зависимости N_o / N_e от температуры электронов T_e

Рис. 3. Зависимость температуры электронов T_e аргоновой плазмы от давления в камере (1)

Увеличение магнитного поля от 100 до 1000 Эрст не приводит к значительному росту T_e , в этих же условиях электронная концентрация с повышением давления заметно возрастает от $(1-5)\cdot 10^{12}$ см⁻³ до $(2-4)\cdot 10^{15}$ см⁻³. По сечению разряда T_e (параллельно катодам) уменьшается незначительно, N_e имеет максимум в центре межэлектродного пространства. Значения колебательной и вращательной температуры приведены в табл. 1.

Р, Па	Н, Э	$T_{\rm K} 10^4$, K	<i>Т</i> _в , К
1 33	100	1,5	845
1,55	1000	20	1765
0,133	100	0,75	395
	1000	15	525
0.0665	100	0,5	315
0,0005	1000	9,5	585

Таблица 1. Колебательная и вращательная температуры азотной плазмы

Вращательная температура, характеризующая температуру газа, возрастает при повышении давления и увеличении поля. Колебательная температура занимает промежуточное положение между T_B и T_e наряду с линиями A_r 1,2 и полосами N_2 , N_2^+ , O_2 , O_2^+ и магнитного поля (2).

В спектрах наблюдаются интенсивные линии распыляемого вещества кремния. По абсолютной интенсивности этих линий можно оценить концентрацию кремния, если известно сечение возбуждения соответствующего верхнего уровня и измерены параметры плазмы. Измерение интенсивностей наиболее ярких линий Si в разных частях разряда и использование данных для соответствующих точек показало (табл. 2), что при постоянной удельной мощности разряда уменьшение давления рабочего газа в камере в исследуемом диапазоне приводит к снижению концентрации кремния свободного пробега и переходу от диффузного движения атомов кремния через разряд к бесстолкновительному пролету.

Увеличение магнитного поля при постоянном давлении приводит к росту N_{si} на 2–3 порядка, что качественно согласуется с повышением концентрации ионов, бомбардирующих мишень. При изменении удельной мощности разряда от 1 до 6 Вт/см² концентрация кремния в разряде увеличивается на 1 порядок (табл. 3). При дальнейшем повышении удельной мощности разряда рост N_{si} уменьшается. Наибольшая концентрация кремния в разряде достигает значения $5,6\cdot10^{13}$ см⁻³. В азотной плазме магнетронного разряда N_{si} на порядок, а в кислородной плазме – на два порядка меньше.

Таблица 2. Концентрация кремния в плазме магнетронного разряда $\frac{W}{S} = 3 \text{ Br/cm}^2$

Р Па	Н, Э	N _{si} см ⁻³			
1,110		в аргоне	в азоте	в кислороде	
1,33	300	$7,2 \cdot 10^{13}$	5,6·10 ¹²	6,4·10 ¹¹	
0,133	300	$7, 2 \cdot 10^{12}$	$3, 5 \cdot 10^{11}$	$3, 5 \cdot 10^{11}$	
0,0665	300	$7,2 \cdot 10^{11}$	$1,5 \cdot 10^{10}$	$0,5 \cdot 10^{11}$	

Вт	N _{si} см ⁻³			
CM ²	аргон	азот	кислород	
1	$1,5 \cdot 10^{13}$	$4,5 \cdot 10^{12}$	$3, 2 \cdot 10^{11}$	
2	$2,5 \cdot 10^{13}$	$6,5 \cdot 10^{12}$	4,8·10 ¹¹	
3	5,1·10 ¹³	9,7·10 ¹²	8,6·10 ¹¹	
4	9,5·10 ¹³	$2,5 \cdot 10^{13}$	$1,5 \cdot 10^{12}$	
5	$2,5 \cdot 10^{14}$	$5,2 \cdot 10^{13}$	$3,6\cdot 10^{11}$	

Таблица 3. Концентрация кремния в зависимости от удельной мощности разряда $P_p = 0,399$ Па, H = 300 Э

Пространственное распределение концентрации кремния имеет максимум в центре промежутка между катодами (рис. 4). В плазме магнетронного разряда образуются молекулы Si-N, Si-O, спектр которых известен. Данные о вероятности электронного перехода

и о сечении возбуждения Si – N отсутствуют, однако, основываясь на результатах работы [5], можно утверждать, что вероятность оптического перехода, а следовательно, и сечение возбуждения являются типичными для двухатомных молекул.

Рис. 4. Распределение концентрации (1) и интенсивности линий кремния (2) в азотной плазме разряда $P_p = 0,665$ Па, W/S = 3 BT/см²

В условиях магнетронного разряда полосы Si – N обнаружены в области рабочих давлений 0,798–1,33 Па и удельной мощности разряда 5 Вт/см². Концентрация Si – N составляла $3 \cdot 10^9$ см⁻³. В кислородной плазме полосы Si – O обнаружены в области рабочих давлений и удельных мощностей разряда, полосы Si – N и Si – O не обнаружены. Таким образом, содержание Si – N в рабочем диапазоне давлений во все области разряда достигает 10 % концентрации атомарного кремния, тогда как содержание Si – O может в 2–3 раза ее превышать. Измерены также интенсивности линий Al в азотной и кислородной плазме разряда. Полученные данные приведены в табл. 4. Анализ результатов показывает, что в плазме магнетронного разряда соединения нитридов не являются преобладающими.

Таблица 4. Интенсивности линий кре	мния	и алюми	ния
в азоте и кислороде при давлении га	за Р,	= 0,399	Па

Материал катода – распыляющий газ	$\frac{W}{S}$, $\frac{BT}{CM^2}$	V_{oc} , $\overset{\circ}{\mathbf{A}}$ / мин	λ, Å	Интенсивность линий	$\frac{N_M(N_2)}{N_M(O_2)}$
$Si - N_2$	2	120	2881,6	0,64	86
$Si - O_2$	2	60	2881,6	0,052	8,0
$Al - N_2$	2	70	3082,2	0,58	2
$Al - O_2$	2	50	3082,2	0,16	5

Состав распыленных частиц, осаждающихся на образец

Типичные масс-спектры представлены на рис. 5, 6.

Рис. 5. Масс-спектр, снятый при осаждении пленок AlN, $T_n = 523$ К

Рис. 6. Масс-спектр, снятый при осаждении пленок Al_2O_3 , $T_n = 523$ К

При расшифровке масс спектров, записанных при распылении Si, Al, Ti, обнаружено смещение пиков, соответствующих материалу катода, в сторону меньших масс. Это объясняется тем, что атомы, выбиваемые из катодов, обладают энергией в несколько электроно-вольт, которую не теряют при ионизации. Благодаря этому на спектрограмме наблюдаются два пика, соответствующих молекулярным ионам N и атомарным ионам Si (массовое число 28 а.е.м.). На спектрограмме обнаружен пик соединения Si-N (массовое число 42 а.е.м.). Его уровень составляет примерно 10 % от высоты пика Si. При распылении Al в атмосфере азота и кислорода на спектрограммах наблюдаются пики молекулярных ионов N₂⁺ и O_2^+ , а также соединений AlN⁺ и AlO⁺. Их уровень составляет 15 % от высоты пика Al⁺. При распылении кремния и титана в атмосфере кислорода пик ионов моноокиси кремния в три раза, а пик ионов монооксиси титана в два раза превышают пик ионов кремния и титана.

Результаты анализа масс-спектров представлены в табл. 5, где $j_{M}[N_{2}], j_{M^{+}}[O_{2}]$ – токи ионов Al^+ и Si^+ при распылении катодов в азоте и кислороде, V_{oc} – скорость роста соответствующей пленки, $\frac{W}{S}$ – удельная мощность разряда при давлении 0,266 Па.

Материал катода – распыляющий газ	$\frac{W}{S}, \frac{BT}{cM^2}$		$\frac{V_{\rm oc}[N_2]}{V_{\rm oc}[O_2]}$	$\frac{j_{_{M^{^{+}}}}[\mathrm{N}_{2}]}{j_{_{M^{^{+}}}}[\mathrm{O}_{2}]}$			
$Si - N_2$	2	120	2.0	Q			
Si – O ₂	2	60	2,0	0			
$Al - N_2$	2	70	1.4	2			
$Al - O_2$	2	50	1,4	2			

l	олица 5	. Pea	зультаты	анализа	масс	-спект	рогј	рамм

При распылении кремния отношение ионных токов $j_{M^*}[N_2][j_{M^*}[O_2]]$ выше, чем отношение скоростей роста пленок на подложке $V_{oc}[N_2][V_{oc}[O_2]]$, а также соединение SiO преобладает в составе частиц, распыленных в кислороде. Из табл. 4, 5 следует, что отношение концентрации атомов в плазме разряда, определенных спектроскопическим методом, сравнимо с отношениями ионных токов частиц, поступающих на образец и регистрируемых масс-спектрометром. На рис. 7 представлены зависимости энергии частиц, облучающих пленку, плотности облучения от удельной мощности разряда.

Рис.7. Зависимость энергии E электронов (1), ионов (2) и плотности облучения D (3)

от удельной мощности разряда $\frac{W}{S}$

С увеличением удельной мощности разряда от 1 до 6 Вт/см² энергия электронов возрастает от 5 до 30 эВ. При тех же условиях энергия ионов изменяется от 1 до 12 эВ. Рост удельной мощности разряда приводит к незначительному увеличению плотности облучения.

Зависимости концентрации частиц и плотности облучения от расстояния анод-образец представлена на рис. 8.

С увеличением расстояния анод-образец от 0 до 20 мм концентрация частиц и плотность облучения изменяются в пределах одного порядка, уменьшаясь от $N = 10^{11}$ см⁻³ до $2,8 \cdot 10^{10}$ см⁻³ и от $D = 10^{17}$ см⁻² до $0,5 \cdot 10^{16}$ см⁻² с⁻¹, что не противоречит данным, изложенным в [6]. На рис. 9. представлены зависимости энергии электронов (1) и плотности облучения (2) от напряженности магнитного поля. Изменение напряженности магнитного поля в указанных пределах приводит к уменьшению дозы облучения на 3 порядка – от 16^{16} см⁻² с⁻¹.

Анализ полученных зависимостей показывает, что энергетические характеристики плазмы разряда могут оказывать активное влияние на электрофизические параметры синтезируемых пленок [7].

Рис. 8. Зависимость концентрации частиц N (1) и плотности облучения D (2) от расстояния анод-образец h

Рис. 9. Зависимость энергии электронов *E* (1) и плотности облучения *D* (2) от напряженности магнитного поля *H*

Заключение

В результате проведенных исследований установлено, что электронная температура аргоновой, азотной и кислородной плазмы при давлении 0,0665 Па имеет значение $(16-20)\cdot 10^3$ К и падает при повышении давления до 1,33 Па, принимая значение $12\cdot 10^3$ К.

Увеличение магнитного поля от 100 до 1000 Эрст не приводит к значительному росту T_e , в этих же условиях электронная концентрация с повышением давления заметно возрастает от $(1-5)\cdot 10^{12}$ см⁻³ до $(2-4)\cdot 10^{15}$ см⁻³. По сечению разряда T_e (параллельно катодам) уменьшается незначительно, N_e имеет максимум в центре межэлектродного пространства.

Полученные результаты служат основой для выбора оптимального расположения подложки относительно активной части плазмы разряда, что дает возможность избежать неконтролируемого нагрева поверхности растущей пленки при автоматизации технологического процесса и оптимизировать воздействие плазмы разряда на свойства диэлектрических пленок и границы раздела полупроводник–диэлектрик.

Список литературы

- 1. Достанко А.П. Технологические процессы и системы в микроэлектронике: плазменные, электронно-ионно-лучевые, ультразвуковые. Минск: Бестпринт, 2009. 199 с.
- 2. Гурін Д.В. Аналіз методів отримання наноструктурованих діелектричних плівок // Технология приборосроения. 2016. Вып. 3. 7 с.
- 3. Taccogna F., Dilecce G. Non-equilibrium in low-temperature plasmas // Eur. Phys. J. D (2016) 70: 251. https://doi.org/10.1140/epjd/e2016-70474-0.
- 4. Huges H.L., Baxter R.D., Phillips B. Dependence of MOS device radiation sensitivity on impurities // IEEE. 1972. № 5–19. P. 256–263.
- 5. Гольдфарб В.М. Оптическое излучение / Очерки физики и химии низкотемпературной плазмы. М.: Наука, 1971. С. 169–233.
- 6. Рогов А.В., Бурмакинский И.Ю. Исследование магнетронного разряда постоянного тока методом подвижного сеточного анода // Журнал технической физики. 2004. Т. 74, вып. 4. С. 27–30.
- 7. Гурин В.Н. Влияние проникающей плазмы на свойства диэлектрика и границы раздела полупроводникдиэлектрик при реактивном катодном распылении // Радиоэлектроника и информатика. 2001. № 4 (17). С. 29–32.

References

- 1. Dostanko A.P. Tehnologicheskie processy i sistemy v mikrojelektronike: plazmennye, jelektronno-ionnoluchevye, ul'trazvukovye. Minsk: Bestprint, 2009. 199 s. (in Russ.)
- 2. Gurin D.V. Analiz metodiv otrimannja nanostrukturovanih dielektrichnih plivok // Tehnologija priborosroenija. 2016. Vyp. 3. 7 s. (in Russ.)
- 3. Taccogna F., Dilecce G. Non-equilibrium in low-temperature plasmas // Eur. Phys. J. D (2016) 70: 251. https://doi.org/10.1140/epjd/e2016-70474-0.
- Huges H.L., Baxter R.D., Phillips B. Dependence of MOS device radiation sensitivity on impurities // IEEE. 1972. № 5–19. P. 256–263.
- 5. Gol'dfarb V.M. Opticheskoe izluchenie / Ocherki fiziki i himii nizkotemperaturnoj plazmy. M.: Nauka, 1971. S. 169–233. (in Russ.)
- 6. Rogov A.V., Burmakinskij I.Ju. Issledovanie magnetronnogo razrjada postojannogo toka metodom podvizhnogo setochnogo anoda // Zhurnal tehnicheskoj fiziki. 2004. T. 74, vyp. 4. S. 27–30. (in Russ.)
- Gurin V.N. Vlijanie pronikajushhej plazmy na svojstva dijelektrika i granicy razdela poluprovodnikdijelektrik pri reaktivnom katodnom raspylenii // Radiojelektronika i informatika. 2001. № 4 (17). S. 29–32. (in Russ.)

Сведения об авторах

Невлюдов И.Ш., д.т.н., профессор, заведующий кафедрой компьютерно-интегрированных технологий, автоматизации и мехатроники Харьковского национального университета радиоэлектроники.

Гурин В.Н., д.т.н., проф., профессор кафедры компьютерно-интегрированных технологий, автоматизации и мехатроники Харьковского национального университета радиоэлектроники.

Гурин Д.В., аспирант кафедры компьютерноинтегрированных технологий, автоматизации и мехатроники Харьковского национального университета радиоэлектроники.

Хрусталев К.Л., к.т.н., старший преподаватель кафедры компьютерно-интегрированных технологий, автоматизации и мехатроники Харьковского национального университета радиоэлектроники.

Адрес для корреспонденции

61166, Украина, Харьков, пр. Науки, 14, Харьковский национальный университет радиоэлектроники тел. +38-057-702-14-86; e-mail: dmytro.gurin@nure.ua Гурин Дмитрий Валерьевич

Information about the authors

Nevliudov I.Sh., D.Sci, professor, head of computer-integrated technologies, automation and mechatronics department of Kharkiv national university of radioelectronics.

Gurin V.N., D.Sci, professor of computer-integrated technologies, automation and mechatronics department of Kharkiv national university of radioelectronics.

Gurin D.V., PG student of computer-integrated technologies, automation and mechatronics department of Kharkiv national university of radioelectronics.

Khrustalev K.L., PhD, senior lecturer of computerintegrated technologies, automation and mechatronics department of Kharkiv national university of radioelectronics.

Address for correspondence

61166, Ukraine, Kharkiv, Science ave., 14, Kharkiv national university of radioelectronics tel. +38-057-702-14-86; e-mail: dmytro.gurin@nure.ua Gurin Dmytro Valer'evich