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Abstract. Convolutional network approach is utilized for training an end-to-end model that would let a car drive itself 

around the track in a driving simulator by predicting steering angles based on the simulated camera data. 
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Introduction 

Convolutional networks became fairly popular recently and are mainly used for pattern recognition 

these days after their breakthrough with ImageNet [1]. Their area of application, however, is not limited to 

image classification, as described in the Nvidia paper [2], where authors trained  

a convolutional network based model that managed to learn the entire processing pipeline needed  

to steer an automobile. The authors based their research on a Defence Advanced Research Projects Agency 

(DARPA) seedling project known as DARPA Autonomous Vehicle (DAVE), where training data included 

video from two cameras coupled with left and right steering commands from a human operator [3]. 

A similar, although very simplified approach is applied here in order to train a convolutions based 

model that would ultimately learn to steer a car in a driving simulator. The fact that a simulator is used here 

obviously adds additional constraints on the data, therefore making it only relevant  

in a context of the said virtual driving simulator; nevertheless it would be a good illustration  

of various techniques for designing, training and regularizing machine learning model based  

on convolutional network, and of a range of tasks that could be achieved with a relatively simple 

architecture. 

Dataset 

Data has been collected using a slightly modified open-source driving simulator recently released 

by Udacity [4]. The version used in this project allows retrieving simulated data from three front-facing 

cameras that record frames sequences as if they were mounted on the vehicle. It also allows recording 

vehicle steering angles for collecting training data and supplying steering angles  

in a vehicle control pipeline for testing. 

The described driving simulator has two different tracks. One of them was used for collecting 

training data, and the other one – never seen by the model – as a substitute for test set. Essentially, both 

tracks allow the same set of controls and provide the same data, albeit different landscapes and overall 

mapping, variations of curvature and slope, etc. Driving simulator also comes with a set  

of tools for supplying driving instructions into the simulator in real time from a trained Keras model. 

The driving simulator would save frames from three front-facing «cameras», recording data from 

the car's point of view, as well as various driving statistics like throttle, speed and steering angle. Camera 

data is going to be used as model input, and then model is expected to predict the steering angle in the [–

1; 1] range. 

A dataset containing approximately one hour worth of driving data was collected around one of the 

given tracks. This would contain both driving in «smooth» mode (staying right in the middle  

of the road for the whole lap), and «recovery» mode (letting the car drive off centre and then interfering to 

steer it back in the middle). While the «smooth» mode allows the model to learn  

the overal high-level strategy when the car is in the middle of the road, «recovery» mode would embrace 

edge cases for when the car needs to manoeuvre and there is a risk of going off track. This would teach the 

model how to recover from a poor position or orientation. 



Just as one would expect, resulting dataset was extremely unbalanced and had a lot  

of examples with steering angles close to 0 (e. g. when the wheel is «at rest» and not steering while driving 

in a straight line). Small angles were then rejected prior augmenting the data, thinking that those < 0.05 

angles that would appear in the dataset as a result of using side cameras wouldn't perturb distribution of 

angles significantly. 

A designated random sampling was applied, which ensured that the data is as balanced across 

steering angles as possible. This process included splitting steering angles into n bins and using 

at most 200 frames for each bin. Histogram of the resulting dataset looks fairly balanced across most 

«popular» steering angles (Fig. 1). 

 
Fig. 1. Training dataset histogram 

Mind that dataset balancing will be applied across absolute values, thinking that after applying 

augmentation horizontal flip both positive and negative steering angles will be used for each frame anyway. 

The dataset was balanced before augmentation, so there was no need to reject small angles afterwards. One 

shouldn't expect augmentation to change distribution significantly for additional balancing to be necessary. 

Ideally, dataset should be balanced across all steering angles, of course. However, this would 

require a significant amount of training data, and should not be the bottleneck for this particular model 

performance on the test set, which essentially another track, previously unseen by the model. As noted 

earlier, number of examples in each bin is capped at 200, so that model does not become biased towards 

going straight ahead (e.g. predicting a steering angle of 0), instead of staying on the road. 

The number 200 was chosen empirically, analysing collected data across various steering angles, 

and mainly making sure that examples are equally distributed across most popular angles that model is 

expected to predict in most cases, i.e. in the [–0.3; 0.3] range. 

Data augmentation 

After balancing approximately one hour worth of driving data the collected dataset contained 7,698 

sample frames, which most likely wouldn’t be enough for the model to generalize well. However, there are 

a couple of augmentation tricks that can extend a dataset significantly. 

Along with each sample simulator provides frames from 3 camera positions: left, center and right. 

Although only central camera will be used while driving, one can still use left and right cameras data during 

training after applying steering angle correction, increasing number of examples  

by a factor of 3. Steering correction is applied when using frames from side cameras, and after trying  

a couple of different values ±0.25 seemed to perform best, not causing the car to oscillate too much and 

still providing expected recovery. 

For every batch half of the frames is flipped horizontally and has the sign of the steering angle 

changed (or, more specifically, each frame is flipped with a probability of 0.5), thus yet increasing number 

of examples by a factor of 2. This is a very common technique, and could also be used  

in classification tasks, not only in regression. Quite often one either expects a classification model  

to predict the same class for a flipped input image, or as some other specific class. Thus, flipping image 

horizontally (and, in some tasks, vertically) could also increase number of training classification examples 

by a factor of 2 (or even 4). 



Image is then cropped during pre-processing removing top and bottom parts, which  

are insignificant for training objective; furthermore, choosing the amount of frame to crop at random should 

increase the ability of the model to generalize. Analysing the frames retrieved from driving simulator, those 

are 160×320 images, and the hood of the car takes bottom 20 pixels, the road ends exactly 60 pixels from 

the top. Random variation is applied to these parameters as a part  

of augmentation pipeline, for the model to generalize better in cases when the car is going up or down the 

hills. If the frames contained landscape or car hood, it could make it way harder for the model  

to generalize: for instance, it could start picking up wrong patterns, not crucial for predicting steering angles. 

Additionally, a random vertical «shadow» is added to frames by decreasing brightness  

of a frame slice, hoping to make the model invariant to actual shadows on the road. To provide some more 

reasoning regarding why shadows were added, there are some distinct features of the road that might not 

be present throughout whole training track, but that would be nevertheless very useful  

as training input for the model to generalize well. One of such features is a shadow of surrounding 

landscape, most likely it won't be well represented in the balanced and normalized training. After all, trying 

to balance a dataset across every distinct feature would be quite a challenging task; therefore, some of those 

features are simulated manually, as a part of data augmentation pipeline applied to the training dataset. 

After applying said augmentation pipeline to the dataset each frame is pre-processed  

by cropping top and bottom of the image and resizing to a shape the model expects (vector of shape (32, 128, 

3), RGB pixel intensities of a 32×128 image). The resizing operation also takes care  

of scaling pixel values to [0, 1]. As mentioned earlier, insignificant parts of frames are cropped out, parts 

that would otherwise encourage the model to learn false patterns. 

Data preparation step is essentially trying to cut out any insignificant features from the input data 

(think hood of the car, or surrounding landscape); or, alternatively, make insignificant features that can't be 

simply removed represented in wider number of training examples (think shadows),  

so that their presence does not seem useful for the model while learning, and so that it prevents the model 

from finding false patterns in data.  

To make a better sense of it, let's consider an example of a single recorded frame sample that results 

in 16 training samples by using frames from all three cameras and applying aforementioned augmentation 

pipeline. This single example includes three original images retrieved from  

the simulator, taken with three cameras located on the front of the vehicle (left, center and right), which are 

then transformed into 16 augmented and pre-processed training samples (Fig. 2). 
 

 
Fig. 2. Original frames of a single dataset sample 

Augmentation pipeline is applied using a Keras generator, which lets applying it in real-time on 

CPU while the most computationally expensive operation of backpropagation is performed  

on GPU (Fig. 3). 

 



 
Fig. 3. Augmented and pre-processed frames based on the sample in Fig. 2 

Model 

Model architecture evolved from the model described in the Nvidia paper [2, p. 5], which was 

gradually simplified and optimized while making sure it still performed well on both tracks. It was clear 

one wouldn’t need that complicated model, as the dataset in question is way simpler and much more 

constrained than the one Nvidia team had to deal with when running their model.  

Initially, model had 5 convolutional layers and 3 fully connected layers (Fig. 4). It then was 

gradually simplified by continuously removing layers and decreasing dimensionality (and therefore number 

of trainable parameters), until the model’s performance started decreasing. In fact, there was  

a boost in performance on the test track at some point, as the model started generalising better with simpler 

architecture. Eventually model converged to a fairly simple architecture with 3 convolutional layers and 3 

fully connected layers of the following dimensions. 

 
Fig. 4. Model architecture 

The technique for architecture and training is similar to the one described in Nvidia paper [2, p. 4], 

training the weights of the network to minimize the mean squared error between the steering angle output 

by the network and the angle recorded during data collection in the driving simulator. The network consists 

of 6 layers: 3 convolutional layers and 3 fully connected layers, all 6 have fairly low dimensionality, 

especially compared to the original model in Nvidia paper [2, p. 5].  

The convolutional layers were designed to perform feature extraction and were chosen empirically 

through a series of experiments that varied layer configurations, eventually landing on using a non-strided 

convolution with a 3×3 kernel size. 

In general, convolutional networks were inspired by biological processes [8] in which  

the connectivity pattern between neurons is inspired by the organization of the animal visual cortex. 

Individual cortical neurons respond to stimuli only in a restricted region of the visual field known  

as the receptive field. The receptive fields of different neurons partially overlap such that they cover the 

entire visual field. In a neural network based model convolutional layers apply a convolution operation to 

the input, passing the result to the next layer, e. g. convolution emulates the response  

of an individual neuron to visual stimuli. 

When it comes to visualizing learned weights, one should typically expect a convolutional layer to 

contain filters that can detect very basic pixel patterns, like edges and lines. These basic filters are then used 

by subsequent layers as building bricks to construct detectors of more complicated patterns and figures. 

Three convolutional layers with three fully connected layers lead to an output angle value which is 

essentially a steering command for the simulator. Neurons in a fully connected layer have connections to 



all activations in the previous layer, as seen in regular neural networks. Their activations can hence be 

computed with a matrix multiplication followed by a bias offset.  

The fully connected layers are designed to function as a controller for steering, but by training the 

system end-to-end, it is not possible to make a clean break between which parts of the network function 

primarily as feature extractor and which serve as controller.  

Rectified linear unit (ReLU) incorporating rectifier [6] is used as activation function  

in the convolutional layers. With strong biological motivations and mathematical justifications rectifier 

activation function has been used in convolutional networks more effectively than the widely used logistic 

sigmoid and yield equal or better performance than its more practical counterpart, 

the hyperbolic tangent.  

Another important concept of convolutional networks is pooling [7], which is a form  

of non-linear down-sampling. There are several non-linear functions to implement pooling; the most 

common one was used here (max pooling), which seems to perform best in practice [7, p. 8],  

and which is conveniently implemented in Keras. It partitions the input image into a set  

of non-overlapping rectangles and, for each such subregion, outputs the maximum. The intuition  

is that the exact location of a feature is less important than its rough location relative to other features. The 

pooling layer serves to progressively reduce the spatial size of the representation, to reduce  

the number of parameters and amount of computation in the network, and hence to also control overfitting. 

As pooling operation also provides another form of translation invariance, a pooling layer has been added 

after each convolutional layer. 

The pooling layer operates independently on every depth slice of the input and resizes  

it spatially. The most common form of a pooling layer is used, with filters of size 2×2 applied with  

a stride of 2. This setup effectively downsamples slices in the input at every depth by 2 along both width 

and height, discarding 75 % of the activations. 

This model can be very briefly encoded in Python with Keras (Fig. 5).  

from keras import models 

from keras.layers import core, convolutional, pooling 

 
model = models.Sequential() 

model.add(convolutional.Convolution2D(16, 3, 3, input_shape=(32, 128, 3), 

activation='relu')) 

model.add(pooling.MaxPooling2D(pool_size=(2, 2))) 

model.add(convolutional.Convolution2D(32, 3, 3, activation='relu')) 

model.add(pooling.MaxPooling2D(pool_size=(2, 2))) 

model.add(convolutional.Convolution2D(64, 3, 3, activation='relu')) 

model.add(pooling.MaxPooling2D(pool_size=(2, 2))) 

model.add(core.Flatten()) 

model.add(core.Dense(500, activation='relu')) 

model.add(core.Dense(100, activation='relu')) 

model.add(core.Dense(20, activation='relu')) 

model.add(core.Dense(1)) 

Fig. 5. Listing. Model code 

Keras with TensorFlow backend was used here, which is considered a high-level machine learning 

framework, but has proven to be more than enough for this particular task. It implements all required 

algorithms and functions, allows various triaining and regularization techniques, as well  

as works alongside toolset supplied with virtual driving simulator in question. 

Regularization 

This particular problem should not require any sophisticated regularization given  

the constraints on the data that a virtual driving simulator implies. Data augmentation and dropout helped 

the model to generalize enough to drive on a previously unseen track. 

It's important to remember to get the model to train nicely and overfit first, then start regularizing. 

Using this approach, one could first keep training the model till it starts overfitting  

the training dataset: in this particular case, it was performing better and better on the first training track, 

where the data was collected, and was performing rather poorly on the test track. 

As discussed previously, data augmentation is a common technique for increasing number  

of training examples without collecting more data. It is also useful for regularizing, as augmentation also 

helps improving useful feature representation. There is usually a significant amount of useless and 

misleading information in the training data, and as arbitrary model would try to detect any patterns it could 



find, it is a crucial step to try and minimize presence of those misleading pieces of information, or make it 

hard to draw any conclusions from it by flooding it randomly in a reasonable number of training examples. 

Quite often data augmentation can have a significant impact on the model performance, especially when 

you have a general idea of which features could be useful,  

and which may only confuse the model. In this case it’s fairly obvious that a trained model should predict 

a steering angle based only on the road curvature, and that it shouldn’t draw any conclusions from shadows 

on the road, position of the hood of the car or surrounding landscape. 

Dropout, on the other hand, is also a popular regularization technique that works amazingly well, 

and will most likely drastically improve generalization of the model. Normally one may only want to apply 

dropout to fully connected layers, as shared weights in convolutional layers are good regularizers 

themselves. There was a slight improvement in performance when using a dropout  

on dense layers, thus dropout has been added on 2 out of 3 dense layers to prevent overfitting, and the 

model proved to generalize quite well.  

Training 

The model was trained using a stochastic gradient-based optimizer with a learning rate  

of 10–4 and mean squared error as a loss function. 20 % of the training data was used for validation (which 

means that only used 6.158 out of 7.698 frames were used for training), and the model seems to perform 

quite well after training for 20 epochs. 

A variation of early stopping was used, which involved monitoring training and validation losses, 

saving model weights after every training epoch. Validation error must then be analyzed and the training 

process must be stopped manually once validation error stops improving over a reasonable number of 

epochs. Eventually, the weights from the epoch with the lowest validation loss were used, as noted earlier 

this would typically happen after 20–30 epochs. 

Both formal and informal metrics were used for benchmarking model performance. Formal would 

include minimizing calculated loss during the training process. Informal means letting the car drive around 

both tracks (training and test one) by using model’s steering instructions, and checking if it goes off the 

road or behaves unnaturally: for instance, starts oscillating or ignores track turns in some specific 

conditions. 

Keras implementation of Adam optimizer [5, p. 1] was used, a method for efficient stochastic 

optimization that only requires first-order gradients with little memory requirement. The method computes 

individual adaptive learning rates for different parameters from estimates of first and second moments of 

the gradients; the name Adam is derived from adaptive moment estimation.  

Results 

The described model performs well, and the car manages to drive just fine on both tracks pretty 

much endlessly, e. g. without driving off the track without any external intervention. It rarely goes off the 

middle of the road both on the track it was trained on and a previously unseen track. 

Clearly, this is a very basic example of end-to-end learning for self-driving cars.  

But nevertheless, even considering all limitations of training and validating solely on a virtual driving 

simulator, it should give an understanding of what a relatively simple convolutional network  

is capable of. In this case, the model managed to learn the entire task of road following solely  

«by example», e. g. by looking at a relatively small dataset of the ground truth driving data. Most 

importantly, it didn’t expect any explicit instructions or decomposition of tasks, like road detection, path 

planning and controls. 
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