
Vol.:(0123456789)1 3

Cognitive Computation
https://doi.org/10.1007/s12559-022-10015-5

Course Recommendation based on Sequences: An Evolutionary Search
of Emerging Sequential Patterns

Mohammed Ibrahim Al‑Twijri1 · José María Luna2 · Francisco Herrera1 · Sebastián Ventura2

Received: 22 October 2021 / Accepted: 31 March 2022
© The Author(s) 2022

Abstract
To provide a good study plan is key to avoid students’ failure. Academic advising based on student’s preferences, complexity
of the semester, or even background knowledge is usually considered to reduce the dropout rate. This article aims to provide
a good course index to recommend courses to students based on the sequence of courses already taken by each student.
Hence, unlike existing long-term course planning methods, it is based on graduate students to model the course and not
on external factors that might introduce some bias in the process. The proposal includes a novel sequential pattern mining
algorithm, called (ES)2 P (Evolutionary Search of Emerging Sequential Patterns), that properly identifies paths followed by
good students and not followed by not so good students, as a long-term course planning approach. A major feature of the
proposed (ES)2 P algorithm is its ability to extract the best k solutions, that is, those with a best recommendation index score
instead of returning the whole set of solutions above a predefined threshold. A real study case is performed including more
than 13,000 students belonging to 13 faculties to demonstrate the usefulness of the proposal not only to recommend study
plans but also to give advices at different stages of the students’ learning process.

Keywords Course recommendation · Sequential pattern mining · Emerging patterns · Supervised descriptive pattern
mining

Introduction

The university period is one of the most decisive periods in
one’s life. Students often experience the university period
as a very stressful time mainly due to the fear of failure [1].
From time to time, the lack of success is caused by reasons
related to the students themselves, including the freedom to

plan their learning processes and the flexibility of the uni-
versity schedules [2]. According to Eurostat, the statistical
office of the European Union (EU), over 3 million young
people in EU had been to university but had discontinued
their studies at some point in their life. The main reasons
for not continuing their education were numerous: a desire
to work instead, finding their studies uninteresting or not
meeting their needs, family reasons, etc.

Long-term course planning (LTCP) is an important task
in academic advising [3], and it aims to help students in
proposing a course list of all future semesters so the drop-
out rate might be reduced. Nevertheless, LTCP is especially
challenging for several reasons such as the number of con-
straints related to university regulations, the students’ abili-
ties and background knowledge, or simply some personal
preferences caused by external factors [4]. As a result, when
building a study plan, a lot of different aspects are required
to prioritize courses. Some of such aspects quantify the
importance of including a specific course in the study plan
(students’ preferences, expected grades due to easy courses,
etc.), whereas others rate the chronology of those courses
(complexity of the semester based on the courses). LTCP,

 * Sebastián Ventura
 sventura@uco.es

 Mohammed Ibrahim Al-Twijri
 maltwijri@correo.ugr.es

 José María Luna
 jmluna@uco.es

 Francisco Herrera
 herrera@decsai.ugr.es
1 Department of Computer Science and Artificial

Intelligence, Andalusian Research Institute in Data Science
and Computational Intelligence (DaSCI), University
of Granada, 18071 Granada, Spain

2 Department of Computer Science and Numerical
Analysis, Andalusian Research Institute in Data Science
and Computational Intelligence (DaSCI), University
of Cordoba, 14071 Córdoba, Spain

http://orcid.org/0000-0003-4216-6378
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-022-10015-5&domain=pdf

 Cognitive Computation

1 3

however, does not consider graduate students to model the
course priority, which might be a good starting.

Taking all the above into consideration, this paper aims
to provide a course index [1] based on the sequence of
courses a student has taken already, and the grades obtained
by graduate students that followed a similar sequence. This
analysis not only provides an index for a specific course but
also enables general paths (courses grouped by semesters)
that should be followed. The performed recommendation
does not take any external factor, but the know-how of the
system. In other words, it is based on the paths followed by
other students and the final grade of such students not only in
a specific course but in the degree. To this aim, we propose
(ES)2 P (Evolutionary Search of Emerging Sequential Pat-
terns), a sequential pattern mining algorithm [5] to extract
general paths (a set of semesters with different courses per
semester) that were frequently followed by excellent stu-
dents, but infrequently or never followed by not so good stu-
dents. In this regard, (ES)2 P gathers two well-known tasks
in descriptive analysis: sequential pattern mining [6] and
emerging patterns [7]. This synergy is key to identify paths
that provide a course recommendation for each student.

The proposal should also deal with an extra issue: the
provided set of solutions. Generally, frequent itemset mining
algorithms [8] require a minimum frequency threshold value
to be predefined, which is related to the number of solutions.
It was studied [9] that a small change in that threshold value
may lead to an extreme variation in the number of solutions
as well as a significant increment in the execution time, espe-
cially on high-dimensional data [10]. Hence, to determine
the right threshold value is key, and it is not trivial even
though the user has a profound background in the applica-
tion field (it needs to try different thresholds by guessing
and re-executing the algorithms once and again until results
are good enough). To achieve this goal, the proposed algo-
rithm, which is based on evolutionary algorithms [11], is
able to extract a reduced set of solutions without considering
any frequency threshold. This proposal guides the search
process through the growth ratio or difference in the fre-
quency between two groups of students (excellent and not
so good ones). The novelty of the paper can be summarized
as follows:

– An evolutionary algorithm, known as (ES)2 P, for min-
ing emerging sequential patterns. Sequential pattern min-
ing [5] is a descriptive data mining task that has been
applied on discovering frequent patterns. This task,
however, has not been considered for discriminative
or emerging patterns whose frequency increases sig-
nificantly from one group or dataset to another. (ES)2 P
extracts the top-k solutions discovered along the evo-
lutionary process. It is a reduced set of solutions that
provide useful information to the students, not requiring

any threshold value and, therefore, any background in the
application field.

– A methodology for rating courses is also proposed.
Unlike LTCP, the proposal requires nothing more than
the courses (ordered by semesters) already passes by the
student that is advised. This methodology provides rec-
ommendations for students on which courses should be
taken, and it considers the proposed (ES)2 P algorithm to
obtain the most promising sequences of courses.

– A methodology for ordering courses that should be taken
by students to success in the degree. This methodology,
also based on the proposed (ES)2 P algorithm, provides
full study plans that should be followed by students to
reduce the dropout and failure.

The rest of the paper is organized as follows. Preliminaries
and Related Work introduces some important concepts and
related works. An Evolutionary Algorithm for the Search of
Emerging Sequential Patterns describes the proposed meth-
odology, and Experimental Analysis presents some experi-
mental studies to demonstrate the performance of proposal.
Finally, Cases of Study: Applying (ES) P to Course Rec-
ommendation shows some study cases for a real scenario
and Conclusion gives some conclusions.

Preliminaries and Related Work

This section describes some concepts concerning sequential
pattern mining and emerging patterns that are needed to be
understood. It also presents related studies for course recom-
mendation systems.

Preliminaries

The sequential pattern mining task was introduced by
Agrawal and Srikant [5] as a way to identify useful pat-
terns in a set of sequences. Although the task was origi-
nally proposed to mine sequences of patterns, it has been
extended to time series of ordered events [12]. Formally
speaking, let I = {i1, i2, ..., in} be the set of n items con-
tained in a database Ω . Let us also define an itemset X as
a set of items from I, that is, X ⊆ I ∈ Ω . A sequence s is
described as an ordered list of itemsets ⟨X1,X2, ...,Xm⟩ . In
a sequence s, an item ij appears only once in an itemset Xk ,
but such an item ij is allowed to appear multiple times in
different itemsets belonging to s. As a matter of clarifica-
tion, let us consider the set of items I = {a, b, c, d} and
the sequence s = ⟨{a, c}, {b}, {a, c, d}⟩ . In this example,
the item {a} ∈ I appears in the itemsets X1 = {a, c} and
X3 = {a, c, d} , but it only appears once in each itemset.
Additionally, the sequence s is formed by a set of item-
sets: X1 = {a, c} , X2 = {b} and X3 = {a, c, d} . Generally

Cognitive Computation

1 3

speaking, the meaning of a sequence is that events within
an itemset occur at the same time, but itemsets take place
one after another (the itemset X1 does always appear before
X2).

Sequential pattern mining aims to extract any sequence
that appears in Ω . A database Ω gathers a set of sequences
S = ⟨s1, s2, ..., sl⟩ as it is shown in Table 1, where S com-
prises three different sequences, that is, S = {s1, s2, s3} .
Additionally, given two sequences s1 = ⟨X1,X2, ...,Xn⟩ and
s2 = ⟨Y1,Y2, ..., Ym⟩ , s1 is called a subsequence of s2 , denoted as
s1 ⊆ s2 , if there exists integers 1 ≤ t1 < t2 < ... < tn ≤ m such
that X1 ⊆ Yt1 ,X2 ⊆ Yt2 , ...,Xn ⊆ Ytn . Thus, s3 ⊆ s1 in Table 1
since {c} ∈ s3 ⊆ {c} ∈ s1 , and {d, e} ∈ s3 ⊆ {d, e, f } ∈ s1.

Most sequential pattern mining algorithms focus on
the extraction of frequent sequences. This frequency is
quantify by the support quality measure, defined as the
percentage of sequences in S ⊆ Ω that contains a specific
sequence. It is also defined in terms of absolute values
as the number of sequences in S ⊆ Ω that contains the
sequence to be evaluated. Given a sequence sj , the fre-
quency of such a sequence in a database Ω is denoted as
support(sj,Ω) and formally defined, in relative terms, as
shown in Eq. 1.

A wide variety of sequential pattern mining algorithms have
been proposed so far. GSP, proposed by Srikant et al. [6],
is considered as one of the first algorithms in the field. A
wide variety of algorithms can be found in the specialized
literature for mining sequences that appear in data above a
predefined frequency value: Spade [13], Spam [14], Pre-
fixSpan [15], CM-Spade [16] and CM-Spam [16]. The last
two are considered as the ones that best perform. Some
additional approaches were proposed for mining the top-k
frequent sequences, not requiring any a minimum frequency
threshold value to be predefined: TKS [17] and TSP [18].
Finally, there are some approaches based on evolution-
ary computation such as G-CSPM [19], which is a genetic
algorithm for mining closed sequential patterns. Another
genetic algorithm was proposed in [20] for mining negative
sequential patterns. Finally, authors in [21] proposed a Par-
ticle Swarm Optimization algorithm for mining sequential
patterns.

(1)support(sj,Ω) =
|∀s ∈ S ∶ sj ⊆ s|

|S|

The finding of interesting patterns encompasses many
additional tasks including periodic pattern mining, high-
utility itemset mining, graph mining, among others. Emerg-
ing pattern mining (EPM), which is mainly categorized as
a supervised descriptive pattern mining technique, is an
additional task that aims to discover discriminative patterns.
EPM seeks for patterns whose frequency greatly differs from
one group or dataset Ω1 to another dataset Ω2 . The quality
of a pattern p is therefore quantified by such a difference
in frequency, generally known as growth rate (GR) that is
formally defined in Eq. 2.

Many different algorithms have been proposed so far for
mining emerging patterns: MDB-LLBorder [7], JEPPro-
ducer [22], ConsEPMiner [23], iEP-Miner [24]. Some of
such research works focused on the discovery of intrinsic
properties of each group, that is, patterns that do not appear
in one group, but it appears at least once in the other group.
In other words, patterns having a GR value of ∞ . These pat-
terns, known as jumping emerging patterns, are really use-
ful in fields such as image classification [25], human tasks
recognition [26] and bioinformatics [27], among others.
Emerging patterns have been also considered in a research
work [28] to compare sequences in two groups. Neverthe-
less, to the best of our knowledge, no algorithm for mining
emerging sequential patterns has been proposed yet.

Related Work

Recommender systems have received a lot of attention from
different institutions to improve the overall satisfaction grade
of their students that results in a higher number of students
to enroll. According to a recent review [1], course recom-
mendation systems can be categorized into collaborative
filtering-based recommendation systems (CFRS), content-
based recommendation systems (CRS), knowledge-based
recommendation systems (KRS), hybrid approaches and
data mining approaches.

CFRSs are based on the assumption that predictions
are done by considering the choices of other students with
similar preferences and interests. Chen et al. [29] proposed
a collaborative filtering algorithm based on the history of
students’ course selection records. This filtering algorithm
also considered introductory text from the courses and the
students’ performance in that courses. Huang et al. [30] rec-
ommended courses by means of a novel cross-user-domain
collaborative filtering algorithm. The algorithm was able to
predict a score for each student based on the course score
distribution of similar students that already passed the
course. On the other hand, CRSs rely on similarities between

(2)GR(p,Ω1,Ω2) =
support(p,Ω1)

support(p,Ω2)

Table 1 Sample sequence database

Sequence ID Sequence

1 ⟨{a, b}, {c}, {d, e, f }⟩
2 ⟨{a, b}, {b}, {g, h}⟩
3 ⟨{c}, {d, e}⟩

 Cognitive Computation

1 3

course features. CRSs recommend courses to students based
on previously studied courses and their degree of satisfac-
tion. Lessa et al. [31] proposed the use of Likedin profiles
to recommend appropriate courses. Mostafa et al. [32] also
developed a recommendation system but, instead of taking
the students’ preferences from an external source, they ana-
lyzed the descriptions of the courses already done by such
students. The final aim was to recommend courses that are
similar to the previously chosen and, therefore, courses that
are of interest for the students.

A major problem of CFRSs and CRSs is the huge amount
of data they require to make recommendations. When these
systems begin to be used, the recommendation power
decreases significantly due to a lack of information, what is
called as the cold-start problem [1] in literature. Knowledge-
based recommendation systems (KRSs) are able to over-
come that issue since the recommendation is performed by
meeting users’ requirements and courses. Huang et al. [33]
designed a course recommendation system based on an
ontology. The system relied on several curricular profiles
needed by the students to meet the requirements of differ-
ent jobs. Like KRSs, hybrid course recommendation sys-
tems are also commonly used to overcome the problems of
CFRSs and CRSs. Authors in [34] proposed a hybrid system
combining courses analyses and rates given by students to
provide a course ranking. Esteban et al. [35] also proposed
a hybrid system that combines information from both the
student and the courses, and includes collaborative and
content-based filters.

Last but not least, recommendation systems based on data
mining approaches have been proposed to help students with
the choice of the courses that best fit to them [36]. The Uni-
Net [37] method was recently proposed as a recommenda-
tion system based on deep learning to help students to take
the right decision on the order, combination and number of
courses to take. Britto et al. [38] proposed to recommend
courses according to the background and preferences of the
students, paying special attention to those courses in which
the students obtained the best grade. In [39], the authors
proposed the use of clustering algorithms to group students
and make recommendations based on similarities. Similarly,
authors in [40] propose a subgroup discovery algorithm to
group types of learners. Wang et al. [41] proposed the use
of sequential pattern mining to build a course recommenda-
tion system. The system searches for sequences of courses
followed by students with high GPAs. The largest sequences
were considered since they are usually infrequent and, there-
fore, may offer a better connection to achieve the same aca-
demic success as previous students. The proposed algorithm
took into consideration features such as the percentage of
students enrolled in the course, the quantity of time spent
by the students to graduate, the requirements of the courses,
etc. A sequential pattern mining approach was also proposed

in [42] to recommend courses based on the learning outcome
that each student would get if he/she enrolls in the course.

An Evolutionary Algorithm for the Search
of Emerging Sequential Patterns

This section describes the proposed (ES)2 P algorithm.
First, it describes the data representation that should be fol-
lowed by any problem including information about students:
courses (organized into semesters) and their grades. Here,
this section includes how each solution is represented in the
proposed evolutionary algorithm together with each of the
procedures of the proposal. Finally, it describes how to deal
with the resulting set of patterns.

Data Representation

In the proposed approach, the original database is stored
into two different data representations while data are read,
transaction by transaction. The idea behind these data rep-
resentations is to provide a fast data access, and to avoid
useless information to be maintained. First, data are kept
in memory through a vertical data representation that cre-
ates a list of indices (sequences in data) in which each item
appears at least once. To obtain the frequency or support of
each single item in data is quite simple since the algorithm
just needs to calculate the length of the list associated with
the item at hand. Given two or more items, this vertical data
representation allows to obtain the set of data records that
have at least one common instance of such items. The only
operation to be performed is an intersection of the lists asso-
ciated with each item. Second, an horizontal data represen-
tation is performed where a list of indices is stored. Here,
instead of index of the sequences in data, it stores the index
of the itemsets in which the item appears. This second data
representation is based on a hashing function, so given a
key k based on an item, it maps k to the corresponding set of
indices on which k is included. Index values are in increas-
ing order from sequence to sequence and it depends on the
number of itemsets each sequence has, which is also saved.

Figure 1 illustrates the data representation followed by
the proposed approach for the sample transactional dataset
shown in Table 1. The vertical representation (see Fig. 1a)
includes eight different lists of indices, one per item in
data. Since each index denotes the data record (sequence)
in which the item appears, the length of the list is the fre-
quency of each item in data. Hence, the item {a} appears
twice in the dataset (first and second sequence). The item {b}
also appears twice in the dataset (first and second sequence),
even when it appears twice in the second sequence, that is,
⟨{a, b}, {b}, {g, h}⟩ . Similarly, the horizontal data represen-
tation (see Fig. 1b) is responsible for storing the itemsets in

Cognitive Computation

1 3

which each item appears. This data representation is as if
all the sequences (IDs 1, 2, 3, etc.) were placed in a single
row (single sequence) and we consider the place in which
the item appears. For example, the item {a} appears in the
first itemset (sequence with ID 1) and the first itemset of
the sequence with ID 2. In other words, {a} appears in the
first and fourth itemsets from Table 1 if all the sequences
were placed in a row. Additionally, the item {b} appears in
the first itemset (sequence with ID 1) as well as in the first
and second itemsets of the sequence with ID 2. In other
words, {b} appears in the first, fourth and fifth itemsets from

Table 1. Finally, the proposed data representation needs to
store the number of itemsets included in each sequence (see
Fig. 1c). The accumulated sum is maintained so the last
value corresponds to the number of itemsets in data. This
accumulated sum is really useful to determine whether the
horizontal representation values belong to one or different
sequences. In other words, taking the vector of values shown
in Fig. 1c, any horizontal data representation value in the
range [1, 3] belongs to the first sequence; any horizontal
data representation value in the range [4, 6] belongs to the
second sequence; and any value in the range [7, 8] belongs
to the third sequence.

The proposed data representation is really useful to
compute the frequency in a fast way. The frequency of a
single item is simply computed as the length of the verti-
cal representation: the frequency of {a} is 2, the frequency
of {b} is 2, etc. Additionally, the frequency of a sequence
(including itemsets) is computed through both the vertical
and horizontal representations. Let us consider the sequence
s = ⟨{c}, {d, e}⟩ . For this sequence, the intersection of the
vertical data representation is performed for each single
item, resulting as indices 1 and 3 (see Fig. 1a). At this point,
it is required to check if every itemset in such sequences is
also satisfied. The itemset {c} appears in indices 2 and 7
according to the horizontal representation (see Fig. 1b). Due
to the resulting indices from the vertical representation were
1 and 3, we have to check the first and third ranges of values
from Fig. 1c as follows: 2 ∈ [1, 3] and 7 ∈ [7, 8] . As a result,
the itemset {c} is satisfied in the first and third sequence. Let
us do the same for the itemset {d, e} , which appears in indi-
ces 3 and 8 according to the horizontal representation (see
Fig. 1b). Again, due to the resulting indices from the vertical
representation were 1 and 3, we have to check the first and
third ranges of values from Fig. 1c as follows: 3 ∈ [1, 3] and
8 ∈ [7, 8] . As a result, the sequence s appears twice in data:
first and third sequences.

Encoding Criterion

The proposed algorithm uses an encoding vector of vari-
able length to represent each individual or solution to the
problem. The vector includes the set of items that belong
to the represented solution. Such a set of items, in turn,
is grouped into subsets that represent the itemsets within
a sequence. The proposed encoding criterion includes the
only restriction that the same item cannot appear twice in
the same sequence. Since the algorithm was proposed for
mining sequences of subjects (items) ordered by semesters
(itemsets), it does not make sense to include the same sub-
ject twice in a sequence. For a matter of clarification, let
I = {a, b, c, d} be a sample set of items (subjects). A valid
sequence is s = ⟨{a, b}, {c}, {d}⟩ , denoting that a student
passed the subjects a and b in a semester. Then, a semester

(a)

(b)

(c)

Fig. 1 Data representations of the proposed algorithm

 Cognitive Computation

1 3

later, the student passed the subject c. Finally, in a follow-
ing semester, the student passed the subject d. An invalid
solution would be s = ⟨{a, b}, {a}⟩ since once the subject a
is passed by a student there is no sense in enrolling it again.

The proposed encoding criterion is easily adapted to the
data representation since each item has two different point-
ers, one to the corresponding list of sequences (vertical data
representation) and other to the list of itemsets (horizontal
data representation). Thus, to determine in which sequences
the items appear it only performs an intersection of the lists
(vertical data representation) associated with the items in
the sequence. Additionally, to obtain which itemsets appear
in the sequences, it only has to perform an intersection of
the lists (horizontal data representation) associated with the
items for each itemset in the sequence. In order to clarify
this methodology, let us consider again the valid sequence
s = ⟨{a, b}, {c}, {d}⟩ . The sequences in which the items
belonging to s appear are obtained by intersecting the verti-
cal representation of a, b, c and d. Additionally, the intersec-
tion of the lists obtained from the horizontal data represen-
tation returns the sequences in which the itemsets in s are
satisfied. Such itemsets are {a, b} , {c} , and {d}.

(ES)2 P Algorithm

The proposed (ES)2 P algorithm comprises three main proce-
dures, which were properly designed to the problem at hand.
Descriptions of all these procedures as well as how they are
combined to form the whole algorithm can be found below.

1. Initial solutions. The proposed algorithm creates the
initial set of solutions randomly, each solution is a
sequence including random itemsets. The number of
itemsets that each solution (sequence) may include is
limited by a maximum predefined value. Each itemset
includes, in turn, a random subset of items from I. A
maximum number of items per itemsets is also prede-
fined. It is finally important to highlight that an item
i ∈ I cannot appear more than once in a sequence, as it
was previously described in Encoding Criterion.

2. Evaluation procedure. This procedure is responsible
for assigning a fitness value F to each individual or solu-
tion s. The evaluation procedure calculates how close a
given solution is to the optimum solution on a dataset
Ω . In the proposed approach, F for a solution s is for-
mally defined based on the support of s and the GR (it
was previously described in Eq. 2, Preliminaries) of s
on the dataset Ω as shown in Eq. 3. F is defined in the
range [0, 1] and the best solutions are close to 1. Ω is
split into two groups, that is, Ω1 for good students (those
that obtained a high final mark) and Ω2 for not so good
students. The fitness value F is based on the frequency
of s in the subset of good students and the normalized

growth rate obtained by s. In other words, a solution s is
good if it represents a high percentage of good students
and a low percentage of not so good students. Finally, it
is important to clarify that, in those situations where the
difference in the frequencies between Ω1 and Ω2 is maxi-
mum, that is, GR(s,Ω1,Ω2) = ∞ , only the frequency of
s in Ω1 is considered to compute F.

 For a matter of clarification, let us consider a sam-
ple dataset (see Table 2) that is divided into Ω1 (good
students) and Ω2 (not so good students). A sam-
ple solution s1 = ⟨{a, b}, {c}⟩ appears in 60% of the
good students (two first sequences as well as the last
sequence in Ω1). It is mathematically represented as
support(s1,Ω1) =

3

5
= 0.6 . This solution s1 appears

in 20% of not so good students (third sequence in
Ω2), also denoted as support(s1,Ω2) =

1

5
= 0.2 . It

implies that GR(s1,Ω1,Ω2) =
0.6

0.2
= 3 and, therefore,

F(s1,Ω1,Ω2) =
0.60

3
× (3 − 1) = 0.40 . Let us now con-

sider an additional sample solution s
2
= ⟨{a, b}, {c},

{e}⟩ . Its support value in Ω1 is calculated as
support(s2,Ω1) =

3

5
= 0.6 , whereas in Ω2 i t is

ca lcula ted as support(s2,Ω2) =
0

5
= 0 . Hence,

GR(s2,Ω1,Ω2) =
0.6

0
= ∞ and therefore, the fitness

value F is only computed as the frequency of s2 in Ω1 or
F(s2,Ω1,Ω2) = support(s2,Ω1) = 0.60.

3. Genetic operators. The proposal includes two genetic
operators: the crossover operator, which focuses on
exploiting current individuals by examining their neigh-
bors; the mutation operator, which aims to diversify the
search process and to explore new areas in the search
space.

(3)

F(s,Ω1,Ω2) =
support(s,Ω1)

GR(s,Ω1,Ω2)
× (GR(s,Ω1,Ω2) − 1)

Table 2 Sample database including sequences for good and not so
good students

Sequence ID Ω
1
 (excellent students)

1 ⟨{a, b}, {c}, {d, e, f }⟩
2 ⟨{a, b}, {c}, {e}⟩
3 ⟨{a}, {b, c, d, e}⟩
4 ⟨{c, d}, {g, h, k}, {l,m}⟩
5 ⟨{a, b, j}, {h, i, k}, {c}, {d, e}⟩
Sequence ID Ω

2
 (not excellent students)

1 ⟨{b}, {a, c}, {f }⟩
2 ⟨{b, d}, {a, c}, {d, e}⟩
3 ⟨{d}, {a, b}, {c, e}⟩
4 ⟨{e}, {f , g, h}, {m}⟩
5 ⟨{a, d}, {b}, {k, l}⟩

Cognitive Computation

1 3

more than once either in o1 or in o2 . On the other hand,
the genetic operator leaves the itemsets of p1 and p2 out-
side the two cut-points unaltered (see lines 14 to 23,
Algorithm 1). It then adds the corresponding itemsets
within the two cut-points by removing repeated items.
As a matter of clarification, Fig. 2 illustrates an exam-
ple of the proposed crossover operator. Let us consider
the following individuals taken from a sample dataset
(see Table 2) to act as parents p1 = ⟨{b}, {c}, {d, e, f }⟩ ,
p2 = ⟨{a, c}, {j, k}, {f , l}, {d,m}⟩ , and the cut-points
marked as dotted lines. Let us also consider the range
within the cut-points to be copied unaltered. Thus,
o1 is first initialized as ⟨{b}, {c}⟩ . The itemsets out-
side the cut-points from p2 are then added to o1 , that
is, {a, c} and {d,m} . Since the item c is already in
⟨{b}, {c}⟩ , then it is removed and the resulting offspring
is o1 = ⟨{a}, {b}, {c}, {d,m}⟩ . Finally, o2 is initial-
ized as ⟨{j, k}, {f , l}⟩ and the itemsets outside the cut-

Fig. 2 Example of crossover
operator

The crossover genetic operator (see Algorithm 1) combines
generic material of two solutions to act as parents (p1
and p2) to generate offspring (o1 and o2). This operator
works as a two-points crossover by considering the item-
sets as feasible points. Hence, it is not possible to split
any itemset within p1 or p2 . An additional requirement of
this operator is that the crossover points cannot produce
the whole individual. This two-points crossover opera-
tor works differently depending on a probability. On the
one hand, it leaves the itemsets of p1 within the two
cut-points unaltered (see lines 5 to 14, Algorithm 1). It
adds the itemsets that appear out of the range of the cut-
points of p2 , but removing those items that were already
in the itemsets obtained from p1 . Additionally, it does
the same for p2 , that is, it takes the itemsets within the
cut-points and adds those itemsets out of the cut-points
from p1 . Again, those items that were already included
due to p2 are removed. As a result, no item can appear

 Cognitive Computation

1 3

points from p1 are added: {d, e, f } . Due to f is already
in o2 it is removed and the offspring is finally formed as
⟨{j, k}, {f , l}, {d, e}⟩ .

On the other hand, the mutation genetic operator (see

Algorithm 2) has been designed to perform different
tasks with a certain probability. It slightly modifies
solutions, looks for near neighbors, and seeks for far
unexplored areas of the search space, maintaining part
of the information of the original sequence (solution
or individual). Given an individual, we first give the
same probability to apply a more disruptive operator
or a subtler one (see line 2, Algorithm 2). The disrup-
tive option (see lines 2 to 10, Algorithm 2) randomly
selects a cut-point within the solution and any itemset
before that cut-point (see lines 5 to 7) or after it (see
lines 7 to 9) is replaced by a set of itemsets generated
randomly. It adds a random number of itemsets, but
ensuring that the sequence does not exceed the maxi-
mum number of itemsets. Those items that are already
included in p are not considered. On the contrary,
the less disruptive option (see lines 11 to 24, Algo-
rithm 2) provides three different options: 1) to include
a new itemset at a random position of the sequence
(see lines 12 to 15). Those items within such an item-

randomly generated (see lines 19 to 24). Again, those
items within such an itemset that are already included
in p are not considered. As a matter of clarification, let
us consider the following individual to act as a parent
p = ⟨{b}, {c}, {d, e, f }⟩ , which is a feasible solution
from the sample dataset shown in Table 2. Considering
the disruptive operator (see lines 2 to 10, Algorithm 2),
the cut-point between the second and third itemsets,
and removing any itemset on the left of such cut-
point, the result is a partial new solution comprising
just the itemset {d, e, f } . After generating the random
itemset X = {a, b} , the resulting solution o obtained
from p is o = ⟨{a, b}, {d, e, f }⟩ . As for the less disrup-
tive operators, let us consider the last one that replaces
an itemset by another randomly obtained (see lines 19
to 24, Algorithm 2). A random itemset {b} is chosen
from the individual p = ⟨{b}, {c}, {d, e, f }⟩ , and that
itemset is replaced by a new one randomly generated:
{a, c, h} . Due to the item c was already included in p,
it is removed from the new itemset and the resulting
individual is o = ⟨{a, h}, {c}, {d, e, f }⟩.

set that are already included in p are not considered;
2) remove a random itemset from p (see lines 16 to
18); 3) replace a random itemset from p by a new one

Cognitive Computation

1 3

12 to 15, Algorithm 3). The following step carried out by
the proposed algorithm is to update the elite set E with the
best e unrepeated solutions found along the evolutionary
process (see line 16).

Last but not least, it is important to highlight that in the
event that the algorithm is stuck (i.e., the elite does not
improve after m generations), the current population restarts

Table 3 Sample set E of sequences returned by the algorithm and
their Fs values, paths st already followed by some sample students,
and credit hours ci of each course

Sequence ID E Fs

1 ⟨{a}, {b, c}, {d}⟩ 0.8
2 ⟨{a, e}, {c}⟩ 0.7
3 ⟨{b}, {g, d}, {f }⟩ 0.6
4 ⟨{k}, {l}⟩ 0.5

Student ID st

1 ⟨{a, l}, {b, c, e}, {k}, {g, d}, {f }⟩
2 ⟨{l}, {a, e}, {c, d}, {f }⟩
3 ⟨{k, a}, {b, c}⟩
Course ci Course ci

a 3 f 1
b 2 g 2
c 3 j 2
d 2 k 2
e 3 l 1

Finally, it is important to combine all the procedures
described above to produce the final algorithm (see Algo-
rithm 3). The proposed (ES)2 P algorithm maintains a fixed
size elite with the best individuals (sequences) produced
along the evolutionary process, and this set of best solutions
is finally returned. The first step is to split the dataset Ω into
two datasets, and then, the algorithm creates the population
or the initial set of solutions, which are evaluated according
to the fitness function (see lines 2 and 3, Algorithm 3). At
this point, the elite is also initialized with the best e individu-
als from the initial population (see line 4), and the number
of generations (iterations of the algorithm) is set to 0. An
iterative process starts and it is performed for a number of
generations g (see lines 6 to 21, Algorithm 3). In each itera-
tion, the algorithm performs as follows. First, a set of indi-
viduals are selected from P to act as parents. This selection
procedure is carried out by a tournament selector of size 2.
The set P is used to apply genetic operators by considering
an � probability for the crossover, and a � probability for the
mutation. Such genetics operators were already described in
Algorithms 1 and 2. Right after the application of the genetic
operators, a restoration operator is performed (see line 9) to
check that invalid solutions are not formed so individuals
can be evaluated again (see line 11). The population is then
updated by replacing the previous population by the set of
offspring obtained in the current generation. At this point,
the best individual is never lost so if it is not in the new
population then it is taken from the previous one (see lines

 Cognitive Computation

1 3

(lines 20 to 24, Algorithm 3). The population P is formed
by n random individuals, and the crossover and mutation
probabilities are also reset to the default values. Finally, once
the maximum number of generations is reached, the elite
population is returned (see line 27).

Resulting Set

The previously described (ES)2 P algorithm is really useful to
extract not only paths followed by students during the degree
but also to extract paths previous to some specific courses.
Hence, the idea would be the same, but the input dataset is
properly obtained by considering the full paths or the spe-
cific subpaths before the specific course. The resulting set
E , which is given by the elite of the algorithm for a specific
purpose (for example to extract paths that reach to a specific
objective course j) is key to perform course recommenda-
tions. Giving a course j, the recommendation is based on the
analysis of the sequences that describe the paths followed by
excellent students in the course j.

The set E of sequences returned by the algorithm is
ordered by the fitness value Fs for each s ∈ E . Additionally,
each item i within a sequence s has associated a Fs

i
= Fs × ci ,

being ci the credit hours of the course i. Thus, those courses
with a higher number of credit hours are more important
than those with lower credit hours. Once a new student t
is analyzed by the system, his/her complete path st is taken
into account, and every sequence s ∈ E is activated for t if
s ⊆ st , i.e., if the student passed the courses in the same order
denoted by s. A recommendation index djt for the student t
to take the course j is calculated based on Eq. 4. The numer-
ator sums the highest Fs

i
 value for items in the activated

sequences, i.e., in those sequences s ⊆ st . Finally, to provide
a recommendation index in the [0, 1] range, the denominator
sums the maximum Fs

i
 value for items in all sequences in the

set. Values of djt closer to 1 means that the student t is pre-
pared to enroll in course j due to its background. Values of djt
closer to 0 means that this course should not be taken at this
moment. Applying the proposed recommendation index to
a given student t on all the courses returns the set of courses
that are more appropriate for t.

For a matter of clarification, let us consider the sample
set E shown in Table 3, which is ordered by the fitness value
Fs . Let us also consider three sample students and the cor-
respondence of credit hours for each of the courses. Con-
sidering the course j as objective, the first student t = 1 acti-
vates the sequences #1 and #3 from E , since s1 ∈ E ⊆ st and
s3 ∈ E ⊆ st . Then, for each item i in s1 ∪ s3 , its maximum Fs

i
 is

obtained, and added to calculate the recommendation index
d
j

t . In the case of student t = 1 , the numerator of djt would be:
0.8 × 3 + 0.8 × 2 + 0.8 × 3 + 0.8 × 2 + 0.6 × 2 + 0.6 × 1 = 9.8 .
Note that from s3 only two courses f and g have incremented
the index, since b and d were already present in s1 with
higher Fs

i
 value. Additionally, the denominator is calculated

as if all the items in E are satisfied. Hence, according to
d
j

t (see Eq. 4), the recommendation index for student t = 1
would be dj

1
=

9.8

13.4
= 0.731 . On the other hand, the recom-

mendation index value for the other two students (t = 2 and
t = 3) and the course j is dj

2
= 0.112 , and dj

3
= 0 . Note that

student t = 3 does not match any of the sequences in the
resulting set so the algorithm does not recommend him/her
to enroll in course j at all.

Experimental Analysis

This section presents the experimental study, describing first
the experimental set up. This section analyzes the perfor-
mance of the proposed algorithm, which is finally compared
to exhaustive search algorithms to demonstrate that the evo-
lutionary process makes sense.

Experimental Setup

All the exhaustive search algorithms used in this compari-
son are available in the SPMF library [43]: Spade [13],
Spam [14], PrefixSpan [15], CM-Spade [16] and CM-
Spam [16]. Additionally, the algorithms TKS [17] and
TSP [18] are also considered since they do not require any
frequency threshold, and their aim is to extract the top-k
most frequent itemsets from data. The experiments are car-
ried out on a set of 13 real datasets (see Table 4) taken from
King Abdulaziz University including information about

(4)d
j

t =

∑
i∈s�s⊆st max

�
Fs
i
�s ⊆ st

�

∑
i∈s�s∈E max

�
Fs
i
�s ∈ E

�

Table 4 Datasets and their main characteristics

Faculty #Records Length #Courses

Arts 3,892 49.49 375
Business 1,413 46.80 216
Communication & Media 483 48.10 174
Computing & Inf. Tech. 144 51.01 109
Design & Arts 167 54.67 155
Economics & Admin. 2,206 48.31 387
Engineering 365 58.73 364
Engineering Rabeg 102 62.99 217
Home Economics 614 45.29 264
Information Technology 284 54.70 233
Law 946 49.18 183
Sciences & Arts 893 52.26 283
Sciences 1,928 51.87 467

Cognitive Computation

1 3

different faculties: sequences of courses taken by students.
Additionally, all the gathered data were divided into 13
groups or datasets, one per faculty. #Records stands for the
number of students, Length is the average number of sub-
jects taken by the students to obtain the degree, and finally,
#Courses is the number of different courses that each faculty
provides. Last but not least, it is important to highlight that
each dataset (faculty) is split into two: Ω1 includes the 30%
of students with best GPA in the degree; Ω2 includes the rest
of students. All the experiments are performed on a machine
with 6 Intel Xeon E5-2620 CPUs at 2.10 GHz and 64 GB of
RAM. The experiments are run ten times, and the average
results are considered to reduce environment variations.

Analysis of the Proposed (ES)2 P Approach

The goal of this first analysis is to demonstrate how well
the proposal behaves on multiple datasets and to determine
the best values for the hyperparameters, that is, those that
provide best fitness values requiring a lower computational
time. Table 5 shows the average results obtained by different
combinations of values for the population size (n) and the
population restarting after m generations without improve-
ment. A hypothesis testing by means of non-parametric sta-
tistical tests has been conducted with the aim of determin-
ing whether there exist significant differences in the overall

Table 5 Average fitness values obtained by the proposed (ES)2 P algorithm considering different population sizes (n) and number of generations
without improvement (m) to reset the population. Best results are in bold type-face

n = 100 n = 200 n = 300 n = 400 n = 500

Faculty m = 50 m = 100 m = 50 m = 100 m = 50 m = 100 m = 50 m = 100 m = 50 m = 100

Arts 0.201 0.202 0.208 0.207 0.210 0.212 0.215 0.214 0.222 0.219
Business 0.150 0.152 0.173 0.184 0.197 0.209 0.207 0.218 0.219 0.226
Communication & Media 0.335 0.339 0.372 0.424 0.409 0.430 0.433 0.464 0.427 0.487
Computing & Informat. Technology 0.374 0.386 0.386 0.386 0.399 0.410 0.408 0.415 0.414 0.419
Design & Arts 0.250 0.259 0.264 0.273 0.273 0.274 0.275 0.282 0.281 0.285
Economics & Administration 0.417 0.419 0.419 0.420 0.419 0.420 0.420 0.421 0.421 0.422
Engineering 0.243 0.247 0.250 0.251 0.251 0.251 0.251 0.251 0.251 0.252
Engineering Rabeg 0.293 0.294 0.297 0.302 0.298 0.301 0.302 0.307 0.305 0.309
Home Economics 0.315 0.323 0.339 0.338 0.348 0.345 0.351 0.350 0.351 0.351
Information Technology 0.367 0.368 0.379 0.378 0.395 0.399 0.398 0.407 0.403 0.407
Law 0.264 0.267 0.268 0.273 0.275 0.278 0.277 0.282 0.280 0.284
Sciences & Arts 0.157 0.156 0.184 0.173 0.189 0.183 0.199 0.191 0.203 0.201
Sciences 0.160 0.162 0.170 0.173 0.173 0.172 0.174 0.176 0.176 0.179

Fig. 3 Critical difference diagram of different parameter combinations considered. The comparisons were performed using a Shaffer’s test

 Cognitive Computation

1 3

performance for the aforementioned combination of values.
The Friedman’s test [44] has been used to analyze the gen-
eral differences, whereas the Shaffer’s post hoc test [45] has
been employed to perform all pairwise comparisons. The
Friedman’s test detected that there were general statistical
differences in the ten combinations of values at a signifi-
cance level of � = 0.01 , rejecting the null hypothesis with a
p-value smaller than 2.2e−16 . Then, the Shaffer’s post hoc
test was performed to detect where these significant differ-
ences were located. The results for this post hoc test, at a
significance level of � = 0.01 , are summarized through the
critical difference diagram shown in Fig. 3, illustrating that

the values n = 500 and m = 100 produce the best values.
However, according to the post hoc test, no statistical dif-
ference is found among n values between 500 and 300, and
m values between 50 and 100, being the only exception the
combination of n = 300 and m = 50. At this point, it is inter-
esting to analyze the runtime (see Table 6) for these six com-
binations of parameters that present the same performance,
with a statistical significance of 99%. The Friedman’s test
revealed statistical differences in these combination of val-
ues at a significance level � = 0.01 , thus rejecting the null
hypothesis with a p-value smaller than 5.074e−10 . Finally,
the Shaffer’s post hoc test at a significance level of � = 0.01

Table 6 Average time in
seconds obtained by the
proposed (ES)2 P algorithm
considering different
population sizes (n) and
number of generations without
improvement (m) to reset the
population. Best results are in
bold type-face

n = 300 n = 400 n = 500

Faculty m = 100 m = 50 m = 100 m = 50 m = 100

Arts 4.91 × 10
2

6.55 × 10
2

6.00 × 10
2

7.71 × 10
2

7.41 × 10
2

Business 3.01 × 102 3.96 × 10
2

3.73 × 10
2

4.44 × 10
2

4.59 × 10
2

Communication & Media 1.64 × 102 2.25 × 10
2

2.19 × 10
2

2.76 × 10
2

2.67 × 10
2

Computing & Inf. Tech. 1.10 × 102 1.48 × 10
2

1.43 × 10
2

1.86 × 10
2

1.79 × 10
2

Design & Arts 1.39 × 102 1.87 × 10
2

1.81 × 10
2

2.33 × 10
2

2.29 × 10
2

Economics & Admin. 3.30 × 10
2

4.51 × 10
2

4.32 × 10
2

5.81 × 10
2

5.24 × 10
2

Engineering 2.07 × 102 2.85 × 10
2

2.72 × 10
2

3.47 × 10
2

3.38 × 10
2

Engineering Rabeg 1.45 × 102 1.97 × 10
2

1.89 × 10
2

2.45 × 10
2

2.38 × 10
2

Home Economics 1.72 × 102 2.27 × 10
2

2.28 × 10
2

2.82 × 10
2

2.80 × 10
2

Information Technology 1.45 × 102 1.95 × 10
2

1.91 × 10
2

2.41 × 10
2

2.36 × 10
2

Law 3.15 × 10
2

4.63 × 10
2

4.20 × 10
2

5.54 × 10
2

5.57 × 10
2

Sciences & Arts 2.04 × 102 2.74 × 10
2

2.65 × 10
2

3.38 × 10
2

3.28 × 10
2

Sciences 3.01 × 102 3.99 × 10
2

4.00 × 10
2

5.02 × 10
2

4.85 × 10
2

Fig. 4 Critical difference diagram of different execution times obtained for the parameter combinations considered. The comparisons were per-
formed using a Shaffer’s test

Cognitive Computation

1 3

(see Fig. 4) revealed no significant differences for n = 300
and any m value, as well as n = 400 and m = 100 . According
to the results shown in Table 6, the combination of param-
eters m = 100 and n = 300 presents the best runtime. Taking
all the above into consideration, we recommend the previous
combination of parameters.

Let us continue now with the analysis of the convergence
of the proposed approach. Figure 5 shows how the algorithm
behaves on four different datasets: Computing & Informa-
tion Technology; Design & Art; Economics & Administra-
tion; Law. The results on this heterogeneous group of data-
sets (#Records varies from 144 to 2,206; Length is between
48.3 and 54.67; and #Courses varies from 109 to 387. See
Table 4) demonstrate that the convergence of the algorithm

is high on different scenarios and it is around 1,500 genera-
tions for which the algorithm does not widely improve the
results. Thus, in order to avoid spending time and computa-
tional resources on little fitness improvements, the number
of generations is set to 1,500. Last but not least, the crossover
and mutation probability values are also fixed to 0.8 and 0.3,
respectively. With the aim of providing a better description of
the experimental study, the readers could find a further study
on the combination of probability values at the website http://
www. uco. es/ kdis/ course- recom menda tion. In summary,
to obtain the best combination of parameter values, more
than 50 parameter configurations were considered, result-
ing in more than 6,500 executions. Additionally, 10 inde-
pendent runs were performed for each dataset and parameter

Fig. 5 Analysis of the convergence of (ES)2 P on different datasets

http://www.uco.es/kdis/course-recommendation
http://www.uco.es/kdis/course-recommendation

 Cognitive Computation

1 3

configuration to study the algorithm’s performance due to its
stochastic component.

(ES)2 P Against Other Sequential Pattern Mining
Algorithms

This second analysis aims to study how well the proposed
(ES)2 P algorithm behaves when it is compared to exist-
ing exhaustive search algorithms. First, we analyze the
number of solutions returned by any exhaustive search
algorithm (results are exactly the same for any algorithm,
as expected) when different frequency thresholds are con-
sidered (see Table 7). At this point, it is required to high-
light that our proposal returns exactly the same for any
dataset since it obtains the best 50 solutions found. As it
is shown, the number of solutions extracted by exhaus-
tive search algorithms highly vary and it depends on the
dataset. This number varies between 59 to 148,461,607
solutions. Second, we analyze the average fitness value

obtained by the algorithms on different support threshold
values (see Table 7). It is important to remark that this
is not the average frequency value but the fitness value
already described in (ES) P Algorithm. Additionally, since
the number of solutions is completely different, we have
taken the best 50 solutions to perform a fair comparison
with regard to the proposal. As it is expected, exhaustive
search algorithms obtained the best results (bold type-
face) and, the lower the support threshold value the better
results since a wider number of solutions are analyzed.
However, for some datasets, our proposal achieved better
results in average fitness: Design & Arts; Economics &
Administration; Engineering; Home Economics; Informa-
tion Technology; Law; Sciences & Arts. This interesting
behavior occurs due to fitness function depends on the
GR measure, which can be high for small support values.
Thus, given a specific support threshold value, extremely
good results for the fitness value might be missed. On the
contrary, the proposal guides the searching process by the
fitness value, achieving better results.

Table 7 Number of solutions
and average fitness value
returned by exhaustive search
algorithms (considering
different support threshold
values) and the proposed
(ES)2 P approach. Memory
stands for memory problems
when running (out of memory).
The average fitness value was
calculated by taking the best 50
solutions based on the fitness
value

#Solutions

Faculty 0.5 0.6 0.7 0.8 (ES)2P

Arts 2,642 811 749 583 50
Business 59,336 4,705 1,397 604 50
Communication & Media 184,168 93,667 45,942 14,952 50
Computing & Inf. Tech. Memory 9,932,208 3,589,091 820,513 50
Design & Arts 4,091 2,413 1,730 751 50
Economics & Admin. 159,850 43,706 8,996 248 50
Engineering 325,611 19,824 10,384 6,764 50
Engineering Rabeg Memory 8,512,968 1,279,911 180,360 50
Home Economics Memory 1,661 1,147 790 50
Information Technology 8,027,089 510,522 112,565 38,561 50
Law 484,583 145,763 79,418 43,112 50
Sciences & Arts 1,164 674 65 59 50
Sciences 18,220 1,954 1,397 1,226 50

Average Fitness

Faculty 0.5 0.6 0.7 0.8 (ES)2P

Arts 0.313 0.313 0.310 0.225 0.208
Business 0.303 0.302 0.284 0.202 0.195
Communication & Media 0.659 0.659 0.659 0.640 0.412
Computing & Inf. Tech. Memory 0.558 0.558 0.558 0.401
Design & Arts 0.295 0.288 0.220 0.158 0.267
Economics & Admin. 0.457 0.457 0.433 0.158 0.420
Engineering 0.266 0.210 0.145 0.126 0.249
Engineering Rabeg Memory 0.464 0.464 0.464 0.300
Home Economics Memory 0.437 0.436 0.333 0.340
Information Technology 0.446 0.416 0.323 0.289 0.389
Law 0.326 0.303 0.281 0.261 0.273
Sciences & Arts 0.332 0.323 0.040 0.034 0.172
Sciences 0.309 0.299 0.292 0.290 0.168

Cognitive Computation

1 3

Table 8 Runtime, in seconds,
required by each algorithm
on different datasets and
considering different support
threshold values (0.5, 0.6, 0.7
and 0.8). Our proposal does not
require any threshold. Memory
stands for memory problems
when running (out of memory)

Support threshold 0.5

Faculty CM-Spade CM-Spam PrefixSpan Spade Spam (ES)2P

Arts 112 113 111 111 115 372
Business 415 410 446 405 451 208
Communication & Media 619 555 585 587 584 120
Computing & Inf. Tech. Memory Memory Memory Memory Memory 82
Design & Arts 10 10 10 10 10 103
Economics & Admin. 2,093 2,201 1,983 2,019 2,299 260
Engineering 723 705 713 728 707 153
Engineering & Rabeg Memory Memory Memory Memory Memory 106
Home Economics Memory Memory Memory Memory Memory 130
Information Technology 16,025 16,439 16,059 16,614 16,706 108
Law 2,460 2,651 2,774 2,516 2,852 267
Sciences & Arts 23 22 23 22 22 153
Sciences 232 238 220 229 232 233

Support threshold 0.6

Faculty CM-Spade CM-Spam PrefixSpan Spade Spam (ES)2P

Arts 76 74 78 75 72 372
Business 52 56 53 55 52 208
Communication & Media 292 301 306 291 288 120
Computing & Inf. Tech. 12,032 12,075 12,887 12,198 11,578 82
Design & Arts 8 8 8 8 8 103
Economics & Admin. 577 549 561 565 593 260
Engineering 53 51 55 53 51 153
Engineering & Rabeg 8,610 8,055 8,148 8,138 8,209 106
Home Economics 17 17 17 19 18 130
Information Technology 942 947 942 956 892 108
Law 762 806 783 786 791 267
Sciences & Arts 20 20 20 19 19 153
Sciences 52 51 51 52 50 233

Support threshold 0.7

Faculty CM-Spade CM-Spam PrefixSpan Spade Spam (ES)2P

Arts 74 74 75 75 73 372
Business 32 32 32 32 31 208
Communication & Media 156 144 154 160 141 120
Computing & Inf. Tech. 4,270 4,296 4,166 4,528 4,295 82
Design & Arts 7 8 8 7 7 103
Economics & Admin. 142 137 138 142 139 260
Engineering 29 30 29 30 30 153
Engineering & Rabeg 1,175 1,155 1,165 1,163 1,195 106
Home Economics 16 16 16 17 16 130
Information Technology 206 207 208 208 196 108
Law 409 406 421 419 433 267

Sciences & Arts 16 16 17 17 16 153
Sciences 46 46 46 46 45 233

Support threshold 0.8

Faculty CM-Spade CM-Spam PrefixSpan Spade Spam (ES)2P

Arts 72 70 71 70 69 372

 Cognitive Computation

1 3

Additionally, let us analyze the runtime required by dif-
ferent algorithms on different support threshold values. In
this analysis, we consider a set of exhaustive search algo-
rithms that is denoted as the best ones in the specialized
literature [12]: Spade [13], Spam [14], PrefixSpan [15], CM-
Spade [16] and CM-Spam [16]. Table 8 shows the runtime,
in seconds, required by the algorithms for a support thresh-
old value of 0.5. At this point, it is important to remind that
small differences in the average fitness value were obtained
(see Table 7): 0.028 in Design & Arts; 0.037 in Economics
& Administration; 0.017 in Engineering; 0.057 in Informa-
tion Technology; 0.053 in Law. Additionally, three data-
sets cannot be run due to memory problems when using
exhaustive search algorithms on such a threshold value (see
Tables 7 and 8). In general terms, our proposal needs lower
runtimes and these values do not widely vary from dataset
to dataset. Huge differences are found on multiple datasets.
For example, in Economics & Administration exhaustive
search approaches need more than 2,000 seconds, whereas
our proposal only needs 260 seconds. In fact, for this specific
dataset the difference in the resulting average fitness value
was really low (0.457 in exhaustive search algorithms and
0.420 in our proposal). Among all the results, the maxi-
mum differences in runtime are found when the Information
Technology dataset is considered, since exhaustive search
approaches require more than 16,000 seconds whereas our
proposal just 108 seconds. Additionally, for this dataset, the
difference in average fitness value was really small (0.446
in exhaustive search algorithms and 0.389 in our proposal).
In summary, after analyzing all the results for a support
threshold value of 0.5, it is possible to assert that the pro-
posed approach is really useful to obtain really good results
(according to the average fitness value) in a small quantity
of time. Furthermore, this proposal is able to be run on any
dataset, whereas exhaustive search approaches fail on some
datasets due to memory requirements.

If we continue the analysis for other support threshold
values (0.6, 0.7 and 0.8), it is obtained that the higher the
threshold value, the lower the runtime required by exhaus-
tive search approaches (see Table 8). However, analyzing
the average fitness value (see Table 7), the higher the thresh-
old value, the lower the average fitness value obtained by
exhaustive search approaches. In fact, considering a support
threshold of 0.8, our proposal obtains better results in seven
datasets (see Table 7).

Last but not least, it is important to remark that those algo-
rithms that require a minimum support threshold value to be
predefined need an extra (previous) process to determine the
exact value. This procedure is not trivial, and generally requires
a profound background in the application field. Inexpert and
many expert users need to try different thresholds by guessing
and re-executing the algorithms once and again until results are
good for them [9]. All of this, together with the large runtimes
required on different datasets, and the small differences in the
resulting average fitness values, let us to the conclusion that our
proposal outperforms exhaustive search algorithms.

Comparison to Top‑k Sequential Pattern Mining
Algorithms

This third analysis aims to study how well the proposed (ES)2 P
algorithm behaves when it is compared to existing exhaustive
search algorithms for mining the top-k solutions. The main
advantage of these approaches is that they do not require a pre-
vious study to determine a good threshold value. Additionally,
they return the same number of solutions regardless the input
dataset, which is easier to be manage by experts. However, the
main disadvantage of these approaches is related to the fitness
values. Existing algorithms for mining top-k sequential patterns
were proposed for mining the best results in terms of frequency
(support values). Nevertheless, for the problem at hand, the sup-
port value cannot establish the importance of the sequence. A

Table 8 (continued) Support threshold 0.8

Faculty CM-Spade CM-Spam PrefixSpan Spade Spam (ES)2P

Business 26 27 27 26 25 208
Communication & Media 52 56 52 57 54 120
Computing & Inf. Tech. 914 942 887 946 935 82
Design & Arts 7 6 7 6 7 103
Economics & Admin. 37 38 37 38 37 260
Engineering 22 23 22 23 22 153
Engineering & Rabeg 147 148 158 154 152 106
Home Economics 16 15 15 16 17 130
Information Technology 73 72 72 73 74 108
Law 230 242 230 235 231 267
Sciences & Arts 17 16 18 17 17 153
Sciences 44 43 45 44 46 233

Cognitive Computation

1 3

Ta
bl

e
9

 R
un

tim
e

an
d

av
er

ag
e

fit
ne

ss
 v

al
ue

 re
tu

rn
ed

 b
y

to
p-

k
se

ar
ch

 a
lg

or
ith

m
s a

nd
 th

e
pr

op
os

ed
 a

pp
ro

ac
h

co
ns

id
er

in
g

di
ffe

re
nt

 k
 v

al
ue

s (
25

, 5
0,

 1
00

, 2
00

)

k
=

 2
5

k
=

 5
0

A
ve

ra
ge

 F
itn

es
s

Ru
nt

im
e

A
ve

ra
ge

 F
itn

es
s

Ru
nt

im
e

Fa
cu

lty
TK

S
TS

P
(E

S)
2
P

TK
S

TS
P

(E
S)

2
P

TK
S

TS
P

(E
S)

2
P

TK
S

TS
P

(E
S)

2
P

A
rts

0.
00

4
0.

00
4

0.
20

8
62

62
37

2
0.

00
4

0.
00

4
0.

20
8

63
62

37
2

B
us

in
es

s
0.

01
5

0.
01

5
0.

19
5

25
22

20
8

0.
02

5
0.

02
5

0.
19

5
23

23
20

8
C

om
m

un
ic

at
io

n
&

 T
ec

hn
ol

og
y

0.
03

4
0.

24
9

0.
41

2
11

11
12

0
0.

03
1

0.
24

2
0.

41
2

11
11

12
0

C
om

pu
tin

g
&

 In
f.

Te
ch

.
0.

25
0

0.
46

0
0.

40
1

7
10

82
0.

23
5

0.
44

3
0.

40
1

8
10

82
D

es
ig

ns
 &

 A
rts

0.
02

2
0.

02
2

0.
26

7
6

8
10

3
0.

02
2

0.
02

2
0.

26
7

5
5

10
3

Ec
on

om
ic

s
0.

00
1

0.
00

1
0.

42
0

34
34

26
0

0.
00

2
0.

00
2

0.
42

0
36

34
26

0
En

gi
ne

er
in

g
0.

04
3

0.
04

9
0.

24
9

11
11

15
3

0.
03

1
0.

03
5

0.
24

9
12

12
15

3
En

gi
ne

er
in

g
R

ab
eg

0.
14

5
0.

15
9

0.
30

0
5

5
10

6
0.

12
7

0.
15

4
0.

30
0

6
5

10
6

H
om

e
Ec

on
om

ic
s

0.
00

3
0.

00
3

0.
34

0
13

12
13

0
0.

00
3

0.
00

3
0.

34
0

13
13

13
0

In
fo

rm
at

io
n

Te
ch

no
lo

gy
0.

14
8

0.
15

6
0.

38
9

9
10

10
8

0.
14

7
0.

15
5

0.
38

9
9

10
10

8
La

w
0.

03
1

0.
03

6
0.

27
3

21
28

26
7

0.
02

8
0.

03
4

0.
27

3
21

27
26

7
Sc

ie
nc

es
0.

01
1

0.
01

1
0.

17
2

17
16

15
3

0.
02

5
0.

02
5

0.
17

2
17

16
15

3
Sc

ie
nc

es
 &

 A
rts

0.
00

2
0.

00
5

0.
16

8
33

33
23

3
0.

00
2

0.
00

3
0.

16
8

34
34

23
3

k
=

 1
00

k
=

 2
00

A
ve

ra
ge

 F
itn

es
s

Ru
ni

m
e

A
ve

ra
ge

 F
itn

es
s

Ru
nt

im
e

Fa
cu

lty
TK

S
TS

P
(E

S)
2
P

TK
S

TS
P

(E
S)

2
P

TK
S

TS
P

(E
S)

2
P

TK
S

TS
P

(E
S)

2
P

A
rts

0.
01

8
0.

01
8

0.
20

8
63

62
37

2
0.

06
5

0.
07

7
0.

20
8

64
65

37
2

B
us

in
es

s
0.

04
1

0.
04

1
0.

19
5

23
23

20
8

0.
05

2
0.

05
2

0.
19

5
24

24
20

8
C

om
m

un
ic

at
io

n
&

 T
ec

hn
ol

og
y

0.
02

3
0.

22
4

0.
41

2
11

11
12

0
0.

04
8

0.
19

3
0.

41
2

11
12

12
0

C
om

pu
tin

g
&

 In
f.

Te
ch

.
0.

22
7

0.
41

8
0.

40
1

7
10

82
0.

19
2

0.
38

6
0.

40
1

8
10

82
D

es
ig

ns
 &

 A
rts

0.
01

6
0.

01
6

0.
26

7
6

6
10

3
0.

03
1

0.
06

6
0.

26
7

7
6

10
3

Ec
on

om
ic

s
0.

00
2

0.
00

2
0.

42
0

35
34

26
0

0.
06

8
0.

06
7

0.
42

0
36

37
26

0
En

gi
ne

er
in

g
0.

02
1

0.
02

4
0.

24
9

11
11

15
3

0.
01

4
0.

01
7

0.
24

9
11

11
15

3
En

gi
ne

er
in

g
R

ab
eg

0.
10

8
0.

13
9

0.
30

0
5

6
10

6
0.

08
6

0.
12

0
0.

30
0

5
5

10
6

H
om

e
Ec

on
om

ic
s

0.
02

3
0.

02
3

0.
34

0
14

12
13

0
0.

03
6

0.
03

3
0.

34
0

13
13

13
0

In
fo

rm
at

io
n

Te
ch

no
lo

gy
0.

11
8

0.
15

2
0.

38
9

9
10

10
8

0.
07

6
0.

12
4

0.
38

9
9

10
10

8

La
w

0.
02

4
0.

03
1

0.
27

3
21

28
26

7
0.

01
9

0.
02

7
0.

27
3

21
27

26
7

Sc
ie

nc
es

0.
05

4
0.

05
4

0.
17

2
17

17
15

3
0.

06
9

0.
06

9
0.

17
2

17
17

15
3

Sc
ie

nc
es

 &
 A

rts
0.

00
2

0.
00

3
0.

16
8

33
33

23
3

0.
00

4
0.

00
5

0.
16

8
33

34
23

3

 Cognitive Computation

1 3

sequence can be frequent for both excellent and not so good
students and, therefore, the GR value is low. Additionally, a
sequence can be infrequent for excellent students and zero for not
so good students, providing an excellent GR value. This theoreti-
cal behavior is tested by running two algorithms that determine
the state-of-the-art, that is, TKS [17] and TSP [18], on different
datasets. The results (see Table 9) demonstrate that extremely bad
results are obtained by these algorithms. The runtime needed by
TKS and TSP is much lower than (ES)2 P, but the results are use-
less for the problem at hand (fitness values close to 0).

Cases of Study: Applying (ES)2 P to Course
Recommendation

In this section, we propose two different methodologies
to apply the proposed (ES)2 P algorithm for course recom-
mendation. First, we propose a methodology for order-
ing courses that should be taken by students to success
in the degree. This methodology, based on the proposed
(ES)2 P algorithm, provides full study plans that should
be followed by students to reduce the dropout and fail-
ure. Second, we propose a methodology for rating courses
with the aim of providing the students with advices on
which courses should be taken at any specific moment of
their degree. The aim is to recommend subjects that best
fits to them according to their paths (previous courses).
This methodology requires nothing more than the courses
(ordered by semesters) already passes by the student that
is advised. Last but not least, it is important to remark
that courses are represented by IDs in these cases of study
to simplify the results. The real name of the courses are
explained at the website http:// www. uco. es/ kdis/ course-
recom menda tion.

Study Plan Recommendation Based on the Best
Ordering of Courses

When no course is given, the algorithm extracts discrimi-
native sequential patterns on complete paths carried out by
students. As a study case, we have considered two differ-
ent faculties: Business and Information Technology (see
Table 4). As a matter of simplification, we have taken only
the top 5 solutions returned by the proposed methodology.
However, the whole set of paths obtained is available at the
aforementioned website with any extra information. Addi-
tionally, the aforementioned website includes information
about the real name of the courses.

Let us start with the Faculty of Business study case.
Table 10 shows the 5 best solutions found according to the
fitness value. The support on the set of good students and
the GR value is also available. The path with the best fitness
value denotes that more than 70% of the excellent students
have passed course 30 in a semester and courses 11 and
43 together in a subsequent semester. This path is satisfied
1.69 times more often in excellent students than in not so
good students. A similar behavior is denoted by the second
(⟨{44}, {11, 43}⟩) and the third paths (⟨{11, 43}⟩). As a
result, it is possible to assert that to take subjects with IDs
11 and 43 in the same semester is a synonymous of being an
excellent student in the Faculty of Business. Nevertheless,
it is fair to say that no excellent result was obtained in terms
of courses that heavily denote a difference between excel-
lent and not so good students. It is mainly due to, for this
Faculty, there is not good paths to be performed by students
and, generally, all the students equally behave.

Even more interesting are the results obtained on the
Faculty of Information Technology (see Table 11). Analyz-
ing the top 5 solutions, we obtain that the courses with id
35 and 47 appear in any of the paths and, in fact, they are
studied in the same semester. In any of the cases, all the
returned paths presents a behavior that is three times more
often for excellent students than for not so good students. For
example, focusing on the solution ⟨{50}, {39}, {35, 47}⟩ ,
it determines that if a student pass the course with ID 50 in
a semester, then in a different semester, such a student pass

Table 10 Top 5 complete paths returned by the proposal on Faculty
of Business

Paths Fitness Support GR

⟨{30}, {11, 43}⟩ 0.295 0.719 1.694
⟨{44}, {11, 43}⟩ 0.294 0.724 1.685
⟨{11, 43}⟩ 0.286 0.724 1.654
⟨{10, 7}⟩ 0.280 0.639 1.781
⟨{30}, {10}, {46}⟩ 0.246 0.802 1.442

Table 11 Top 5 complete paths returned by the algorithm for the Fac-
ulty of Information Technology

Paths Fitness Support GR

⟨{38}, {35, 47}⟩ 0.409 0.565 3.625
⟨{6}, {35, 47}⟩ 0.409 0.565 3.625
⟨{50}, {39}, {35, 47}⟩ 0.401 0.541 3.846
⟨{19}, {35, 47}⟩ 0.399 0.565 3.405
⟨{51}, {35, 47}⟩ 0.399 0.565 3.405

Table 12 Top 5 courses recommended to the student t
1
= ⟨{12, 22,

30, 44, 45, 75}, {1, 9, 14, 15, 17, 33}, {3, 11, 34}⟩ belonging to the
Faculty of Business

Course ID Course name d
j

t
1

49 ACC415 1
88 BLA322 1
166 ACC321 1
169 PE120 0.950
96 MRK303 0.885

http://www.uco.es/kdis/course-recommendation
http://www.uco.es/kdis/course-recommendation

Cognitive Computation

1 3

the course with ID 39, and then, in a different semester, he/
she pass courses with IDs 35 and 47 (in the same semester
this time), such a student has 3.8 times more probability to
be an excellent student and the end of the degree. Hence,
this information is really useful to provide study plans and
to analyze why such differences among students when they
take such courses in that order.

Course Recommendation Based on the Previous
Academic Path

This second study case is related to the recommendation
of which courses should be taken by a student in a specific
semester according to its path (courses already taken by him/
her). The aim is to improve his/her academic success. In this
study case, we have considered the same faculties discussed
in the previous study case: Business and Information Tech-
nology. We have also taken four different students to provide
them a recommendation (two of each faculty).

Let us start with a student t1 from the Faculty of Business,
having the path t1 = ⟨{12, 22, 30, 44, 45, 75}, {1, 9, 14, 15,
17, 33}, {3, 11, 34}⟩ . Thus, t1 has passed 6 subjects in a
semester, 6 subjects in a posterior semester, and 3 subjects in
a subsequent semester. For this student, our proposal recom-
mend to take the courses shown in Table 12 right now. The
recommendation index score of the recommended courses
are really good (close to the maximum of 1), meaning that

all (or almost all) students with the same path have obtained
excellent marks in such courses. Analyzing what this student
really did, we check that one of the recommended courses
was taken (course with ID 88). In this course, the student
t1 obtained a GPA that is within the 5.4% of the best GPA
obtained for that course among all the students. Thus, it is
demonstrated that when a student follows the recommenda-
tions, he/she obtains really good GPAs.

Let us now consider a second student t2 from the same
faculty and who has followed the path t2 = ⟨{12, 22, 30, 44,
45, 75}, {1, 9, 14, 15, 17, 33}, {3, 21}, {2, 11, 26, 43}, {10,
24, 36, 74, 76}, {20, 46, 63, 77, 142}, {7, 8, 68, 69, 71},
{34}⟩ . This student is close to finish his/her degree since he/
she has completed 8 semesters and 34 different subjects. The
top 5 courses recommended by the algorithm and the recom-
mendation index scores are summarized in Table 13. This
time, the student did not followed any of the recommended
courses and took some courses that were not appropriate
at all for him/her. For example, analyzing the path finally
followed by such a student, he/she took the courses with ID
72 and 88. Such courses presents a recommendation index
score of 0.069 and 0.000, respectively. Thus, such courses
were not appropriate for the student t2 as it is finally proved
by the GPA obtained for such courses. In course with ID
72, the student obtained a GPA of 87, which is within the
34.89% of the students (ranked by GPA for that course).
Similarly, the student obtained a GPA of 85 in the course 88,
which is within the 55.94% of the ranking of students. As it
is demonstrated, to follow the recommendation is crucial to
obtain good GPAs.

The following analysis is carried out on a different Fac-
ulty, that is, Information Technology. For this Faculty, we
take a student t3 that has followed the path t3 = ⟨{5, 8, 9,
18, 25, 45}, {4, 12, 13, 23, 28}, {1, 10, 15, 21, 51}, {3,
6, 14, 27, 74}, {26, 29, 75, 78, 84}⟩ . Table 14 summa-
rizes the top 5 courses recommended to this student by
the proposed methodology together with the recommen-
dation index scores for each course. In this occasion, the
student t3 finally took two of the five best courses recom-
mended to him/her, that is, courses with IDs 64 and 77.
To show the adequacy of the proposal and the validity of

Table 13 Top 5 courses recommended to the student t
2
= ⟨{12,

22, 30, 44, 45, 75}, {1, 9, 14, 15, 17, 33}, {3, 21}, {2, 11, 26, 43},
{10, 24, 36, 74, 76}, {20, 46, 63, 77, 142}, {7, 8, 68, 69, 71}, {34}⟩
belonging to the Faculty of Business.

Course ID Course name d
j

t
2

193 COM205 0.841
59 ACC411 0.834
121 MRK322 0.832
169 PE120 0.806
96 MRK303 0.799

Table 14 Top 5 courses recommended to the student t
3
= ⟨{5, 8, 9,

18, 25, 45}, {4, 12, 13, 23, 28}, {1, 10, 15, 21, 51}, {3, 6, 14, 27,
74}, {26, 29, 75, 78, 84}⟩ belonging to the Faculty of Information
Technology

Course ID Course name d
j

t
3

64 CPCS223 1
19 CPIT210 0.957
77 CPCS211 0.946
88 ISLS211 0.920
105 CPIS210 0.883

Table 15 Top 5 courses recommended to the student t
4
= ⟨{5, 12, 23,

28, 45}, {4, 8, 9, 13, 18, 25}, {1, 10, 15, 21, 51}, {3, 6, 14, 27, 74}⟩
belonging to the Faculty of Information Technology

Course ID Course name d
j

t
4

26 CPCS204 0.940
88 ISLS211 0.920
29 ARAB201 0.901
77 CPCS211 0.874
20 CPIT220 0.851

 Cognitive Computation

1 3

the recommendations proposed, let us analyze the GPA
obtained by t3 on those courses. t3 obtained a GPA of 96
in the course with ID 64, being among the 11.11% best
students for that course. As for the course with ID 77, he/
she obtained a GPA of 95, which corresponds to the top
13.58% of the best students for that course.

Finally, let us consider a student t4 belonging to the
Faculty of Information Technology, which has passed the
courses identified by the following path t4 = ⟨{5, 12, 23,
28, 45}, {4, 8, 9, 13, 18, 25}, {1, 10, 15, 21, 51}, {3, 6, 14,
27, 74}⟩ . Analyzing t4 , he/she is recommended to take 5
courses as the top according to the recommendation index
score (see Table 15). Analyzing what the student finally
did, it is obtained that he/she finally took two of such five
courses that were recommended. In this way, for the course
with ID 26, t4 obtained a GPA of 85 (top 37.32% in the
total GPA ranking for that course). On the other hand, the
GPA obtained by t4 on the course with ID 77 was again
85, being this time in the top 27.16% of the ranking for the
given course. However, if we take into account the rest of
the courses taken by this student, they are present with a
very low recommendation index score. For example, in the
case of the course with ID 78, the recommendation index
score is 0.365 (the student t4 finally obtained a GPA of
68 in that course, which is within the 80.25% of the best
GPAs of that course), whereas for the course with ID 84,
the recommendation index value was 0. The student finally
took this course and his/her GPA was 87 for that course
and this GPA is within the 64.36% of best students. As it
is demonstrated, the recommendation index score is low
because taking such courses implies not to be in the group
of excellent students. Last but not least, it is important to
clarify that the number of credits of each course is taken
into account to obtain the recommendation index score,
what explains why lower score values may imply the stu-
dent to be in a higher position of the ranking.

Conclusion

In this paper, we have proposed an evolutionary algorithm
for mining top-k emerging sequential patterns, which is
called (ES)2 P. It is able to discover a reduced set of dis-
criminative patterns whose frequency increases significantly
from one group or dataset to another. Its main advantage is
that it does not need any threshold as existing algorithms do
and, therefore, any background in the application field. Addi-
tionally, a methodology for rating courses is also proposed,
which does not require anything except for the courses
(ordered by semesters) that already pass by those students
that are advised. This methodology considers the proposed
(ES)2 P algorithm to obtain the most promising sequences
of courses. Last but not least, we have also proposed a

methodology for ordering courses that should be taken
by students so they can be successful in their degree. This
methodology, also based on the proposed (ES)2 P algorithm,
provides full study plans that should be followed by students
to reduce the dropout and failure. The experimental analy-
sis has demonstrated that the proposed (ES)2 P algorithm
behaves really well in terms of runtime, and it is able to
extract useful information in huge datasets where other algo-
rithms fail. The efficiency of the proposal has been tested on
two cases of study, providing excellent recommendations on
a real scenario.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was supported by the Span-
ish Ministry of Science and Innovation, project PID2020-115832GB-
I00, and the University of Cordoba, project UCO-FEDER 18
REF.1263116 MOD.A. Both projects were also supported by the
European Fund of Regional Development.

Declarations

Ethical Approval All procedures performed in studies involving human
participants were in accordance with the ethical standards.

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Guruge DB, Kadel R, Halder SJ. The state of the art in methodolo-
gies of course recommender systems–a review of recent research.
Data. 2021;6(2):18.

 2. Bhumichitr K, Channarukul S, Saejiem N, Jiamthapthaksin R,
Nongpong K. Recommender Systems for university elective
course recommendation. In: 2017 14th International Joint Con-
ference on Computer Science and Software Engineering (JCSSE).
IEEE; 2017. p. 1-5.

 3. Shakhsi-Niaei M, Abuei-Mehrizi H. An optimization-based deci-
sion support system for students’ personalized long-term course
planning. Comput Appl Eng Educ. 2020;28(5):1247–64.

 4. Wu K, Havens WS. Modelling an Academic Curriculum Plan
as a Mixed-Initiative Constraint Satisfaction Problem. In: Kégl
B, Lapalme G, editors. Advances in Artificial Intelligence, 18th
Conference of the Canadian Society for Computational Studies

http://creativecommons.org/licenses/by/4.0/

Cognitive Computation

1 3

of Intelligence, Canadian AI 2005, Victoria, Canada, May 9-11,
2005, Proceedings. vol. 3501 of Lecture Notes in Computer Sci-
ence. Springer; 2005. p. 79-90. https:// doi. org/ 10. 1007/ 11424 918_
10.

 5. Agrawal R, Srikant R. Mining sequential patterns. In: Proceed-
ings of the eleventh international conference on data engineering.
IEEE; 1995. p. 3-14.

 6. Srikant R, Agrawal R. Mining sequential patterns: Generaliza-
tions and performance improvements. In: International conference
on extending database technology. Springer; 1996. p. 1-17.

 7. Dong G, Li J. Efficient mining of emerging patterns: Discovering
trends and differences. In: Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data min-
ing; 1999. p. 43-52.

 8. Luna JM, Fournier-Viger P, Ventura S. Frequent itemset mining:
A 25 years review. Wiley Interdiscip Rev Data Min Knowl Discov.
2019;9(6). https:// doi. org/ 10. 1002/ widm. 1329.

 9. Wu C, Shie B, Tseng VS, Yu PS. Mining top-K high utility item-
sets. In: Yang Q, Agarwal D, Pei J, editors. The 18th ACM SIG-
KDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, Beijing, China, August 12-16, 2012. ACM;
2012. p. 78-86. https:// doi. org/ 10. 1145/ 23395 30. 23395 46.

 10. Padillo F, Luna JM, Ventura S. A Grammar-Guided Genetic Pro-
gramming Algorithm for Associative Classification in Big Data.
Cogn Comput. 2019;11(3):331–46. https:// doi. org/ 10. 1007/
s12559- 018- 9617-2.

 11. Ventura S, Luna JM. Pattern Mining with Evolutionary Algorithms.
Springer; 2016. https:// doi. org/ 10. 1007/ 978-3- 319- 33858-3.

 12. Fournier-Viger P, Lin JCW, Kiran RU, Koh YS, Thomas R. A
survey of sequential pattern mining. Data Science and Pattern
Recognition. 2017;1(1):54–77.

 13. Zaki MJ. SPADE: An efficient algorithm for mining frequent
sequences. Mach Learn. 2001;42(1):31–60.

 14. Ayres J, Flannick J, Gehrke J, Yiu T. Sequential pattern mining
using a bitmap representation. In: Proceedings of the eighth ACM
SIGKDD International Conference On Knowledge Discovery and
Data Mining; 2002. p. 429-35.

 15. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, et al.
Mining sequential patterns by pattern-growth: The prefixspan
approach. IEEE Trans Knowl Data Eng. 2004;16(11):1424–40.

 16. Fournier-Viger P, Gomariz A, Campos M, Thomas R. Fast verti-
cal mining of sequential patterns using co-occurrence information.
In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer; 2014. p. 40-52.

 17. Fournier-Viger P, Gomariz A, Gueniche T, Mwamikazi E, Thomas
R. TKS: Efficient Mining of Top-K Sequential Patterns. In: Motoda
H, Wu Z, Cao L, Zaïane OR, Yao M, Wang W, editors. Advanced
Data Mining and Applications, 9th International Conference, ADMA
2013, Hangzhou, China, December 14-16, 2013, Proceedings, Part
I. vol. 8346 of Lecture Notes in Computer Science. Springer; 2013.
p. 109-20. https:// doi. org/ 10. 1007/ 978-3- 642- 53914-5_ 10.

 18. Tzvetkov P, Yan X, Han J. TSP: Mining top-k closed sequential
patterns. Knowl Inf Syst. 2005;7(4):438–57. https:// doi. org/ 10.
1007/ s10115- 004- 0175-4.

 19. Purushothama Raju V, Saradhi Varma GP. Mining closed
sequential patterns using genetic algorithm. In: 2014 IEEE
International Conference on Advanced Communications, Con-
trol and Computing Technologies; 2014. p. 634-7. https:// doi.
org/ 10. 1109/ ICACC CT. 2014. 70191 65.

 20. Zheng Z, Zhao Y, Zuo Z, Cao L. An Efficient GA-Based Algo-
rithm for Mining Negative Sequential Patterns. In: Zaki MJ, Yu JX,
Ravindran B, Pudi V, editors. Advances in Knowledge Discovery
and Data Mining, 14th Pacific-Asia Conference, PAKDD 2010,
Hyderabad, India, June 21-24, 2010. Proceedings. Part I. vol. 6118
of Lecture Notes in Computer Science. Springer; 2010. p. 262-73.

 21. Ykhlef M, ElGibreen H. Mining sequential patterns using hybrid evo-
lutionary algorithm. Int J Comput Inform Eng. 2009;3(12):2939 2946.

 22. Li J, Manoukian T, Dong G, Ramamohanarao K. Incremental
maintenance on the border of the space of emerging patterns. Data
Min Knowl Disc. 2004;9(1):89–116.

 23. Zhang X, Dong G, Kotagiri R. Exploring constraints to efficiently
mine emerging patterns from large high-dimensional datasets. In:
Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining; 2000. p. 310-4.

 24. Fan H, Ramamohanarao K. Efficiently mining interesting emerg-
ing patterns. In: International Conference on Web-Age Informa-
tion Management. Springer; 2003. p. 189-201.

 25. Kobyliński Ł, Walczak K. Jumping emerging patterns with occur-
rence count in image classification. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer; 2008. p. 904-9.

 26. Sakr NA, Abu-Elkheir M, Atwan A, Soliman H. Data driven
recognition of interleaved and concurrent human activities with
nonlinear characteristics. J Intell Fuzzy Syst. 2019;37(4):5573–88.

 27. Poezevara G, Lozano S, Cuissart B, Bureau R, Bureau P, Croixmarie
V, et al. A computational selection of metabolite biomarkers using
emerging pattern mining: a case study in human hepatocellular car-
cinoma. J Proteome Res. 2017;16(6):2240–9.

 28. Nofong VM, Liu J, Li J. A Study on the Applications of Emerging
Sequential Patterns. In: Wang H, Sharaf MA, editors. Databases
Theory and Applications - 25th Australasian Database Conference,
ADC 2014, Brisbane, QLD, Australia, July 14-16, 2014. Proceed-
ings. vol. 8506 of Lecture Notes in Computer Science. Springer;
2014. p. 62-73. https:// doi. org/ 10. 1007/ 978-3- 319- 08608-8_6.

 29. Chen Z, Liu X, Shang L. Improved course recommendation
algorithm based on collaborative filtering. In: 2020 International
Conference on Big Data and Informatization Education (ICBDIE).
IEEE; 2020. p. 466-9.

 30. Huang L, Wang CD, Chao HY, Lai JH, Philip SY. A score prediction
approach for optional course recommendation via cross-user-domain
collaborative filtering. IEEE Access. 2019;7:19550–63.

 31. Lessa LF, Brandão WC. Filtering graduate courses based on
LinkedIn profiles. In: Proceedings of the 24th Brazilian Sympo-
sium on Multimedia and the Web; 2018. p. 141-7.

 32. Mostafa L, Oately G, Khalifa N, Rabie W. A case based reasoning
system for academic advising in egyptian educational institutions.
In: 2nd International Conference on Research in Science, Engi-
neering and Technology (ICRSET6’2014) March; 2014. p. 21-2.

 33. Huang CY, Chen RC, Chen LS. Course-recommendation system
based on ontology. In: 2013 International Conference on Machine
Learning and Cybernetics. vol. 3. IEEE; 2013. p. 1168-73.

 34. Ng YK, Linn J. CrsRecs: a personalized course recommendation
system for college students. In: 2017 8th International Confer-
ence on Information, Intelligence, Systems & Applications (IISA).
IEEE; 2017. p. 1-6.

 35. Esteban A, Zafra A, Romero C. Helping university students to choose
elective courses by using a hybrid multi-criteria recommendation sys-
tem with genetic optimization. Knowl-Based Syst. 2020;194: 105385.

 36. Noaman AY, Luna JM, Ragab AHM, Ventura S. Recommending
degree studies according to students’ attitudes in high school by means
of subgroup discovery. Int J Comput Intell Syst. 2016;9(6):1101–17.
https:// doi. org/ 10. 1080/ 18756 891. 2016. 12565 73.

 37. Volk NA, Rojas G, Vitali MV. UniNet: Next Term Course Recom-
mendation using Deep Learning. In: 2020 International Confer-
ence on Advanced Computer Science and Information Systems
(ICACSIS). IEEE; 2020. p. 377-80.

 38. Britto J, Prabhu S, Gawali A, Jadhav Y. A Machine Learning
Based Approach for Recommending Courses at Graduate Level.
In: 2019 International Conference on Smart Systems and Inventive
Technology (ICSSIT). IEEE; 2019. p. 117-21.

 39. Sankhe V, Shah J, Paranjape T, Shankarmani R. Skill Based
Course Recommendation System. In: 2020 IEEE International

https://doi.org/10.1007/11424918_10
https://doi.org/10.1007/11424918_10
https://doi.org/10.1002/widm.1329
https://doi.org/10.1145/2339530.2339546
https://doi.org/10.1007/s12559-018-9617-2
https://doi.org/10.1007/s12559-018-9617-2
https://doi.org/10.1007/978-3-319-33858-3
https://doi.org/10.1007/978-3-642-53914-5_10
https://doi.org/10.1007/s10115-004-0175-4
https://doi.org/10.1007/s10115-004-0175-4
https://doi.org/10.1109/ICACCCT.2014.7019165
https://doi.org/10.1109/ICACCCT.2014.7019165
https://doi.org/10.1007/978-3-319-08608-8_6
https://doi.org/10.1080/18756891.2016.1256573

 Cognitive Computation

1 3

Conference on Computing, Power and Communication Technolo-
gies (GUCON). IEEE; 2020. p. 573-6.

 40. Luna JM, Fardoun HM, Padillo F, Romero C, Ventura S. Subgroup
discovery in MOOCs: a big data application for describing differ-
ent types of learners. Interact Learn Environ. 2022;30(1):127–45.

 41. Wang R, Zaïane OR. Sequence-Based Approaches to Course
Recommender Systems. In: Hartmann S, Ma H, Hameurlain A,
Pernul G, Wagner RR, editors. Database and Expert Systems
Applications - 29th International Conference, DEXA 2018,
Regensburg, Germany, September 3-6, 2018, Proceedings, Part
I. vol. 11029 of Lecture Notes in Computer Science. Springer;
2018. p. 35-50. https:// doi. org/ 10. 1007/ 978-3- 319- 98809-2_3.

 42. Nguyen HQ, Pham TT, Vo V, Vo B, Quan TT. The predictive
modeling for learning student results based on sequential rules.
Int J Innov Comput Inf Control. 2018;14(6):2129–40.

 43. Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu C,
Tseng VS. SPMF: a Java open-source pattern mining library. J
Mach Learn Res. 2014;15(1):3389-93. Available from: http:// dl.
acm. org/ citat ion. cfm? id= 27503 53.

 44. Friedman M. A Comparison of Alternative Tests of Signifi-
cance for the Problem of m Rankings. Annals Math Stat. 1940
03;11(1):86-92. https:// doi. org/ 10. 1214/ aoms/ 11777 31944.

 45. Shaffer JP. Modified sequentially rejective multiple test proce-
dures. J Am Stat Assoc. 1986;81(395):826–31.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-98809-2_3
http://dl.acm.org/citation.cfm?id=2750353
http://dl.acm.org/citation.cfm?id=2750353
https://doi.org/10.1214/aoms/1177731944

	Course Recommendation based on Sequences: An Evolutionary Search of Emerging Sequential Patterns
	Abstract
	Introduction
	Preliminaries and Related Work
	Preliminaries
	Related Work

	An Evolutionary Algorithm for the Search of Emerging Sequential Patterns
	Data Representation
	Encoding Criterion
	(ES) P Algorithm
	Resulting Set

	Experimental Analysis
	Experimental Setup
	Analysis of the Proposed (ES) P Approach
	(ES) P Against Other Sequential Pattern Mining Algorithms
	Comparison to Top-k Sequential Pattern Mining Algorithms

	Cases of Study: Applying (ES) P to Course Recommendation
	Study Plan Recommendation Based on the Best Ordering of Courses
	Course Recommendation Based on the Previous Academic Path

	Conclusion
	References

