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Abstract
Automatic classification tasks on structured data have been revolutionized by Convolutional
Neural Networks (CNNs), but the focus has been on binary and nominal classification tasks.
Only recently, ordinal classification (where class labels present a natural ordering) has been
tackled through the framework of CNNs. Also, ordinal classification datasets commonly
present a high imbalance in the number of samples of each class, making it an even harder
problem. Focus should be shifted from classic classificationmetrics towards per-classmetrics
(like AUC or Sensitivity) and rank agreement metrics (like Cohen’s Kappa or Spearman’s
rank correlation coefficient).We present a newCNN architecture based on theOrdinal Binary
Decomposition (OBD) technique using Error-Correcting Output Codes (ECOC). We aim to
show experimentally, using four different CNN architectures and two ordinal classification
datasets, that the OBD+ECOC methodology significantly improves the mean results on the
relevant ordinal and class-balancing metrics. The proposed method is able to outperform a
nominal approach as well as already existing ordinal approaches, achieving a mean perfor-
mance of RMSE = 1.0797 for the Retinopathy dataset and RMSE = 1.1237 for the Adience
dataset averaged over 4 different architectures.

Keywords Ordinal classification · Convolutional neural networks · Cumulative link model ·
Ordinal binary decomposition

1 Introduction

There exists a large variety of classification tasks tackled inMachineLearning (ML) literature.
It is natural to group them, for example, depending on the number of different class labels

B Javier Barbero-Gómez
jbarbero@uco.es

Pedro Antonio Gutiérrez
pagutierrez@uco.es

César Hervás-Martínez
chervas@uco.es

1 Departamento de Informática y Análisis Numérico, Universidad de Córdoba,
Campus de Rabanales, 14014 Córdoba, Córdoba, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-022-10824-7&domain=pdf
http://orcid.org/0000-0002-9317-1428
http://orcid.org/0000-0002-2657-776X
http://orcid.org/0000-0003-4564-1816


J. Barbero-Gòmez et al.

assigned to the classification samples. According to this, we differentiate between binary
classification tasks (those where only two different labels are present, usually a “positive”
class and a “negative” class) and multi-class classification tasks (those where more than two
different labels exist).

Focusing on multi-class tasks, one could also pay attention to the relation between the
class labels. Classic approaches assume all classes equally without relations between them
and try to minimize simply the number of samples correctly assigned a label.

However, when an order relation between the class labels is present due to the nature of
the problem itself, these tasks can be posed as “ordinal classification” (sometimes referred as
“ordinal regression”) tasks, which have gained popularity in the last decade. This family of
problems, halfway between nominal classification and regression, presents extra information
which can be exploited in order to improve performance, sometimes regarding different
metrics than usual [1, 4, 16]. The benefits of this exploitation have been proven to outperform
purely nominal methods in the context of unstructured data [10, 29, 30], and some methods
have been proposed to search for ordinality in the class labels of apparently purely categorical
datasets [24].

In thiswork,wepropose and explore a novel generalmethodology for ordinal classification
tasks of 2D images. This includes a generic structure for the final layers of a Convolutional
Neural Network (CNN), adaptable to a wide range of already existing architectures, as well
as a prediction scheme adapted to this structure and an ordinal target label encoding, both
based on the Error-Correcting Output Code (ECOC) framework. Our hypothesis is that this
exploitation of ordinal information in the context of image classification may improve per-
formance, not only on ordinal metrics but also in nominal ones.

This work is structured as follows: in Sect. 2 a brief literature review on ordinal classifica-
tion and CNNs is presented. In Sect. 3 a baseline nominal methodology for training CNNs to
solve classification problems is posed. Then in Sect. 4 the ordinal classification framework
is described and three different ordinal classification methodologies for CNNs (two already
existing methods based on previous works and one novel method) are described. In Sect. 5,
the experiments for the comparison of these four approaches are presented, including the
datasets used for evaluation. Finally, in Sect. 6, the experiment results are shown, and Sect. 7
concludes with a discussion of these results.

2 RelatedWork

Early ordinal classification approaches were limited to unstructured input data, where no
spatial or temporal relations exist between the inputs. Some basic approaches include using
regular regression methods with rounding applied at the outputs [23] or using the label
distance as a cost penalty [22]. The performance of such methods is limited because of the
potentially unequal underlying distance between labels. Cumulative Link Models (CLMs)
such as the Proportional Odds Model (POM) [27] or the gologit model [35], which not
only learn a latent continuous variable but also a set of thresholds for each rank, are able to
overcome this limitation. There are also adaptations of Support Vector Machines (SVMs)
like SVORIM or SVOREX [7] which add ordinal constraints to the optimization of the
model. Lastly, an approach known as Ordinal Binary Decomposition (OBD), where the
original ordinal problem is split into a set of binary problems, has also proven to improve
performance. Examples of this are the cascade linear utility model [36], where a different
model solves each binary problem, or neural networks coupled with multiple outputs, one
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for each binary subproblem [9, 20]. The main problem with OBD is the matter of combining
the different outputs to produce a final decision.

These approaches are not suitable for structured information such as 2D images, where
domain-specific feature extraction is still necessary. In this regard, CNNs provide an auto-
matic method for extracting learned features from structured data in classification tasks.
Unfortunately, due to their high number of parameters CNNs suffer easily from overfitting
problems resulting in low generalization performance. In addition to classic techniques such
as L2 regularization and dropout, recent techniques include multi-stage implicit regulariza-
tion [37] and network path pruning [38] to avoid this problem.

Adapting CNNs to work with ordinal information is a recent line of research, still needing
extensive work. In [12, 33], a CLM has been adapted as the activation function of a single
output of a CNN. In [28] a CNN architecture for solving theOBDversion of an age estimation
problem is proposed, with a very simple combination of the binary outputs for obtaining a
rank. [25] proposes a differentmethodology for small datasets based on triplets of samples and
majority voting. Finally, [6] proposes an improvement over [28] by bounding the maximum
binary error of each output.

3 Base Nominal CNNMethodology

Nominal classification is the general framework for taskswhere there is a need to assign a class
label to a randomly sampled object from a specific distribution. More formally, we want to
obtain a rule r : X → Y that associates an input vector x ∈ X ⊆ R

K to a class label y ∈ Y =
{C1, C2, ..., CQ} in a finite set. In order to learn this relation, a dataset D is provided consisting
on tuples of correctly classified samples D = {(xi , yi ) | xi ∈ X , yi ∈ Y, i ∈ {1, . . . , N }}.

Focusing on image classification tasks, CNNs are able to capture the spatial nature of
image features, where nearby pixels have a stronger association between them than far away
ones. We have considered four different well-known and competitive CNN architectures for
image classification in order to have a good performance baseline: VGG11 [31], ResNet18
[17], MobileNetV3 [19] and ShuffleNetV2 [26]. We use these architectures as a baseline for
traditional nominal classification.

While the specifics of each architecture varies wildly, their general design follows the
following overall premise:

• First, several blocks of convolution and pooling operations are applied to the input image.
• Then, the mapped features are processed by one or more hidden fully-connected layers.
• Finally, an output layer with as many units as classes and softmax activation is used,

whose value represent the probability of input sample x being assigned each class label
P(y = Cq | x). These are compared to the ground truth labels of dataset D to compute
a loss function � and minimize it through some sort of gradient descent procedure.

3.1 Decision Rule

During evaluation of the model, the maximum probability class of xi is selected as the
predicted class label ŷi :

ŷi = argmax
Cq∈Y

P(yi = Cq | xi ), (1)
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where P(yi = Cq | xi ) is the probability of sample xi being assigned label Cq predicted by
the network.

3.2 Loss Function

For the baseline nominal methodology, categorical cross-entropy is used as the loss function
� during training:

� = − 1

N

N∑

i=1

Q∑

q=1

1{yi = Cq} log(P(yi = Cq | xi )), (2)

where 1{yi = Cq} is the indicator function that is equal to 1 when yi = Cq and 0 otherwise.

4 The Ordinal Classification Framework

As in a nominal classification framework, an ordinal classification task is characterised as
the prediction process of assigning a label y to an input vector x, where x ∈ X ⊆ R

K and
y ∈ Y = {C1, C2, . . . , CQ}, i.e., x is a K -dimensional vector and y is a class label in a finite
set. The goal is also to obtain some classification rule r : X → Y that predicts the categories
of new patterns given a dataset D.

Where the ordinal framework differs from the nominal framework is in the presence of a
natural ordering of the class labels: C1 ≺ C2 ≺ · · · ≺ CQ , where ≺ is an order relation. This
is similar to regression, where y ∈ R, and real values can be ordered by the < operator but,
in this case, the labels are discrete and include qualitative information instead of quantitative
[16]. Throughout this work, the convention that i < j ⇒ Ci ≺ C j always holds.

4.1 Adapting CNNs for ordinal classification

Without altering the architectures in a major way, several different options are available
for introducing the ordinal information of the original dataset in the model and its training
process:

(a) Using a loss function that incorporates ordinal information in the optimization procedure.
(b) Altering only the fully-connected layer phase of the architecture,maintaining all previous

layers as-is.
(c) Furthermore, altering the decision rule that assigns a label to each sample when making

a prediction.

In the following three sections, three different ordinal methodologies are described: two
already present in the literature as well as our proposed method.

4.2 Using an ordinal loss function: QuadraticWeighted Kappa

Anaive approach to integrate ordinal information in the learning process of themodel consists
on optimizing an order-sensitive loss function instead of the classic categorical cross-entropy.

A promising such function is the weighted Kappa metric [3] (described in Sect. 5.4), a
relevant score for ordinal classifiers as it measures the rank agreement between two raters
(in our case, the ground truth labels and the model outputs) based on a disagreement penalty.

123



Error-Correcting Output Codes in the Framework...

This penalty is usually defined as the absolute (linear) or square (quadratic, used in the rest of
this paper) difference between the rank labels. It is often used in medical diagnosis systems,
where the severity of a disease presents naturally ordered stages. It is defined as:

(κ) = 1 −
∑Q

i=1

∑Q
j=1 wCi ,C j pCi ,C j

∑Q
i=1

∑Q
j=1 wCi ,C j eCi ,C j

, (3)

where wCi ,C j is the disagreement cost when y = Ci and ŷ = C j (wCi ,C j = (i − j)2 for the
quadratic case), and pCi ,C j and eCi ,C j are the observed agreement and expected agreement
due to chance for classes Ci and C j , respectively. A larger κ value corresponds with a better
agreement and vice versa, and so it is a metric to be maximised.

Unfortunately, like is the case with accuracy, this metric is not continuous and is expressed
in terms of discrete labels, preventing the application of gradient descent methods. In [8] a
proposal is made to adapt this metric as a loss function to be used in CNN model training
maintaining the architecture of the network as well as the decision rule.

4.2.1 Loss Function

First, κ is expressed in terms of probabilities instead of class labels, maintaining the penalty
matrix wCi ,C j but substituting pCi ,C j and eCi ,C j for the probability outputs of the model:

κ̂ = 1 −
∑N

i=1
∑Q

q=1 wyi ,Cq P(yi = Cq | xi )
∑Q

j=1
N j
N

∑Q
k=1(wC j ,Ck

∑N
i=1 P(yi = Ck | xi ))

, (4)

where N j is the number of samples with class label C j in the dataset D.
Then, in order to pose it as a minimization problem, loss � is defined as:

� = log(1 − κ̂), where � ∈ (−∞, log 2]. (5)

Further derivation and a more in-depth discussion can be found in [8].

4.2.2 Decision Rule

In the same manner as the nominal approach of Sect. 3, the maximum probability class of xi
is selected as the predicted class label ŷi .

4.3 The Cumulative LinkModel Approach

For the CLM framework (family of models which includes the POM [27]), only a small
modification to the baseline nominal model is needed: the output is reduced to only a single
unit in the last layer, and thelogit cumulative link function is used as the activation function
instead of softmax:

P(y � Cq | x) = σ(bq − f (x)) , 1 ≤ q < Q, (6)

where P(y � Cq | x) is the probability of sample xi being assigned label Cq or lower
predicted by the network, f (x) is the single output of the model, σ is the sigmoid function
and bq is one of the Q − 1 thresholds learned as additional parameters. Note that cumulative
probabilities P(y � Cq | x) are predicted by this function instead of individual ones like
P(y = Cq | x).
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4.3.1 Decision Rule

During evaluation, elementary probability rules are used to combine the cumulative proba-
bilities from Eq. (6) into individual probabilities [15]:

P(yi = Cq | xi ) =

⎧
⎪⎨

⎪⎩

P(yi � C1 | xi ), if q = 1,

P(yi � Cq | xi ) − P(yi � Cq−1 | xi ), if 1 < q < Q,

1 − P(yi � CQ−1 | xi ), if q = Q,

(7)

and the maximum probability class is then selected as the predicted label ŷi :

ŷi = argmax
C1�Cq�CQ

P(yi = Cq | xi ). (8)

4.3.2 Loss Function

Cross-entropy loss is used as the loss function in the same manner as in the nominal model.

4.4 Our approach: Ordinal Binary Decomposition

For our ordinal approach, we decompose the original Q-class ordinal problem into Q − 1
binary decision problems, what is known as Ordinal Binary Decomposition (OBD). Each q
problem consists on deciding whether y 
 Cq conditioned to sample x (1 ≤ q < Q) (this is
referred to as the “Ordered partitions” scheme in [16]).

To adapt the outputs of the model to this, the final fully-connected block is substituted by
Q − 1 fully-connected blocks, each one with a single output unit with sigmoid activation1.
Each of the Q − 1 outputs of the model oq is trying to predict the probability P(y 
 Cq |
x). The result of this modification is obtaining Q − 1 different models, which share their
convolutional feature extraction parameters and are trained simultaneously.

4.4.1 Decision Rule

In the case of the OBD models, because the outputs are not individual probabilities but
cumulative ones (ok = P(y 
 Ck | x)), the decision rule requires combining several out-
puts. Moreover, these probabilities may be inconsistent: nothing forces them to fulfil basic
probability properties like P(y 
 Ci ) ≥ P(y 
 Ci+1) and

∑Q
i=1 P(y = Ci ) = 1. For this

reason, Eq. (7) cannot be applied as for the CLM.
In order to circumvent this problem, a stable approach based on the ECOC framework is

used: the ideal output vector v(Ci ) for each class Ci is considered, v(Ci ) = (c1, . . . , cQ−1)

where c j = 1{C j ≺ Ci }, i.e. a vector with ones in all positions corresponding with classes
which are lower than Ci in the ordinal scale. This makes the ideal output vector for a sample
xi with label yi = Ck be:

v(Ck) = (c1, ..., ck−1, ck, ..., cQ−1) = (1, ..., 1, 0, ..., 0), (9)

i.e., for a 4 class ordinal problem with labels C1, C2, C3, and C4 the ideal outputs would be
v(C1) = (0, 0, 0), v(C2) = (1, 0, 0), v(C3) = (1, 1, 0), and v(C4) = (1, 1, 1).

1 For architectures where an extra hidden layer of size H is present (like VGG11 and MobileNetV3), these
are reduced to �H/(Q − 1)
 units in order to maintain a similar number of parameters.
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Fig. 1 The model output vector o
(dot in red) for sample x and its
distance to each of the ideal class
vectors (dashed lines), illustrated
as a 3D graphic where each
dimension represents each of the
three model outputs. The closest
point is v(C2) (marked in red),
and thus x is assigned label C2

The decision rule is based on determining the ideal vector which minimizes the distance
to the obtained output vector o:

ŷi = argmin
C1�Cq�CQ

∥∥o − v(Cq)
∥∥
2 , (10)

where ‖·‖2 is the L2 norm. This distance metric is selected in order to align it with the loss
function of the optimization process.

As an example to illustrate this prediction criterion, assume a 4 class ordinal problem like
the one previously mentioned. For sample x, let the output of the model be the 3 dimensional
vector o = (0.8, 0.3, 0.2). The distance to each ideal class vector would be computed as:

‖o − v(C1)‖2 = ‖(0.8 − 0, 0.3 − 0, 0.2 − 0)‖2 = 0.77,

‖o − v(C2)‖2 = ‖(0.8 − 1, 0.3 − 0, 0.2 − 0)‖2 = 0.17,

‖o − v(C3)‖2 = ‖(0.8 − 1, 0.3 − 1, 0.2 − 0)‖2 = 0.57,

‖o − v(C4)‖2 = ‖(0.8 − 1, 0.3 − 1, 0.2 − 1)‖2 = 1.17.

(11)

This process is illustrated in Fig. 1. The vector closest to o is v(C2) and thus, sample x
would be assigned the class label ŷ = C2.

4.4.2 Loss Function

For the OBD methodology, categorical cross-entropy has been substituted by the Mean
Squared Error loss because it copes better with the distance function used for the ECOC
decision [2]:

� = 1

N

N∑

i=1

Q−1∑

k=1

(1{yi 
 Ck} − P(yi 
 Ck | xi ))2. (12)

where 1{yi 
 Ck} is the indicator function that is equal to 1 when yi 
 Ck and 0 otherwise,
and P(yi 
 Ck | xi ) is the probability that yi 
 Ck predicted by the network given a sample
xi .

The four methodologies described in this section are illustrated in Fig. 2.
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Fig. 2 The four compared methodologies, from left to right: the baseline nominal architecture (both using
categorical cross-entropy as well as QWK as the loss function), CLM, and our proposal, OBD

5 Experiment Design

5.1 Datasets

The effects of the four described methodologies will be tested against the following two
different datasets, chosen specifically for the ordinal nature of their class labels and an acute
class imbalance.

5.1.1 Diabetic Retinopathy Dataset

The diabetic retinopathy dataset from Kaggle2 (referred to as “Retinopathy” from now on)
consists on a total of 88 702 retina images labelled by a clinician on a 0 to 4 scale evaluating
the presence of Diabetic Retinopathy (DR), an eye disease present in a large proportion of
diabetes patients. It contains 65 343 images labelled as No DR, 6205 images labelled as Mild
DR, 13 153 images labelled as Moderate DR, 2087 images labelled as Severe DR, and 1914
images labelled as Proliferative DR. The task consists on predicting the clinician label using
the colour image of the retina. Three sample images can be seen in Fig. 3. All images have
been normalized down to a size of 128 × 128 pixels.

5.1.2 Adience Faces Dataset

The Adience faces dataset for age classification [11] (referred to simply as “Adience” from
now on) is composed of 26 580 photos of 2284 different subjects extracted from real online
albums and automatically cropped and aligned. 17 702 of these photos have an age label

2 https://www.kaggle.com/c/diabetic-retinopathy-detection.
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Example from class 0 Example from class 2 Example from class 4

Fig. 3 Sample images from the Retinopathy dataset

Example from class 1 Example from class 4 Example from class 7

Fig. 4 Sample images from the Adience faces dataset

attached, referring to one of 8 different age groups of increasing value: 0–2 years, 4–6 years,
8–13 years, 15–20 years, 25–32 years, 38–43 years, 48–53 years, and 60 years and up. The
task consists on assigning one of these 8 age labels to each photo. A sample of this images can
be seen in Fig. 4. As a preprocessing step, all images have been resized down to 256 × 256
pixels.

5.2 Methodologies andValidation Scheme

Four different methodologies are tested against each other:

• The baseline nominal architecture, with categorical cross-entropy loss function.
• The same architecture, but substituting the loss function by the Quadratic Weighted

Kappa (QWK) function described in Sect. 4.2.
• The CLM approach, as described in Sect. 4.3.
• The OBD approach with ECOC decision rule, as described in Sect. 4.4.

All of these are applied to all four of the previously mentioned architectures (VGG11,
ResNet18,MobileNetV3 and ShuffleNetV2), yielding a total of sixteen different experiments
for each of the two datasets.

In order to obtain a statistically significant result to test the hypotheses, each experiment
is repeated 30 times on 30 different holdout splits of the original dataset, where 80% of
samples are used for training and 20% are used for model evaluation. This split is performed
in a stratified fashion, preserving the original proportion of the classes of the original dataset
in the subsets. For the Retinopathy dataset this leaves 70 962 training samples (of which 7096
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Table 1 Number of trainable parameters and total memory size of the trained models for each methodology
and architecture

Adience dataset Retinopathy dataset

VGG11 Nominal/QWK 128 799 112 (6163 MB) 128 786 821 (1931 MB)

CLM 128 770 440 (6163 MB) 128 770 437 (1931 MB)

OBD 114 363 707 (6106 MB) 116 187 524 (1880 MB)

ResNet18 Nominal/QWK 11 180 616 (3838 MB) 11 179 077 (993 MB)

CLM 11 177 032 (3838 MB) 11 177 029 (993 MB)

OBD 11 180 103 (3838 MB) 11 178 564 (993 MB)

MobileNetV3 Nominal/QWK 4 212 280 (6697 MB) 4 208 437 (1690 MB)

CLM 4 203 320 (6697 MB) 4 203 317 (1690 MB)

OBD 4 197 547 (6697 MB) 4 203 316 (1690 MB)

ShuffleNetV2 Nominal/QWK 5 361 388 (5711 MB) 5 355 241 (1444 MB)

CLM 5 347 052 (5711 MB) 5 347 049 (1444 MB)

OBD 5 359 339 (5711 MB) 5 353 192 (1444 MB)

are reserved for validation) and 17 740 test samples in each split. In the case of the Adience
dataset, 14 161 are used for training (of which 1416 are reserved for validation) and 3541
are used for evaluation.

5.3 Training Scheme

In all experiments, weights are initialized randomly using the He initialization scheme
described in [18]. They are then adjusted using the Adam method [21] with a learning rate
η = 1 × 10−4.

In the case of VGG11, both dropout (p = 0.5) and L2 regularization (with a weight of
5 × 10−4) are applied only in the fully-connected layers as in the original paper [31]. For
ResNet18, batch normalization is applied after every convolution operation and L2 penalty
(with a weight of 1×10−4) is added to all mappings [17]. The number of trainable parameters
for each model is available on Table 1.

In order to help overcome the class imbalance, class weighting is applied to the loss
function based on Nq (number of training samples for class Cq ):

wq = e−CNq

∑Q
i=1 e

−CNi
, (13)

where C is a constant defined as C = 3 × 10−5. This weight wq is multiplied by the loss
contribution of each sample with a ground truth label of Cq .

Before training, 10% of training samples are reserved for validation, again selected in
a stratified fashion according to the class labels. Model weights are updated in batches of
72 training samples and loss performance is monitored on both training and validation. If
validation performance does not increase for 5 full epochs, training is halted, and the best
performing parameters over the validation set are restored.

The code used to perform the experiments can be accessed through GitHub3.

3 https://github.com/ayrna/ordinal-cnn-ecoc.
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5.4 PerformanceMetrics

The classical performance metric in classification tasks is the Correct Classification Rate
(CCR). However, given that both datasets present a very high class imbalance, the traditional
CCR is not a representative measure of model performance: for example, in the case of the
Retinopathy dataset, a dummy classifier that always assign the majority class label (class 0)
would obtain a CCR of 73%.

In order to monitor global per-class performance, metrics such as the Average Area Under
the Receiver Operating Characteristic (ROC) curve (AvAUC), minimum sensitivity (MS) and
geometric mean of the sensitivities (GMS) [10] will also be included.

Also, for ordinal classification problems, rank agreement metrics including the Root of
Mean Squared Error (RMSE) (comparing actual and predicted labels, represented as con-
secutive integers in the ordinal scale), Spearman’s rank correlation coefficient (rs) [5] or the
Quadratic Weighted Cohen’s Kappa (κ) [3] (described in Eq. (3)) have been selected as well
for evaluation:

RMSE =
√√√√ 1

N

N∑

i=1

(O(ŷi ) − O(yi ))2, (14)

rs = Cov(O(y), O(ŷ))

σO(y)σO(ŷ)
(15)

where O(Cq) = q is the ordinal number of label Cq , Cov(O(y), O(ŷ)) is the covariance
between the ground truth labels ordinal numbers and the predicted labels ordinal numbers,
and σO(y) and σO(ŷ) is their standard deviation.

An illustrated example of the global experimentation procedure can be found in Fig. 5.
In Sect. 6, mean results and standard deviation are reported for each methodology. Then,

statistical hypothesis testing will be performed in order to discern the effects of the different
factors and conclude whether the OBD methodology shows a significant improvement over
the other two.

Fig. 5 The general experimentation procedure as described in Sect. 5
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Fig. 6 Average training curves for each model and methodology when applied to the diabetic retinopathy
dataset. Train loss is shown as solid lines and validation loss as dashed lines. The average is calculated over
all executions which reach the corresponding iteration

6 Results

The average of the training curves over all 30 repetitions is shown in Figs. 6, 7.4 Note how the
QWKmethodology fails to converge when used in conjunction with the VGG11 architecture:
the high depth of this architecturemakes the gradients disappear in the backpropagation phase
of training, something knownas the “vanishing gradients” problem.All the other architectures
tested implement residual paths into the network, allowing them to avoid this problem [34].
Note how the OBD methodology does not alter the depth of the CNN model, so it will never
cause this problem by itself.

Additionally, in Figs. 8, 9 the training time for each methodology and architecture is
shown. In accordance to the number of parameters Table 1, the VGG11 architecture takes
the longest time to train compared to the other three, which all take a similar time. Regarding

4 The original experiment results can be checked in the GitHub repository: https://github.com/ayrna/ordinal-
cnn-ecoc/blob/main/results.xlsx..
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Fig. 7 Average training curves for each model and methodology when applied to the Adience dataset. Train
loss is shown as solid lines and validation loss as dashed lines. The average is calculated over all executions
which reach the corresponding iteration

Fig. 8 Average training time of each methodology and architecture for the Retinopathy dataset. Error bars
indicate ± the standard deviation

123



J. Barbero-Gòmez et al.

Fig. 9 Average training time of each methodology and architecture for the Adience dataset. Error bars indicate
± the standard deviation

Table 2 Average experimental results for each of the four methodologies on the test sets of both datasets.
Metrics to maximize are marked with (↑) and metrics to minimize with (↓). Best results are highlighted in
bold and second best in italics

Retinopathy Nominal QWK CLM OBD
Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6668 0.0344 0.3923 0.1778 0.6913 0.0219 0.4775 0.0986

AvAUC (↑) 0.6768 0.0560 0.5168 0.0166 0.6703 0.0519 0.6806 0.0560

MS (↑) 0.0078 0.0147 0.0000 0.0000 0.0000 0.0000 0.0598 0.0739

GMS (↑) 0.0531 0.0629 0.0000 0.0000 0.0000 0.0000 0.1442 0.1276

RMSE (↓) 1.1394 0.0624 1.1025 0.2966 1.0932 0.0610 1.0797 0.0748

rs (↑) 0.2204 0.0949 0.0927 0.0543 0.2357 0.0938 0.2557 0.0898

ˇ (↑) 0.2432 0.1150 0.0766 0.0461 0.2645 0.1197 0.2834 0.1220

Adience Nominal QWK CLM OBD
Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.5233 0.1090 0.3572 0.1556 0.5264 0.0848 0.5573 0.1137

AvAUC (↑) 0.8406 0.0705 0.6724 0.0997 0.8502 0.0646 0.8562 0.0622

MS (↑) 0.1111 0.1377 0.0000 0.0000 0.0000 0.0000 0.2153 0.1505

GMS (↑) 0.2706 0.2480 0.0000 0.0000 0.0000 0.0000 0.4346 0.1609

RMSE (↓) 1.3910 0.2885 1.7373 0.9177 1.1477 0.2482 1.1237 0.2372

rs (↑) 0.7063 0.1190 0.5753 0.3352 0.8009 0.0800 0.7980 0.0850

ˇ (↑) 0.7101 0.1233 0.5860 0.3417 0.8111 0.0803 0.8099 0.0825

the methodologies, while the nominal approach usually takes less time than the ordinal ones,
the OBD methodology is a close second in speed.

The average experimental results for each experiment are shown in Appendix A (Tables
4–11) and the mean over all four architectures is summarized in Table 2 for convenience. It
can be noted that for the Retinopathy dataset the CLM models are able to improve ordinal
metrics by a little, at the cost of worsening metrics related to the imbalance problem (AvAUC,
MS, and GMS). Meanwhile, the OBD models improve the ordinal metrics further while also
improving class balancing metrics. This is done at the cost of worsening CCR, but only
because of the high class imbalance. In the case of the Adience dataset the OBD models still
achieve a higher score in class-balancing metrics, although rs and κ are worsened slightly.
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From the confusion matrices it can be noted that, although Table 2 shows that the CLM
improves on the ordinalmetrics on theAdience dataset, it fails on every class balancingmetric
compared to the nominal model, as it ignores both classes 1 and 3 in the Retinopathy dataset,
as well as classes 3, 5 and 6 in the Adience dataset. The OBD model, on the other hand, is
able to improve both class balancing and ordinal metrics. This is achieved at the cost of losing
some performance on the extreme classes, but note how sensitivity and precision never fall
to zero when using the OBD model on any class, that is, no class is ignored systematically.
This is easily seen on the confusion matrices for each methodology and architecture shown
in Appendix A (Figs. 10–17).

6.1 Statistical Analysis

To determine the statistical significance of the mean differences observed for each classifier,
each architecture and each dataset, we have carried out a parametric Analysis of Variance
(ANOVA) test [13, 14] for each of the evaluated metrics. The three factors considered for the
experimental design are: (i) the database (Adience and Retinopathy), (ii) the CNN network
architecture (VGG11, ResNet18,MobileNetV3 and ShuffleNetV2) and (iii) themethodology
(nominal, QWK, CLM and OBD).

For each combination of these three factors we have repeated the experiment 30 times with
different data splits and weight initialization seeds. We have tested, using the Kolmogorov-
Smirnov test for all metrics mentioned in Sect. 5.4, whether the null hypothesis stating that
the results are drawn from a normal distribution cannot be rejected (for a significance level of
α = 0.05). This is true for all metrics except MS and GMS, namely the Quadratic Weighted
Cohen’s Kappa (κ), AvAUC, RMSE, Spearman’s rank correlation coefficient (rs) and CCR.
Only these metrics will be considered for the subsequent analysis, given that ANOVA is a
parametric test and can only be applied to normally distributed variables.

After this, ANOVA is performed for these five metrics. The ANOVA tables are available
in Appendix B. According to this analysis, for all normally distributed metrics there exist
significant differences in the mean value (for a significance level of α = 0.05) concerning the
three individual factors (Dataset,Architecture andMethodology, all p-values< 0.001). Then,
we also found significant interactions between all the pairs of factors (p-values< 0.001) and
between all three factors (p-value < 0.001). This shows that:

1. the impact of the architecture and the methodology varies across datasets,
2. the architecture significantly affects performance,
3. the effect of the methodology is affected by the CNN architecture (that is, some architec-

tures are better suited for each methodology), and
4. the methodology alone affects the performance, OBD being in the lead according to the

mean results of Table 2.

That is why we now analyse the magnitude of those differences according to the Method-
ology factor. A post-hoc Tukey’s HSD multiple comparison test [32] has been performed
on each of the metrics shown to be affected by this factor. The purpose of this test is to
group each of the methodologies into groups of significantly similar performance, where
each group is significantly different than the rest. The results of this test are summarized in
Table 3 by grouping the methodologies in subsets according to their performance on each
metric. The first subset contains the worst methodology, while the last one includes the best
methodologies.

Note that for κ , AvAUC, and rs the OBD methodology has a significantly better mean
performance than the other three methodologies. For the RMSE metric both CLM and OBD
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Table 3 Results of the Tukey’s HSD test for all tested metrics. Methodologies are grouped such that the
elementswithin a subset are not significantly different,while the differences between each group are significant.
The first subset contains the worst methodologies, while the last subset groups the best methodologies. The
best performing subset is highlighted in bold

κ AvAUC
Methodology Subsets Methodology Subsets

1 2 3 4 1 2 3

QWK 0.33127 QWK 0.5946207

Nominal 0.4766773 Nominal 0.7587429

CLM 0.5377609 CLM 0.7602492

OBD 0.5466245 OBD 0.7684145

p-values 1.000 1.000 1.000 1.000 p-values 1.000 0.535 1.000

RMSE rs
Methodology Subsets Methodology Subsets

1 2 3 1 2 3 4

QWK 1.4199260 QWK 0.3340351

Nominal 1.2651859 Nominal 0.4633777

CLM 1.1204655 CLM 0.5182891

OBD 1.1017190 OBD 0.5268579

p-values 1.000 1.000 0.583 p-values 1.000 1.000 1.000 1.000

CCR
Methodology Subsets

1 2 3

QWK

OBD 0.5174322

Nominal 0.595

CLM 0.609

p-values 1.000 1.000 0.083

exhibit similar performance, but significantly better than the other twomethodologies. Finally,
for CCR both CLM and the nominal methodology perform similarly and better than OBD
and QWK.

7 Conclusions and FutureWork

A new ordinal CNN architecture based on Ordinal Binary Decomposition has been pro-
posed, as well as a decision scheme based on ECOC, showing that it is able to significantly
outperform a purely nominal approach as well as already existing ordinal approaches, espe-
cially when considering highly imbalanced scenarios like medical datasets and web-scraped
datasets. Specifically, the proposed OBD methodology is able to improve both class balanc-
ing and ordinal metrics such as RMSE, Spearman’s rank correlation coefficient and Quadratic
Weighted Cohen’s Kappa. This methodology is easy to adapt to any other ordinal tasks.

While the tested architectures are widely established and overall well performing models,
different and more novel architectures could also be adapted in the same manner. This adds
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a new fairly generic tool for classification tasks where ordinal information can be exploited.
Moreover, this modification does not increase the number of parameters or memory con-
sumption of the network and does not significantly increase the running time for training,
making it applicable in memory limited scenarios.

In a future work, more complex data structures like 3D images can be studied. This is
possible because the neededmodifications only alter the latter stages of the network, allowing
for arbitrary input shapes. Also, even thoughwe have been able to improve on class imbalance
sensitive metrics, further work is necessary, as can be noted from the confusion matrices.
Better class balancing approaches than loss weighting, such as a data augmentation scheme
sensitive to ordinal information, can be applied in order to improve on this.
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Table 4 Mean results using the VGG11 architecture for the Retinopathy dataset. Metrics to maximize are
marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Retinopathy Nominal QWK CLM OBD
VGG11 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6898 0.0227 0.5397 0.3036 0.7159 0.0104 0.5956 0.0303

AvAUC (↑) 0.7605 0.0081 0.5119 0.0119 0.7482 0.0051 0.7644 0.0057

MS (↑) 0.0008 0.0019 0.0000 0.0000 0.0000 0.0000 0.1723 0.0475

GMS (↑) 0.0385 0.0626 0.0000 0.0000 0.0000 0.0000 0.3141 0.0219

RMSE (↓) 1.0604 0.0449 1.3039 0.5518 0.9990 0.0220 0.9673 0.0287

rs (↑) 0.3679 0.0174 0.0030 0.0092 0.3791 0.0103 0.3931 0.0126

ˇ (↑) 0.4206 0.0196 0.0013 0.0041 0.4437 0.0138 0.4709 0.0163

Table 5 Mean results using the ResNet18 architecture for the Retinopathy dataset. Metrics to maximize are
marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Retinopathy Nominal QWK CLM OBD
ResNet18 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6567 0.0301 0.3331 0.0561 0.6861 0.0140 0.5195 0.0429

AvAUC (↑) 0.6911 0.0078 0.5210 0.0211 0.6824 0.0060 0.6953 0.0063

MS (↑) 0.0257 0.0197 0.0000 0.0000 0.0000 0.0000 0.0590 0.0217

GMS (↑) 0.1280 0.0451 0.0000 0.0000 0.0000 0.0000 0.2012 0.0272

RMSE (↓) 1.1519 0.0418 1.0351 0.0107 1.1017 0.0262 1.0833 0.0286

rs (↑) 0.2303 0.0168 0.1237 0.0204 0.2495 0.0127 0.2721 0.0108

ˇ (↑) 0.2574 0.0190 0.0994 0.0205 0.2871 0.0184 0.3053 0.0172

Table 6 Mean results using the MobileNetV3 architecture for the Retinopathy dataset. Metrics to maximize
are marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Retinopathy Nominal QWK CLM OBD
MobileNetV3 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6608 0.0374 0.3549 0.0559 0.6948 0.0165 0.4250 0.0665

AvAUC (↑) 0.6178 0.0087 0.5179 0.0188 0.6131 0.0059 0.6213 0.0071

MS (↑) 0.0005 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GMS (↑) 0.0059 0.0129 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RMSE (↓) 1.1673 0.0419 1.0410 0.0153 1.1279 0.0212 1.1266 0.0327

rs (↑) 0.1277 0.0184 0.1145 0.0160 0.1317 0.0131 0.1634 0.0126

ˇ (↑) 0.1307 0.0272 0.0966 0.0170 0.1267 0.0225 0.1663 0.0174
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Table 7 Mean results using the ShuffleNetV2 architecture for the Retinopathy dataset. Metrics to maximize
are marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Retinopathy Nominal QWK CLM OBD
ShuffleNetV2 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6597 0.0360 0.3417 0.0321 0.6685 0.0140 0.3700 0.0403

AvAUC (↑) 0.6381 0.0074 0.5165 0.0123 0.6373 0.0051 0.6413 0.0063

MS (↑) 0.0043 0.0063 0.0000 0.0000 0.0000 0.0000 0.0077 0.0100

GMS (↑) 0.0402 0.0400 0.0000 0.0000 0.0000 0.0000 0.0615 0.0614

RMSE (↓) 1.1780 0.0384 1.0300 0.0049 1.1441 0.0221 1.1418 0.0305

rs (↑) 0.1559 0.0150 0.1298 0.0099 0.1823 0.0076 0.1942 0.0105

ˇ (↑) 0.1642 0.0223 0.1089 0.0098 0.2003 0.0123 0.1911 0.0175

Table 8 Mean results using the VGG11 architecture for the Adience dataset. Metrics to maximize are marked
with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in italics

Adience Nominal QWK CLM OBD
VGG11 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.6738 0.0151 0.1179 0.0790 0.6403 0.0294 0.7058 0.0127

AvAUC (↑) 0.9305 0.0056 0.5070 0.0107 0.9319 0.0058 0.9298 0.0034

MS (↑) 0.2734 0.0769 0.0000 0.0000 0.0000 0.0000 0.4223 0.0645

GMS (↑) 0.5676 0.0314 0.0000 0.0000 0.0000 0.0000 0.6401 0.0163

RMSE (↓) 0.9802 0.0377 3.1913 0.6807 0.8322 0.0361 0.8115 0.0291

rs (↑) 0.8629 0.0082 0.0060 0.0344 0.8991 0.0072 0.9023 0.0059

ˇ (↑) 0.8726 0.0098 0.0027 0.0148 0.9107 0.0068 0.9121 0.0063

Table 9 Mean results using theResNet18 architecture for theAdience dataset.Metrics tomaximize aremarked
with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in italics

Adience Nominal QWK CLM OBD
ResNet18 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.5643 0.0598 0.5194 0.0273 0.5629 0.0201 0.6177 0.0332

AvAUC (↑) 0.8844 0.0215 0.7595 0.0209 0.8889 0.0080 0.9008 0.0125

MS (↑) 0.1652 0.1314 0.0000 0.0000 0.0000 0.0000 0.2533 0.0842

GMS (↑) 0.4181 0.1382 0.0000 0.0000 0.0000 0.0000 0.5057 0.0705

RMSE (↓) 1.3026 0.1469 1.0576 0.0407 1.0161 0.0328 0.9909 0.0475

rs (↑) 0.7702 0.0404 0.8449 0.0139 0.8488 0.0075 0.8549 0.0137

ˇ (↑) 0.7746 0.0481 0.8486 0.0101 0.8589 0.0066 0.8631 0.0152
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Table 10 Mean results using the MobileNetV3 architecture for the Adience dataset. Metrics to maximize are
marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Adience Nominal QWK CLM OBD
MobileNetV3 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.4131 0.0161 0.3704 0.0253 0.4320 0.0221 0.4284 0.0210

AvAUC (↑) 0.7660 0.0110 0.7213 0.0180 0.7732 0.0159 0.7823 0.0115

MS (↑) 0.0054 0.0083 0.0000 0.0000 0.0000 0.0000 0.0797 0.0450

GMS (↑) 0.0885 0.1048 0.0000 0.0000 0.0000 0.0000 0.2679 0.0728

RMSE (↓) 1.6606 0.0577 1.4196 0.0615 1.4550 0.0780 1.3816 0.0323

rs (↑) 0.5791 0.0289 0.6951 0.0240 0.7001 0.0256 0.7002 0.0156

ˇ (↑) 0.5795 0.0281 0.7193 0.0233 0.7104 0.0234 0.7154 0.0166

Table 11 Mean results using the ShuffleNetV2 architecture for the Adience dataset. Metrics to maximize are
marked with (↑) and metrics to minimize with (↓). Best results are highlighted in bold and second best in
italics

Adience Nominal QWK CLM OBD
ShuffleNetV2 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

CCR (↑) 0.4419 0.0089 0.4210 0.0301 0.4706 0.0220 0.4774 0.0306

AvAUC (↑) 0.7817 0.0104 0.7019 0.0201 0.8069 0.0160 0.8121 0.0165

MS (↑) 0.0002 0.0011 0.0000 0.0000 0.0000 0.0000 0.1059 0.0493

GMS (↑) 0.0084 0.0458 0.0000 0.0000 0.0000 0.0000 0.3246 0.0738

RMSE (↓) 1.6205 0.0523 1.2808 0.0481 1.2877 0.0743 1.3108 0.0512

rs (↑) 0.6131 0.0148 0.7553 0.0195 0.7557 0.0235 0.7345 0.0224

ˇ (↑) 0.6139 0.0198 0.7734 0.0162 0.7642 0.0214 0.7490 0.0246
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Fig. 10 Average confusion matrices for each methodology using the VGG11 architecture on the Retinopathy
dataset. Rows are normalised according to the total number of samples in the test set for each class
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Fig. 11 Average confusionmatrices for eachmethodology using the ResNet18 architecture on the Retinopathy
dataset. Rows are normalised according to the total number of samples in the test set for each class
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Fig. 12 Average confusion matrices for each methodology using the MobileNetV3 architecture on the
Retinopathy dataset. Rows are normalised according to the total number of samples in the test set for each
class
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Fig. 13 Average confusion matrices for each methodology using the ShuffleNetV2 architecture on the
Retinopathy dataset. Rows are normalised according to the total number of samples in the test set for each
class
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Fig. 14 Average confusion matrices for each methodology using the VGG11 architecture on the Adience
dataset. Rows are normalised according to the total number of samples in the test set for each class
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Fig. 15 Average confusion matrices for each methodology using the ResNet18 architecture on the Adience
dataset. Rows are normalised according to the total number of samples in the test set for each class
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Fig. 16 Average confusionmatrices for eachmethodology using theMobileNetV3 architecture on theAdience
dataset. Rows are normalised according to the total number of samples in the test set for each class
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Fig. 17 Average confusionmatrices for eachmethodology using the ShuffleNetV2 architecture on theAdience
dataset. Rows are normalised according to the total number of samples in the test set for each class

Appendix B Statistical Analysis Tables

See Tables 12, 13, 14, 15, 16
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Table 12 ANOVA III table for the CCR test results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Intercept 263.617 1 64535.256 <0.001

Dataset (D) 1.043 1 255.386 <0.001

Architecture (A) 2.232 3 182.175 <0.001

Methodology (L) 8.295 3 676.924 <0.001

D.A Interaction 0.688 3 56.110 <0.001

D.L Interaction 2.279 3 185.996 <0.001

A.L Interaction 1.614 9 43.913 <0.001

D.A.L Interaction 3.478 9 94.614 <0.001

Error 3.791 928

Total 287.038 960

Table 13 ANOVA III table for the AvAUC test results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Intercept 498.365 1 3308978.403 <0.001

Dataset (D) 6.836 1 45386.169 <0.001

Architecture (A) 1.295 3 2865.268 <0.001

Methodology (L) 5.084 3 11252.321 <0.001

D.A Interaction 0.204 3 451.423 <0.001

D.L Interaction 0.022 3 49.183 <0.001

A.L Interaction 1.802 9 1329.763 <0.001

D.A.L Interaction 0.393 9 289.951 <0.001

Error 0.140 928

Total 514.141 960

Table 14 ANOVA III table for the RMSE test results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Intercept 1444.893 1 55143.615 <0.001

Dataset (D) 14.551 1 555.317 <0.001

Architecture (A) 6.064 3 77.146 <0.001

Methodology (L) 15.774 3 200.663 <0.001

D.A Interaction 5.435 3 69.142 <0.001

D.L Interaction 13.720 3 174.541 <0.001

A.L Interaction 66.181 9 280.642 <0.001

D.A.L Interaction 34.190 9 144.982 <0.001

Error 24.316 928

Total 1625.124 960
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Table 15 ANOVA III table for the rs test results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Intercept 203.702 1 626011.422 <0.001

Dataset (D) 64.644 1 198663.249 <0.001

Architecture (A) 1.975 3 2022.995 <0.001

Methodology (L) 5.699 3 5837.678 <0.001

D.A Interaction 1.703 3 1744.819 <0.001

D.L Interaction 0.306 3 313.698 <0.001

A.L Interaction 12.911 9 4408.478 <0.001

D.A.L Interaction 3.217 9 1098.343 <0.001

Error 0.302 928

Total 294.458 960

Table 16 ANOVA III table for the κ test results

Source Sum of Squares Degrees of freedom F-ratio Sig. level

Intercept 214.856 1 567385.301 <0.001

Dataset (D) 63.004 1 166379.208 <0.001

Architecture (A) 2.482 3 2184.378 <0.001

Methodology (L) 7.131 3 6277.503 <0.001

D.A Interaction 2.445 3 2152.196 <0.001

D.L Interaction 0.207 3 182.132 <0.001

A.L Interaction 14.140 9 4149.026 <0.001

D.A.L Interaction 3.169 9 929.813 <0.001

Error 0.351 928

Total 307.786 960
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