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a b s t r a c t 

Background and objectives: Epidemiological models of epidemic spread are an essential tool for optimizing 

decision-making. The current literature is very extensive and covers a wide variety of deterministic and 

stochastic models. However, with the increase in computing resources, new, more general, and flexible 

procedures based on simulation models can assess the effectiveness of measures and quantify the cur- 

rent state of the epidemic. This paper illustrates the potential of this approach to build a new dynamic 

probabilistic model to estimate the prevalence of SARS-CoV-2 infections in different compartments. 

Methods: We propose a new probabilistic model in which, for the first time in the epidemic literature, 

parameter learning is carried out using gradient-free stochastic black-box optimization techniques simu- 

lating multiple trajectories of the infection dynamics in a general way, solving an inverse problem that is 

defined employing the daily information from mortality records. 

Results : After the application of the new proposal in Spain in the first and successive waves, the result of 

the model confirms the accuracy to estimate the seroprevalence and allows us to know the real dynamics 

of the pandemic a posteriori to assess the impact of epidemiological measures by the Spanish government 

and to plan more efficiently the subsequent decisions with the prior knowledge obtained. 

Conclusions: The model results allow us to estimate the daily patterns of COVID-19 infections in Spain 

retrospectively and examine the population’s exposure to the virus dynamically in contrast to seropreva- 

lence surveys. Furthermore, given the flexibility of our simulation framework, we can model situations 

—even using non-parametric distributions between the different compartments in the model— that other 

models in the existing literature cannot. Our general optimization strategy remains valid in these cases, 

and we can easily create other non-standard simulation epidemic models that incorporate more complex 

and dynamic structures. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The spread of SARS-CoV-2 is generating unprecedented health 

nd socio-economical crisis worldwide, being one of the most sig- 

ificant challenges in Europe since World War II. In the light of 

his emergency, the governments ought to organize an appropri- 

te schedule and optimize political decisions based on scientific 

vidence to avoid the collapse of the healthcare system, reduce 

irus-related mortality and minimize the potential effects of an 

conomic recession [39,44,50,51] . 
∗ Corresponding author. 
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Given the vital capacity of the virus to spread and the lack of 

ffectiveness of preventive measures, many countries have been 

ystematically forced to lock down the population temporarily. Al- 

hough these policies may help control the spread of the virus, 

hey are economically unsustainable over time. In this regard, fore- 

asting the evolution and consequences of the pandemic based 

n the exposure of the population becomes a critical factor in 

ecision-making [23,40] . However, it is first necessary to assess the 

urrent spread of the epidemic to rigorously predict these effects, 

hich is often unknown due to the limited tracking of new infec- 

ions and active cases. 

At the beginning of the 20 th century, the first mathematical 

odels to study the dynamics of an epidemic were introduced. 

robably the best-known method is the susceptible-infected- 
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ecovered model (SIR). SIR model and its variations [33,38] divide 

he population into compartments, and using differential (deter- 

inistic) equations, the number of individuals in each of the com- 

artments over time are estimated. Since then, many new varia- 

ions of these models that also involved stochastic versions have 

een introduced in the literature (see for review [3,5,49,70] or 

ther contemporary examples [14,59] ). 

Despite the enormous progress with these models in recent 

ecades, their direct applications can be limited in several set- 

ings. First, most models explain the dynamics of the epidemic at 

he population level [28,37,41] excluding relevant individual inter- 

ctions. Second, model-specific assumptions can be restrictive and 

bstracted from practice. For example, practitioners use Poisson’s 

omogeneous process to handle the mechanism of new infections 

r parametric distributions that determine time transitions [29,42] . 

hird, introducing model reformulations in practice can be chal- 

enging and time-consuming with the current optimization strate- 

ies of the literature-based primary on designed specific proce- 

ures with likelihood equations [10] . We believe this is a critical 

actor limiting the performance of initial experiments and the use 

f novel and non-standard formulation of epidemic models in a 

outine and straightforward manner. 

As in statistical learning theory, we can say that there is no uni- 

ersal model for all scenarios. Instead, we probably have to design 

pecific models following the existing epidemiological evidence for 

ach situation and introduce the prior knowledge obtained into 

odels. 

Simulation techniques are a prominent alternative method to 

uild complex and more realistic epidemiological models at a high 

omputational cost. However, their use is not new, and several 

gent models have appeared in the literature [75,79] , which al- 

ow modeling the possible impact of different interventions on the 

volution of a pandemic. For instance, we can study the impact of 

accination, social distance, or lockdown policies in the reduction 

f infections or mortality [32] . More specifically, some of the spe- 

ific advantages are summarized below: 

• We can introduce a wide variety of distributions in the compo- 

nents of the model that can be specified with intractable com- 

plex likelihood equations [17] or even non-parametric assump- 

tions. 

• Simulation models allow the introduction of personal informa- 

tion of individuals, such as age and other covariates relevant 

to disease manifestation, without introducing challenges in the 

model implementation, unlike classical epidemic models. 

• Adding some constraints into the model, such as the social 

interactions between individuals, is not complicated from a 

model design perspective and only increases computation de- 

mands. 

A cornerstone in expanding this area of research is the ability 

o obtain reliable solutions to the underlying optimization prob- 

em without resorting to problem-specific optimization strategies. 

dvances in computational power and the field of Black-Box op- 

imization [66] can be an essential milestone in achieving such a 

oal and being able to examine different models without consum- 

ng much time using general procedures. However, sometimes, this 

trategy requires high-computing environments. Only by evaluating 

n objective function can these algorithms learn reasonable solu- 

ions performing multiple simulations. 

In this paper, we explore this idea. Using a flexible yet straight- 

orward dynamic probabilistic model that we designed based on 

he biological evidence of the onset of the pandemic, we esti- 

ate the seroprevalence in different regions of Spain along dif- 

erent waves. We also reconstruct the dynamics of infections and 

ecoveries in different compartments to answer specific epidemi- 

logical questions, such as when the famous infection peaks hap- 
2 
ened. To do this, we solve an inverse problem with the mortal- 

ty records to estimate some specific model parameters, such as 

he daily rate of infections. In this task, we use, for the first time 

n this area, the CMAES algorithm [30] , one of the state-of-the-art 

lack-Box stochastic optimization methods that have been in our 

revious tests more competitive than other existing algorithms. 

We must note that our primary purpose in mathematical mod- 

ling is not to make forecasts about the dynamic evolution of the 

andemic. Instead, the aim of our proposal is to perform back- 

asting: to retrospectively reconstruct the dynamics of infections 

hile estimating seroprevalence in the different compartments of 

he model. By estimating this information, we can better charac- 

erize the concrete mechanisms of virus transmission in the ter- 

itories analyzed. Thus, for example, we can guide political deci- 

ions in a more refined sense by establishing more advanced and 

ersonalized epidemiological thresholds to determine lock-down 

olicies, according to each territory’s specific socio-economic and 

ealthcare factors and the dynamic evolution of the number of in- 

ections drawn by our model in the different compartments. 

.1. Outline 

The article structure is as follows: First, we introduce our new 

athematical model to estimate the spread of COVID-19 in regions 

nd countries together with the model optimization strategy used. 

hen, we introduce some historical background on the evolution 

f the COVID-19 pandemic in Spain. Also, some demographic and 

conomic characteristics of the Spanish population are presented. 

ext, we evaluate the behavior of the model and we illustrate its 

sefulness, performing different analyses across several Spanish re- 

ions, reporting the day-to-day evolution of susceptible, infected, 

nd recovered patients. Finally, we discuss the results, the model 

imitations, and the power and value of the new methodology pre- 

ented in the existing literature. 

.2. Aims of the analysis 

In order to show the usefulness and broad potential of our pro- 

osal for practitioners, we perform different analyses that allow 

nswering the following epidemiological questions: 

1. What was the spread of the virus in the first wave in different 

regions of Spain like?. For example, when did the peak of in- 

fections occur?. How many infected people were there in Spain 

at the end of the lockdown policies? 

2. Using a longer time frame, until March 1, 2021, how were the 

overall dynamics of SARS-CoV-2 in the Spanish population as 

a whole?. For example, the healthcare situation was critical in 

October of 2020, and there were discussions about applying a 

national lockdown; What could be the real epidemiological sit- 

uation at that time? 

3. Given that, from a theoretical point of view, we can reconstruct 

the dynamics of infections with our model, how was the actual 

day-to-day capacity to detect new cases in Spain? 

. Mathematical model and optimization strategy 

.1. Model elements 

Suppose that D = { 0 , 1 , . . . , n } is the set of days under study.

onsider the following random processes whose domain is defined 

n D. 

• S(t) : Number of people susceptible to become infected on day 

t . 

• I 1 (t) : Number of infected individuals who are incubating the 

virus on day t . 



M. Matabuena, P. Rodríguez-Mier, C. García-Meixide et al. Computer Methods and Programs in Biomedicine 211 (2021) 106399 

Fig. 1. Diagram of state changes in our model. 
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Table 1 

Random variables of the time of each transition. 

Transition Random variable Used references 

I 1 → I 2 Gamma (5 . 807 , 0 . 948) Abdel-Salam and Mollazehi [1] , Lauer 

et al. [43] 

I 1 → I 3 Gamma (5 . 807 , 0 . 948) Abdel-Salam and Mollazehi [1] , Lauer 

et al. [43] 

I 2 → R 1 Uni f orm (5 , 10) 

I 3 → R 1 Uni f orm (9 , 14) Abdel-Salam and Mollazehi [1] 

I 3 → M Gamma (6 . 67 , 2 . 55) Abdel-Salam and Mollazehi [1] , Novel 

et al. [57] , Salje et al. [68] , Verity 

et al. [81] 

R 1 → R 2 Uni f orm (7 , 14) Bi et al. [7] , Ehmann et al. [22] 

Table 2 

Probability of each transition. 

Coefficient Value Used references 

α 0.8 Day [19] , Mizumoto et al. [53] , Nishiura et al. 

[56] , Tabata et al. [77] 

β 0.06 Dudel et al. [20] , Fauci et al. [24] , Mahase [48] , 

Rajgor et al. [65] , Verity et al. [80] , Wu et al. [83] 
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(  
• I 2 (t) : Number of infected people who have passed the theoret- 

ical incubation period and who: (i) don’t show symptoms or (ii) 

symptoms are mild on day t . 

• I 3 (t) : Number of infected people who have passed the incuba- 

tion period and do show moderate or severe symptoms on the 

day t . 

• R 1 (t) : Number of recovered cases which are still able to infect 

on the day t . 

• R 2 (t) . Number of recovered cases that are not able to infect 

anymore on the day t . 

• M (t) : Number of deaths on day t . 

Henceforth, we will denote by I(t) = I 1 (t) + I 2 (t) + I 3 (t) the

umber of infected people at time t ∈ D and R (t) = R 1 (t) + R 2 (t)

he number of recovered people. 

The above random processes describe the dynamic of popula- 

ion individuals in separate compartments. We divided the infected 

nd recovered individuals in a broader and specific taxonomy for 

he particular case of the COVID-19 than the classical epidemiolog- 

cal models [5,38] . There are two main reasons for this. First, the 

atients tested by healthcare are usually those found in I 3 . In this 

ase, there is an essential corpus of prior knowledge about how 

hey evolve, and in case of death, their survival time. Second, there 

s evidence that there are recovered patients who can still infect 

thers. 

.2. Basic model definition 

The causal mechanism of newly infected individuals is intro- 

uced below. For each day t ∈ D, we assume that the new infec-

ions I new 

1 
(t) are generated by the individual interaction of the sus- 

eptible people with infected patients and the recovered cases that 

hey can still contaminate (patients that belong of states I 1 , I 2 , I 3 ,
 1 ). 

Formally, we assume that if an individual can contaminate, it 

oes so according to a random variable X ∼ Poisson (R i (t)) , being 

 i (t) the average number of new infections that can cause each 

erson in the day t . It is natural to assume that the function R i (t)

ollows a decreasing trend in the first months of the epidemic, ba- 

ically due to two reasons: (i) quarantine policies have been sys- 

ematically introduced along with different countries and regions. 

ii) the number of susceptible people decreases over time, while 

he number of infected people can increase. These facts indicate 

hat in our particular setting, it is more complicated to interact 

ith non-infected people. 

Once a new infected person arrives to the model (see Fig. 1 ), 

e assume that the transitions between the different graph 

tates are modeled by a probability law that verifies the fol- 

owing conditions: (i) the transition probabilities are indepen- 

ent of the absolute instant when such transition takes place 
3 
ii) the probabilities depend only on the current state of the 

atient regardless of the previous path in the graph. In partic- 

lar, given the States = {I 1 , I 2 , I 3 , R 1 , R 2 , M} , and α, β ∈ [0 , 1] ,

e have: P (I 2 |I 1 ) = α, P (I 3 |I 1 ) = 1 − α, P (M|I 3 ) = β , P (R 1 | I 3 ) =
 − β , P (I 3 |I 2 ) = 1 , P (R 2 |I 1 ) = 1 ; all other transitions take a value

qual to zero in probability. More schematically, the P , probability 

ransition matrix, between events is shown in the Eq. (1) . 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I1 I2 I3 R 1 M R 2 

I1 0 α 1 − α 0 0 0 

I2 0 0 0 1 0 0 

I3 0 0 0 1 − β β 0 

R 1 0 0 0 0 0 1 

M 0 0 0 0 1 0 

R 2 0 0 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (1) 

Additionally, Table 1 shows the random variables that model 

he time between transitions together with the references used in 

ur elections for real examples of COVID-19 in Spain. 

Table 2 shows the values used to model the transition proba- 

ilities. The Supplementary Material provides specific details about 

ow the mentioned parameters and functions were selected. 

Finally, as we defined the model above, we have a continuous- 

ime probabilistic model. However, the surrogate variables to fit 

nd compare the model results are recorded daily in real-world 

ituations. Consequently, in our implementation we perform the 

imulation between transitions and new infections on a daily basis 

nd we truncate the corresponding continuous time in days. 

.3. Stochastic model implementation 

Our model does not have a closed-form solution. Therefore, in 

 real-world setting, it is necessary to use statistical simulation 

ethods to approximate specific population characteristics of the 

tochastic process as quantile functions. Also, we must fit some 

arameters of the model to characterize the behavior of the study 

opulation. For this purpose, we use a sample of the deceased pa- 

ients {M 1 , M 2 , . . . , M s } along the set of days O = { 1 , . . . , s } . 
Next, we suppose that our model ( M) is dependent on a 

ector of parameters θ = (θ1 , θ2 ) ∈ R 

p 1 × R 

p 2 (with p 1 + p 2 = p),

here θ1 is a vector of dimension p 1 , defined in beforehand, 

nd θ2 must be estimated from the sample. Furthermore, let us 

ssume that the initial state of the system is characterized by 

 = (S(0) , I 1 (0) , I 2 (0) , I 3 (0) , R 1 (0) , R 2 (0) , M (0)) ∈ N 

7 and T =
T (0) , T (0) , T (0) , T (0) , T (0) , T (0)) ∈ N 

m × . . . × N 

m . S has the
1 2 3 4 5 6 
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umber of elements for each compartment of the model on day 

. T also contains the amount of remaining days to complete the 

ransition they are in for each individual in the initial state, be- 

ng m a natural number that represents the maximum number of 

egistered days. 

To simplify the notation, for each day t ∈ D, we denote the av- 

rage dead trajectory by the function Mean (θ1 , θ2 , S, T )(t) . 

The next step is to estimate ˆ θ2 . To do this, we propose to solve

he following optimization problem: 

ˆ 
2 = arg min 

θ2 ∈ S⊂R p 2 

s ∑ 

i =1 

ω 

i (M i − Mean (θ1 , θ2 , S, T )(i )) 2 , (2) 

here ω = (ω 

1 , . . . , ω 

s ) is a weighted vector that can help to im-

rove model estimation. Examples of these weights may be: 

ω 

i = M i / 
∑ s 

i =1 M i or ω 

i = (1 / M i ) / ( 
∑ s 

i =1 1 / M i ) (i = 1 , . . . , s ) . 

At this point, it is relevant to note that the above optimization 

roblem (2) , as formulated, includes the possibility of introducing 

onstraints in the parameters’ space. The previous fact is essential 

ecause we often have prior knowledge of the range of parame- 

ers, or we can even invoke the biological interpretation of param- 

ters to answer this question. Thus, by introducing this knowledge, 

e can spread up the speed of optimization Black-Block techniques 

ignificantly. 

In Eq. (2) , we have used the real mean trajectory. However, in 

ractice, this is unknown, and we must approximate it using sim- 

lation. Next, we run B different simulations, and we denote by 

 (θ1 , θ2 , S, T ) = 

1 
B 

∑ B 
i =1 M 

i (θ1 , θ2 , S, T ) , the estimated mean tra-

ectory. M 

i (θ, θ2 , S, T ) (i = 1 , . . . , B ) denotes the result of simula-

ion number i . 

So the optimization problem to be solved is: 

ˆ 
2 = arg min 

θ2 ∈S⊂R p 2 

s ∑ 

i =1 

ω 

i (M i − M (θ1 , θ2 , S, T )(i )) 2 . (3) 

Schematically, the overall optimization process is described be- 

ow. 

1. Define an initial θ0 
2 

and run B times M(θ1 , θ2 , S, T ) . We de-

note by M 

1 (θ1 , θ
0 
2 
, S, T ) , . . . , M 

B (θ1 , θ
0 
2 
, S, T ) , different results

are obtained. 

2. Estimate the mean trajectory M (θ1 , θ
0 
2 
, S, T ) = 

1 
B 

∑ B 
i =1 M 

i (θ1 , θ
0 
2 
, S, T ) 

3. Estimate the mean square error ˆ RSS 
0 = ∑ s 

i =1 ω 

i ( M (θ1 , θ
0 
2 
, S, T )(i ) − M i ) 

2 . 

4. To construct a succession of vectors { θ j 
2 
} R +1 

j=1 
so that ˆ RSS 

0 
> 

ˆ RSS 
1 

> 

ˆ RSS 
2 

> . . . > 

ˆ RSS 
R +1 

. For example with a stochastic optimiza- 

tion solver. 

5. Stop after R + 1 iterations and return θR +1 
2 

as the optimal pa- 

rameter of the problem. 

In our particular setting, θ2 contains the parameter of the R i (t) 

unction that are defined in Section 2.2 . In our preliminary exper- 

ments, we assumed that their functional form is equal to R i (t) = 

in { C, ae −(bt + ct 2 + dt 3 + et 4 + f t 5 ) } where a ∈ [0 , 3] , b ∈ [ −1 , 1] , c ∈ [0 , 1] ,

 ∈ [0 , 1] , e ∈ [0 , 1] , f ∈ [0 , 1] with θ2 = (a, b, c, d, e, f ) ∈ [0 , 3] ×
 −1 , 1] × [0 , 1] × [0 , 1] × [0 , 1] × [0 , 1] and C is a positive constant

xed 0.005. However, our final election after several experiments 

nd sensitivity analysis with different family of functions that in- 

lude the previously exponential or inverse sigmoid/logit functions 

s, R i (t) = d + 

a 
1+ b −(t−c) , where a ∈ [0 , 5] , b ∈ [0 , 1] , c ∈ [ −30 , 30] ,

 ∈ [0 , 0 . 1] . 

.4. Structural limitations of the model in COVID-19 pandemic 

The behavior of our model is primarily determined by the pa- 

ameters α, β , and the function R (t) , while small variations in 
i 

4 
he distributions function of the transitions times should not have 

 significant impact on the seroprevalence estimations. R i (t) is es- 

imated from observed mortality records. However, the parameters 

, β are fixed, with statics values over time, and perhaps, in prac- 

ice, their value should vary in successive waves. In addition, α, 

, determine the infection fatality rate ( IF R ), the quotient between 

atalities, and the number of infections. In particular, in our model 

F R , is given, IF R % = ((1 − α) ∗ β) ∗ 100 . 

Some studies have shown that in the current pandemic, IF R 

s the gold standard epidemiological indicator for monitoring the 

everity with which the virus has affected different countries 

58,60] . However, dynamic estimation of IF R is challenging to per- 

orm since a precise approximation of the real number of infected 

eople is generally only possible in a single time point, thanks to 

eroprevalence studies. 

Several studies have investigated which factors influence the 

alue of the IF R . The primary sources of variations are age and sex

76] . If the distribution of new infections is uniform along time re- 

arding these variables, we can assume constants and statics val- 

es for α and β in different time-spans. 

Testing that assumption is necessary to determine if we must 

ary the coefficients α, and β , over different waves. However, since 

e do not know about the true infections in successive waves, it 

s not trivial to validate this hypothesis empirically, and some sta- 

istical estimations are needed. 

In Spain, heath institutions performed an ambitious and unique 

ongitudinal epidemiological study to know the patterns of virus 

xpansion in several time points that allow us to draw estimation 

bout IF R . In particular, we have information on infections at the 

eginning of June and the end of November 2020. Using this infor- 

ation, we can estimate the differences in IF R between the first 

nd successive waves. We must note that the Spanish situation in 

he first wave was critical, with many problems in the elderly pop- 

lation, particularly in nursing homes, and and so changes in the 

F R along time are expected. 

.5. Model implementation to handle multi-waves 

Analogous to an intervention analysis in the context of time se- 

ies, we need to update the daily infection function to be able to 

odel well the reality in at least the following two situations: at 

he end of each lockdown, and a new return to normal, or shortly 

efore an explosive growth in the number of new cases or deaths 

ccurs, and no lockdown policies are applied. In these situations, 

here are abrupt changes in daily infection trends, and therefore 

he functional form of the function R i (t) needs to be modified. 

Consider t 0 = 0 < t 1 < t 2 < . . . < t m 

, m temporal points, defined

ith expert knowledge, and, in which, we hypothesize that the 

rend of the daily infection function is modifiable between differ- 

nt { t s } m 

s =0 
, for example between two waves. Then, we propose to 

efine the function R i (t) , as a piecewise function, dependent on 

he local functions R 

t 1 
i 
(t) , . . . , R 

t m 
i 

(t) , that is, 

 i (t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

R 

t 1 
i 
(t) t ∈ [0 , t 1 ) 

R 

t 2 
i 
(t) t ∈ [ t 1 , t 2 ) 

. . . 

R 

t m 
i 

(t) t ∈ [ t m −1 , t m 

) . 

In our fits in successive waves, we assume that the functional 

orm of each R 

t s 
i 
(t) (s = 1 , . . . , m ) is identical, and equal to prior

unction R 

t s 
i 
(t) = d s + 

a s 

1+ b −(t−c s ) 
s 

(for all t ∈ [ t s −1 , t s ) , and any s ∈
 1 , . . . , m } ), where, the sub-index s , denotes the dependence of pa-

ameters, to time-period [ t s −1 , t s ) . Then, the number of initial free-

odel parameters is multiplied by the number of periods, m , con- 

idered. 
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Regarding parameters α and β , our implementation allows 

arying these parameters between { t s } m 

s =0 
. Let be αs and βs , the 

entioned parameter for the interval [ t s −1 , t s ) . In this paper α =
1 = . . . = αm 

. However, in the global Spanish analysis along dif- 

erent waves, β will be vary dynamically. 

.6. Conformal simulation bands to quantify model uncertainty 

Quantify model uncertainty is a critical point in order to in- 

erpretate the results obtained together with their natural limits. 

n epidemic modeling, according to [21] , we can decompose the 

odel uncertainty in three different sources of error: 

• Data uncertainty : Uncertainty in specified model parameters, 

estimated externally from data, or in data to which models are 

fitted. 

• Stochastic uncertainty : Uncertainty derived from the method of 

simulation. 

• Structural uncertainty : Uncertainty in the optimal model struc- 

ture, or derived from the use of more than one model structure 

for a given question. 

In our settings, we use the dynamic evolution of mortality as a 

ource of information. Then, directly reporting the “Stochastic Un- 

ertainty” drawn for the stochastic simulator as a measure of un- 

ertainty is unrealistic, since we can restrict the number of possi- 

le scenarios that happen in practice, according to mortality resid- 

als. More formally, our source of information is a correlated time 

eries that determines the possible reality that occurred, and for 

 given configuration of the vector parameter θ , we should be re- 

oved a significant fraction of unrealistic simulation scenarios. 

“Data uncertainty” is not trivial to incorporate in this type 

f model, and the non-parametric bootstrap solution proposed in 

’Agostino McGowan et al. [21] have important limitations, since 

t does not consider the dynamic and correlation structure of daily 

eports. More general, bootstrap strategies that can handle the spe- 

ific dependence structure of daily reports can be adapted as our 

etting, such as block or wild bootstrap, but it is something out of 

he scope of this work. 

Testing “Structural uncertainty” is also challenging. There may 

e no universal model in an epidemic modeling context, and per- 

aps the best model for each situation is a combination of broad 

ictionary of simpler models that change dynamically as the pan- 

emic evolves. 

In this paper, we propose to use a solution similar to the 

ne proposed in Shen et al. [73] , which consists of selecting a 

mall fraction of simulations, according to error criteria, e.g., mean 

quared error, that shape the possible real infection trajectories. 

ith the remaining trajectories, we apply specific conformal infer- 

nce techniques that, to the best of our knowledge, have not been 

pplied previously to the context of stochastic simulation models. 

onformal inference methods are a general methodology to quan- 

ify model uncertainty [72] , with well-established theoretical foun- 

ations [45] , and were used in an extensive list of machine learn- 

ng and statistics problems (see for example a contemporany ap- 

lication [46] ). 

Below, we introduce the specific mathematical detail of the 

sed conformal simulation bands that can handle heterocedastic 

oise. First, suppose that θ = (θ1 , 
ˆ θ2 ) is the optimal parameter 

onfiguration, where ˆ θ2 was estimated according to methodology 

roposed in the Section 2.3 . Then, 

1. Perform B = 10 , 0 0 0 simulation of the model M(θ1 , 
ˆ θ2 , S, T )

and evaluate the mean square error metric (RSS). ˆ RSS 
s 

and 

M 

s (θ1 , 
ˆ θ2 , S, T ) ( s = 1 , . . . , B ), denote the results for iteration s

of mean square error and the estimation of mortaly records in 

the simulation model respectively. 
5 
2. Let Sel = { i ∈ { 1 , . . . , B } : ˆ RSS 
i ≤ ˆ RSS (10 0 0) } , the set of index of

simulation with the lesser or equal 10 0 0 value of RSS estima- 

tions. ˆ RSS (10 0 0) denote the element 10 0 0, considering the order 

sample of { ˆ RSS 
s } B 

s =1 
. 

3. Using the subsample of death simulation trajectories 

{ M 

i (θ1 , 
ˆ θ2 , S, T ) } i ∈ Sel , estimate pointwise the standart de- 

viation ˆ σ (t) , ∀ t ∈ O. 

4. Define the conformal score Score i = max t∈O 
| M 

i (θ1 , ̂
 θ2 , S, T )(t) −M t | 

ˆ σ (t) 

if ˆ σ (t) > 0 , ∀ i ∈ Sel. Otherwise Score i is equal to 0. 

5. Calculate the quantile q α = arg min t∈ R + { 
∑ 10 0 0 

s =1 1 { Score s ≤t} 
10 0 0 ≥ α} , 

with α = 0 . 95 , to guarantee distributional intervals that cover 

a confidence level of 90% . 

6. Define for each t ∈ O, the confidence interval prediction 

as [ M (θ1 , 
ˆ θ2 , S, T )(t) − ˆ σ (t) q α, M (θ1 , 

ˆ θ2 , S, T )(t) + ˆ σ (t) q α] ,

where M (θ1 , 
ˆ θ2 , S, T ) denote the simulation mean that corre- 

spond with our given mortality estimations. 

7. Finally, to build confidence bands for the rest of the stochas- 

tic process that makes up our epidemic model, we must se- 

lect simulation trajectories that lead to the mortality outcome 

falling within the mortality band calculated in step 6). 

A key element of conformal inference is the selection of con- 

ormal scores. In this paper, the conformal score has been estimed 

sing the geometry of the supreme norm || · || ∞ 

. || · || ∞ 

is often

sed in the analysis of stochastic processes in the field of func- 

ional data analysis to estimate confidence bands (see for example 

27] ). 

.7. Our probabilistic model proposal in the literature 

The literature on epidemic modeling is very broad and includes 

oth mechanistic models built from causal epidemiological knowl- 

dge and more statistical approaches that exploit information from 

istorical data with purely predictive models [9,41] . Nowadays, it is 

ot easy to establish a boundary between both approaches since, 

n many occasions, both methodologies are used from the same 

oint of view or even jointly. 

Our model definition is not very complicated from a mathe- 

atical point of view. However, it introduces new challenges from 

he computational and modeling point of view: the simulation of 

he trajectory of each individual along the population, the intro- 

uction of probability distributions that go beyond the exponen- 

ial law as traditional models do [5] , and the use of latent infec-

ions models through a non-homogeneous Poisson process, extend- 

ng in this sense the Markovian property [5] . In [25] , the authors

efine a model similar to ours and propose a resolution framework 

ith Bayesian estimation methods. However, we assume that spe- 

ific parameters are known from the epidemiological scientific ev- 

dence. Our approach using mortality records [61] allow us to ob- 

ain reliable seroprevalence estimates, but the difficulty of the es- 

imation increases. We also do not introduce a Bayesian approach 

ut a frequentist approach with its advantages and disadvantages 

s the need in the Bayesian paradigm of selecting prior functions. 

inally, with the philosophy of our simulation model, we can con- 

ider complex extensions without making too many changes in the 

mplementation. 

.8. Model optimization with a CMA-ES black-box solver 

In our setting, we must find optimal parameters taking into 

ccount randomness in approximating the mean. To do this, we 

hould resort to stochastic optimization algorithms. 

Many stochastic algorithms are available in the literature. Still, 

ased on the excellent preliminary results, we have decided to use 
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 state-of-the-art evolutionary algorithm: the CMA-ES [30] . CMA- 

S is an evolutionary-based derivative-free optimization technique 

hat can optimize a wide variety of functions, including noisy func- 

ions, like the one we use in our method. One survey of Black-Box 

ptimization strategies found that CMA-ES outranked 31 other op- 

imization algorithms, performing exceptionally well on “difficult”

unctions or larger dimensional search spaces [31] . From a theoret- 

cal point of view, CMA-ES can be seen as a particular case of the 

xpectation-Maximization algorithm (EM) [8] . 

We provide specific algorithm steps in Supplementary Material. 

.9. Inverse problem behavior 

The model fit with the mortality records invokes new chal- 

enges in model identification so that the inverse problem is well- 

efined. We fixed some model parameters according to existing 

cientific evidence to address this issue to make the problem more 

egularized. A potential alternative to fitting more parameters with 

he data is to transform the objective function into a multiobjective 

ptimization problem, considering the daily cases or other ICU in- 

icators as additional sources of information. However, in the early 

tages of the pandemic, and even nowadays, there were essential 

oubts about the real capacity of detection of new infections. 

.10. Tuning parameter 

We performed multiple experiments with CMA-ES to check 

ow the optimization solver behaves. At the same time, through 

tatistical simulation, we estimate the variance of the empirical 

ean by varying fatalities in different settings. After those initial 

xperiments, we decided to estimate the mean at 300 repetitions, 

hat is, B = 300 . In addition, we have allowed CMA-ES to run 30 0 0

terations, starting the optimization algorithm from different ran- 

om points. To obtain the results of this paper, CMA-ES, was able 

o find the optimal solution with the function R i (t) selected in less 

han two hours. Finally, the loss function used is Mean Square Er- 

or (MSE) with w 

i = 1 (i = 1 , . . . , s ) (see Section 2.3 ). 

.11. Software details and resources 

Our proposal has been implemented in several programming 

anguages- C++, Python and R- although the results that are shown 

n this article have been obtained with Python. We optimized the 

arameters using library pycma [2] , and numpy has been used for 

athematical operations. 

In the different performed statistical analyses, we have used 

. Plots have been made both in R with ggplot2 library and in 

ython with matplotlib . 
Finally, the training data used to fit the models in the first wave 

an be downloaded at [67] , and [18] , that represent the daily Span-

sh statistics of COVID-19 fatalities. In the most extensive analysis 

f the overall Spanish population, we use the excess of mortality as 

 source of information. The raw data to estimated excess of mor- 

ality can be obtained in the public web interface related to MoMo- 

aily Spanish mortality surveillance system ( https://momo.isciii.es/ 

ublic/momo/dashboard/momo _ dashboard.html ), coordinated by 

ational Institute of Health Carlos III (ISCIII). 

We release the code used in this paper for the benefit of the 

cientific community at ( https://github.com/covid19-modeling ). 

. COVID-19 in Spain 

Spain was one of the first countries worldwide to experience 

he effects of COVID-19, after China and Italy. However, the con- 

equences were more dramatic despite the delayed outbreak start 
6 
ith respect to these countries. To give a better context to the evo- 

ution of Coronavirus in Spain, in the first wave, and compare it 

ith other countries, we introduce some historical background: 

• January 31st. The first positive result was confirmed on Spanish 

territory in La Gomera. At that time, there were around 10,0 0 0 

confirmed cases worldwide. 

• February 12th. The Mobile World Congress, one of the most re- 

markable technological congresses in the world, to be held in 

Barcelona, was cancelled. 

• March 8th. Multitudinous marches were celebrated in Spain. 

Also, sports competitions and other events were held as usual. 

• March 13th. Madrid reported 500 new cases of Cov-19 in one 

day (64 deaths total). Wuhan had gone into lockdown with 400 

new cases per day (17 deaths total). 

• March 14th. With the increase in the outbreak of infections, the 

government declared a quarantine throughout the country. 

• March 21st. Due to an overloaded health system, the first pa- 

tients started to arrive at new makeshift hospitals. 

• April 3rd. Spain accounts for a total of 117,710 confirmed cases, 

surpassing Italy for the first time. 

• April 6th. Spain becomes the country in the world with more 

deaths per million inhabitants. 

• April 9th. The FMI forecasts that 170 countries are going to fall 

into recession this year in the worst crisis since the Great De- 

pression. 

• April 18th. The Spanish government changes protocols for the 

daily statistics of COVID-19. 

Fig. 2 , shows the accumulated number of cases and deceases 

espectively in the previous periods in Spain, Italy, China, United 

ingdom, and the United States according to the data supplied by 

he different governments. 

Following the statistics of the Population Reference Bureau, 

pain is the 20th country with the world’s oldest population [12] . 

he country demographic structure, poverty rates, and epidemio- 

ogical profiles are essential to compare mortality between coun- 

ries. In the Coronavirus disease, relative and absolute case-fatality 

isk (CFR) [26] increases dramatically with age and with comor- 

idity, as evidenced by the current literature. Relative risk can in- 

rease by more than 900% in patients over 60 [85] . 

Subsequently, we perform a descriptive analysis in the regions 

f Spain that we analyze in this paper: Galicia, País Vasco, Castilla 

 León, Madrid, Cataluña. Table 3 contains the essential demo- 

raphic and socioeconomic characteristics of these regions. We can 

ee that Castilla y León is the region with the highest proportion of 

lderly people. At the same time, Castilla y León has the most de- 

ocalized population centres, and the País Vasco is the region with 

he lowest poverty rate. The national poverty rate is higher than 

he other analyzed regions because we do not include the most 

overty regions. 

Spain is a multicultural country where there are significant eco- 

omic, geographical, social, and demographic differences through- 

ut the regions. All these peculiarities make Spain an interesting 

ountry to extrapolate the effects of COVID-19 spread to other re- 

ions and countries. 

Finally, in Fig. 3 , we show the evolution of infections and fa- 

alities among the regions under consideration in the first wave. 

s we can see, Madrid is the most affected region, while Galicia is 

he least affected, despite its older population. However, it is es- 

ential to note that the outbreak began later, and the containment 

as carried out earlier than in Madrid. 

https://momo.isciii.es/public/momo/dashboard/momo_dashboard.html
https://github.com/covid19-modeling
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Fig. 2. Spread and number of deaths of Coronavirus in Spain, Italy, China, and the United States. Number of accumulated infected patients (left) and the number of accumu- 

lated deaths (right) [13] . 

Table 3 

Demographic and socioeconomics characteristics of the Spanish population throughout some regions: Galicia, País 

Vasco, Castilla y León, Catalu ́na, Madrid [34] . 

Galicia País Vasco Castilla León Catalu ́na Madrid Spain 

Population 2,698,763 2,181,916 2,553,301 7,609,497 6,685,470 47,100,396 

At-risk-of-poverty rate 18.8 8.6 16.1 13.6 16.1 21.5 

Population density 91.28 305.19 25.47 239.01 830.02 93.08 

Percentage of population by age group 

0–9 7.50 8.93 7.51 9.78 9.92 9.28 

9–18 7.56 8 . 78 7.79 9.74 9.44 9.37 

18–30 10.39 10.66 10.67 12.72 12.80 12.42 

30–45 21.18 20.28 19.47 22.24 23.24 22.07 

45–60 22.77 23.28 23.60 21.77 22.23 22.61 

60–80 22.60 21.41 22.30 18.24 17.33 18.70 

from 81 on 8.01 6.67 8.65 5.50 5.03 5.56 

Fig. 3. Evolution of accumulated infected (left) and death patients (right) in Galicia, País Vasco, Castilla y León, Madrid, Cataluña. 

4

4

l

p

t

a

t

o

i

i

V

a

t

. Results 

.1. First wave analysis 

In order to explore the limits of the model in a more chal- 

enging scenario, we start the analysis with the first wave. In this 

eriod, most Spanish seroprevalence surveys were performed, and 

herefore we have a reliable estimation of the number of infections 

ccross different Spanish regions in a single time point, allowing us 

o evaluate our model performance. In addition, the information is 
7 
f poor quality, and epidemiological evidence is scarce; thus, mak- 

ng estimations in this scenario is more complicated. More specif- 

cally, we restrict the model analysis to April 26st in Galicia, País 

asco, Castilla y León, Madrid and Cataluña. As there is consider- 

ble uncertainty about mortality records, we assuming that these 

wo scenarios hold: 

1. We assume that the number of real deaths due to Coronavirus 

is reflected in official records. 
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Fig. 4. Results in Madrid. 
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2. We suppose a more pessimistic scenario. We assume that many 

people have died of Coronavirus, but they have not been in- 

cluded in the records because a diagnostic test was not per- 

formed. In particular, we shall suppose that the number of 

deaths is twice as high as those indicated in the official records 

each day. 

To display results in an easy-to-view format, we graphically 

epresent the evolution of some states defined at the beginning of 

ection 2.1 in the two cases considered. In addition, to gain fur- 

her insights into the results, we show (i) the number of people 

ho may be contaminated or have already transmitted the virus 

s a percentage of the population size; and (ii) the rate of new 

nfections each day (denoted in the Figures as λt ). 

Finally, we introduce confidence bands of our estimations using 

ethodology described in Section 2.6 . 

Here, we only show the Figures that contain results in Galicia 

nd Madrid. The rest of the Figures are available in Supplementary 

aterial. 
8 
.2. Multi-wave analysis 

To show more recent and informative results on Coronavirus 

ynamics in Spain, we adjusted the model for the total Spanish 

opulation until 1 March 2021. To avoid choosing between the two 

cenarios above, we use excess mortality as a source of information 

o feed our model. α has been selected with the same criteria as 

he first wave. However, β is fixed with a value equal to 0.085-in 

he first period, while the rest with 0.0425. These values were es- 

ablished to guarantee an IF R of 1 . 7% in the first wave and 0 . 85% in

uccessive periods. Specific details about IF R estimations are rele- 

ated to the Supplementary Material. Daily infection function R i (t) 

as fitted as a piecewise function (see Section 2.5 for details). In 

articular, the cut-off points selected for the jumps are as specified 

elow ( Figs. 4–6 ). 

1. 1 March to 30 May. 

2. 1 June to 5 July. 

3. 6 July to 15 August. 
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Fig. 5. Results in Galicia. 

e

i

d

4
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4. 16 August to 30 September. 

5. 1 October to 24 December 

6. 25 December to 1 March. 

It is important to note that these periods correspond to critical 

vents in pandemic evolution, such as a change in lockdown pol- 

tics, holidays, or other events that led to abrupt changes in the 

ynamics of infections. 

.3. Analysis of results 

The most relevant results in the first wave ( 1 st March 2020 to 

6 th April 2020) are outlined below: 

• Madrid was the most affected region by COVID-19. If we con- 

sider an extreme setting (e.g., the number of deaths is dou- 

ble that reported by the Government), 22.5% of the population 
9 
could have been infected or recovered from the virus. On April 

26st, there may have been almost 1,2 million of patients recov- 

ered. 

• Galicia was the region that suffered the mildest effects. The per- 

centage of infected people was less than 2.9%. 

• Castilla y León, Pais Vasco and Cataluña could have suffered the 

effects of COVID-19 with a proportional magnitude. In those re- 

gions, the percentage of infections could have been between 6 

and 12% of the population. 

• The peak of new infections probably occurred at the start of 

quarantine, while the peak of people who can contaminate took 

place between March 17 and 24. 

• The number of new infections have been dramatically reduced 

after the introduction of containment measures. 

• The most accurate scenario is the pessimistic scenario. The 

analysis of the excess mortality reported in the Supplementary 
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Fig. 6. Results in Spain. 
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Material justifies why this scenario is more reliable for sero- 

prevalence estimations. 

In the overall Spanish analysis, the main findings are specified 

elow: 

• In the first wave, the number of infections reaches 5% , while at 

the end of the year, the total reaches around 10% . These results 

are in agreement with the national seroprevalence study [60] . 

• After July, several lockdowns were carried out locally in dif- 

ferent areas during specific periods. Our results show that this 

measure only partially controls the spread of the virus but does 

not sufficiently reduce the number of cases to reach a low-risk 

threshold of new infections. For example, active infections de- 

creased after the global and national measures were taken from 
10 
October 26th until after Christmas, but the epidemiological risk 

was still high during the period. 

• In the summer, the spread of the virus starts again, probably 

due to imported cases of tourists and high mobility patterns. 

• The peak of new infections was less severe in successive waves 

than at the pandemic’s beginning. 

• After Christmas, the epidemiological situation was critical. 

However, thanks to the new measures and the large-scale vac- 

cination strategy, the risk of an explosion of infections was con- 

tained. 

.4. Comparison of predictions vs. seroprevalence studies during the 

rst wave 

The Spanish government launched an ambitious longitudinal 

pidemiological study with over 60,0 0 0 participants to assess the 

evel of exposure of the population to the virus in at least two 

emporal points. The preliminary results of this study by regions 

an be freely downloaded at [52] , and the publisher’s scientific 

esults are available in the following article [64] . As can be seen, 

ssuming a pessimistic scenario, our model estimates are close to 

he percentage of the serological survey, although there are some 

ariations in some cases, such as in Madrid. The limitations of the 

pidemiological study may explain part of these discrepancies. In 

ddition, we must consider the following factors: (i) the method- 

logy followed in the design of the survey and in their statistical 

nalysis; (ii) our model may need a more careful tuning of the pa- 

ameters according to the study population, or should introduce 

ore reliable sources of information. The local government of Gali- 

ia also conducted its study with more than 40,0 0 0 participants, 

nd the results are similar [71] to those that appear in a national 

urvey despite the different nature of the study design. Finally, the 

ity council of Torrejón de Ardóz (Madrid), one of the most af- 

ected places in Spain, carried out its epidemiological study with 

ore than 10 0,0 0 0 participants, estimating that 22 percent of the 

opulation was infected [4] . 

.5. Evaluation of the testing capacity 

A distinctive feature of our model is that we can retrospectively 

econstruct day-to-day infection dynamics with a low cost and 

on-invasive procedure, unlike other epidemic monitoring strate- 

ies. For example, serological surveys measure antibodies at a 

xed temporal point, with the inherent limitation that we can- 

ot answer many interesting questions about the dynamics of virus 

pread. Given the inherent advantage of our approach, an interest- 

ng question is to know the real number of infections detected in 

creening campaigns before starting large-scale vaccination. This is 

n essential question, as asymptomatic and pre-asymptomatic pa- 

ients may be the primary transmitters of new infections. Then, 

his index can assess the quality and limitation of screening proto- 

ols and, more specifically, the ability of countries to manage the 

andemic. 

Fig. 7 shows the percentage of active cases that can be detected 

y public health agencies on a daily basis. At the beginning of the 

andemic, we can observe that the detection capacity is minimal, 

nd their capacity increases in May, with the end of the lockdowns 

nd the reduction in the number of infected people. It is impor- 

ant to note that in the Summer, control is weak, perhaps because 

t coincides with the holiday period, and national mobility pat- 

erns increase, which would explain the increase of epidemiolog- 

cal risk in the coming months. In autumn, control is more reliable 

nd stable. Finally, near Christmas, maximum effectiveness is ob- 

ained, partially motivated by upcoming family events, which drive 

 prior increase in protective measures, such as better testing ca- 

acity or stricter control of non-pharmacological measures such as 
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ocial distance. In any case, in general, the Spanish government’s 

bility to detect daily active infections was less than 10% during 

he period examined. 

. Discussion 

The Coronavirus pandemic is causing an unprecedented crisis in 

ealth, economic, and social terms. To help design better policies, 

stimating the number of people infected by the virus is crucial. 

e explore the possibility of using statistical simulation models to 

stimate the spread of an epidemic and Black Block Optimization 

echniques as a general procedure to obtain model parameters. 

The estimations obtained over several regions of Spain have 

ractical relevance. The results reveal that the number of infec- 

ions was much higher than reported by the Spanish government. 

wo factors may explain these discrepancies: (i) The tests were 

arried out in a limited way among the general population, and 

ii) no random sampling [84] was done among the different re- 

ions throughout the territory, shading the absolute magnitude of 

he pandemic. It is also worth noting that its impact was uneven 

cross regions. Madrid was the most affected region, while Gali- 

ia was the least affected. However, according to our model, in 

ataluña, Castilla y León, and the País Vasco, the effects were sur- 

risingly similar, even though the outbreak of infections theoret- 

cally started at different time points. In addition, the geographi- 

al dispersion of Castilla y León is more significant (see Table 3 ). 

erhaps the older population of Castilla y León (see Table 3 ) has 

 higher case fatality rate than the other communities. Therefore, 

ur model is overestimating the number of infected people in that 

egion. As previously mentioned, the demographic structure of the 

egions, together with the epidemiological profiles and other so- 

ioeconomic characteristics, is fundamental in the analysis of re- 

ults. 

A critical concern in epidemic modeling is feeding the mod- 

ls with reliable data, which is challenging due to governments’ 

imited tracking capacities worldwide. In this paper, the mortality 

ecords are used as a source of information to increase the reliabil- 

ty of estimations. However, although the information provided by 

his variable is more accurate than other epidemic monitoring vari- 

bles as daily infections rates, our approach presents certain dis- 

dvantages. In general, fewer deaths are registered than the num- 

er of those that happened. Both Spanish and international press 

choed this problem in the current Coronavirus crisis. More than 

wice as many deaths than those officially announced can happen 

n certain regions, at least at the beginning of the pandemic. A pa- 

er released in the early stages of the pandemic reported that the 

ctual number of deaths might be even three times higher in Italy 

11] . 

In order to alleviate this practical limitation, we consider two 

cenarios. An optimistic scenario in which the official number of 

OVID-19 caused deaths is correct, and a more extreme and pes- 

imistic scenario, in which we assume that fatality cases are twice 

s much as those recorded by the government. In addition, in the 

verall Spanish analysis until 1 March, we use the excess of mor- 

ality as a source of information. For this purpose, to calibrate the 

odel better, we retrospectively estimate the IF R parameter and 

pdate the β coefficients dynamically. 

From a practical point of view, our approach can be essen- 

ial to assess the current state of the epidemic. In particular, we 

an know: (i) The degree of immunity of each population; (ii) 

he number of people who might be infected today; (iii) The to- 

al number of recovered patients. In addition, our proposal work 

an be helpful in a retrospective sense to rebuild the past dynamic 

f infections and help plan better future decisions based on prior 

valuation of the impact of epidemic policies performed in the 

ast. As a relevant example of this modeling strategy, we estimate 
11 
he capacity detection of active infections on a daily basis, which 

how that in the summer, the control was poor, which contributed 

o the substantial expansion of the virus until Christmas. 

In other epidemics as influenza, data-driven approaches may be 

tate-of-the-art because there is much evidence about the dynamic 

f the epidemic in many situations and the response of different 

gents as public health systems [9] . In this case, we point out that 

echanistic models should be preferred at the beginning and in 

he middle of the pandemic [41] . When more information about 

he current epidemic and the performance of measures is gathered 

ver time, more purely predictive models can be used. With all 

his information, medical institutes and governments will be able 

o guide the elaboration of more personalized policies for normally 

estoration and establish decisions thresholds to perform critical 

nterventions as local lockdowns according to specific characteris- 

ics of each territory. 

As a relevant example of our model, we can describe how the 

eak happened. From an epidemiological point of view, we can 

dentify two different peaks. According to the results reported by 

ur model in the first wave, the first one is the absolute maximum 

f new infections between 9 and 16 March. The second peak is 

elated to the maximum number of potential contaminators pre- 

icted to have happened on March 17 and 24. 

In general, assessing the performance of epidemic models is 

ery hard. Practitioners do not know real epidemiological situa- 

ions and monitor epidemic solutions with surrogate variables that 

nly provide partial knowledge of epidemic dynamics. One of the 

ost critical problems in this pandemic was that many research 

roups fitted their models with an official daily report of active 

ases, which led to inconsistent and unrealistic estimations about 

he number of infections and the population at epidemic risk. 

In our particular case, we evaluate the performance of the 

odel during the first wave —the most challenging scenario—

gainst the broad number of seroprevalence studies performed in 

pain. In the mentioned analysis, we restrict the expert informa- 

ion introduced in the models to the evidence of the first wave to 

valuate model performance in an uncertain setting. In general, our 

esults agree with different epidemiological studies in Spain and 

everal parts of the world ( https://covid19-modeling.github.io ). In 

ase of discrepancies, these can be explained as a consequence of 

he lack of appropriate parameter tuning. Also, there are essential 

iscrepancies between the results of national survey studies ver- 

us more local ones such as the one carried out in Torrejón de 

rdoz [4] . This might be explained by the fact that the effect of 

he pandemic was worse in Torrejón de Ardoz than in the majority 

f the population of Madrid. Another critical factor to highlight is 

he limitations in the statistical survey methodology employed in 

he national seroprevalence study. Concretely, there are more re- 

ned ways to carry on statistical inference modeling than the stan- 

ard application of the Inverse Probability weight estimator. In this 

ense, we suggest using the recent methodology described in Ma 

nd Wang [47] to provide more reliable results, in particular in the 

ge groups related to the elderly population. Also, as multiple com- 

arisons are not performed in the confidence interval estimation, 

overage uncertainty is somewhat optimistic. 

Despite the potential limitations, both in the parameters of our 

odel and in the methodology of the survey, in most territories 

xamined and assuming a pessimistic scenario, the results con- 

rm the accuracy of our approach in the real world. In Supple- 

entary Material, specific details are provided to explain why the 

essimistic scenario was more reliable in the first wave estimates 

hen less information on the pandemic was available. 

In the more extensive analysis up to 1st March 2021, we use 

he excess mortality as a specific source of information. In this 

ase, we update the daily infection function dynamically between 

uccessive waves, and β was calibrated using our IF R estimation, 

https://covid19-modeling.github.io
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Fig. 7. Dynamic evolution of the number of active infections in the Spanish population (top Figure). Daily cases reported by the Spanish government (middle Figure). The 

day-to-day percentage of active infections in the Spanish population by health agencies (bottom Figure). 
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sing the results provided by seroprevalence surveys and excess 

ortality records. In this sense, our results show the limited mon- 

toring capacity of Spanish agencies and the need for more efficient 

arge-scale testing to control the epidemic. 

We hope that the recent proposals, such as the use of telecom- 

unications information [63] , or more efficient pooled testing 

trategies [16,54] , will allow new ways to control and monitor pan- 

emics in a more reliable way [15,55] . 

From a methodological perspective, this work aims to explore 

he idea that complex statistical simulation models, together with 

lack Box optimization techniques, are a powerful way to define 

ew epidemic models with good empirical performance. Black-box 

ptimization is a promising approach to optimize complex models 

or which it is not easy to find optimal parameters using traditional 

ethods, such as a likelihood or gradient-based methods, due to 

he complex and stochastic nature of the model. The use of black- 

ox optimization further increases the flexibility of the approach as 

t can be adapted to new non-standard complex epidemic formu- 

ations from a general perspective. For example, an exciting mod- 

fication of our model can include non-parametric distributions to 

odel the distribution times between model transitions. Some pa- 

ers claim that this is a good general approach for estimating other 

arameters, for example, the virus incubation times [29] . 

We are unable to make a complete comparative study due to 

 large number of literature articles on epidemics. However, this 

aper aims to propose general and flexible modeling strategies to 

reate epidemic models in a simple way, the limit of which de- 

ends on computational capabilities. 

The epidemic models introduced here can improve in several 

irections. First, we may obtain more reliable inferences by fit- 

ing the model at simultaneous locations, for example, through 

ultilevel simulation models. In this sense, a promising optimiza- 
12 
ion strategy is to employ bayesian optimization. Second, to han- 

le more realistic infection mechanisms, we can use other dis- 

ributions such as Conway–Maxwell–Poisson [74] to handle over- 

nder dispersion situations. Another exciting direction is introduc- 

ng social interactions or genetic information about how the virus 

hanges [78,82] . However, nowadays, data related to this are not 

ublic in most countries or are very limited or difficult to obtain. 

nother significant contribution could be the use of several sources 

f information simultaneously to obtain more accurate estimations. 

n a recent paper [35] , the authors used the results of seropreva- 

ence surveys of the U.S. population to explore this idea. Finally, 

sing machine learning approaches to accelerate parameter fitting 

s a promising area that may be necessary for more complex sim- 

lation models [6] . In preliminary tests with our approach, speed 

ains are considerable. 

As for the new library for simulation that we developed, we 

ll some gaps in the literature. There are few computational ap- 

roaches to reconstruct infection dynamics from mortality reports 

36,62] , and most of the existing models are not dynamic. In this 

irection, we provide a well-built and reliable python library that 

llows estimation of seroprevalence, with interpretable and easily 

omparable parameters across countries. However, obtaining pa- 

ameters of some prior contributions in different countries can be 

ery challenging [62] . 

Traditional epidemic models are solved using well-known op- 

imization criteria. Their properties are much better understood, 

ut this epidemic showed the weaknesses of these classical mod- 

ls and the need to model and manage epidemics in an efficient 

ay [69] . We think a general framework such as ours is an ex- 

iting and flexible direction towards adapting and designing new 

odels that consider the particular characteristics of each territory 

ithout wasting time. 
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. Conclusions 

This paper has illustrated the potential of combining simulation 

odels with a Black-Box optimization techniques to obtain new 

pidemic models. Despite our model’s simplicity, we have shown 

hat the estimated results are close to those produced by different 

pidemiological studies. Furthermore, the proposed method can be 

xtended in a simple way to handle more complex situations as 

raph structures or performing estimations in other epidemics us- 

ng specific biological expert knowledge, while the same Black-Box 

ptimization strategy remains valid. 
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