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Abstract 

The aim of this paper is to present a simheuristic approach that obtains robust solutions for a multi-objective hybrid 

flow shop problem under uncertain processing and release times. This approach minimizes the expected tardiness and 

standard deviation of tardiness, as a robustness measure for the stated problem. The simheuristic algorithm hybridizes 

the NSGA-II with a Monte Carlo Simulation process. Initially, the deterministic scenario was tested on 32 different 

created small size instances and 32 medium and large benchmarked instances. As a result, the proposed algorithm 

improved quality of solutions by 1.21% against the MILP model and it also performed better than ERD, NEHedd, and 

ENS2, while consuming a reasonable computational time. Afterwards, one experimental design was carried out using 

10 random instances from the same benchmark as a blocking factor, where four factors of interest were considered. 

The factors and their respective values are number of generations (50, 100), crossover probability (0.8, 0.9), mutation 

probability (0.1, 0.2), and population size (60, 100). Results show that the factors instance, mutation probability and 

number of generations, as well as other interactions between them, have a significant effect in the total tardiness for 

the deterministic scenario, proving the importance of an appropriate selection of parameters when using genetic 

algorithms to obtain quality solutions. Then, the performance of the proposed NSGA-II was compared against ERD, 

NEHedd, and ENS2 methods. Results show that our algorithm improves the quality of the solutions for both objective 

functions, proving the robustness of our solutions for the HFS problem. Finally, two additional generalized 

experiments were carried out to analyze the effect of number of jobs (10, 20), number of stages (2, 3), shop condition 

(0.2, 0.6), probability distribution (uniform, lognormal), and CV (0.05, 0.25, 0.4) on both objective functions. The 

shop condition, probability distribution and CV were proven to be highly influential on the variability of the results, 

with the only exception being the coefficient of variation having no statistically significant effect on the total tardiness. 

 
Keywords: NSGA-II, HFS, uncertain parameters, processing times, release times, simheuristic approach. 

1. Introduction 

Scheduling is the process in which a given number of resources are allocated to different tasks over time. Its role has 

been extensively studied due to its importance in manufacturing and service industries. The goal of this process is to 

optimize an established number of performance criteria, by sequencing a collection of jobs that require processing in 

a certain machine environment and are subject to given constraints or special characteristics (Pinedo, 2012).   



This research addresses a Flexible Flow Shop (FFS), which is a general manufacturing system that consists of different 

stages, where each one of them has one or more machines in parallel and multiple jobs to be processed at each stage. 

At least one stage has two or more parallel machines, and all jobs follow the same route throughout the stages. Each 

one of the parallel machines at each stage could be identical, uniform, or unrelated (Zandieh, Dorri & Khamseh, 2009). 

Recently, many researchers have made considerable efforts to solve FFS problems using different approaches (Lee, 

Yoon & Park, 2019), particularly production efficiency objectives (Öztop, Tasgetiren, Kandiller, Eliiyi & Gao, 2020).  

This type of machine environment is relevant due to its multiple applications to real world industries such as 

manufacturing (Tseng, Liao & Liao, 2008), medical (Erdem, Qu & Shi, 2012), chemical (Azizoğlu, Çakmak & 

Kondakci, 2001), petrochemical (Rahmani & Ramezanian, 2016) and electronics industries (Yin, Stecke, Swink & 

Kaku, 2017). 

In the related literature, many problems around the FFS configurations are treated as deterministic models, which 

means that all the necessary information for sequencing the jobs is known before providing and initial schedule. 

Deterministic modeling has created a gap between literature and practice, since real world environments have an 

uncertain and dynamic nature. This means that unexpected events may happen, such as new job arrivals, variation in 

processing times, machine breakdowns, modification in order details, among others (Goren & Sabuncuoglu, 2010).  

The approach to mitigate the effects of disruptions on the system performance plays a decisive role in scheduling 

research. Herroelen & Leus (2005), reviews five approaches used to deal with uncertainty: reactive scheduling, 

proactive (robust) scheduling, stochastic scheduling, scheduling under fuzziness, and sensitivity analysis. 

Reactive scheduling examines and aims improving the schedule when unexpected events occur since it does not 

consider uncertainty when formulating the initial schedule. Distinctively, the proactive scheduling approach seeks to 

obtain an initial schedule that absorbs the effects of future disruptions using performance measures such as robustness 

and stability. A hybrid between both approaches, usually named reactive-proactive approach, has also been studied. 

For examples on the reactive-proactive approach on FFS problems please refer to (F. Liu, Wang, Hong & Yue, 2017; 

Rahmani, 2017; Rahmani & Heydari, 2014). 

According to Goren & Sabuncuoglu (2010), robustness and stability are the two topics studied to determine the 

negative impacts that uncertainty has on scheduling solutions. The first topic deals with the deterioration of the 

schedules when facing disruptions, therefore, a schedule performance that is not sensitive to change is known as 

robust. The second topic studies variability, where a stable schedule does not deviate from the initial schedule when 

it contemplates uncertainty. 

The stochastic scheduling approach considers uncertain parameters as random variables and solves the decision 

problem as a stochastic program (Liao, Sarin & Sherali, 2012). If a fuzzy scheduling approach is applied, instead of 

using random variables, uncertainty is modeled with fuzzy numbers and the constraints are defined using fuzzy sets 

and membership functions. The advocates of the fuzzy activity duration approach claim that probability distributions 

for the activity durations are usually unknown due to the lack of accurate historical data (Hazır & Ulusoy, 2020). 

Lastly, sensitivity analysis is used to gain essential insights on quantitative models’ behavior, structure, and response 

to changes in their inputs. Due to the number of problems that have been addressed through scientific modeling over 

the years, it is necessary to consistently develop sharper sensitivity analysis methods and applications (Borgonovo & 

Plischke, 2016). 

1.1. Problem statement 

This research project studies the robust FFS problem under the effect of two job-related disruptions: uncertain 

processing times and unexpected release times. Its aim is to minimize the total tardiness of the system by implementing 

a metaheuristic. This type of scheduling problem is proven to be NP-hard (Gupta, 1988).  



To optimize the established criteria, a Genetic Algorithm (GA) was designed, as it is proven to perform exceptionally 

well when providing good and quality schedules to problems of this nature (Bozorgirad & Logendran, 2016; Ruiz & 

Vázquez-Rodríguez, 2010).  

1.2. Justification 

Since uncertainty is introduced to this research, the models that were developed during this project provided 

meaningful insights to real shop configurations that have a resemblance to the one studied in this paper. Uncertainty 

was addressed from a proactive approach because it is expected that the schedule becomes relatively insensitive to a 

changing environment and disruptions (Sevaux & Sörensen, 2004). Additionally, by aiming to optimize an objective 

function that takes due dates into consideration, this project addresses the improvement of indicators such as on-time 

delivery and can be applied to manufacturing environments where a good level of service is intended to be maintained. 

 

The selected disruptions contribute vastly to the study of uncertainty in FFS problems. Despite the fact that processing 

times are the most common source of uncertainty studied in the literature (González Neira, Montoya-Torres & Barrera, 

2017), its consideration continues to be relevant because of the occurrence of disruptive events such as machine 

breakdowns, processing limits, equipment conditions, operator skills and shortage of raw materials. Furthermore, 

release times are influenced by the upstream processing procedure, delivery time, and other uncertain factors of the 

supplier’s logistic chain. As a result, exact release times usually cannot be known in advance, and only estimated 

release times intervals are available based on historical data and real-time prediction (M. Liu & Liu, 2019; Yue, Song, 

Zhand, Gupta & Chiong 2018). 

 

The metaheuristic that was implemented is a GA, since it has been proven that it outperforms other heuristics and 

metaheuristics in FFS environments. For example, Ruiz & Vázquez-Rodríguez (2010) compared different case studies 

such as a check-processing company and a ceramic tile production shop. They concluded that the GA is superior to 

Ant Colony Optimization (ACO) heuristics, Tabu Search (TS), Simulated Annealing (SA), and some other procedures. 

The extensive research dedicated to this population-based algorithm provides a framework from which some 

adaptations can be considered to improve the performance of the metaheuristic (Luo & El Baz, 2018; Werner, 2011). 

2. Literature Review 

Over the years, scheduling problems have been broadly studied in the literature due to the extensive number of 

methodologies continuously emerging. Researchers develop models around different machine configurations, such as 

single machine, parallel machine, flow shop, job shop, among others. After a solution is obtained, its performance is 

usually compared to other algorithms in the literature. This review focuses on flow shop problems under some source 

of uncertainty. 

 

Chaari, Chaabane, Loukil & Trentesaux (2011) studied a FFS problem under stochastic processing times aiming to 

minimize makespan. They used a GA to solve the problem, which allowed them to achieve good solutions and find 

that the GA helps quantify the impact of uncertainty, managing risk. Feng, Zheng & Xu (2016) studied the makespan 

minimization scheduling problem in a two-stage hybrid flow shop. The authors assumed job processing times to be 

uncertain as well and proposed both exact and heuristic algorithms to solve this problem. Other researchers such as 

Goren & Sabuncuoglu (2010), considered uncertain processing times and machine failures as stochastic parameters. 

A beam search heuristic (BS) was proposed to solve the problem addressing five robustness and stability measures. 

Other authors have studied the FFS scheduling problem only under uncertain machine breakdowns. For example, 

Fazayeli, Aleagha, Bashirzadeh & Shafaei (2016) used genetic and simulated annealing algorithms, outperforming 

other solution methods in terms of β-robustness of makespan. Sahar, Hany, Hamed & Rasoul (2019) proposed an 

imperialist competitive algorithm (ICA) and GA to address the robust scheduling problem of a two-stage assembly 

FS. The authors used an artificial neural network to predict the value of parameters under uncertain conditions. Cui, 

Lu, Li & Han (2018) used a proactive approach along with a two-loop algorithm to deal with failure uncertainty, 

which as an important remark, proved that the impact of idle times is larger than the impact of job’s sequence. A 

surrogate measure was also implemented, aiming to reduce the computation time of the algorithm. 



As stated earlier, a proactive-reactive approach to deal with disruptions in flow shop problems has gathered the interest 

of some researchers. F. Liu et al. (2017) used the total flow time as the schedule performance measure; the authors 

propose a hybridization strategy that successfully enhances the classic Non-dominated Sorting GA as the solution 

method. Rahmani & Heydari (2014) used a two-way procedure which addressed robustness and stability on an 

environment facing unexpected arrivals of new jobs and uncertain processing times. A similar method was used in 

Rahmani (2017), where a multi-criteria measure was defined not only by robustness and stability, but also by solution 

effectiveness and reduction of system nervousness. 

Among other ways to deal with uncertainty, Zuo, Mo & Wu (2009) proposed a robust scheduling method by modeling 

an uncertain scheduling problem with a set of workflow models in which a multi-objective variable neighborhood 

immune algorithm (VNIA) was used to find a robust scheduling scheme. Long et al. (2020) focused on stochastic 

release times while trying to minimize makespan; this problem was solved using a robust dynamic scheduling 

approach based on release time series forecasting with two stages. These researchers presented a novelty consisting 

of the forecasting accuracy of the model, addressing uncertainty in release times to generate a robust solution. 

Rahmani, Heydari, Makui & Zandieh (2013) and Rahmani & Ramezanian (2016) considered a stochastic environment 

with new job arrivals. Both applied reactive scheduling methods to solve the problem. A variable neighborhood search 

(VNS) algorithm was used in the latter one and results showed that the proposed approach outperformed previous 

rescheduling processes.  

The inclusion of robustness measures into the optimization criteria ensures that robust solutions will be obtained and 

the effect of disruptions on the realized schedules will be effectively anticipated and properly addressed. A review 

conducted by Sabuncuoglu & Goren (2009) will be referenced to contemplate different measurements used in 

proactive scheduling. A differentiation is made between measures based on the actual performance of realized 

schedules and measures associated with regret, which refers to the difference between realized and optimal 

performances. In this paper, only the former type of measurements will be contemplated, addressing the minimization 

of the following functions: expected realized performance, worst-case performance, worst-case scenario’s 

performance, most probable scenario’s performance, variance of realized performance, and expected deviation of the 

realized schedule’s performance from the initial deterministic performance. A combination of two different 

measurements can be implemented by assigning different weights to each measure considered. 

According to Hazır & Ulusoy (2020), stochastic scheduling has been studied for decades, while reactive, robust and 

fuzzy scheduling have all increased in popularity among researchers for the past 20 years. This review also points out 

the importance of considering more than just one source of uncertainty. González Neira et al. (2017) provided a review 

on FFS problems under uncertainty, identifying that dealing with more than one parameter is an opportunity for further 

research since it only was considered in the 21% of the reviewed papers. It is also important to note that release times 

were present as uncertain parameters in only 3% of the papers. 

Taking the previous statement under consideration, this research contributes significantly to the study of FFS problems 

under uncertainty. It aims to study the influence of processing times and release times as sources of uncertainty, the 

latter one being one of the least studied in the literature. It also takes a proactive approach to deal with disruptions and 

effectively generate robust schedules, while minimizing the total tardiness of the system. This objective function is 

not commonly implemented in these procedures since most studies consider makespan as optimization criteria. This 

type of FFS problem, according to the conducted review, is yet to be studied. Similarities with problems addressed in 

the past will be considered while designing the methodology and development of the model, including robustness 

measurements and improved algorithms known for its performance. 

3. Objectives 

Design an optimization procedure for robust total tardiness minimization in a Flexible Flow Shop 
scheduling problem under uncertain processing and release times. 
 

• Define the methodology for robustness measuring and uncertain parameters modelling. 



• Implement a genetic algorithm to obtain robust solutions for a FFS under uncertainty with total tardiness 

minimization. 

• Evaluate the solution method performance regarding the established robustness criteria. 

4. Methodology 

This section presents the methodology that was followed to achieve the results presented in section 5. First, the mixed 

integer lineal programming (MILP) model is presented to understand the constraints of our problem. Then, robustness 

measures used to obtain robust solutions are presented. Finally, NSGA-II representation and operators are explained, 

as well as the implemented framework for both deterministic and stochastic scenarios. 

 

4.1. MILP model 

In this section, a MILP model is proposed for the solution of the deterministic part of the problem, aiming to minimize 

tardiness in a HFS. The model is based on the one proposed by Naderi, Gohari, & Yazdani, (2014), and adapted to the 

characteristics of our problem. The MILP model for the stated problem is presented in this section. For better 

understanding of the model, the notation used is presented:  

 

Sets 

𝐼𝑠 = machines of stage s {1,…, 𝑚𝑠} 

J = jobs {1,…, n} 

S = stages {1, …, s} 

 

Parameters 

𝑝𝑗𝑠 = processing time of job j at stage s, ∀ 𝑗 ∈ 𝐽, ∀ 𝑠 ∈ 𝑆 

𝑟𝑗 = release time of job 𝑗 , ∀ 𝑗 ∈ 𝐽 

𝑑𝑗 = due date of job 𝑗, ∀ 𝑗 ∈ 𝐽 

M = large positive number 

 

Variables 

 

𝑋𝑗𝑘𝑠  

 

 

 

𝑌𝑖𝑗𝑠  

 

 

𝑇𝑗 = tardiness of job j, ∀ 𝑗 ∈ 𝐽 

𝐶𝑗𝑠 = completion time of job j at stage 𝑠, ∀ 𝑗 ∈ 𝐽, ∀ 𝑠 ∈ 𝑆

Equations 

∑ 𝑌𝑖𝑗𝑠𝑖∊ I = 1, ∀𝑗 ∊ 𝐽, 𝑠 ∊ 𝑆                                                                                                                                                                     

𝐶𝑗𝑠 ≥  𝑝𝑗𝑠 + 𝑟𝑗, ∀𝑗 ∊ 𝐽, 𝑠 ∊ 𝑆 |𝑠 = 1                                                                                                                                                                                                                                                                   

𝐶𝑗𝑠 ≥  𝐶𝑗𝑠−1 + 𝑝𝑗𝑠, ∀𝑗 ∊ 𝐽, 𝑠 ∊ 𝑆 |𝑠 > 1                                                                                      

𝐶𝑗𝑠 ≥ 𝐶𝑘𝑠 + 𝑝𝑗𝑠 − M ∗ (3 − 𝑋𝑗𝑘𝑠 − 𝑌𝑖𝑗𝑠 − 𝑌𝑖𝑘𝑠), ∀ 𝑠 ∊ 𝑆, 𝑖 ∊ 𝐼𝑠, (𝑗 ≠ 𝑘) ∊ 𝐽                                

𝐶𝑘𝑠 ≥ 𝐶𝑗𝑠 + 𝑝𝑘𝑠 − M ∗ 𝑋𝑗𝑘𝑠 − M ∗ (2 − 𝑌𝑖𝑗𝑠 − 𝑌𝑖𝑘𝑠), ∀ 𝑠 ∊ 𝑆, 𝑖 ∊ 𝐼𝑠, (𝑗 ≠ 𝑘) ∊ 𝐽                           

𝑇𝑗 ≥ 𝐶𝑗𝑆 −  𝑑𝑗, ∀𝑗 ∊ 𝐽                                                                                                                    

𝑇𝑗 ≥ 0, ∀𝑗 ∊ 𝐽                                                                                                                               

𝐶𝑗𝑠 ≥ 0, ∀𝑗 ∊ 𝐽, 𝑠 ∊ 𝑆                                                                                                                   

𝑋𝑗𝑘𝑠  ∊ {0, 1}, ∀𝑗 ∊ 𝐽, 𝑘 ∊ 𝐽, 𝑠 ∊ 𝑆                                                                                                     

1, if job j is processed after job k at stage s, ∀ 𝑘 ∈ 𝐽, ∀ 𝑠 ∈ 𝑆 

0, otherwise 

1, if job j is processed at stage s on machine i, ∀ 𝑗 ∈ 𝐽, ∀ 𝑠 ∈ 𝑆, ∀ 𝑖 ∈ 𝐼𝑠  

0, otherwise 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

 

 

 

(11) 



𝑌𝑖𝑗𝑠  ∊ {0, 1}, ∀𝑖 ∊ 𝐼, 𝑗 ∊ 𝐽, 𝑠 ∊ 𝑆                                                                                                     

 

Objective function 

𝑀𝑖𝑛 ∑ 𝑇𝑗

𝑗∊ 𝐽

 

  

Constraint set (1) specifies the job assignment to one machine among the available machines at each stage. Constraint 

sets (2) and (3) determine the completion time for each job at each stage. Constraint set (4) and (5) determine the 

completion time for each job at each stage regarding the completion time of jobs that have been previously processed 

at the same machine. Constraint set (6) determines the tardiness of each job at each stage. Constraint set (7), (8), (9) 

and (10) define the decision variables. The objective function (11) is to minimize the total tardiness. 

 

4.2. Robustness measuring 

The standard deviation of the total tardiness will be implemented in the optimization criteria, ensuring that solution 

robustness will be considered when providing a solution in an uncertain environment. Given our interest in obtaining 

both high quality and robust solutions, a multi-objective function composed by the expected value of total tardiness 

and its standard deviation across a finite number of disrupted simulations is introduced to the work. 

4.3. Framework of deterministic NSGA-II 

Since we are considering an NP-hard optimization problem with two objectives, in which Pareto-optimal solutions 

are introduced, a metaheuristic becomes necessary to obtain good solutions in an adequate computational time. 

Therefore, we chose the NSGA-II multi-objective evolutionary algorithm (MOEA) proposed by Deb, Pratap, Agarwal, 

& Meyarivan (2002), which is an improved version of the NSGA proposed by Srinivas & Deb (1994). This better 

version overcomes the main critiques made to the initial version: high computational complexity of nondominated 

sorting, lack of elitism and need for specifying the sharing parameter 𝜎𝑠ℎ𝑎𝑟𝑒 . This metaheuristic is proven to 

outperform other MOEAs such as Pareto-achieved evolution strategy (PAES) and strength Pareto evolutionary 

algorithm (SPEA) when it comes to diverse and converging solutions near the true Pareto-optimal set. 

 

Before considering any introduction of stochastic components to our problem, this algorithm must be designed in a 

deterministic environment. Then, its performance will be validated by comparing its results in contrast to those of 

other solution methods.  

 

4.3.1. Chromosome representation 

Each chromosome contains a series of numbers, indicating the sequence in which the jobs must be processed at the 

first stage. Taking Figure 1 as an example of a permutation to be followed, the third job is the first one to be processed 

at the first available machine at the first stage, followed by job 5 and so on. In a hypothetical scenario where job 5 is 

completed before job 3 at the first stage, job 5 would be the first job to start processing at the next stage, according to 

the FCFS rule. 

Figure 1. Representation of a chromosome.  

 

It is important to highlight that an individual is a direct representation of a schedule that will be processed in the first 

stage (Rajkumar & Shahabudeen, 2009). This individual represents a permutation of the number of jobs n that must 

be processed. We implemented the First Come First Served (FCFS) dispatching rule to sequence the jobs through the 

rest of the HFS. We also used the First Available Machine (FAM) assignment rule since we have identical machines 

in each stage, so the total processing time in either machine of one job is the same. 

 

 

 

 

(10) 

 

 

(11) 



4.3.2. Initial population 

An initial population of size 𝑃𝑠𝑖𝑧𝑒  is generated and represented as 𝑝𝑜𝑝 = {𝜋1, 𝜋2, … . , 𝜋𝑃𝑠𝑖𝑧𝑒}. The first individual 𝜋1 

is generated as the result of Earliest Release Date (ERD) dispatching rule, 𝜋2 as the result of 𝑁𝐸𝐻𝐸𝐷𝐷 heuristic of 

Nawaz, Enscore, & Ham (1983), and all other individuals randomly.  

4.3.3. Fitness evaluation 

In our case, the fitness evaluation is made based on the total tardiness, which is the sum of the tardiness of jobs 1 

through n. Let us be reminded that tardiness occurs when the completion time of any job j is greater than its due date, 

therefore the tardiness equation can be defined as 𝑇𝑗 = 𝑚𝑎𝑥 (𝑐𝑗 − 𝑑𝑗 , 0). 

4.3.4. Selection of individuals 

In the NSGA-II, the parent solutions are selected according to non-domination criteria, in which the initial solutions 

are divided into ranks (𝐹1, 𝐹2, . . . . , 𝐹𝑛) so that solutions in rank 𝐹1 are those chromosomes that have the best positions 

in the Pareto-optimal frontiers and must be emphasized when choosing the best individuals. Solutions belonging to 

rank 𝐹2 are those only dominated by solutions in 𝐹1, and so on. The selection of individuals continues until a new 

population with the same size as the initial population is obtained (Deb et al., 2002). 

4.3.5. Crossover 

Two-Point (TP) crossover is considered in this work. This operator randomly selects two points for dividing one 

parent. The jobs outside the selected two points are inherited from one parent to the child, and the remaining jobs are 

placed in the order in which they appear in the other parent, as shown in Figure 2. This procedure is executed in both 

possible ways, obtaining two children.  

Figure 2. Two-Point Crossover Representation. 

 

4.3.6. Mutation 

A shift mutation is introduced. This mutation consists of selecting randomly two different positions and removing the 

job at one of such positions and inserting it at the other selected position. An example of this mutation operator is 

shown in Figure 3. Both operators were selected since they have been proven to perform better when using genetic 

algorithms (Murata, Ishibuchi, & Tanaka, 1996). 

Figure 3. Shift Mutation Representation. 



4.3.7. Stopping criteria  

The algorithm stops when a number of generations (NGEN) is reached. In subsection 5.1 the parameter selection of 

the proposed NSGA-II is presented. 

 

4.4. Framework of stochastic NSGA-II 

 

4.4.1. Uncertain parameters modelling 

One way to model uncertainty is through probability distributions. Given that this paper considers stochastic 

processing and release times, we chose uniform and lognormal distributions to model them. Uniform distributions are 

associated with the fact that there exists a time horizon with known upper and lower bounds (which in our case are 

always positive), and therefore a random variable fitted to this distribution could take any value in that range with the 

same probability. In the same way, lognormal distribution generates values given a mean and a standard deviation, 

but since it is skewed to the right, it allows data mostly on the positive side (“Appendix A: Practical Processing Time 

Distributions,” 2018). Based on the explanation given above, these distributions fit well into our problem because of 

their resemblance to the stochastic behavior of these parameters in real world scenarios, the elimination of the 

possibility of generating negative values, and their capacity to accommodate to different values of coefficients of 

variation (CV). 

 

4.4.2. Simheuristic approach  

 

Figure 4. Multi-Objective Simheuristic NSGA-II Proposed Procedure. 

 

The procedure starts with the selection of an instance, where the values of processing and release times correspond to 

their expected values. Next, a probability distribution and a CV are selected. The Monte Carlo simulation is used when 

it is required to evaluate individuals, generating at each run a realization for the stochastic processing and release times 

based on their expected values, the probability distributions and CV. To determine if the obtained results allow 



expected values for the total tardiness within a confidence interval with a 95% confidence and a precision error of 5% 

around the mean, the procedure proposed by Framinan & Perez-Gonzalez (2015) is implemented. In case the 

confidence interval of a run does not satisfy the desired error, another run must be executed with new processing and 

release times that are generated in the same way as mentioned above. Otherwise, the results are reported, and the 

NSGA-II continues its ranking and selection process. The process ends when a maximum of generations is reached 

and the final population is reported. This procedure is represented in Figure 4.  

 

5. Computational results 

 

This section presents all computational experiments for parameter selection and evaluation of the performance of the 

proposed NSGA-II. All of the runs were made in an Intel ® Core i5 1.60 GHz computer with 12GB RAM memory. 

The mathematical model and the NSGA-II were programmed in Spyder integrated development environment (IDE) 

from Python. 

 

5.1. NSGA-II parameter selection 

A generalized factorial design in RStudio software was carried out to determine the best levels of the considered 

factors. These factors are presented next with their respective levels:  population size (60, 100), crossover probability 

(0.8, 0.9), mutation probability (0.1, 0.2), and number of generations (50, 100). Also, 10 random instances out of 3060 

benchmarked instances from Pan, Ruiz, & Alfaro-Fernández (2017) were selected and used as a blocking factor, and 

the response variable is the total tardiness. There are 16 treatments in total and two observations for each of them, 

having a total of 320 observations for the proposed algorithm in Spyder IDE with Python for further statistical analysis.  

 

First, the verification of assumptions (normality, homoscedasticity and independence of residuals) was made to 

determine if we could analyze the results of the ANOVA. Shapiro-Wilk and Anderson-Darling tests were performed 

to verify if the residuals adjust to a normal distribution. As a result of these tests, we obtained p-values of 6 x 10−15 

and 2 x 10−16, respectively. Therefore, since both p-values are lower than the significance of 0.05, this assumption is 

not satisfied with any of the tests.   

 

Next, homoscedasticity assumption was analyzed graphically because it was not possible to perform Levene nor 

Bartlett tests since two observations were registered per treatment and to the non-satisfaction of normality assumption, 

respectively. As it is presented in Figure 5, not all the columns present a similar dispersion of points, meaning that the 

satisfaction of this assumption is doubtful. Finally, residuals independence over time was using Durbin-Watson test. 

We obtained a p-value of 0.062, concluding with a significance of 0.05 that this assumption is satisfied. 

Figure 5. Residuals vs Adjusted Values. 

 

Considering the results of the assumptions, ANOVA-Type Statistics (ATS) nonparametric test was performed due to 

the breach of normality and homoscedasticity assumptions. Figure 6 contains the results of ATS, concluding with a 

0.05 significance that the factors instance, mutation probability, number of generations, and the interactions population 

size-crossover probability, instance-mutation probability, instance-number of generations, mutation probability-

number of generations, instance-population size-crossover probability, and instance-population size-crossover 

probability-mutation probability have a significant effect on the total tardiness. Finally, Table 1 presents the best 

treatment(s) for each instance according to the descriptive analysis of the ATS test, using confidence intervals. Three 

of the treatments represent the best configuration for the selected instances, based on the number of times such 

configurations appear on Table 1. To break this tie, average computational time was analyzed as presented in Table 



2, allowing to conclude that the best treatment among the selected instances is: 𝑃𝑠𝑖𝑧𝑒 = 60, crossover probability = 

0.8, mutation probability = 0.1, and number of generations = 100, since it obtained the lowest time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. ATS Test Results. 

 

Table 1. Best Treatment(s) per Instance. 

Instance 
Population 

size 

Crossover 

probability 

Mutation 

probability 

Number of 

generations 

1 60 0.9 0.1 100 

2 100 0.8 0.1 100 

60 0.8 0.1 100 

3 100 0.8 0.1 100 

4 100 0.8 0.1 100 

5 60 0.8 0.1 100 

100 0.9 0.1 100 

6 60 0.8 0.1 100 

100 0.9 0.1 100 

60 0.9 0.1 100 

100 0.8 0.1 100 

100 0.8 0.1 50 

7 100 0.9 0.1 100 

60 0.8 0.1 100 

8 100 0.8 0.1 100 

100 0.9 0.1 100 

60 0.8 0.1 100 

9 100 0.9 0.1 100 

10 60 0.9 0.1 50 

 

 

 

 

 



Table 2. Average Computational Time for Best Treatment(s). 

Population 

size 

Crossover 

probability 

Mutation 

probability 

Number of 

generations 

Average 

computational time 

100 0.8 0.1 100 847.7482877 

60 0.8 0.1 100 775.380458 

100 0.9 0.1 100 882.7456122 

 

5.2. NSGA-II performance in a deterministic environment for small instances 

To evaluate the performance of our NSGA-II in the deterministic scenario in small instances, 32 different instances 

were generated: 16 of 6 jobs and 16 of 8 jobs for each combination of tardiness factor (0.2, 0.6), due date range (0.2, 

0.6), number of stages (2, 3) and number of machines per stage (2, 3). The processing and release times were generated 

following the procedure presented by Pan, Ruiz, Alfaro-Fernández (2017), where processing times are a random value 

generated from a uniform distribution between the interval [1, 99] and the release times follow the same procedures 

as the authors with and additional adaptation that considers the presence of due dates, as proposed by Haouari & Hidri 

(2008). Then, the 32 created small instances and 32 existing instances by Pan et al., (2017) for 10 and 15 jobs for each 

combination of the same factors were solved in Spyder IDE with Python with a maximum running time of 3600 

seconds per instance. It is important to highlight that the comparison of the performance of our algorithm is made 

against the MILP model, ERD dispatching rule, NEHedd and Extensive Neighborhood Search (ENS2) heuristics, 

since a problem with the same characteristics of this research has not been found in the literature to our knowledge. 

This comparison considers only the solutions with best total tardiness of the Pareto frontiers, since only one of the 

objective functions is being compared for the deterministic scenario. This step is very important because it allows us 

to establish whether our algorithm provides good solutions or not. 

 

Results for tardiness of NSGA-II, MILP, ERD, NEHedd and ENS2 are presented in Tables 3 through 6. The proposed 

metaheuristic obtained the same optimal solutions as the proposed MILP model in 85.71% of the tested runs. Also, 

when optimal solutions were not reached with the MILP model, our algorithm improved the solutions by 1.21% on 

average. Results also show that our algorithm provides better solutions than ERD, NEHedd, and ENS2, especially in 

larger instances, while consuming a reasonable computational time. These results prove the efficiency of our 

algorithm. 

 

Table 3. Computational results in a deterministic environment of instances with 6 jobs. 

* Is the optimal solution found before 3600 seconds of running. 

Instance Total tardiness 

Number 

of jobs 

Number 

of stages 

Machines 

per stage 

Tardiness 

factor 

Due date 

range 
NSGA-II  MILP ERD NEHedd ENS2 

6 

2 

2 

0.2 
0.2 77 77* 105 129 77 

0.6 208 230 264 217 217 

0.6 
0.2 562 562 562 562 562 

0.6 499 499 709 539 499 

3 

0.2 
0.2 252 264 348 264 252 

0.6 61 61* 95 125 61 

0.6 
0.2 370 370* 401 370 370 

0.6 466 466* 466 485 466 

3 

2 

0.2 
0.2 247 252 433 247 247 

0.6 265 262* 313 279 271 

0.6 
0.2 703 736 839 703 703 

0.6 453 453 497 524 453 

3 

0.2 
0.2 96 96* 111 149 96 

0.6 141 141* 157 148 141 

0.6 
0.2 363 363 372 395 363 

0.6 714 714 741 720 716 

Average improvement of NSGA-II 1.21% 16.36% 11.21% 0.42% 

                                                                                



Table 4. Computational results in a deterministic environment of instances with 8 jobs. 

Instance Total tardiness 

Number 

of jobs 

Number 

of stages 

Machines 

per stage 

Tardiness 

factor 

Due date 

range 
NSGA-II  MILP ERD NEHedd ENS2 

8 

2 

2 

0.2 
0.2 554 554 711 586 576 

0.6 671 671 885 702 671 

0.6 
0.2 804 804 978 845 804 

0.6 777 777 880 817 777 

3 

0.2 
0.2 801 801 948 802 801 

0.6 655 655 697 662 655 

0.6 
0.2 801 830 842 823 820 

0.6 870 870 971 870 870 

3 

2 

0.2 
0.2 949 947 1034 999 949 

0.6 856 849 1220 859 856 

0.6 
0.2 1178 1178 1449 1227 1178 

0.6 904 908 1224 1033 904 

3 

0.2 
0.2 917 944 1007 924 924 

0.6 1255 1263 1364 1350 1255 

0.6 
0.2 1001 1001 1117 1041 1001 

0.6 789 783 845 789 789 

Average improvement of NSGA-II 0.35% 14.34% 3.56% 0.43% 

 

Table 5. Computational results in a deterministic environment of instances with 10 jobs. 

Instance Total tardiness 

Number 

of jobs 

Number 

of stages 

Machines 

per stage 

Tardiness 

factor 

Due date 

range 
NSGA-II  MILP ERD NEHedd ENS2 

10 

2 

2 

0.2 
0.2 140 140 298 177 140 

0.6 62 56 210 111 62 

0.6 
0.2 1146 1172 1376 1147 1146 

0.6 588 592 706 610 610 

3 

0.2 
0.2 69 78 95 91 71 

0.6 243 244 297 276 242 

0.6 
0.2 640 642 760 749 642 

0.6 771 771 872 785 771 

3 

2 

0.2 
0.2 411 419 703 438 438 

0.6 31 38 126 144 104 

0.6 
0.2 1003 987 1301 1044 1005 

0.6 1656 1667 1834 1724 1656 

3 

0.2 
0.2 163 159 223 202 163 

0.6 388 388 445 412 388 

0.6 
0.2 1262 1266 1443 1382 1262 

0.6 989 996 1298 1051 1017 

Average improvement of NSGA-II 1.39% 28.47% 15.84% 5.35% 

 



Table 6. Computational results in a deterministic environment of instances with 15 jobs. 

Instance Total tardiness 

Number 

of jobs 

Number 

of stages 

Machines 

per stage 

Tardiness 

factor 

Due date 

range 
NSGA-II  MILP ERD NEHedd ENS2 

15 

2 

2 

0.2 
0.2 242 297 423 329 253 

0.6 75 126 700 156 131 

0.6 
0.2 1803 2111 2801 2115 1886 

0.6 1252 1292 1569 1256 1160 

3 

0.2 
0.2 257 392 334 398 269 

0.6 231 310 592 456 258 

0.6 
0.2 1032 1154 1709 1194 1119 

0.6 1435 1649 1740 1501 1435 

3 

2 

0.2 
0.2 370 571 727 508 384 

0.6 23 31 722 151 68 

0.6 
0.2 2280 3147 3414 2396 2293 

0.6 1473 2116 2340 1610 1509 

3 

0.2 
0.2 517 707 767 743 567 

0.6 422 546 899 583 461 

0.6 
0.2 1708 1952 2132 1925 1705 

0.6 2248 2650 3049 2454 2273 

Average improvement of NSGA-II 22.27% 42.32% 24.95% 9.83% 

 

5.2. NSGA-II performance in a stochastic environment 

To prove the efficiency of our algorithm in the stochastic scenario, we compared our solutions with those obtained 

from two different heuristics and one dispatching rule, using a total of 4 random instances for 10 and 20 jobs by Pan 

et al., 2017). ENS2 and NEHedd heuristics were selected given their recognition as effective solution methods for the 

total tardiness problem, as proved in González-Neira, Montoya-Torres, & Caballero-Villalobos, (2019). Because of 

the presence of release dates in our problem, we considered convenient the inclusion of a solution method that takes 

them into account, considering the objective of this work. Hence, the inclusion ERD dispatching rule. ENS2 is a local 

search algorithm that starts from an initial sequence and aims to improve the objective function by interchanging a 

pair of jobs of the given sequence, interchanging the positions if there is an improvement in the objective function. 

This procedure ends when no improvement is achieved (Kim, Lim, & Park, 1996). NEHedd heuristic starts from the 

sequence obtained from the Earliest Due Date (EDD) dispatching rule, and then it evaluates the performance of each 

sequence when inserting a new job in every possible slot of the same sequence. For example, if sequence [1, 2, 3] is 

the one obtained from EDD, and we want to introduce job 4, the heuristic evaluates the sequences [4, 1, 2 ,3], [1, 4, 

2, 3], [1, 2, 4, 3], and [1, 2, 3, 4]. The sequence with the best objective function remains (Fernandez-Viagas & 

Framinan, 2015). 

 

Analyzed probability distributions are uniform and lognormal for both uncertain parameters, and CV values are 0.05, 

0.25 and 0.4 for both probability distributions, accounting to a total of 24 observations to be compared. All instances 

were tested for two machines per stage scenario and for every observation the same distribution probabilities and CV 

values were assigned for both uncertain parameters. Also, shop condition definition was used according to Lodree, 

Jang, & Klein, (2004) to obtain a highly variated analysis of due date tightness and release dates variance for the 

performance of our algorithm. A high shop condition implies jobs arriving during a long interval of time after 

scheduling begins, and tight due dates, whereas low shop condition implies jobs arriving during small intervals of 

time short after the beginning of the scheduling, and loose due dates. For low shop and high shop conditions, we 

selected values of 0.2 and 0.6 for both tardiness factor and due date range, respectively. 

 



Tables 7 and 9 present the performance of our NSGA-II and its comparison against all three proposed methods for 

total tardiness, while Tables 8 and 10 present the same results for standard deviation of tardiness. Table 11 presents 

the results of the performance of our algorithm in the deterministic scenario for the same instances that were tested 

for the stochastic scenario. 

 

Table 7. NSGA-II, ERD, NEHedd and ENS2 total tardiness in a stochastic environment for 10 jobs. 

Factor Total tardiness 

Number  

of jobs 

Number  

of stages 

Shop  

condition 
PD CV NSGA-II ERD NEHedd ENS2 

10 2 Low Uniform 0.05 125.60 288.94 164.30 130.10  
0.25 156.71 321.77 211.22 180.69  
0.4 198.72 346.85 253.77 222.12 

Lognormal 0.05 100.10 254.20 136.12 109.24  
0.25 70.44 180.81 98.83 75.58  
0.4 75.78 168.52 107.37 80.92 

High Uniform 0.05 741.18 888.44 816.20 956.75  
0.25 769.70 954.78 923.63 967.56  
0.4 807.78 996.81 951.53 1012.78 

Lognormal 0.05 702.50 909.06 844.16 966.71  
0.25 632.14 819.51 844.85 865.55 

  0.4 598.79 587.70 485.32 487.87 

Average improvement of NSGA-II 35.49% 17.93% 11.96% 

 

Table 8. NSGA-II, ERD, NEHedd and ENS2 standard deviation of tardiness in a stochastic environment for 10 

jobs. 

Factor Standard deviation of tardiness 

Number  

of jobs 

Number  

of stages 

Shop  

condition 
PD CV NSGA-II ERD NEHedd ENS2 

10 3 Low Uniform 0.05 8.46 21.00 23.29 15.51  
0.25 53.54 121.24 105.77 94.80  
0.4 104.63 186.91 154.35 139.96 

Lognormal 0.05 8.00 20.94 17.52 16.10  
0.25 37.71 87.82 62.87 55.05  
0.4 64.13 115.36 99.75 81.65 

High Uniform 0.05 16.27 128.40 144.79 229.58  
0.25 75.41 195.73 249.56 263.80  
0.4 118.42 256.74 284.41 312.25 

Lognormal 0.05 13.38 128.12 143.96 194.18  
0.25 55.01 171.18 195.90 238.54 

  0.4 84.92 152.32 141.01 138.04 

Average improvement of NSGA-II 60.60% 57.89% 54.37% 

 

 

 

 

 

 

 

 

 

 



Table 9. NSGA-II, ERD, NEHedd and ENS2 total tardiness in a stochastic environment for 20 jobs. 

Factor Total tardiness 

Number  

of jobs 

Number  

of stages 

Shop  

condition 
PD CV NSGA-II ERD NEHedd ENS2 

20 2 Low Uniform 0.05 311.36 955.54 336.74 357.80  
0.25 393.98 964.93 478.04 535.50  
0.4 487.65 1029.21 628.68 625.09 

Lognormal 0.05 255.96 857.84 279.80 283.86  
0.25 167.91 604.58 232.58 225.22  
0.4 147.12 582.45 249.59 233.65 

High Uniform 0.05 1224.60 3194.88 1634.68 1512.72  
0.25 1278.76 3243.76 1814.65 1780.46  
0.4 1494.23 3441.31 2221.79 2187.79 

Lognormal 0.05 1119.44 3045.44 1510.80 1417.66  
0.25 924.76 2785.47 1354.10 1306.98 

  0.4 970.33 2690.11 1441.62 1438.35 

Average improvement of NSGA-II 64.09% 25.22% 24.62% 

 

Table 10. NSGA-II, ERD, NEHedd and ENS2 standard deviation of tardiness in a stochastic environment for 

20 jobs. 

Factor Standard deviation of tardiness 

Number  

of jobs 

Number  

of stages 

Shop  

condition 
PD CV NSGA-II ERD NEHedd ENS2 

20 3 Low Uniform 0.05 15.10 52.45 24.57 35.71  
0.25 77.07 220.69 169.78 196.65  
0.4 124.06 384.29 309.08 292.82 

Lognormal 0.05 10.55 47.10 23.61 32.53  
0.25 44.39 171.25 102.56 119.66  
0.4 56.38 274.46 175.72 178.61 

High Uniform 0.05 29.45 88.05 69.68 43.60  
0.25 130.86 387.88 322.57 237.25  
0.4 260.90 1068.00 494.82 653.51 

Lognormal 0.05 23.16 76.87 72.79 40.73  
0.25 115.33 538.50 258.67 160.04 

  0.4 191.38 653.92 334.72 414.23 

Average improvement of NSGA-II 71.89% 55.32% 53.11% 

 

Table 11. Deterministic NSGA-II results for the instances used for the stochastic environment. 

Instance NSGA-II  

Number of 

jobs 

Number of 

stages 

Machines per 

stage 

Shop 

condition 
Tardiness Time (s) 

10 2 2 Low 136 19.03125 

10 3 2 Low 424 25.4375 

10 2 2 High 588 14.265625 

10 3 2 High 1656 25.421875 

20 2 2 Low 241 34.6875 

20 3 2 Low 475 50.28125 

20 2 2 High 2299 34.765625 

20 3 2 High 2711 51.59375 

 

These results prove the efficiency of the proposed algorithm for both objective functions against all three compared 

methods. The standard deviation of tardiness is improved for all cases, showing the robustness of our solutions. Tables 



7 and 9 evidence that ENS2 obtains the best results for total tardiness, and also that our NSGA-II improves such 

solutions in 11.96% and 24.62% on average for job size 10 and 20, respectively. Also, NEHedd heuristic presents the 

best results for standard deviation of total tardiness, and our algorithm improves these solutions 57.89% and 55.32% 

on average for both job sizes, respectively. Low shop conditions showed better results for both objectives compared 

to high shop conditions, which is understandable because of the reduced variability in the former. The same happens 

with the CV, where it is shown that when its value increases, the results tend to be higher because there is more 

variability of processing and release times. Finally, results show better performance when uncertainty is modelled 

through lognormal probability distribution.  

 

Regarding the results of Table 11, it is shown that our algorithm performs better in a stochastic scenario in comparison 

with the deterministic scenario when high shop condition is considered, while there does not exist a significant 

difference when using low shop condition between both scenarios. These results prove that our algorithm provides 

robust solutions, being relatively insensitive to disruptions. 

 

5.3. Pareto fronts for bi-objective stochastic problem 

 

Figure 7. Pareto frontiers for instance 10_2_2_0.2_0.2_10_Rep0 for uniform distribution. 

 

Figure 8. Pareto frontiers for instance 10_2_2_0.2_0.2_10_Rep0 for lognormal distribution. 
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48 Pareto frontiers were obtained. One frontier was created for each combination of an instance, a probability 

distribution (uniform or lognormal), and a CV (0.05, 0.25, 0.4) of processing and release times. Figures 7 and 8 present 

the six Pareto frontiers for the instance 10_2_2_0.2_0.2_10_Rep0 when both uncertain parameters are generated from 

uniform and lognormal distributions, respectively. In this example, an inverse relation can be observed between the 

CV and the number of Pareto frontiers for the uniform distribution, since less frontiers are generated while increasing 

the CV value. For the lognormal distribution, the relation is direct, obtaining more frontiers while increasing the CV 

value. Both graphics use the same scale to make a proper comparison between the results of both probability 

distributions. In this case, it can be seen than the results for lognormal distribution are lower than those of the uniform 

distribution. However, experimental designs are presented in the next subsection to conclude statistically about the 

behavior of these results. 

 

5.4. Experimental design 

Two additional generalized factorial designs in RStudio IDE were carried out to determine if there is an effect of the 

considered factors in the total tardiness and its standard deviation. These factors are presented next with their 

respective levels:  number of jobs (10, 20), number of stages (2, 3), shop condition (Low, High), probability 

distribution (uniform, lognormal), and CV (0.05, 0.25, 0.4). Number of jobs and number of stages were included as 

blocking factors, because it is assumed both represent a source of variability but their effect and interaction with other 

factors are not of primary interest in this experiment. There are 48 treatments in total and one observation for each of 

them, having a total of 48 observations for each experiment. Each observation is taken from the extreme points of the 

Pareto frontier generated by executing our NSGA-II algorithm with specific levels of each factor as input parameters. 

 

The resulting ANOVAs for both experiments are summarized in Table 11. Considering a significance of 5%, results 

showed that the number of jobs, stages, shop condition and probability distribution have a significant effect on the 

expected total tardiness of a solution. Additionally, the number of jobs, shop condition, probability distribution, 

coefficient of variation, as well as the effect between the interaction of shop condition with CV, and CV with 

probability distribution, were proven to be statistically significant on the standard deviation of a solution. 

 

Before being able to make any conclusions on the effect of these factors in the obtainment of quality and robust 

solutions for the stated problem, the experiments must fulfill three assumptions: normality, homoscedasticity, and 

independence. If these assumptions were not accomplished, a non-parametric test had to be performed to validate the 

results of the ANOVA. 

 

Table 11. ANOVA for the expected total tardiness and standard deviation of total tardiness. 

Factor Expected total tardiness 
Standard deviation of 

total tardiness 

Jobs 1.48e-06 3.73e-07 

Stages 4.64e-06 0.0623 

Shop Condition 3.37e-11 2.15e-06 

PD 0.0386 0.0007 

CV 0.9415 2.98e-14 

Shop Condition:PD 0.5585 0.8356 

Shop Condition:CV 0.9681 0.0211 

PD:CV 0.4806 0.0125 

Shop Condition:PD:CV 0.9204 0.9731 

𝑅2 82.7% 89.4% 

𝑅𝑎𝑑𝑗
2  76.1% 85.3% 

 

Tables 12 and 13 show the results obtained for the assumptions evaluation. The p-value of the performed tests must 

be higher than 0.05 for the assumption to be satisfied. Taking the previous statement into account, it can be observed 

that both experiments fulfilled independence of residuals. However, normality was only satisfied by the standard 

deviation model and homoscedasticity was met only in the expected total tardiness model. Given the results of the 

assumption tests, two ATS tests were performed to study the effect of the factors of interest on the experiments.  

 



Table 12. Assumptions evaluation for the expected total tardiness experiment. 

Assumption Test p-value 

Normality 
Shapiro-Wilk 7.805e-05 

Anderson-Darling 1.703e-06 

Homoscedasticity Levene 0.6083 

Independence Durbin-Watson 0.206 

 

Table 13. Assumptions evaluation for the standard deviation of total tardiness experiment. 

Assumption Test p-value 

Normality 
Shapiro-Wilk 0.5173 

Anderson-Darling 0.2835 

Homoscedasticity Levene 2.2e-16 

Independence Durbin-Watson 0.364 

 

As shown in Table 14, ATS results validated those obtained in the previous ANOVAs, since they showed that the 

number of jobs, shop condition and probability distribution have a statistically significant effect on both objective 

functions. Additionally, and as expected, the effect of the coefficient of variation is also significant on the standard 

deviation of total tardiness of a solution. The effects of the interaction between factors did not reach the desired level 

of significance in neither experiment. 

 

Table 14. ANOVA-Type Statistics test for the expected total tardiness and standard deviation of total tardiness. 

Factor 
Expected total 

tardiness 

Standard deviation of 

total tardiness 

Jobs 0.0001 0.0000 

Shop Condition 0.0000 0.0000 

PD 0.0103 0.0006 

CV 0.9552 0.0000 

Shop Condition:PD 0.6411 0.1642 

Shop Condition:CV 0.9188 0.2797 

PD:CV 0.4205 0.0983 

Shop Condition:PD:CV 0.9687 0.5892 

 

For a better understanding of the previous results, the means of the observations at each level of the factors for the 

expected value and standard deviation of total tardiness are shown in Figures 9 and 10, respectively. Apart from factor 

CV in Figure 9, all plotted lines show a pronounced slope that represent the variation of both objective functions in 

each factor. These same factors proved to have a statistically significant effect on the response variables according to 

the ATS test, allowing to deepen the analysis using visual representations of the effects. 

 

As expected, a higher CV will lead to a higher standard deviation of the objective, and solutions obtained under high 

shop conditions will have a worse value of total tardiness than those under low shop conditions. Additionally, it was 

found that high shop conditions also increase the standard deviation of the solutions, meaning that the presence of 

tight due dates in scheduling environments also make more difficult the obtainment of robust solutions. The 

distribution probability selected to model the uncertainty will also show very different results, with lognormal 

distribution having lower values than uniform distribution for both objectives. This effect also reflects on the 

importance of having an adequate probability distribution fitting when trying to obtain precise results that lead to 

suitable decision making. 



 

Figure 9. Main effects plot for Expected total tardiness. 

 

Figure 10. Main effects plot for Standard deviation of total tardiness. 

 

For this work three indicators were presented to measure the quality of Pareto solutions. These indicators are the ones 

presented in Karimi, Zandieh, & Karamooz, (2010):  Number of Pareto optimal solutions (NPS) , Mean ideal distance 

(MID) that presents the closeness between Pareto solutions and ideal point (0,0) and Spread of non-dominance 

solutions (SNS) that measures the diversity across the Pareto frontier. Tables 15 through 18 show the results for each 

indicator for each combination of jobs, stages, shop conditions, probability distribution and CV. As it was expected, 

the MID and SNS tend to increase as the number of jobs and number of stages also increase. Additionally, it can be 

observed that with the uniform probability distribution when the CV increases the MID also increases, but with the 

lognormal probability distribution this indicator tends to decrease. 

 

Table 15. Indicators for 10 jobs and 2 stages. 

Number of jobs Stages Shop condition PD CV MID NPS SNS 

10 2 Low Uniform 0.05 141.94 15 14.25 

0.25 201.07 9 17.82 

0.4 252.93 8 8.37 

Lognormal 0.05 107.10 7 6.41 

0.25 115.79 11 27.88 

0.4 131.07 13 20.28 

High Uniform 0.05 748.86 9 4.63 

0.25 807.06 14 21.23 

0.4 862.86 9 33.64 

Lognormal 0.05 713.03 17 6.42 

0.25 658.29 11 14.16 

0.4 637.75 7 22.31 



Table 16. Indicators for 10 jobs and 3 stages. 

Number of jobs Stages Shop condition PD CV MID NPS SNS 

10 3 Low Uniform 0.05 285.95 14 21.34 

0.25 338.97 6 30.23 

0.4 405.89 6 18.12 

Lognormal 0.05 248.46 10 13.73 

0.25 228.03 9 20.89 

0.4 235.91 16 17.05 

High Uniform 0.05 1190.14 4 23.64 

0.25 1243.10 5 66.57 

0.4 1268.53 5 31.97 

Lognormal 0.05 1141.47 7 7.07 

0.25 1033.56 5 12.77 

0.4 975.53 6 9.28 

 

Table 17. Indicators for 20 jobs and 2 stages. 

Number of jobs Stages Shop condition PD CV MID NPS SNS 

20 2 Low Uniform 0.05 357.48 9 42.74 

0.25 461.93 8 38.53 

0.4 547.00 8 13.02 

Lognormal 0.05 293.38 11 46.13 

0.25 234.30 13 42.65 

0.4 219.15 14 32.39 

High Uniform 0.05 1293.60 16 93.17 

0.25 1462.28 6 116.74 

0.4 1614.62 10 63.28 

Lognormal 0.05 1221.79 10 74.44 

0.25 1000.81 8 45.25 

0.4 1040.71 3 80.84 

 

Table 18. Indicators for 20 jobs and 3 stages. 

Number of jobs Stages Shop condition PD CV MID NPS SNS 

20 3 Low Uniform 0.05 768.13 5 34.70 

0.25 862.66 6 24.97 

0.4 1035.72 5 29.21 

Lognormal 0.05 649.46 12 24.24 

0.25 520.90 4 40.96 

0.4 542.45 7 38.18 

High Uniform 0.05 2793.34 7 32.97 

0.25 2914.13 4 23.30 

0.4 3213.02 4 23.46 

Lognormal 0.05 2710.39 7 55.18 

0.25 2310.55 7 45.55 

0.4 2196.50 7 42.98 

 

6. Limitations, Conclusions and Recommendations 

 

This paper aims to obtain robust solutions of a stochastic HFS scheduling problem by minimizing expected total 

tardiness and standard deviation of total tardiness. To solve the problem, a simheuristic approach that hybridizes a 

NSGA-II algorithm with a Monte Carlo Simulation process is proposed. The aim was to obtain Pareto frontiers for 

the expected total tardiness and its standard deviation as a robustness measure for the stated problem under uncertain 

processing and release times. 



 

First, an experimental design was carried out to select the parameters that showed the best performance for the NSGA-

II. Results show that in most instances, the best configuration for the tested parameters is 𝑃𝑠𝑖𝑧𝑒 = 60, crossover 

probability = 0.8, mutation probability = 0.1, and number of generations = 100. Then, an evaluation of performance 

of the NSGA-II was made by testing 8 random deterministic benchmarked instances for jobs size 6, 8, 10 and 15 to 

compare its results in contrast to those of the MILP model, ERD, NEHedd, and ENS2 methods. These results proved 

that the proposed algorithm outperforms the MILP model solutions by 1.21% and it also improved the solutions of all 

three methods while using a reasonable computational time. Afterwards, the performance of the proposed NSGA-II 

was compared against ERD, NEHedd, and ENS2 methods in two instances of 10 jobs and two instances of 20 jobs. 

Results show that our algorithm improves the quality of the solutions for both objective functions in comparison with 

the three mentioned methods in a reasonable computational time. With these results we can conclude that our 

algorithm does provide robust quality solutions for the HFS problem.  

 

Complementary, two experiments were carried out to study the influence of the shop condition, probability distribution 

and coefficient of variation on the objective functions. The three factors were proven to be highly influential on the 

variability of the results, with the only exception being the coefficient of variation having no statistically significant 

effect on the total tardiness. 

 

With the obtained results with our algorithm, we can conclude that these solutions are very good for FFS environment. 

This shop environment can be replicated in different industries, especially in manufacturing shops. The main 

advantage that the implementation of our algorithm provides when using it is the small sensitivity when facing 

disruptions, which is a common situation in real life scenarios. For instance, if a machine is represented by an employee 

in real life, it is implicit that the processing time of each person will be different. Regarding release times, in real life 

enterprises are subject to the delivery times of different suppliers, traffic inside the city that may delay orders, order 

releases, and other factors that can not always be controlled. Hence the relevance of our algorithm in real life situations. 

 

As future work, we recommend testing the effect of the previously mentioned factors and their interactions on larger 

instances and with different levels, since further experimentation can lead to a better understanding of the problem. 

We also recommend using different CV values for each uncertain parameter to evaluate the effect of these 

combinations on the schedule. Also, varying the processing times between the machines of each stage would be 

interesting since it would represent a closer approach to reality. Additionally, it would be interesting to include total 

earliness and standard deviation of total earliness as objectives, expanding the scope of this work to study robust Just 

in Time strategies. 
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