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Abstract 

The implementation of Industry 4.0, where robotics mix with information and communication technologies to 

increase efficiency in Flexible Manufacturing Systems (FMS), is at its peak. Automated Guided Vehicles (AGVs) 

have become increasingly popular because they increase transportation flexibility, reducing transportation costs 

and overall process times. The AGV scheduling problem has been mostly pointed towards time optimization only 

using centralized approaches where the scheduling of production does not change and it is considered static. FMS 

in real life are dynamic environments that demand flexibility, as well as reactivity, to deal with changes in 

production conditions, such as machine breakdowns, rush orders, layout changes, lack of raw materials, among 

others. Therefore, there is a need for a dynamic approach to the AGV scheduling problem that addresses real life 

unexpected situations more efficiently, aiming for time saving at the same time. The purpose of this project is to 

design and implement, in a simulation environment, a distributed approach to the AGV scheduling problem that 

deals better with real-life FMS changing conditions. Results show that although our approach is based on the 

MSM heuristic, good performance measures in real time were obtained comparing with other optimization 

algorithms.  
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1.    Problem statement and justification 

According to recent studies by the Asociacion Nacional de Empresarios de Colombia (ANDI), there has 

been some meaningful increments in the awareness of Industry 4.0 in Colombia in the past years. The awareness 

of the new wave has increased from 43.7% in 2016 to 65.2% in 2017. Several polls indicate that 58.4% of 

Colombian enterprises are digitally transforming their companies, most of which come from manufacturing and 

service-providers. “The society has transformed digitally and successful organizations are those that understand 

it and also transform” [1]. Cloud computing, business intelligence and data analytics are the most popular digital 

technological tools used by Colombian companies. It is important to note that those concepts are key in automotive, 

health and manufacturing industries, as well as in education. Robotics, which is another digital technology, is 

currently at boom and the trend is unlikely to stop. As seen in Fig. 1, 2017 robot sales increased in a staggering 

30% to 381,335 units in 2017. Robotics is playing an ever more important role in almost every industry because 

automation enables rapid production and delivery of customized products at competitive prices. Moreover, robots 

work around the clock with a consistent standard of quality and perform an increasing range of so-called 3D (dull, 

dirty and dangerous) tasks, improving workers’ health, safety and job satisfaction. Furthermore, it is becoming 

easier to link robots into manufacturing production systems [2]. 
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Regarding future investments, 49.2% of executives foresee to invest between 50,000 to 100,000 USD and 

30.2% between 100,000 to 500,000 USD. Their principal objective is to automate processes, reducing overall 

costs, increasing productivity and reducing times. Challenges faced by enterprises, as stated by ANDI, include: 

lack of culture (74.1%), ignorance (61.6%), economic funds (56.3) and lack of mentality (50.9%). In addition, the 

current industrial revolution or Industry 4.0 conceives the integration of information and communication 

technologies and industrial technology in order to build cyber-physical systems [3]. The main objective of Industry 

4.0 is to create a production model in which people, products and services work in synergy to assure customer 

satisfaction. For instance, the implementation of Industry 4.0 principles foresees a peak of productivity by 30% 

according to Germany’s electrical industry. 

 
 

 
Figure 1. Estimated annual worldwide supply of industrial robots. Source: IFR 

1.1.     Problem statement 

Technologically speaking, nowadays there are important advances that allows companies to foresee such 

digital transformation. For instance, airplanes are capable of flying by themselves, robots perform high-risk 

surgeries, and in some places, people make 98% of their transactions using an electronic device. As well, 

enterprises around the world have begun to use advanced technology equipment to reduce costs, get more 

satisfaction of clients and assure efficiency to be more competitive. Particularly, material handling constitutes up 

to 30-70% of the total operational costs, and it is considered a non-added value activity. Consequently, automated 

guided vehicles (AGVs) are becoming more popular to improve manufacturing performance, because of their 

flexibility [4]. 

 

AGVs (see Fig. 2) consist of one or more computer-controlled vehicles that run in a warehouse floor or 

main factory carrying several manufacturing duties, uploading and unloading manufacturing materials without the 

need for an onboard operator that drives the vehicle. Thus, AGV tasks include having the right material at the right 

place on a plant and at the right time. However, this is unlikely to happen with traditional manual material handling 

equipment and without proper planning of the scheduling of the material handling tasks, in coordination with 

manufacturing scheduling. Then, AGV scheduling is the integration of all the multiple tasks that AGVs can 

perform under a certain period, taking into account the shortest route, costs and overall efficiency.  Moreover, 

AGVs usually can only carry out one task at the time and need to recharge their batteries periodically. Maximum 

capacity and speed are intrinsic to every AGV and can be homogeneous or heterogeneous within the group. 

Furthermore, AGVs can, as any manufacturing resource, break down or need maintenance, affecting the 

manufacturing scheduling and efficiency. 
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Figure 2. An AGV unloading boxes. Source: Interact Analysis “Mobile robots 2018” 

 

Taking into account that flexibility is a necessary feature because manufacturing conditions may vary 

widely in the production site within a single day, AGV scheduling has to be modified and adapted several times.  

The purpose of the schedule is to optimize time budget for non-value adding activities, such as transportation, by 

minimizing or maximizing different production objectives (i.e., total tardiness and earliness). According to new 

revolutionary philosophies, such as lean manufacturing and industry 4.0, it is imperative to narrow process times 

in order to achieve Just in Time (JIT) production schemes. Then, AGV scheduling plays a key role in time budget 

optimization for companies, and given that technology development is going faster than ever, it is necessary to 

explore new scheduling paradigms different from centralized methods (i.e, linear programming) guaranteeing 

sufficient flexibility and reactivity.  

 

As mentioned before, the scheduling operation can be executed with a centralized approach (Fig 3.a), in 

which there is just one controller making schedules for all AGVs. Or, a distributed approach (Fig 3.b) can be 

conceived in which there are multiple controllers, one in each AGV, responsible for making the AGV’s own 

schedule in coordination and cooperation with other AGVs and manufacturing resources. Any FMS system using 

AGVs faces the problem of optimal vs reactive scheduling of AGVs in the system. For example, a move request 

occurs when a part finishes at a workstation. If more than one vehicle is empty, the vehicle which would service 

this request needs to be selected. Also, when a vehicle becomes available, and multiple move requests are queued, 

a decision needs to be made as to which request should be serviced by that vehicle. These schedules obey a set of 

constraints that reflect the temporal relationships between activities and the capacity limitations of a set of shared 

resources. The uncertain and ever-changing nature of the manufacturing environment makes it virtually impossible 

to plan all moves and possible perturbations ahead of time. Hence, AGV scheduling requires dynamic decision-

making, which are dependent on the state of the system, the state of the AGV and the processing tasks going on at 

the workstations. The problem can be summarized in the following research question: How to design a dynamic 

AGV scheduling system that has enough reactivity and flexibility to deal with real life perturbations? 

 

The purpose of this project is to design a distributed scheduling approach that looks for efficient 

transportation times, expanding the overall productivity of the manufacturing facility, in order to respond more 

effectively to perturbations. Taking into consideration that Cyber-Physical Systems are constituted by the physical 

and the virtual world (called the digital twin), the proposed approach focused on the digital twin and thus this 

project will be implemented in a simulation environment. One of the advantages of the digital twin is the possibility 

to validate various manufacturing control strategies under diverse and perturbed scenarios. 
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Figure 3. Comparison between centralized and distributed approaches. Source: Self-created 

1.2.     Justification 

The AGV scheduling complexity grows exponentially when tasks increase given that it is a combinatorial 

NP-Hard problem. For 5 tasks and 3 AGVs there are 2520 possible solutions; for 20 tasks and 5 robots 2.58𝑥1022 

possible solutions; for 50 tasks and 10 AGVs the number of possible solutions grow to a staggering 1.62 𝑥1074 

that is about the total number of atoms there are in the Universe! Given the computational complexity of the 

problem for multi-AGV scheduling, delimitations of real-life events and approximation methods must be used to 

get to a good solution in an accepted amount of time. Many authors have approached this problem in different 

ways, mostly with centralized and static methods, considering no changes in the FMS, no machine breakdowns, 

no flexibility, no communication within the AGVs, etc. So, the next question arises, to what extent do these 

approaches reflect an ever- increasing complex and dynamic reality? Our hypothesis is that better results can be 

achieved using a dynamic and distributed approach, aiming for good and instant solution. Such an approach would 

better imitate the constant changing reality in which conditions may alter the scheduling on a regular basis. 

 2.    Literature review   

In this section we present some relevant previous works related to static and dynamic approaches for 

manufacturing systems, highlighting advantages, disadvantages and methodology used in every work. Table 1 

summarizes this review.  

 

Qiu, Hsu and Wang claimed in [7] the lack of controlling software capable of managing a high quantity 

of AGVs is the major problem for the development of this system. Therefore, scheduling and routing are important 

tasks no longer trivial, which need to be developed for this technology. Finding a route involves that it should 

detect first if there is an existing route. On the other hand, the main objective of scheduling is to set dispatch tasks 

to every AGV always looking to minimize the number of them involved. Some of the main hazards when 

scheduling and routing are collisions, congestion and deadlocks. As the number of vehicles and jobs involved in 

the system increases, the complexity of scheduling also does. Another important issue that should be pointed out 

is the AGV technology in terms of sensory and decision-making capabilities, because great part of all the mobility 

and responsibility now lies on the algorithms of AGV scheduling and routing.  

 

              Static approaches of AGVs scheduling: 

 

Rahman and Nielsen [5] address the AGV scheduling with a centralized approach consisting of two 

different problems: first, find an available AGV and second assign a sequence of tasks for that AGV. The authors 

demonstrate that as the quantity of AGVs and tasks increases so does all possible combinations to solve the 

problem, thus determining the multi-AGV scheduling problem as a NP-Hard problem. Thus, to overcome the 

complexity of the problem, the authors made the following assumptions. AGVs only take loading and unloading 

tasks. Also, AGVs are homogeneous (same speed, same weight capacity, etc.); materials in the warehouses are 

always available; AGVs don’t break down and have no maintenance costs; AGVs recharge while loading materials 

so they never run out of battery; new tasks cannot be assigned to an AGV that has already begun executing a task; 

and AGVs work 24/7. In this case the author’s objective was to minimize the total earliness and tardiness at the 



 

5 

delivery points and they provide a time window of 30 units of time from the earliest possible start to the latest 

possible finish of unloading materials at each delivery point. To solve the problem, the author proposed two 

different meta-heuristics, a Genetic Algorithm (GA) and an Iterated Greedy (IG), to be able to compare results 

with each other. In both cases, the initial solution is given by a heuristic rule based on earliest due date rule. The 

proposed approach is considered static, meaning that information is all set before the AGVs are deployed and the 

solution is no revised, thus, perturbations are not taken into consideration. The statistical analysis of the results 

consists of a McNemar’s test to compare which algorithm performed better. The results were run in 48 instances 

and 8 case scenarios for 20, 50, 100, 150 tasks with 10 and 20 AGVs for each method. In conclusion the IG 

performed better than the GA in most cases. 

 

As well, Wenbin Gu, Zuo Li and Yuxin Li in [6], focused in the analogy between the scheduling of AGVs 

and the hormone regulation system. Consequently, the authors researched and made a comparison for BIA 

(biological intelligent algorithm) to HA (static scheduling) and MAS. The synthesis in those kinds of operations 

is that, when an operation task is executed the transportation task emerges. Next to it, the AGV receives the 

information, check the status and the machine receives information about the HSS (hormone secretion speed) of 

each AVG. The last step is to choose the AVG with the smallest value of HSS and it will do the task. Researchers 

also made an experiment where they illustrate the exceptional performance of BIA against HA and MAS. The 

simulation of the procedure was made by a computer for 6 different jobs. The results show that the mean total 

deviation of the MAS plus the HA is 19.76 for De1% and for the BIA is 4.32 in the De2% and -10.3 in the De3%. 

The conclusion is that BIA is not better than MAS in makespan but in the other results is noticeable that 83.33% 

of outcome of BIA are better than MAS. 

 

Dynamic approaches of AGVs scheduling: 

 

In [11] Pu and Hughes approached their investigation considering a flexible manufacturing environment, 

arguing that the main characteristic of this environment is that products are constantly changing, reason why the 

scheduling system should be dynamic and efficient. Therefore, in order to achieve different optimization goals, 

they proposed a modular architecture where each module contains similar heuristics. Then, they choose two 

heuristics and evaluate their performance separately by using both at the same time. On one side they use the 

computation time heuristic, consisting in scheduling the first X parts, once completed, the next X parts are 

scheduled. This continues until all parts have been scheduled. This heuristic has the possibility whether the user 

specify priorities, or a designed function does it, based on factors such as operations, start times, and due dates. 

The results of this heuristic showed that as the test datasets gets larger, the computation time increases. Therefore, 

the computation time heuristic performs better on the larger data-sets. Results showed that the longer the schedule, 

the less the impact of a few conflicting jobs encountered at the end of scheduling. Additionally, the authors worked 

in conjunction both heuristics even though they faced to trade off. The results indicate that the larger the number 

of parts to be scheduled, the less of a trade-off there is when using these two heuristics together. The medium and 

large data sets are affected less by the two heuristics used in conjunction. The authors demonstrate within this 

evaluation, that when multiple heuristics are used together to create a schedule, a level of control can be obtained. 

These heuristic modules are easy to understand and can be added or removed to achieve different optimization 

goals.  

 

The interesting multi-agent manufacturing system presented in [21] is a distributed system that involves 

cooperative and autonomous agents, with specific roles to achieve the common goal of manufacturing products. 

Authors describe two types of agents, product agents that know what should be done to make a product, and 

equiplet agents (or production machines) that know how to perform production steps of each products. Moreover, 

they implemented three separate blackboards. They used first, the BB-steps blackboard so that equiplet agents 

announce its production steps. Second, the BB-planning blackboard in which the information of time steps of 

every equipment is read by production agents. Last is the BB-logfile used to build a knowledge database of the 

performance of every equiplet. Therefore, every agent can access information at any time at the blackboard. 

Additionally, they exposed how AGVs interact in the system, pointing out that the time slots of the planning system 

they proposed, are based on the consideration that every product will arrive by an AGV. Meaning that, travel times 

are considered by the blackboard system to make the scheduling plan.  

 

The authors presenting their multi agent system in [22] based the architecture in holon agents. For this, 

they classified every agent in the system in two groups: physical and logical, i.e an AGV is represented by an AGV 

agent type (logical) and an AGV resource type (physical), they both form the AGV holon. Additionally, they 

describe a manager agent as in charge of initiating the system and creating jobs, throughout a global database that 

can be access by every agent to get information about the system. Likewise, AGVs have access to this blackboard 

in order to calculate the most appropriate task for them. For this task determination, AGV agent “makes reasoning 
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based on the deadheading trip time and its waiting time by considering earliest pickup time of respective 

operations on the blackboard”. This interaction between agents and blackboards is via messages properly built by 

the authors. From this paper, one of the most relevant conclusion they made was that their proposed system 

characterizes by its adaptability in generating schedules dynamically for newly arrived jobs.  

  

Ghavamzadeh and Mahadevan investigated in [10] the use of hierarchical reinforcement learning (HRL) 

arguing that coordination skills are learned much more efficiently if agents have a hierarchical representation of 

the task structure. They present a hierarchical multiagent RL algorithm called Cooperative HRL, in which 

communication between agents is free, and also present a cooperative multi agent HRL algorithm called COM-

Cooperative HRL with communication cost. The authors exemplify the hierarchy of task throughout a 5-by-5 grid 

in which there are 2 taxis and 4 passengers, so taxis must go to the location of a passenger, pick her up, go to her 

destination station, and drop her there. The overall task is decomposed into primitive actions, and non-primitive 

subtasks. For example, get passenger B is decomposed into two subtasks: Pick B and Navigate B, but Navigate B 

uses four primitive actions (North, South, East, West). As mentioned earlier, cooperative subtask are those subtasks 

in which coordination among agents has significant effect on the performance of the overall task, reason why they 

are defined at the highest level of a hierarchy.  Assuming that learning is distributed, communication is free, agents 

are cooperative and homogeneous, and that there are four AGVs in the environment, authors compare the 

experimental results, and demonstrate that the cooperative HRL algorithm achieves higher throughput than the 

single-agent HRL and the selfish multi-agent HRL algorithms. They also conclude that the Cooperative HRL 

algorithm outperforms three widely used industrial heuristics for AGV scheduling (Highest Queue First, Nearest 

Station First, First Come First Served). As to COM-Cooperative HRL, they add a communication level in the 

hierarchy in which an agent decides whether to communicate with other agents to acquire their actions or do not 

communicate and selects its action without inquiring new information about its teammates. They conclude from 

experiments, that the COM-Cooperative HRL algorithm learns slower than Cooperative HRL, due to more 

parameters to be learned. Also, as communication cost increases, the performance of this algorithm becomes closer 

to the selfish multi-agent HRL algorithm, because agents learn not to communicate and to be selfish.  

 

At last, authors conclude that the use of hierarchy speeds up learning in cooperative multi-agent domains 

by making it possible to learn coordination skills at the level of subtasks instead of primitive actions. Agents in 

the HRL method make decisions in epochs of variable length. Therefore, authors based their study in a semi-

Markov decision process (SMDP), because it has become the main mathematical model underlying the HRL 

methods. Decision epochs are framed in the fact that when an agent completes an action, the agents whose activities 

have not completed are not interrupted, next decision epoch occurs only for the agents that completed their actions. 

With this, authors seek to design a decentralized multi-agent RL algorithm.  

 

 

Title Reference Scheduling 

Approach  
Methodology 

Scheduling automated transport 

vehicles for material distribution 

systems.  
Rahman and Nielsen 

(2018). 

Static 

(centralized) 
Genetic Algorithm 

(GA) and Iterated 

Greedy (IG) 

An intelligent approach for dynamic 

AGV scheduling problem in the 

discrete manufacturing system. 

Gu, W., Li, Y., Li, Z., & 

Qian, Y. (2019). 
Static 

(centralized) 
Biological intelligent 

algorithm (BIA) 
Multi Agent System 

(MAS) 

Integrating AGV schedules in a 

scheduling system for a flexible 

manufacturing environment 

Pu, P. Hughes, J. (1994)  Dynamic 

(distributed) 
Computation time 

heuristic  
Schedule length 

heuristic 

A multi-agent based approach to 

dynamic scheduling of machines and 

automated guided vehicles in 

manufacturing systems. 

Erol, R., Sahin, C., 

Baykasoglu, A., & 

Kaplanoglu, V. (2012). 

Dynamic 

(distributed) 
Multi Agent System 

(MAS) 
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Learning to Cooperate using 

Hierarchical Reinforcement Learning. 
Ghavamzadeh, M. 

(2006).  
Dynamic 

(distributed) 
Cooperative 

hierarchical 

reinforcement learning 

(HRL)  
COM-Cooperative 

HRL 

Table 1. Summary of literature review 

 

In conclusion, static approaches make several assumptions to simplify the problem. On the contrary, 

distributed approaches are mostly implemented using multi-agent based systems using various paradigms that can 

be taken as reference for this project, which can also consider and use local decision-making rules inspired from 

centralized-static approaches. 

3.         Objectives 

This project looks to answer the following research questions: How to design a distributed approach to 

solve the automated guided vehicle (AGV) scheduling problem within a flexible manufacturing system? What kind 

of information must be considered for AGVs to execute their local decision-making processes? What is the 

relationship between AGVs and the other manufacturing resources? Therefore, the main objective is to design and 

implement a distributed approach that solves the AGV scheduling within a simulated automated manufacturing 

system. This main objective will be achieved by accomplishing the following specific objectives: 

 

• Explore the different distributed scheduling paradigms and choose one for the AGV scheduling problem. 

• Design a distributed approach for the AGV scheduling problem based on the chosen paradigm. 

• Implement the proposed approach using a manufacturing simulation software. 

• Validate and evaluate, through various scenarios, the proposed approach and report results based on 

performance indicators for a specific case study. 

4.          Design statement 

 
The purpose of this project is to design a distributed AGV scheduling approach, that looks for efficient 

transportation times, in order to respond more effectively to perturbations within a manufacturing environment. 

This approach will be implemented in a manufacturing simulation software. 

 

4.1.      Design requirements 

 
The main requirements for this project are: 

 

• Improving flexibility: The optimization algorithm must be able to perform adequately under various 

different scenarios with different parameters. Simulations must account for both theoretical and more 

complex real-life situations. The algorithm should in any case show reliable results. 

• Scalability: The proposed distributed approach should be able to work with different fleet sizes and 

number of manufacturing resources. 

• Manufacturing environment: The proposed approach must be validated in a manufacturing simulation 

software that represents a realistic FMS in terms of resources and production conditions. 

• Communication: The proposed approach must allow quick and real time information to every agent in 

the system, enabling them to react towards latest changes. 

 

4.2.      Design constraints 

 
The following assumptions and constraints will be made: 

 

• This project does not focus on AGV routing (i.e, construction of paths) because it is assumed that AGVs 

are capable of detecting the shortest paths for each individual transportation task. Herein, a route is a set 

of points that the AGV must visit. 
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• The designed software will be a proof of concept to demonstrate that AGV distributed behavior can work 

effectively in a real shop floor. 

• AGVs can only carry out one task at once. 

• AGVs have limited battery life and need to be recharged periodically. 

• AGVs can be broken or having maintenance done so their availability must be taken as a constraint. 

• Simulation software used will depend on availability, license requirements and feasibility to apply the 

distributed method. 

• Parameters concerning AGVs such as speed, loading capacity, etc. are known and considered static. 

• AGVs can be heterogeneous. 

 

4.3        Norms and standards 

 
The methodology that will be used in this project is described by the ISO 13053-1 for the quantitative 

methods in process improvement. This methodology typically comprises five phases: Define, Measure, Analyze, 

Improve and Control (“ISO 13053-1, Quantitative methods in process improvement — Six Sigma — Part 1: 

DMAIC methodology,” 2011). 

 

 

4.4       Case Study 

 
A possible case study is inspired on the original manufacturing system AIP-PRIMECA FMS of 

Valenciennes University (France), which has seven workstations, placed around a conveyor belt system with 

transfer gates, which employs self-propelled shuttles to transport the products along the track’s blue line (see Fig. 

4). Each product enters and leaves via the loading/unloading node located at node (m1). Three assembly 

workstations (m2, m3, m4) equipped with Kuka robots and an automated inspection unit m5 are placed around a 

transportation system. Six types of components are available (see Fig. 5). In the experimental case, the FMS can 

manufacture several products by mounting raw components to form letters (e.g., B, E, L, T, A, I and P). They are 

built by mounting components on a plate. Each type of job has a sequence of operations to be executed by the 

machines from a set of operations: O1, O2, O3, O4, O5, O6, O7 and O8. In this case study the linking paths can 

be replaced from a conveyor belt to AGV paths or AGV paths can be added externally. Other possible case studies 

will be inspired on theoretical benchmarks and the new industry 4.0 laboratory at the Faculty of Engineering.  

 

 
Figure 4. The AIP cell’s layout. Source: Valenciennes University 
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Figure 5. Product types and components. Source: Valenciennes University 

 

5. Project methodology 

 
In this section, the methodology applied on this project is reported based on specific objectives presented 

in section 3. However, results obtained from the validation procedures are reported and analyzed in the next 

section. 

 

 Objective 1: Explore the different distributed scheduling paradigms and choose one for the 

AGV scheduling problem.  
 

Ever-changing markets push leading industries to be more adaptative to change. This scenario responds 

to the need of high-quality customized products at lower prices. Hence, manufacturing systems must be able to 

respond to changes in volume, product-mix, variety, quality and other external factors within an appropriate lapse 

of time. The above-mentioned can be achieved through dynamic approaches based on distributed control 

architectures (DCA), and decision-making delegated to more than one entity. Such architectures involve 

autonomous entities (agents in multi-agent systems) capable of making decisions without external direction, as a 

response to situations presented in their environment. Additionally, DCA enables controlling, analyzing and 

studying the performance of flexible manufacturing systems (FMS) along with buffer capacity, scheduling rules 

and sequencing flexibility as main factors. Recently, successful results have been achieved by using distributed 

approaches like multi-agent systems (MAS) to solve complex and dynamic manufacturing scheduling problems, 

such as the flexible job shop scheduling [12]. Therefore, the inherent trait of flexibility empowers the FMS to 

handle the ongoing market disturbances, positioning the dynamic approach as the main focus of this application, 

and leaving aside the traditional approaches that unfortunately do not cover the needs of the actual industry 4.0 

requirements.  

 

Henceforth, we describe four distributed scheduling paradigms seeking to decide which one fulfills the 

design requirements of this project, highlighting the fact that they can be implemented in any of the different 

multi-agent methodologies.  

• Blackboard: The information of the task is via blackboard, a non-physical space where duties are written 

and read by agents, here those entities communicate indirectly and is the only way to schedule all involved 

jobs.  

• Contract Net: The Contract Net Protocol (CNP) is an interaction protocol that involves two types of 

entities, an initiator with the goal of selling a product, and a responder that buys the product. The best bid 

offered by the responder, according to the aimed objective, is the one the initiator chooses.  

• Stigmergy: In stigmergy, involved agents do not communicate with each other, they are following 

records from other agents constantly and using it to accomplish a group task. Using incentives is the way 

agents execute orders. All decisions are based on every individual experience taking a specific route, try 

and failure many times could determine which the most taken way is.  

• Potential fields (PF): The PF concept is based on the attractiveness between agents in the system. The 

greater attractiveness emitted is the main factor for forward decisions in the manufacturing environment.   
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Every distributed paradigm has flexibility as an inherent characteristic to respond and adapt to different problems 

in the system. Meanwhile, Table 4 exposes three design requirements already declared and defined in section 4.1. 

 Communication Scalability 
Manufacturing 

environment 

Blackboard 

Transport agents 

write/read in a blackboard 

where a central agent 

makes decisions 

according to the 

processed data. 

Communication is mostly 

in one direction for 

writing and only for task 

assignation on the 

opposite way, avoiding 

long negotiation iterations 

[23]   

Can be implemented in big 

scale process. Size don’t 

affect, moreover, a greater 

quantity of entities could 

provide more data and better 

solutions. 

The facilities involved for 

this approach consist of two 

participants, AGV which 

enters information and is the 

task executer. The system, 

on the other hand, is 

responsible for assigning 

duties according to the 

information obtained.  

 Contract-NET 

Direct communication 

between the initiator and 

the responder by 

exchanging messages. 

The amount of 

communication can be 

overwhelming and 

sometimes cause 

deadlocks [16]. 

Since the initiator sends the 

contract to the responder and 

starts to communicate 

directly with each agent, the 

number of responders in the 

systems affects drastically 

the answering task that the 

initiator must do.  

AGVs will act as responders 

in this protocol, establishing 

direct communications with 

the initiator.  

Stigmergy 

Many individuals take 

different paths and then 

other entities take the 

most traveled route 

following incentives. The 

convergence rate can be 

larger than other 

paradigms. 

Because of its nature, it can 

work with huge number of 

entities. Though, it demands 

more computational 

complexity and resources 

what makes it not scalable. 

The manufacturing 

environment should have 

two different levels of 

application. A virtual level, 

where stigmergy approach 

makes its process in 

accelerated time and 

physical level where 

machines interact with each 

other using beacons and 

directional sensors.  

Potential Fields 

The PF emitted by the 

resources is how products 

are attracted. So, 

communication is 

throughout the 

attractiveness sense of 

products when making a 

decision. Communication 

is light because it does not 

require negotiation. 

Many resources emitting PFs 

may disturb the sense of 

attractiveness of the product 

when deciding. It requires 

decision-making markers 

that are more suitable for 

products in conveyors rather 

than free-navigation AGVs. 

In FMS with AGVs, 

products will sense PF from 

the nearest AGV available 

to accomplish the task, but 

resources must emit also PF 

to attract AGVs to the next 

step in the process of each 

product, which may 

complex the behavior of the 

system.  

Table 2. Summary of dynamic paradigms  

 

From the above and seeking to apply the best paradigm to accomplish the objectives of this work, the 

decision of which paradigm to use was based on the above-mentioned requirements. We conclude that blackboard 

protocol is the most appropriate for our model, as it maps the information of the whole system through the 

blackboard, simplifying communication processes between agents, meanwhile it offers real-time information by 

the manager agent and local decision-making for other agents. Finally, the blackboard protocol helps to easily 

calculate global indicators, which is of the utmost importance in a manufacturing setting, particularly when using 

a decentralized approach. 
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Objective 2: Design a distributed approach for the AGV scheduling problem based on the 

chosen paradigm. 

To understand the proposed approach, it is important to start by describing the FMS environment, 

particularly the scope of the scheduling decision-making, within FMS including AGVs. 

2.1 Flexible manufacturing system description 

Indrayadi et al. [17] defines FMS as a system that is capable of producing a variety of products with 

minimal time lost in changeover from one product to the next, with two types of flexibility included in the system: 

routing flexibility and resource flexibility. Moreover, FMS involves two important aspects, firstly a set of physical 

entities each with specific tasks, i.e. resources, servers, AGVs, and secondly, a flow of information that engages 

different parameters such as due dates, sequencing operations for scheduling, and process planning data. The 

above-mentioned aspects are related to each other because the information flow initiates the physical flow of parts 

in the system. Hence, AGVs are responsible of making this physical flow possible between entities. As mentioned 

by Valmiki et al. [18], the development of AGVS for the transportation of materials between work stations brings 

many benefits to a manufacturing system, because it helps to control the flow of material, seeking always to have 

the right materials at the right place and at the right time.  

Thus, in every built model of our design, the AGV role is to thoroughly transport the materials from the 

warehouse to its corresponding server or station, and the finished product from each individual server to the rack. 

However, there is a decision-making process made by every AGV, where they should decide the following, firstly, 

to accept or decline the appointed task by the system at a moment t based on an available status and the amount 

of battery units during this moment. Next, the AGV decides which material to pick, based on the priority of every 

material, and picking the one with the highest priority. Additionally, for all design models of this work, we assume 

AGVs are homogenous, meaning they have the same speed, load capacity (1 unit) and battery (measured in battery 

units, 100 units). Equally important to mention that, the proposed approach was design under the assumptions and 

restrictions detailed in section 4.2. 

2.2 Proposed approach – Constructivist Methodology 

In order to achieve a model that suits the complexity of  FMS, a constructivist methodology was followed. 

This section presents two models that were conceived and implemented, in order to gradually validate results with 

added complexity. Additionally, exposes how agents interact in the system throughout the blackboard protocol 

adapted to our model.  

Table 3 summarizes the main information of Model 1. The main purpose for this model was to explore 

and analyze how was the interaction between one AGV and other entities in the system, with a main distinctiveness 

reflected in static priorities for every supply. Hence, no results are presented from this first approach because of 

its main objective.  

MODEL 1 

Objective: 

• Design a simple FMS with one AGV and two 

machines seeking to understand how is the 

interaction process between them based on 

the blackboard paradigm 

Agents 

• AGV: responsible of transporting material in the 

system.  One of its functions is transport raw 

material, in process and finished products. Besides, 

reports updated data to the system for making 

decisions.  

• System: is the agent responsible of assigning an 

unchanging priority to every supply.  
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Parameters: 

• All AGV have homogeneous attributes as: 

speed, battery and load capacity. 

• Quantity of AGV: 1 

• Quantity of server 1:1 

• Quantity of server 2:1 

• Product A sequence:  
o Warehouse 

o Server 1 

o Server 2 

o Rack 

• Product B sequence: 

o Warehouse 

o Server 2 

o Rack  

Subject to: 

• Priorities are static and assigned by the system 

following LPT scheduling rule.  

• Distance is 0 in the warehouse. 

• AGVs can only transport material if the next node 

resource in the sequence process is available. 

• AGVs decides the task according to the priority.  

• An AGV cannot be delegated by the system if it has 

a not finished current task.  

• Always the AGV picks up the entity with the largest 

priority. 

• Product queues cannot be formed on any machine 

servers.  

Table 3. Summary of Model 1 

 

However, unlike model 1, priorities in model 2 are dynamic. Therefore, additional processes and 

decisions are held by agents in the system as updates in different stages of the production system are executed.  

Figure 6 exemplified a flowchart of task assignation in the system, aiming to have a first understanding of model 

2 logic.   

 

 
Figure 6. Flowchart of model 2 

 

This model (see Table 4) was designed applying different scheduling heuristics seeking the best heuristic for task 

assignment based on the makespan of the system as the performance measure. As scheduling rules were added to 

the model, complexity and reactiveness increased in the manufacturing system. The following heuristics were 

used in the system:  
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- Earliest due date (EDD): Jobs are processed according to the due dates; earliest due date go first. 

- EDD/Total processing time (EDDT): This heuristic refers to the division of the earliest due date and the 

total processing time remaining. 

- Less waiting time (LWT): Jobs that have the least waiting time go first. 

- Less total time (LTT): Jobs that have less work remaining (including the job to be processed) are the 

priority. 

- Most Significant Move (MSM): The most complete of the five heuristics, as it combines in a single 

equation processing time, due date and transportation time, in order to select the most significant move. 

𝑃𝑘,𝑖 =
1

𝐿𝑘,𝑖,𝑗
∗ 𝑒

−
𝑆𝑘,𝑖
�̅�𝑖,𝑗         , ∀ 𝑖, 𝑗 ∈ 𝑃𝑜𝑟𝑡𝑠, ∀𝑘 ∈ 𝑇𝑎𝑠𝑘𝑠       where: 

 

𝐿𝑘,𝑖,𝑗 = 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑘 𝑓𝑟𝑜𝑚 𝑝𝑜𝑟𝑡 𝑖 𝑡𝑜 𝑗 

𝑆𝑘,𝑖 = 𝑆𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑘 𝑎𝑡 𝑝𝑜𝑟𝑡 𝑖 

�̅�𝑖,𝑗 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑓𝑟𝑜𝑚 𝑝𝑜𝑟𝑡 𝑖 𝑡𝑜 𝑗 

  

 

 

MODEL 2 

Objectives: 

• Apply different scheduling heuristics in a 

dynamic system, seeking to minimize 

makespan. 

Agents 

• AGVs: According to its position, allocation and idle 

status.  

• System: is the agent responsible of assigning a 

dynamic priority to every supply, which is updated 

as it goes through the system.    

Parameters: 

• All AGV have homogeneous attributes as: 

speed, battery and load capacity. 

• Quantity of AGV: 3 

• Quantity of server 1:2 

• Quantity of server 2:1 

• Quantity of server 3:1 

• Product A sequence: 

o Warehouse 

o Server 1 

o Server 2 

o Server3 

o Rack 

• Product B sequence: 

o Warehouse 

o Server 2 

o Server 3 

o Rack 

  

Subject to: 

• Priorities are dynamic and assigned by the system 

following each heuristic algorithm 

• The priority of all tasks is updated upon arrival at the 

warehouse, upon arrival at a server, after an AGV is 

loaded, and whenever an AGV enters the charger 

• Tiebreaker rule used for server 1 and server 1_2 is 

less waiting time.  

• Servers and AGVs fail randomly and are unavailable 

until repair is completed 

Heuristics: the following heuristic were applied under the 

same parameters, restrictions and agents, with the same 

objective. An annex of the best heuristic is presented. 

• Earliest due date (EDD) 

• EDD/Total processing time 

• Less waiting time  

• Less total time  

• Most significant move  

Table 4. Summary of Model 2 

As well as authors in [9] classified agents in two groups: logical and physical, we do so in our work. 

System agent is a logical agent in the system in charge of distributing tasks, assign priorities to supplies, and keep 

track of the status of each task. While AGVs are hybrid agents composed by a logical agent which communicates 

with the System agent, and a physical agent that transports material in the system. Besides, there are also physical 

stations in the system, such as programation, servers, charger dock, and sink, with different tasks. However, it 
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should be noted that communication in the system via blackboard protocol is only given between agents. The 

blackboard protocol proposed for our model characterizes by the following:  

- The system does not have a global database for every agent to access and obtain information about the 

entire system.  

- Direct and indirect communication is used for the following scenario:  

The implemented blackboard method applies direct communication when the System Agent needs to 

give information to every AGV. Likewise, indirect communication between AGVs is used every time an 

AGV needs to communicate to the rest of the fleet that it already has an assigned task, to avoid a double 

transport bid by AGVs, this throughout the System Agent.  

2.2.1 Communication between agents  

Whenever a new supply arrives at Programation, the System Agent notifies throughout the “Nueva 

Orden” function, the arrival of new supplies to every AGV in the system. As new supplies arrived, also does 

production sequence information of every type of supply, so System Agent assigns a priority by the 

“ActualizoPrioridades” process. Once priorities are assigned to every supply, the System Agent assigns a task to 

one AGV. Forthwith, the AGV agents starts the logical “IrPorOrden” process, in which it decides whether to 

accept or decline the transportation request received. Acceptance occurs when the AGV is idle and the battery 

units of the AGVs are enough to make the following travel: charger station-initial node-destination node-charger 

station. Conversely, the AGV waits in the charger station until it is completely charged to accept the task. Upon 

the task acceptance, System Agent notifies the other agents that AGV “x” has already been assigned task “y”. By 

the “Siguiente Maquina” process, the system informs the “InitialNode” and “DestinationNode” parameters to the 

AGV to fulfill the task. Important to mention that whenever an AGV arrives to the initial node of the task, the 

highest priority supply notified by the System agent is picked-up to be transported to its destination node. This, 

because it may happen that there are more than one supply waiting to be transported in the same initial node. 

When the AGV leaves the supply in its destination node, System agent updates priorities of the entire system. 

Promptly, AGV returns to the charger station as its permanent position when is idle, and priorities are updated 

again to assign new tasks to the AGV.  

A summary of the processes above mentioned is illustrated in Figure 7, in which the achievement of a 

sequence of acts since a new supply arrives, is responsibility of an agent, i.e System agent is responsible of 

calculating priorities, and AGV agent of calculating and deciding whether it can reach a task or not.  
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Figure 7. Sequence Diagram of the model 2 

Once having the designed model, we run the simulation as shown in the next section.  

Objective 3: Implement the proposed approach using a manufacturing simulation software. 

3.1 Simio: Chosen Program  

 As described in [20] Simio is a discrete simulation modeling framework which is based on Intelligent 

Objects. Simio is a tool for building and executing dynamic models of systems so that the user can observe how 

they perform.  

Although simulation and animation have been around for several years, Simio has an easy to use 

simulation environment in which there is no need to write programming code to create new objects as it has an 

object-based library, which contains the key elements to develop a certain model. One of the benefits of animating 

objects is the representation of the changing state of the object in a given process. An object might be a machine, 

robot, airplane, doctor, tank, bus, ship, or any other thing that you might encounter in your system. When an object 

is instantiated into a model, properties of the given object may be specified. These properties include setup, 

processing, and teardown times, maximum capacity, materials needed to execute the process, bills that indicate 

the cost of an operation, a required operator, among others. Simio is built with the latest dotnet technology that 

permits advanced users to customize a specific object using different languages including Visual Basic, Java, C++ 

among others in the model. This particular feature is crucial for simulating the exact theme of a warehouse case 

to be studied for AGV uses, as Simio is the only simulation software that has access to google tremble warehouse. 

This software allows data to be correlated among multiple tables in datasets, as well as importing external data 

using Excel. The most important hallmark is that Simio grants the possibility to create intelligent objects that 

function together in synergy in order to solve a drawback or hitch.  

3.2 Agents 
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Simio is an advantageous program because in terms of agents in the system, it uses intelligent transport 

agents that communicate with the System agent directly within the program. Meaning that, intelligent agents 

within simio make contact with each other using Backend communication. Therefore, the events that take place 

within the program (which are explained immediately after figure 9) cannot be perceived by the user when 

executing the model simulation.  

3.3 Models in Simio 

 

Figure 8. Final model in Simio before start 

The logic behind the final model is that there is an interaction AGV-System, in which three decisions are 

made. The first decision consists of the system assigning the priorities for each job according to the most 

significant move heuristic. There are two distinct jobs, each job has its custom sequence and processing time. 

These dynamic priorities are updated every time the following moments take place.  

1. When items arrive at “Programacion”. 

2. When the AGV collects a unit and therefore is loaded. 

3. When a unit arrives at any given machine (server). 

4. When the AGV travels to the charging station. 

The second decision is taken by the AGV when entities in the system have items in queue. Therefore, 

messages are sent to the AGV. The AGV analyzes if the tasks to be performed are viable according to its battery 

life. For example, if server1 requires collecting an item by the AGV, but the AGV can´t complete the task of 

moving from its current position to server1 and from server1 to the destination, then the task will be discarded 

until the battery requirements are met. In the opposite scenario, the AGV will have green light to collect the item, 

which leads to the final decision of what viable task to do. The larger priority (designated by the system) task will 

be executed first. The four gray bars at the top right of figure 8 indicate the total waiting time of each server as a 

result of the number of items in queue in each machine. The AGV takes the item to the server that has the least 

waiting time in order to achieve optimization.  

All entities within Simio are correlated in order to successfully complete the flow of information 

throughout the system. Figure 9 exposes the relationship between AGVs and the supplies they carry, as well as 

the stations the apparatus visit. Each box illustrates the parameters that compose each entity with its corresponding 

type of variable (float, integer, etc). Fig. 9 shows how in a class diagram all entities presented in model 1 and 2 

interact with each other, besides of including intrinsic attributes and functions necessary for a flawless performing. 

The purpose of this diagram is to represent both the main elements, interactions in the application, and the classes 

to be programmed. This class diagram shows the static structure for AGV scheduling. The top compartment of 

each box is the name of the class. The middle compartment represents the attributes and parameters of the class. 

The bottom compartment represents the operations, said class can execute. 
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Figure 9. Class Diagram of model in Simio 

Objective 4: Simulation Results and discussion  

Using the New Experiment tool provided by the SIMIO software, a hundred simulation runs were made 

using the same parameters, only the heuristics used were changed and so different values were obtained for the 

target variable, makespan. The main objective of the analysis is to be able to observe in detail the performance of 

the current model to draw conclusions and thus be supported to forecast future applications where a greater or 

lesser amount of resources are used, guaranteeing scalability according to the results obtained. Likewise, this tool 

provides different types of results such as computational time related to intrinsic variables of the model for their 

analysis.  

This section presents some analysis focused on the heuristic that minimized the makespan. To validate 

the information obtained statistically, different methods were used to assure that the chosen heuristic provides the 

best results. To achieve this, we elaborated an experimental design, first using an Anova, to then apply different 

tests such as Tukey and LSD (See annex 10) seeking to validate the significance in the mean difference between 

the resulting heuristic and others. Additionally, multiple charts are displayed using the results of the tool 

mentioned above. The results of the simulation are analyzed based on the makespan, as the performance measure 

of each heuristic implemented. Every result is discussed separately according to the graphic. Results are 

consequent when comparing with a static model (heuristic and metaheuristic) for the same facility developed in 

VBA (See annex 8 and 9).  

To support which heuristic has the best makespan, an experimental design was made to reject or not the 

following initial hypothesis (𝐻0): 

             𝐻0: 𝜇1 = 𝜇2 = 𝜇3 ... = 𝜇𝑘                 𝐻1: Means are not all equal. 

Source of Variation SS df MS F P-value F crit 

Between Groups 0.006000753 4 0.001500188 18.6816589 4.12411E-09 2.578739 

Within Groups 0.003613623 45 8.03027E-05       

Total 0.009614376 49         
Table 5. Results of the Anova 
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The results of the Anova shown in Table 5, evidence that 𝐹0 > 𝐹𝐶𝑟𝑖𝑡 and Pvalue < 0,05 (𝛼) therefore 

𝐻0 is rejected and is cautious to say at least one heuristic is significant different to others. Thus, Tukey test was 

applied to determine which treatment is not equal. Hence, it exists enough statistical evidence to confirm which 

heuristic has a shorter average time of makespan.  

Results of the Tukey test in Table 6 shows numerical differences between each pair of means compared 

to the Tukey statistic. The absolute difference between means that are greater than the Tukey outcome, connotes 

that the pair is significantly different to the other sets.   

Mean Yi. Mean Yj. |Yi.-Yj.| Test 

EDD EDDT 0.001919 Insignificant 

EDD LTT 0.003958 Insignificant 

EDD LWT 0.005832 Insignificant 

EDD MSM 0.022915 Significant 

EDDT LTT 0.005878 Insignificant 

EDDT LWT 0.003913 Insignificant 

EDDT MSM 0.024835 Significant 

LTT LWT 0.009791 Insignificant 

LTT MSM 0.018957 Significant 

LWT MSM 0.028747 Significant 
Table 6. Results of Tukey test 

 

As shown in the test column, every time the MSM heuristic is involved in each pair of means, the test 

result is significant. Meaning that MSM is significantly different from the other heuristics and in general terms 

for this simulation, the best heuristic. 

 

4.1 SIMIO results 

- Computational time vs. the amount of jobs in the system   

Observing the behavior of the curve in Fig 10, it is denoted that as the number of jobs increases, the 

computational time increases. This is considered a combinatorial optimization problem because the order of the 

sequences needs to be taken into account by the system, which could result in an np-hard complexity problem, 

reinforcing the intention to use metaheuristics to solve the problem of scheduling in static environment at first. 

However, understanding that having a static environment in practical terms can only be applied in an ideal 

circumstance. Using a dynamic and reactive approach, although it does not assure optimality, it does offer the 

advantage of being applied in a real flexible manufacturing system, where the components can have failures or 

delays due to uncontrolled variables. 
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Figure 10. Graph of computation time vs number of jobs 

To contrast the results obtained, a comparison of computational times was made with results obtained by 

Ullrich in [24]. Unlike the approach of this document, Ullrich uses genetic algorithms to generate solutions that 

are closer to optimal. Comparing the graphs obtained by both parties, similarities were found in the curve. 

However, given the fact that Ulrich´s approach is more complex, its slope in the linear equation is much greater 

than that obtained in this document, even doubling it. Consequently, it is evidenced that when making designs 

focused on the reactivity of a flexible manufacturing environment, significant reduction in computational time 

makes possible to handle more jobs in the whole system. 

- Computational time vs. number of AGVs in the system 

Although the computational time and the number of jobs are correlated variables, Fig 11 proves that the 

computational time is not greatly affected by the number of AGVs. When contrasting computational times for 20 

AGVs and 100 AGVs, we observe that the usage of computational resources increases approximately 40%, despite 

the number of AGVs increased 400%.  Moreover, to validate this previous analysis, when comparing results with 

Ulrich in [24], it is denoted that both slopes of the linear equation are near zero, even though Ulrich applied a 

genetic algorithm to reach optimality, while this work used the MSM heuristic. This to say that results obtain in 

the simulation make sense when comparing with other works.  

 

Figure 11. Graph of computation time vs number of AGVs 

- Makespan performance based on AGV failures  

Analysis of makespan vs AGV failures was carried out comparing two scenarios in 5 situations, each 

with different number of tasks involved but with the same number for each type of job, and ANOVA with the 

situation as blocking factor was done to validate results (see annex 10). The following assumptions were 

considered for the experiment: 

• Scenario 1 does not consider any type of failures 

• Scenario 2 considers that all AGVs fail at a random exponential time with mean of 30 minutes and repair 

time of 15 minutes 
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The 5 situations were: 

1. 20 tasks 

2. 40 tasks 

3. 60 tasks 

4. 100 tasks 

5. 150 tasks 
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Figure 12. Graph of makespan vs AGV failures: 1 
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Figure 13. Graph of makespan vs AGV failures: 2 
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Figure 13. Graph of makespan vs AGV failures: 3 
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Figure 14. Graph of makespan vs AGV failures: 4 
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Figure 15. Graph of makespan vs AGV failures: 5 

 



 

21 

The results show that the makespan of scenario 2 increased 35% on average in comparison with the 

makespan of scenario 1 for all five situations. This proves that the distributed approach of AGV scheduling has 

great reactivity when it comes to unpredicted failure of transporting agents. As tasks are distributed among AGVs 

in almost real time, when one fails the others re-distribute remaining tasks very fast and with no need of human 

intervention, thus generating a seamless experience in the manufacture environment and saving re-scheduling 

process times.    

 

- Makespan performance based on Servers failures  

Analysis of makespan vs machine failures displayed in Figs 13-17, was carried out comparing four 

scenarios in the previous 5 situations. Important to mention that the number of tasks is always equally distributed 

among the two job types and that the four scenarios simulated in each situation are as follows: 

 

• Scenario 1 does not consider any type of failures 

• Scenario 2 considers failures in server 1 every 30 minutes and repair time of 15 minutes 

• Scenario 3 considers failures in server 3 every 30 minutes and repair time of 15 minute 

• Scenario 4 considers failures in servers 1, 2 and 3 every 30 minutes and repair time of 15 minutes 
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Figure 17. Graph of makespan vs machine failures: 2 

 
Figure 18. Graph of makespan vs machine failures: 3 
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Figure 16. Graph of makespan vs machine failures: 1 
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The results show that the makespan for scenarios 1, 2 and 3 doesn´t change significantly (see Table 8), 

and that for the worst-case scenario (scenario 4) the increase in makespan compared to the first scenario is on 

average 37% for all five situations. This proves that the proposed distributed model has a high reactivity towards 

machine failure which is a major issue when it comes to real life manufacturing facilities. This reactivity is given 

by the distribution of tasks among AGVs which means that at any moment the robots will choose to do the task 

that has the highest priority at that time. Since priorities are dynamic and updated in almost real time the AGVs 

can adapt very quickly to changes in production conditions.   

 

To statistically validate the significance of the experiments the following ANOVA (See table 7) was 

carried out with 4 treatments (Failures in the machines), 5 situations used as blocking factor and 100 observations 

for each factor. Considering the direct correlation between the number of jobs and the performance of the 

makespan in the system, the above-mentioned blocking factor was used in our experiment. Through this factor 

we seek to obtain an adequate and effective comparison of the simulation results against the failure scenarios, 

avoiding bias. The following hypothesis were considered: 

 

 

ANOVA 

SOURCE OF 
VARIATION  SS DF MS Fo  Fcrit P-value 

Failures 2,263130833 3 0,754376944 8,897117927 3,490294819 0,002235686 

No. of Works 50,06147265 4 12,51536816 147,6061898 3,259166727 4,29823E-10 

Error  1,017466938 12 0,084788911       

Total 53,34207042 19         

Table 7. Results of the Anova for test instances  

The results of the Anova displayed in Table 7 show that 𝐹0 > 𝐹𝐶𝑟𝑖𝑡 and Pvalue < 0,05 (𝛼) therefore 

𝐻0 is rejected and is cautious to say at least one instance of failures is significant different to others. Thus, LSD 

test was applied to the treatments to determine which treatment is not equal.  
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Figure 19. Graph of makespan vs machine failures: 4 
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Figure 20. Graph of makespan vs machine failures: 5 
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Results of the LSD test in Table 8 show numerical differences between each pair of means compared to 

the LSD statistic. The absolute difference between means that are greater than the LSD outcome, connotes that 

the pair is significantly different to the other sets.   

LSD FOR TREATMENTS   

Pairs  Mean Yi. Mean Yj. |Yi.-Yj.|   

            

No Failures Maq1 2,318442 2,397648 0,079206 NO Significant 

No Failures Maq 3 2,318442 2,446016 0,127574 NO Significant 

No Failures Maq 1,2 y 3 2,318442 3,15707 0,838628 Significant 

Maq 1 Maq 3 2,397648 2,446016 0,048368 NO Significant 

Maq 1 Maq 1,2 y 3 2,397648 3,15707 0,759422 Significant 

Maq 3 Maq 1,2 y 3 2,446016 3,15707 0,711054 Significant 
Table 8. LSD for treatments 

As shown in the test column, every time the instance in which maq 1,2,3 is involved in each pair of 

means, the test result is significant. Therefore, there is enough statistical evidence to state with 95% confidence 

that the makespan is affected when machines 1, 2 and 3 fail. For more detail on the statistical validations see annex 

10 

  

 

 

- Makespan performance based on numbers of AGVs 

 

In this experiment multiple scenarios with different number of AGVs were simulated to compare the 

different makespans, as shown in Figure 14. All scenarios were run under the same conditions (facility, heuristic 

rule, parameters, etc.) with only the number of agents being variable.  

 

Figure 21. Graph of makespan vs number of AGVs 

 

 

The results suggest that for the proposed model the optimum number of AGVs is 5. Beyond this threshold 

the makespan does not get any better as all extra agents are idle given the CONWIP system of the model. This 

proves that the chosen model is at a stable state. 

 

6. Conclusions: 

 
Industry 4.0 has overtaken the lead in the uprising of industrial evolution in order to address manufacture 

problems using the ultimate technology artifacts and discoveries that enhance simpler solutions at a lower budget. 

Among the advances the new industrial revolution is offering, Automated guided vehicles will be and are being 

employed in warehouse floors in the upcoming decades and years all over the most important companies around 

the whole world. Throughout the length of this document, a distributed approach for AGV scheduling was studied, 
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defined, measured, executed and analyzed geared to foresee its viability and reactivity to possible changes that a 

real-life situation might present. The following are crucial conclusions of this project: 

 

 

• Agent-based modelling is widely spreading as newer and more robust simulation software for 

production planning and scheduling is available, potentially improving manufacturing operations and 

reducing costs. 

• Distributed scheduling provides great reactivity towards changing conditions in the manufacturing 

environment and help reduce scheduling reprocessing times. 

• Agents do not require complex direct communications to coordinate task distribution. Indirect 

communication systems such as blackboard allow agents to effectively communicate through a third-

party system that acts as moderator without taking away agent autonomy. 

• Computation time is negligible as information processing is distributed among independent agents and 

third-party system, while it represents a big problem for static scheduling models 

• Flexible job shop scheduling needs to take into account server queue time to reduce makespan and 

increase efficiency. 

• Dynamic task priority is fundamental in order to react to real life changes in a flexible manufacturing 

facility. 

• The number of AGVs in the system does not affects significantly the computational time of the 

simulation. While the number of jobs in the environment does affect significantly the usage of 

computational resources.  
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