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Abstract

In this dissertation are developed new methods for the design of controllers from data for linear systems,
useful when the plant model is unavailable, two frameworks have been considered using set-membership
techniques (SMT) and the Youla-Kucera parametrization (YK-DDC). The developed methods have been
extensively evaluated in simulation and experimental settings. In SMT, the Unknown But Bounded
(UBB) noise structure affecting the experimental data has been assumed, and a proper data-based crite-
rion is stated according to the reference model criterion problem. Such formulation allows to state hard
bounds on controller parameters via linear programming techniques. SMT approach has been experimen-
tally validated on an active suspension system via a Monte-Carlo experiment, and it has been compared
with VRFT methodology. Results have shown that using the same information about the plant to be
controlled, the VRFT controllers are strongly affected by the size of the dataset while the SMT controllers
exhibit good performances, even when they are estimated from reduced datasets.

Two SMT extensions have been proposed, the first one allows to design limited-complexity controllers
using sparse identification methods, the proposed algorithm avoids solving big combinatorial problems
that arise when the dimension of the vector parametrizing the candidate controllers is large and the
number of desired parameters is much lower. A benchmark flexible transmission model is employed to
illustrate the performance of the proposed methodology in comparison to the sparse correlation based
tuning approach (SCbT). It is found that both approaches offer similar performance when the size of
the data set is much larger than the dimension of the controller parameters vector. Notwithstanding,
the SCbT controllers are strongly affected when data set size is reduced, while SMT controllers exhibit
good performances even when the controller parameters are estimated from reduced data sets. The sec-
ond extension proposes a procedure to estimate controllers capable of approaching a given closed-loop
reference model and a sensitivity transfer function (Two-degree-of-freedom controllers). To do this, an
efficient solution based on convex optimization is proposed. In literature, this the first attempt that
employs a SM formulation. In order to validate our approach, the Errors-in-Variables approach proposed
in literature for one DoF controllers has been adapted to solve the two degree-of-freedom problem. Our
method and the adapted method are developed within a Set Membership framework. Results indicate
that the computational cost, in terms of execution time of the adapted approach is higher than in our
setting, even three hundred times bigger, while similar estimation errors are presented in both approaches.

The Youla-Kucera parametrization has been employed to solve the problem of controllers design without
requiring a process model. The main contribution of this part of the thesis is that the proposed controller
structure allows reaching more stringent reference models than those proposed previously in the literature,
maintaining a convex formulation and a procedure to estimate the closed-loop stability. An extension of
YK-DDC methodology to the MIMO case is also proposed. Such a methodology has been experimentally
validated on a 2-DoF Helicopter. This is an important model from the control engineering point of view
due to its wide non-linear characteristics, highly cross-coupling effects, and instability in open-loop. Ex-
perimental results showed that our approach achieves better results compared with the LQR+I controller
proposed by the system manufacturer since the former meets the control requirement with lower settling
time and smaller maximum overshoot. However, given that the 2DOF helicopter is unstable an initial
stabilizing controller is required to collect the dataset and to construct a cascade control strategy.

The modeling and control of essential oil extraction processes are comprehensively studied, and novel
strategies for optimal extraction operation and temperature regulation are proposed. A lab-scale ohmic
distiller able to extract the essential oil from 100[g] of vegetal mass (aromatic herb) has been designed and
constructed by the author. The selected characteristics of the distiller allowed to obtain measurable essen-
tial oil quantity from Eucalyptus, in order to obtain the kinetic extraction curves. In steam distillation,
an optimal control problem has been formulated and solved in order to save energy during the extraction



process while maintaining the yield of extraction. Our solutions show that optimal steam flow trajecto-
ries are not necessarily constant, as previously mentioned in the literature. Given some phenomenological
similarities between steam distillation and Ohmic assisted hydrodistillation (OAHD), the optimal input
trajectories found to the former were extended to OAHD. Experimental results indicate that our input
trajectory allows important energy savings, maintaining the yield statistically equal to the yield with a
constant input. In addition, the proposed YK-DDC approach is applied for the regulation of temperature
in an ohmic-heater, where experimental results show that our controller offers better tracking results than
a procedure extracted from recent literature.
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Chapter 1

Introduction

Currently, data acquisition technology permits to collect a large amount of measurements from indus-
trial plants. When enough plant data are available in order to design a controller, there exist two main
approaches in the scientific literature. In the standard model-based controller design procedure, a plant
model is estimated (identified) and then employed to design a controller (two-step design). This controller
is not necessarily optimal because the control loop performance is restricted by modeling errors. On the
other hand, the available data can be employed to directly design a controller, avoiding the plant model
estimation. This approach has been named Direct Data-Driven controllers (DDC) tuning. DDC is of par-
ticular interest in real-world practical applications. The interested reader can referred to Formentin et al.
(2014), where an interesting comparison between Model-based controller design and DDC tuning is pre-
sented.

There exist adaptive (iterative) and non-iterative DDC techniques, in the first ones the controller
parameters are adjusted at each time instant, in the last ones the controller is designed based on the
information contained in one batch of experimental data (one-shot), these approaches are known also as
off-line techniques. In this work, we are interested in off-line techniques in order to avoid the typical
problems of adaptive control, moreover, since a single set of data is employed in several model-based
control design methods, a fair comparison between off-line DDC techniques and model-based design can
be carried out.

In the linear setting, some non-iterative controller design methods for direct data-driven controller
tuning are shown and compared in (Van Heusden et al., 2011b), the studied methods are correlation ap-
proach (CbT), periodic errors in variables (EiV), the inverse controller (IC) and prediction error methods
(PEM). All of them are constructed within a stochastic framework. A more recent review work of DDC
methods can be found in (Hou and Wang, 2013). The authors perform a qualitative comparison and
briefly explain each one technique. A different approach to solve the DDC problem follows a determinis-
tic formulation using Set-membership techniques. There exist few results that follow this approach, one
solution can be found in Cerone et al. (2017), also, for control of non-linear plants a technique named as
Direct feedback control (DFK) has been developed in Novara et al. (2013a). DFK method can be used
only in the restrictive case where the full state is measurable.

The more relevant techniques for this thesis are virtual reference feedback tuning (VRFT) and
correlation-based tuning (CbT). VRFT was proposed in (Guardabassi and Savaresi, 2000), it is a non-
iterative data-driven method that can be used to select the controller parameters for a LTI system, the
problem is formulated as a controller parameters identification problem via introducing a virtual refer-
ence signal. Principal characteristics of VRFT are: (i) It is one-shot method in the linear case (noise
free). (ii) The controller to find is linearly parametrized. (iii) When the measurements are noisy, the
solution is addressed via instrumental variables. This requires a second experiment or a plant model.
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(iv) The resulting optimization problem is convex. (v) There exist many extensions of VRFT, for in-
stance, in (Campestrini et al., 2016) the MIMO case is tackled, and a non-linear framework is studied in
(Formentin and Savaresi, 2011). In (Rojas, 2011) other extensions and applications of VRFT are studied,
such author, indicates that in data-driven control it is difficult to find a controller that assures stability,
and he proposes a stability test, this test requires previous identification of the plant, this is undesirable
because in direct data-driven controller techniques the aim is to avoid developing a model of the plant.

Regarding to CbT, it is worth to mention that exist two correlation based approaches for data-driven
controller design, one of them is iterative (iCbT) (Karimi et al., 2002), another is non-iterative (CbT-GS)
(van Heusden et al., 2011), as above mentioned, in this work our interest is limited to non-iterative tech-
niques, that is why principal characteristics of CbT-GS are listed: (i) The problem is solved via model
reference criterion, but it doesn’t need a virtual reference signal, (ii) In the same way that in VRFT, the
controller is linearly parametrized, (iii) It is one-shot method and is better suited to deal with measure-
ment noise (iv) In CbT-GS a sufficient conditions is proposed to guarantee closed-loop stability, (v) This
method has not been extend to non linear framework. Few extensions on non-iterative CbT have been
found in literature, one of them is about the tuning of controller parameters taking into account stability
constraints for non-minimum phase plants (Matsuo et al., 2013), meanwhile in (Yubai et al., 2009) and
(Usami, 2010) was addressed the MIMO case.

In all the methods mentioned above, the main ingredients of a DDC problem are a set of input-output
data generated by the plant to be controlled, a closed-loop reference model where performance speci-
fications are embedded, and a given controller structure, usually parametrized by a fixed set of basis
functions. When the set of bases is not consistent with the reference model, the resulting controller can
yield to closed-loop instability. In this sense, in Kergus et al. (2019) a set of conditions to define the
behaviours that the closed-loop can reach are proposed, in order to select an achievable reference model.
According to Novara (2019) the drawbacks of DDC are: (i)Only sufficient conditions are currently avail-
able to guarantee closed-loop stability. (ii) Direct design is statistically less efficient than model-based
design with correct model parametrization, and (iii) If the controller can be freely chosen, the problem of
model parametrization is not skipped, but simply transformed into that of controller selection.

Several applications of DDC have been reported in the literature, but none of them has considered
the essential oil extraction process, this process is of high interest for this thesis. Essential Oil (EO) is an
agro product which has a great prospect to be developed (Kusuma et al., 2018). The essential oils market
accounted for USD 4.46 Billion in 2016, according to the Observatory of Economic Complexity (Simoes,
2018), and it is projected to reach USD 11.19 Billion by 2022. Essential oils are complex mixtures of
volatile compounds extracted from a large number of plants. EO is stored in different parts of plants,
for example in leaves, flowers, stems, roots, etc. There exist multiple essential oil extraction techniques
(Stashenko, 2009). The most employed ones are hydro-distillation, steam distillation, and steam-water
distillation. Some new techniques have been proposed, such as supercritical fluids extraction (SFE),
microwave-assisted hydrodistillation (MWD), and ohmic-assisted hydrodistillation (OAHD). In this the-
sis, we are interested in OAHD since its main advantage over conventional distillation is that, shorter
extraction times and lower energy consumption are obtained, thereby, it is environmentally friendly.

The dissertation is organized in chapters and each one can be read independently. Figure 1.1 depicts the
organization of the thesis, numbered by the respective chapter and their roles in the framework of this
thesis.

First, in Chapter 2, considering previous results by the author in Valderrama and Ruiz (2014) a set-
membership approach to give solution to DDC design problem is proposed, our formulation is named
Set-Membership tuning (SMT). In SMT, the Unknown But Bounded (UBB) noise structure affecting the
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experimental data has been assumed, and a proper data-based criterion is stated according to the refer-
ence model criterion problem. Such formulation allows to state hard bounds on controller parameters via
linear programming techniques. We compare our approach with the Virtual Reference Feedback Tuning
(VRFT) technique which assumes an stochastic description of the unknown signals. The two approaches
are evaluated on an experimental case study, consisting of the controller tuning for an active suspension
system. The results are obtained via a Monte-Carlo experiment, one hundred controllers are tuned by
both methods employing different noise realizations and the performance is measured experimentally.
Results show that both approaches offer a similar performance when the size of the dataset is much
larger than the dimension of the controller parameters vector. However, for reduced datasets, the SMT
approach gives consistent results while the VRFT method is not able to extract useful information. The
same behavior is observed when the two approaches are applied to datasets affected by process distur-
bances. It is observed that the Root Mean Squared Error of the resulting loops can be up to 30 times

12



lower using the Set Membership method for reduced datasets. The results of this Chapter were published
in (Valderrama and Ruiz, 2019).

In Chapter 3 an approach based on the set-membership techniques to tune limited-complexity con-
trollers from data for linear systems is proposed. The controller is parametrized as a linear combination
of a large set of basis functions and the proposed algorithm allows to select a sparse subset of bases, guar-
anteeing a bounded approximation error. A feasibility condition allows to adjust the trade-off between
accuracy and sparsity. The controller design is performed by solving a set of linear programming problems,
allowing to handle large data-sets. The proposed strategy is evaluated by means of a Monte-Carlo simu-
lation experiment on a flexible transmission benchmark model. Results show that the proposed solution
offers similar results than previous approaches for large data-sets, requiring less adjustable parameters.
However, for reduced data-sets, the presented algorithm shows better performance than the compared
approaches. The results of this Chapter have been submitted for peer review to the European Journal of
Control.

In Chapter 4 an approach based on Output-Error formulation to the design of Two-Degree-of-Freedom
(2DoF) controllers is proposed. We compare our approach with Errors-in-Variables formulation (EiV),
assuming unknown but bounded noise sequences. First, it is derived a setting to estimate from data
controllers capable of approaching a given closed-loop reference model and a sensitivity transfer func-
tion. Then, the controller estimation problems are transformed in equivalent Set-Membership Errors-in-
Variables and Output-Error identification setups. Finally, we compare our approach with EiV employing
two numerical examples and it is observed that a similar performance is obtained by the two methods,
while our formulation is more than one hundred times faster. The results of this Chapter were presented
in (Valderrama et al., 2019).

In chapter 5 the Youla-Kucera parametrization is employed to solve the DDC tuning problem, with-
out requiring a process model. It is shown that the Youla-Kucera parametrization gives more degrees of
freedom than the solutions of the previous chapters, then, it allows to achieve more stringent closed-loop
performances than previous works in literature, maintaining a procedure to estimate the closed-loop sta-
bility. The proposed design methodology does not imply a plant identification step and the solution can
be obtained by least-squares algorithms in the case of stochastic additive noise. The proposed solution is
evaluated through Monte Carlo simulations on a flexible transmission benchmark model for the regula-
tion problem of an under-damped system. Also in this chapter, Youla-Kucera parametrization in DDC is
extended to the MIMO case, this approach is experimentally evaluated on a 2-DoF Helicopter. Our ap-
proach achieves good results compared with the LQR+I controller proposed by the system manufacturer.
However, given that the 2DOF helicopter is unstable an initial stabilizing controller is required to collect
the dataset. In this case, a cascade control was proposed in order to achieve loop specifications. Partial
results of this Chapter have been submitted to the IFAC world congress 2020.

In chapter 6, the modeling and control of essential oil extraction processes are comprehensively stud-
ied, and novel strategies for optimal extraction operation and temperature regulation are proposed. First,
in the steam distillation case, an optimal steam flow trajectory for essential oils extracted from aromatic
plants is derived, minimizing energy consumption. A phenomenological dynamic model of the oil ex-
traction process is adopted from literature and a multi-objective optimal control problem is formulated,
in order to minimize energy consumption and at the same time maximize the yield of extraction. The
solutions obtained show that optimal steam flow trajectories are not necessarily constant, as previously
mentioned in the literature. Such solutions are extended to the OAHD method via phenomenological
analysis, where the experimental results for OAHD indicate that a decreasing input power maintains an
extraction yield statistically equal to the yield with constant input power. To perform the mentioned tests
an ohmic distiller for 100 [g] of vegetal mass, and maximum extraction power of 1 [kW] is designed and
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constructed. Finally, the DDC method proposed in Chapter 5 is employed to control the temperature in
the camera of the ohmic distiller. In order to evaluate the performance of our method, the CbT method is
used. Both approaches allowed tuning controllers with the same structure; however, in light of results, our
controller offers better tracking results than CbT controller, specifically, the rise time is three times lower,
maintaining null overshot and null steady-state error. Some results of this chapter have been published
in (Valderrama and Ruiz, 2018) and (Valderrama, 2018).
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Chapter 2

A set-membership approach to DDC

As mentioned above, in VRFT and CbT the measurement noise is addressed via stochastic mechanisms.
In systems identification, it is well known that the counterpart of the stochastic theory (ST) is the set-
membership theory (SM), a deep review can be found in (Milanese and Novara, 2011). The SM framework
assumes only that the noise is bounded, in contrast with stochastic approaches, which rely on stochastic
assumptions such as stationarity, uncorrelation, type of distribution,etc.

SM estimation techniques have been satisfactorily applied in system identification Milanese and Novara
(2004); Milanese and Taragna (2005), filter design from data (Milanese et al., 2010; Ruiz et al., 2010;
Novara et al., 2013b). The problem of data-driven controller tuning for linear systems has been inves-
tigated in Cerone et al. (2017) and Valderrama and Ruiz (2014) the latter as a precedent of this disser-
tation. In Cerone et al. (2017), the SM Errors-in-Variables (SMEiV) identification method is applied
to solve the controller tuning problem. Convex relaxations are employed to solve the resulting polyno-
mial optimization problems, leading to computationally demanding solutions and therefore limiting the
amount of experimental data that can be considered, even for a reduced set of controller parameters. In
Valderrama and Ruiz (2014), set over-bounding techniques are used to derive efficient linear programming
problems from the original non-convex problem, allowing to manage larger data sets. In the non-linear
framework also exist relevant studies, for instance in (Novara et al., 2013a; Tanaskovic et al., 2015) it
was formulated a novel method to data-driven controllers tuning, main characteristics of such work are:
(i) The authors developed theoretical framework for the stability analysis of non-linear feedback control
systems, (ii) It is presented a technique for the direct design of a controller from data, (iii) Under some
assumptions the closed-loop stability is guaranteed for a set of trajectories of interest, (iii) A drawback
of the method is that all state variables are assumed to be measured and a feasible state trajectory is
required as reference signal, generated for example by an expert human operator.

The aim of this chapter of the dissertation is to design a novel DDC tuning approach. The key idea be-
hind this approach is employing previous results of set-membership identification theory to find a proper
controller such that loop specifications are met, avoiding the model of the plant.

This chapter is organized as follows. In section 2.1 the problem is formulated, assumptions and main the-
orems are proposed in Section 2.2, finally a case study with the active suspension and the experimental
results are shown in Section 2.3.

As the first part of this chapter, the problem is formulated as follows.
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Figure 2.1: Assumed feedback control structure

2.1 Statement of the problem

Consider the discrete-time linear-time invariant (LTI) single-input single-output (SISO) feedback control
scheme, depicted in Fig. 2.1, where q−1 denotes backward shift operator, P (q−1) is the plant transfer
function, C(θ, q−1) is the controller transfer function, and θ is vector of controller parameters.

For the system interconnection shown in Fig. 2.1, the aim of the controller tuning procedure is to select
an optimal controller Co minimizing some performance criterion. For example, an optimization problem
can be stated as:

Co(θo, q−1) = arg min
C(θ,q−1)∈C

J(C(θ, q−1)) (2.1)

For the cost function

J(θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)

∥

∥

∥

∥

s

(2.2)

Being s a proper system norm, C the set of LTI systems where the controller is selected,θ a real vector
parameterizing C(θ, q−1) and M(q−1) a reference model for the closed-loop system, where performance
specifications are embedded.

If P (q−1) is known, Problem 2.1 can be seen as a loop-shaping problem and, for H2, H∞ and l1 norms,
known techniques exist to solve it under proper controllability (reachability) and observability (detectabil-
ity) conditions see e.g. in Skogestad and Postlethwaite (2005),Zhou and Doyle (1998).

If system P (q−1) is unknown, Problem (2.1) can not be solved directly. The common procedure to con-
troller design for unknown plants is to follow a two-step procedure where first a system model P̂ (q−1) is
estimated from data, possibly with some uncertainty measure and then a controller is obtained solving
problem (2.1) for P̂ (q−1).

The following assumptions define the framework of the data-driven controller tuning problem.

Assumption 1. P (q−1) is unknown. The available information on P (q−1) is a set of input-output data
generated by P (q−1), initially at rest,

D = {w(t), u(t), t = 1, 2, ..., N} (2.3)

Where

w(t) =

t
∑

j=0

hju(t− j) + v(t) = y(t) + v(t),
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hj are the impulse response coefficients of P (q−1), y(t) =
∑t

j=0 hju(t − j) is the noise-free output and
v(t) is the plant output noise/disturbance.

Remark 1. Input u(t) is assumed sufficiently informative, i.e., it allows to obtain bounded sets of con-
troller parameters. However, no hypotheses are established about the plant operation during the experi-
ment. Either open or closed loop data can be employed.

Assumption 2. An internally stabilizing controller C(θ∗, q−1) exists such that the minimum of (3.2) is
0, that is:

M(q−1) =
P (q−1)C(θ∗, q−1)

1 + P (q−1)C(θ∗, q−1)

for some θ∗ ∈ Θ

Assumption 2 is required only for the derivation of theoretical results of the controller tuning method.

In the framework analysed, the controller is parametrized as a linear combination of fixed basis functions,
that is,

C(θ, q−1) =

m
∑

i=1

θiβi(q
−1) (2.4)

Then, the controller that solves problem (2.1) is selected from the set:

C =
{

C(θ, q−1) : θ ∈ Θ ⊆ R
n
}

Based on the previous assumptions, the DDC tuning problem can be stated as follows:

Problem 1. Data-Driven Controller tuning: Given a dataset D generated as in Assumption 1, a reference
model M(q−1), a set of basis functions βi, i = 1, ...,m, and some assumptions about noise/disturbance
v(t), find a vector θ̂ that approximately solves problem (2.1).

For the second part of this section, we are in a position to propose an approach to solve the problem 1
employing set-membership theory.

2.2 Set-Membership approach

In this method, the noise sequence is modeled as an unknown but bounded (UBB) signal without any
statistical assumption about it, as defined in the following Assumption.

Assumption 3. Noise v(t) is an (UBB) signal, such that

‖v(t))‖ℓp ≤ ǫp

with ℓp ∈ [2,∞]. In this framework, energy and amplitude limited noise sequences can be considered.
The following Lemma allows to transform the model-based controller design problem in eq. (2.1) into an
data-driven controller tuning problem.

Lemma 1. Given a data set D generated as in assumption 1, affected by noise bounded as in assumption
3. Then, any controller C(θ), guaranteeing an internally stable loop, satisfies the time-domain relation,

e(θ, t) = M(1−M)u(t) − C(θ) (1−M)2 y(t) + d(t) (2.5)
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where e(θ, t) is the output of the model matching error transfer function

Em(q−1) = M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)
. (2.6)

and the unknown signal d(t) is bounded as,

‖d(t)‖ℓp ≤
∥

∥

∥
C(θ) (1−M)2

∥

∥

∥

ℓp,ℓp
ǫp = δp (2.7)

being
∥

∥

∥
C(θ) (1−M)2

∥

∥

∥

ℓp,ℓp
the proper induced norm of the system relating v(t) and d(t). Note that, for

p = 2, the induced norm is the H∞ norm of the system and for p = ∞, the induced norm is the ℓ1 norm
of the system.

Proof: Using Assumption 2, the model matching transfer function becomes

Em =
C(θ∗)P

1 + C(θ∗)P
−

C(θ)P

1 + C(θ)P
=

C(θ∗)P − C(θ)P

(1 + C(θ∗)P )(1 + C(θ)P )
(2.8)

where the backward shift operator q−1 has been removed for simplicity.
Assuming that the sensitivity function for any controller close to the optimum approximates the desired
one, i.e.,

1

1 + PC(θ)
≈

1

1 + PC(θ∗)
= (1−M), (2.9)

from (2.8) it follows that

Em ≈
C(θ∗)P − C(θ)P

(1 + C(θ∗)P )2
= (1−M)2 [C(θ∗)P − C(θ)P )] (2.10)

Note that, from assumption 2, C(θ∗)P = M/(1 −M). Therefore,

Em ≈ M(1−M)−C(θ) (1−M)2 P. (2.11)

Now, in order to avoid using the plant transfer function, the input signal u(t) is applied to the system in
eq. (2.11), as depicted in the block diagram of Fig. 2.2. In this case, the following model-free equation is
obtained:

Figure 2.2: Tuning problem block diagram

e(θ, t) = M(1−M)u(t)− C(θ) (1−M)2 Pu(t)

= M(1−M)u(t)− C(θ) (1−M)2 (y(t) + v(t))

= M(1−M)u(t)− C(θ) (1−M)
2
y(t) + d(t) (2.12)
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Finally, the noise d(t) is given by d(t) = −C(θ) (1−M)2 v(t).

From the previous analysis, we are in position to define the Feasible Controller Set (FCS), that is, the set
of all controllers C(θ) that are compatible with hypotheses and data.

Definition 1. Feasible Controller Set (FCS):

FCS =

{

C(θ) ∈ C :
∥

∥

∥
M(1−M)u(t)− C(θ) (1−M)2 w(t)

∥

∥

∥

ℓp
≤ δp

}

(2.13)

Notice that, in a noise-free case, i.e., d(t) = 0, it is possible to find a controller C(θ) = C(θ∗), such
that e(θ, t) = 0. However, in any practical setting we have δp > 0, then the set-membership approach is
suitable to find a set containing all the controllers C(θ, t) that are compatible with data, noise bound δp
and a priori information on the reference model M and the controller structure defined by the basis set.
Similarly, the Feasible Parameters Set (FPS) is the set of all parameters θ ∈ Θ that are compatible with
hypotheses and data:

FPS =

{

θ ∈ Θ :
∥

∥

∥
M(1−M)u(t)− C(θ) (1−M)2 w(t)

∥

∥

∥

ℓp
≤ δp

}

(2.14)

Under this definition and previous assumptions, the next theorem is stated.

Theorem 1. Given a dataset D, a reference model M(q−1) and a set of basis functions [β1(q
−1), . . . , βm(q−1)].

If δp ≥ δ∗p, for δ∗p the solution to the convex optimization problem

δ∗p = minθ∈Θ,ε∈ℜ δ (2.15)

s.t.
∥

∥

∥
M(1 −M)u(t) −

∑m
i=1 θiβi (1−M)2 w(t)

∥

∥

∥

ℓp
≤ δ

δ ≥ 0

Then, FPS 6= ∅.

Proof. See Milanese et al. (1996)

Remark 2. A non-empty FPS guarantees a non-empty FCS.

The previous theorem gives a tool to determine if a set of a priori hypotheses is compatible with the
available dataset. For example, it allows to evaluate if a reference model is achievable with the selected
basis functions with acceptable error.

Given a non-empty FPS, the problem of choosing a vector of parameters, and thus a controller, inside
this set arises. According to the Set Membership literature, Milanese et al. (1996), any element inside the
FPS is compatible with the available information and is a valid candidate as optimal controller C(θ∗, q−1).
Working within the parameters space, for any vector θ̂ define its estimation error as

Ee(θ̂) = ‖θ∗ − θ̂‖r (2.16)

For any vector norm r. However, it can not be evaluated because the optimal parameters vector θ∗ is
unknown. The worst-case estimation error of θ̂ is defined as

EWC(θ̂) = max
θ∈FPS

‖θ − θ̂‖r (2.17)

EWC is the maximum distance between the selected solution and any parameters vector compatible with
the available information. An estimate θ̂o is optimal if it minimizes EWC , i.e.,

EWC(θ̂
o) = min

ϑ∈Θ
EWC(ϑ)

The following theorem gives a method to find an optimal estimate of θ∗ in a worst-case setting.
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Theorem 2. The vector

θc =
θ + θ

2

is the Chebyshev center of the FPS and then an optimal estimate of θ∗ for r = ∞, being θ and θ hard
bounds of the parameters feasible intervals, defined as

θi = max θi (2.18)

s.t.

θ ∈ FPS

and

θi = min θi (2.19)

s.t.

θ ∈ FPS

for i = 1, 2, . . . , m.

Remark 3. Note that θc belongs to the FPS, then

C(θc, q−1) ∈ FCS

and therefore C(θc, q−1) is an interpolatory estimate for any system norm, i.e.

‖C∗(θ∗, q−1)−C(θc, q−1)‖s ≤ 2RI

RI being the Radius of Information, i.e., the lowest achievable uncertainty provided by the Chebyshev
center of the FCS measured in a given system norm, Milanese et al. (1996).

Based on the results presented above, the following algorithm summarizes the proposed procedure for the
tuning of controllers for unknown linear plants. It has been named Set-Membership Tuning (SMT).
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Algorithm 1. SMT Algorithm

1. Collect a dataset D performing an experiment starting with plant at rest. Note that the assumptions
on noise do not require open-loop operation.

2. Select a proper reference model M(q−1) and basis functions βi(q
−1).

3. Solve the feasibility problem in eq. (4.33). If the lower bound on noise δ∗ is acceptable go to next
step, otherwise go back to step 2.

4. Build the estimate θc solving problems(2.18) and (2.19) for each component of the parameters vector.

5. Select as controller the system

Cc(θc, q−1) =
m
∑

i=1

θciβi(q
−1)

Finally, an application to illustrate the approach is developed.

2.3 Active suspension Tuning Case Study

The design of controlled suspension systems for road vehicles aims to enhance the vehicle performances
with regard to comfort and road handling. Active suspension systems have the ability to store, dissipate
and introduce energy to the system. As a result, the trade-offs among conflicting design goals can be
better resolved. Comprehensive studies have been published that evaluate the performances of active and
semiactive suspensions (see Lu and DePoyster (2002), Savaresi et al. (2003)).

In this experimental case study, an active suspension platform (AS), from QuanserTM is employed. The
AS is a bench-scale plant to emulate a quarter-car model, controlled by an active mechanism. As is
shown in Fig. 2.3, the plant consists of three floors/plates on top of each other. The top floor resem-
bles the vehicle body, the middle plate represents the wheel and the bottom plate corresponds to the
road. The plates are connected through springs that model a passive suspension and the tire elasticity. A
DC motor is also standing between the top and middle plates to emulate the active suspension mechanism.

The chassis and the wheel are modeled as rigid bodies and static linear characteristics are assumed for the
suspension. The spring-mass model is shown in Fig. 2.4. The parameters characterizing the model are
the sprung mass Ms, representing the mass of the vehicle body while the unsprung mass, Mus represents
the tire in the quarter-car model. The spring Kus and the damper Bus model the stiffness of the tire in
contact with the road. The spring Ks and the damper Bs support the body weight over the tire. Values
of parameters are shown in Table 2.1.

Data-driven controller tuning strategy developed here is compared with VRFT.The latter strategy was
proposed in Lecchini et al. (2002b), and their main characteristics are recalled in Annex A.1.

2.3.1 Controller tuning problem

The objectives of controlled suspensions are to enhance comfort and handling. Comfort is related to
the sprung mass acceleration, while handling is assured by the contact force between the unsprung mass
and the road. In this work, a tracking problem is posed, where the aim is to follow a given suspension
displacement. The force Fc (provided by the DC motor) is the manipulated variable (u), measured in
Newtons (N), and the output variable is the suspension travel (y = x2 − x1) measured in cm (i.e separa-
tion between the top and middle plates).
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Figure 2.3: Active suspension platform

Figure 2.4: Active suspension model

The open-loop step response of the actual plant is shown in Fig. 2.5. The frequency response of the
lumped component model of the system is shown in Fig. 2.6, where the nominal parameters in Table 2.1
are employed. The shape of the step and frequency responses show that the AS exhibits an oscillating
under-damped behavior.

Table 2.1: Active suspension parameters

Parameter Value Unit

Ms 2.45 Kg
Ks 960 N/m
Bs 7.5 N.s/m
Mus 1 Kg
Kus 2500 N/m
Bus 0.01 N.s/m
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The loop performance specifications are defined as a critically damped second order reference model M ,
parametrized by α, as shown in (2.20).

M(q−1) =
(1− α)2q−1

1− 2αq−1 + α2q−2
(2.20)

Note that α indicates the location of the poles defining the desired loop speed and bandwidth. The desired
step response for some values of α are shown in Fig. 2.7. The sampling frequency is fixed as Fs = 30[Hz],
that is, one decade after the second resonance peak of the model.

In accordance with the above conditions and requirements, and in order to test the performance of the
VRFT and SMT methods, two sets of experiments have been performed. The first one is a Monte-
Carlo experiment, where the effect of the length of the dataset and the repetitiveness of the methods are
evaluated. The second one evaluates the behavior of the approaches in front of process disturbances. In
all the tests, ℓp = 2 is fixed for the SMT algorithm (SMT2), in order to have similar noise treatments in
both approaches.

2.3.2 Monte-Carlo experiment

In this set of experiments, one hundred controllers have been obtained and tested on the AS, for each
tuning method. Three cases are addressed, N = 1000, N = 200 and N = 100.

Datasets D required for both algorithms are obtained as follows, firstly a pseudo-random binary sequence
(PRBS) signal with N samples is used as input (u) and suspension travel (x2 − x1) is measured. Output
w is obtained adding white noise v(t) with normal distribution. One hundred noise realizations v(t) allow
to obtain 100 datasets. Note that, the measured signal x2 − x1 has very low noise because the sensor
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Figure 2.5: Open-loop step response of the active suspension.
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resolution is 4.87µm. For each N , the noise variance is selected such that the Signal to Noise Ratio (SNR)
is approximately 20dB. The SNR is calculated as

SNR = 10log

∑N
t=1 y(t)

2

∑N
t=1 v(t)

2
.

As an example, one of the realizations with N = 1000 is shown in fig. 2.8.

The controllers are selected from an extended PID structure with basis functions βi of the form

βi(q
−1) =

q1−i

1− q−1
, i = 1, 2, 3..,m

The first step in the tuning procedure is to define the number of basis that should be employed. Using one
noise realization v(t), datasets D for different N values are build, and for the SMT2, feasibility problem
(4.33) is solved for different reference model parameters α and increasing m values. The same dataset is
used for the VRFT method. In this case, for each m value, the cost function in (A.1) is evaluated. Figs.
2.9 and 2.10 show the results for N = 1000 and N = 100, respectively.

Note that m = 7 is a reasonable number of bases functions when N = 1000 for both approaches. Choos-
ing more parameters is unnecessary and would not decrease the error δ2(θ) in equation (3.9) nor the cost
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Figure 2.7: Step response of Reference models M(q−1) for different α values.
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Figure 2.9: Controller structure selection results. Feasibility bounds for SMT and optimal cost for
V RFT . N=1000.

Jl(θ). On the other hand, choosing fewer parameters would produce an increment of the error in both
cases. However, when N = 100, in Fig. 2.10 it can be noted that the selection of the number of bases is
not clear for the VRFT approach, while such selection for the case of SMT2 remains reasonable for all α
values of the model reference.

Once the structure of the controller is defined, the estimation of the optimal parameters is performed. For
m = 7, N = 1000 and α = 0.765 (i.e rise time 1[s]) a noise bound δ̂2 = 2.7 is fixed to ensure feasibility (i.e
10% larger than δ∗2). Both algorithms are executed for each one of 100 dataset D. The obtained controller
parameters dispersion is shown in Fig. 2.11. Note that, for this large dataset, both algorithms offer a
similar performance with small variations in the obtained parameters. Fig. 2.12 shows the experimental
step response for one of the obtained controllers in each case.

Finally, for each dataset size N , the performance of the 100 estimated controllers, with each method, is
measured experimentally. The quality of the control action is measured as the maximum error (Me) and
the root mean square error (RMSE) of the closed-loop step response. The average and worst-case results
are shown in Table 2.2. As can be seen, for the case of N = 1000 the results are comparable, but in
the cases, N = 200 and N = 100, both performance measures obtained via SMT2 algorithm are better
than those achieved via V RFT algorithm. Furthermore, it is highlighted that when N = 100 the average
RMSE of the SMT2 controllers is about thirty times smaller than the one obtained via V RFT . Note
also that the behavior of the SMT2 controllers for small datasets (N = 100 and N = 200) is superior
to the V RFT controllers in a worst-case sense. The maximum RMSE for the SMT2 solutions, among
the 100 experiments, is more than 10 times lower than those of the V RFT ones, and the maximum peak
error (Me) is almost half.

2.3.3 Process disturbance experiment

In the previous experiment the tuning methods were evaluated taking into account output measurement
noise only. Although, process disturbances are also present in any practical situation. The active suspen-
sion system is able to simulate a road profile by means of a second DC motor driving the lower plate. In
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Figure 2.12: Sample closed-loop step response. N=1000.

Table 2.2: Performance results of Monte-Carlo experiment

Case Measure SMT2 V RFT

N = 1000 RMSE,max(RMSE) 0.0031, 0.0039 0.0032, 0.0040

Me,max(Me) 0.1503, 0.1788 0.1517, 0.1694

N = 200 RMSE,max(RMSE) 0.0021, 0.0032 0.0202, 0.0410

Me,max(Me) 0.1482, 0.1904 0.2889, 0.3581

N = 100 RMSE,max(RMSE) 0.0018, 0.0028 0.0566, 0.1100

Me,max(Me) 0.1051, 0.1555 0.3957, 0.5090

this case, the road profile shown in Fig.2.13a (filtered Gaussian noise) is applied to the system during the
dataset generation experiment, with the same PRBS input u(t) of the first setup. Datasets with lengths
N = 100, N = 150, N = 200, N = 250 and N = 300 are used for testing. As an example, the output
signal y(t) obtained when N = 300 is depicted in Fig. 2.13b. m = 7 is selected for both algorithms and
δ2 = 3.5 is selected for the SMT2 solution.

The closed-loop step-response achieved by the controllers are depicted in Fig. 2.14. The maximum error
(Me) and RMSE of each controller is shown in Table 2.3. The results indicate that both performance
measures obtained via the SMT2 method are better than those achieved with the V RFT approach, for
any N value. Moreover, The step responses show that the SMT2 method is very robust to the size of the
dataset. Similarly to the previous experiment, it is highlighted that when N = 100 the RMSE is about
sixteen times smaller using SMT2 controller than the V RFT one. Also note that, the peak error (Me) is
about two times smaller for the SMT2 solution than the V RFT one, for all N values.
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Figure 2.13: Dataset for process disturbance experiment. N=300.
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Table 2.3: Performance results of process disturbance experiment

Case Measure SMT2 V RFT

N = 100 RMSE 0.0023 0.0380
Me 0.0948 0.3385

N = 150 RMSE 0.0021 0.0091
Me 0.0892 0.2180

N = 200 RMSE 0.0016 0.0045
Me 0.0797 0.1765

N = 250 RMSE 0.0015 0.0026
Me 0.0769 0.1274

N = 300 RMSE 0.0012 0.0023
Me 0.0881 0.1230

2.4 Conclusions

A novel methodology inspired by Set-Membership identification techniques for controller tuning has been
proposed in a discrete-time and linear setting. The algorithm requires experimental information, formed
by input-output measured data from the system to be controlled, operated in open or closed-loop. Hard
bounds on controller parameters are derived employing linear programming techniques. The Chebyshev
center is employed to find an optimal estimate of controller parameters.

We have compared our formulation (SMT) with Virtual Reference Feedback Tuning (VRFT). They do
not rely on a plant model to tune the controllers, but the available input-output data, experimentally
collected from the plant, is directly used to design the controller. Although they differ in the considered
noise model, it is found that that both approaches offer a similar performance when the size of the dataset
is much larger than the dimension of the controller parameters vector.

An extended experimental evaluation on an active suspension system has shown that, using the same
information about the plant to be controlled, the VRFT controllers are strongly affected by the size of
the dataset while the SMT controllers exhibit good performances, even when they are estimated from
reduced datasets. For a samples to parameters ratio below 15, the VRFT method is not able to detect
the required controller parameters and the performance of the derived controllers can be up to 30 times
worse than the SMT results.

The methodology proposed here resorts useful when the plant model is unavailable and the time to
extract the data set is relevant since short experiments lead to reduced data-sets for proper sample time.
In practice, this would help to save time and money.

29



Chapter 3

Limited-complexity Controller Tuning

Some analysis and experiments carried out in the previous chapter have shown that exists a relation
between the performance and the number of bases selected (i.e. choice of m). A m value as low as
possible leads to a low complexity controller. In Formentin and Karimi (2013) is indicated that low
complexity controllers are preferred in the industrial applications because the use of high complexity
controllers implies essentially two drawbacks:

• When the number of controller parameters is large, many arithmetic operations are required (i.e.,
many multiplications and additions), thus slowing down the computational processing.

• High-complexity controllers are fragile, i.e. highly sensitive to round-off errors.

A proper selection of bases and m arise as an interesting topic to analyze in the data-driven controller
design procedure.

In literature, low complexity controllers design has been addressed via different approaches. In Goro and Anderson
(2001), techniques to derive low order controllers by previously performing model order-reduction are ex-
posed. Another alternative is shown in Anderson and Liu (1989) where the high-complexity controllers de-
rived from high-complexity models can be approximated with low-complexity ones by means of controller
order-reduction. In Karimi and Galdos (2010), fixed-order controllers are tuned from high-complexity
models without explicit order-reduction. All the previous approaches are model-based, requiring a math-
ematical model of the processs. A data-driven approach to fixed-order controller design was proposed in
Formentin and Karimi (2013). Specifically, an iterative algorithm based on CbT and ℓ1 regularization to
design sparse-controllers is proposed.

In this chapter, an alternative DDC approach to design low-complexity controllers using a Set Membership
estimation framework is proposed. The main contributions are:

• An efficient algorithm to derive sparse controllers from data is proposed. Linear and quadratic
programming programs are employed to estimate optimal controller parameters, avoiding polynomial
problems.

• The problem of noisy measurements is addressed without statistical assumptions on the disturbance
signals, overcoming the limitations suffered by existing statistical solutions when reduced data sets
are available.

• The proposed controller tuning algorithm does not require iterations or multiple experiments. More-
over, a criterion is provided to suitably manage the trade-off between accuracy and sparsity.

The outline of the chapter is as follows. In Section 3.1, the problem formulation is presented. In Section
3.2, a Set Membership framework to sparse-controller tuning is comprehensively described. Finally, in
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Section 3.3 the proposed solution is evaluated on a benchmark problem, comparing its performance with
an existing approach using sparse CbT. Some conclusions end the chapter in Section 3.4.

3.1 Sparse controller tuning problem

v(t)

r(t) w(t)u(t)
P(q )C(0,q )

-1 -1

Figure 3.1: Assumed feedback control structure

Similarly to the previous section. Consider a discrete-time linear-time invariant (LTI) single-input single-
output (SISO) feedback control scheme, as depicted in Fig. 3.1, where q−1 denotes the backward shift
operator, P (q−1) is the plant transfer function, C(θ, q−1) is the controller transfer function, θ is a vector
of controller parameters, r(k) is the reference signal, v(k) is output noise, u(k) and w(k) are the plant
input and output signals, respectively.

For the system interconnection in Fig. 3.1, the aim of the controller tuning procedure is to select an
optimal controller C0 minimizing some performance criterion. For example, an optimization problem can
be stated as:

C0(θ0, q−1) = arg min
C(θ,q−1)∈C

J(C(θ, q−1)) (3.1)

For the cost function

J(θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)

∥

∥

∥

∥

s

(3.2)

Being s a proper system norm, C the set of LTI systems where the controller is selected, θ a real vector
parameterizing C(θ, q−1) and M(q−1) a reference model for the closed-loop system, where performance
specifications are embedded. As in the previous section, the controller is parametrized as a linear combi-
nation of fixed basis functions, that is,

C(θ, q−1) =

mmax
∑

i=1

θiβi(q
−1)

Where mmax is designated as the maximum allowable controller complexity.
Then, the controller is selected from the set:

C =
{

C(θ, q−1) : θ ∈ Θ ⊆ R
mmax

}

Adding the next assumption to the set of assumptions previously proposed, we will be in a position to
formulate the data-driven controller tuning problem in a sparse framework.
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Assumption 4. The optimal controller C(θ∗, q−1) is sparse, in other words

‖θ∗‖0 ≪ mmax

where

‖θ‖0 = card(supp(θ))

supp(θ)
.
= {i ∈ {1, 2, ...,mmax} , θi 6= 0}

and card(.) is the set cardinality.

Assumption 4 is reasonable, because one would expect that from a “large” set of basis functions, only
some of them are useful for solving problem (2.1), if the set C is properly parametrized.

Assumption 5. Any controller C(θ, q−1) ∈ C can be expressed as:

C(θ, q−1) = C∗(θ∗, q−1)
(

1 + ∆(θ, q−1)
)

with ∆(θ, q−1) a proper and stable transfer function.

The previous assumption is motivated by the fact that common controller structures are usually stable
or marginally stable (with pure integrators). Then, if C∗ and C share poles in z = 1 with the same
multiplicity, the difference between them is always a stable system.

Based on all of the previous assumptions (1-5), we are in position to formulate the data-driven controller
tuning problem in sparse setting:

Problem 2. Sparse-controller tuning: Given a data set D, generated as in Assumptions 1 and 3; a
reference model M(q−1) and a set of basis functions βi, i = 1, ...,mmax satisfying assumptions 2, 4 and 5
identify a coefficient vector θ such that

1. θ is sparse

2. J(θ) in (3.2) is ”small”

Note that since J(θ) depends on the plant but, according to Assumption 1, it is unavailable, therefore is
necessary to express the cost function in terms of the available data set.

3.2 A sparse Set Membership framework for controller tuning

Departing from the assumptions stated in the previous section, in this section, Problem 2 is cast into a
Set Membership identification framework and an efficient algorithm is proposed to find sparse controllers
from data.
Let the model matching error be defined as the argument of the cost function J(θ) in (3.2):

Em(θ) = M −
PC(θ)

1 + PC(θ),
(3.3)

where the shift operator q−1 has been removed for simplicity. This notation is maintained in the following
when possible.
First, the model matching error is expressed in a convenient form.
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Theorem 3. For any controller C(θ, q−1) ∈ C , satisfying assumption 5, the model matching error Em(θ)
in (3.2) can be expressed as:

Em(θ) =
1

1 +M∆(θ)

(

M(1−M)− C(θ)(1−M)2P
)

(3.4)

Proof: From assumption 2, it is known that

M =
C∗P

1 + C∗P

and

1−M =
1

1 + C∗P
.

Then, the model matching error system can be expressed as:

Em(θ) = M −
C(θ)P

1 + C(θ)P

=
C∗P

1 + C∗P
−

C(θ)P

1 + C(θ)P

After some algebra we have,

=
C∗P − C(θ)P

(1 +C∗P )(1 + C(θ)P )

=
C∗P −C(θ)P

(1 +C∗P )(1 + (1 + ∆(θ))C∗P )

=
C∗P − C(θ)P

(1 +C∗P )2(1 + C∗∆(θ)P
1+C∗P

)

=
1

1 +M∆(θ)

(

C∗P

(1 + C∗P )2
−

C(θ)P

(1 + C∗P )2

)

=
1

1 +M∆(θ)

(

M(1−M)− (1−M)2C(θ)P
)

arriving to the stated modelling error system.

Fig. 3.2 shows a block-diagram of the equivalent model matching error system, derived in Theorem 3.
Note that the system contains an output inverse multiplicative uncertainty structure that allows to state
the following Corollary:

M(1-M)

P (1-M)
2

v(t)

u(t) e(0,t)

C(0,t) M

e(0,t)

Figure 3.2: Model Matching block diagram
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Corollary 1. Given a controller C(θ) ∈ C, the transfer function Em(θ) is input-output stable if:

|∆(θ, ejω)| < |M(ejω)|,∀ω ∈ [0, π] (3.5)

The result follows from the Nyquist stability condition for the inverse multiplicative uncertainty structure
in eq. (3.4).
The following Corollary allows to transform the model-based controller design problem in eq. (2.1) into
an identification problem.

Corollary 2. Given a data set D generated as in assumption 1, affected by noise bounded as in assumption
3, any controller C(θ) ∈ C, guaranteeing an internally stable loop, satisfies the time-domain relations:

em(θ, t) =
1

1 +M∆(θ)
∗ em(t) (3.6)

em(θ, t) = [M(1 −M)] ∗ u(t)−

[C(θ) (1−M)2] ∗ w(t) + d(θ, t) (3.7)

d(θ, t) = (1 + ∆(θ))C∗ (1−M)2 ∗ v(t) (3.8)

and d(θ, t) is an UBB signal with bound

‖d(θ, t)‖ℓp ≤
∥

∥

∥
(1 + ∆(θ))C∗ (1−M)2

∥

∥

∥

ℓp,ℓp
ǫp = δp (3.9)

Moreover, for an optimal controller C∗(θ∗), it holds:

em(t) = em(t) (3.10)

M(1−M) ∗ u(t) + d(t) = C∗(θ∗)(1−M)2 ∗ w(t) (3.11)

Proof: The results are the time domain relations of applying the signal u(t) to the model matching error
system in (3.2) and using the experimentally measured plant output w(t) as input to the sub-system
(1−M)2 in the lower branch of the block-diagram in Fig. 3.2.

The resulting output noise d(t) is bounded because the transfer function in (3.8) is input-output stable
under the hypotheses that ∆(θ) is stable and C∗(θ∗) guarantees an internally stable loop.
From the previous development, it is possible to cast the data-driven controller tuning problem into an
identification problem.
let

yc(t) = M(1−M) ∗ u(t) (3.12)

uc(t) = (1−M)2 w(t) (3.13)

Then, for an optimal controller C(θ∗), eq. (3.11) can be rewritten as

yc(t) + d(t) = C(θ∗)uc(t) (3.14)

Note that, equation (3.14) corresponds to an identification problem with additive noise, where the system
to be estimated is C(θ∗).
While the available data set is generated within an errors-in-variables setting, with the unknown signal
v(t) affecting the controller input, in this work, it is possible to perform an over-bounding of the noise,
moving it to the controller output, thanks to the guaranteed input-output stability in (3.9). Previous
approaches have used errors-in-variables identification algorithms, that in a Set-Membership setting lead
to highly complex optimization problems, see e.g. Cerone et al. (2017).
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3.2.1 The Feasible Parameters Set

From the previous analysis, we are in position to define the Feasible Parameters Set (FPS), that is, the
set of all controller parameters θ that are compatible with hypotheses and data.

Definition 2. Feasible Parameter Set (FPS):

FPS =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δp

}

(3.15)

where
Yc = [yc(1), yc(2), . . . yc(N)]T ,

Φ = [φ1, φ2, . . . φmmax ]

and
φi = [yβi(1), yβi(2), . . . yβi(N)]T ,

with

yβi(t) =

t
∑

j=0

hβi

j uc(t− j),

where hβi

j corresponds to impulse response of the basis βi.

Notice that, in a noise-free case, i.e., d(t) = 0, it is possible to find a controller C(θ) = C(θ∗), such that
e(θ, t) = 0. However, in any practical setting we have δp > 0 and then, the Set Membership approach
is suitable to find a set containing all the controllers C(θ) that are compatible with data, noise bound
δp and a priori information on the reference modelM and the controller structure, defined by the basis set.

Under the definition of the FPS and previous assumptions, the next theorem is stated.

Theorem 4. Given a data set D, a reference model M(q−1) and a set of basis functions {β1(q
−1), . . . , βmmax(q

−1)}.
If δp ≥ δmin

p , for δmin
p the solution to the convex optimization problem

δmin
p = minθ∈Θ δ (3.16)

s.t.

‖Yc − Φθ‖ℓp ≤ δ

δ ≥ 0

Then, FPS 6= ∅.

Proof:
Note that θ∗, the argument minimizing (4.33), guarantees,

‖Yc − Φθ∗‖ℓp ≤ δp

Then, θ∗ ∈ FPS.
As theorem 1, the previous theorem gives a tool to determine if a set of a priori hypotheses is compatible
with the available data. For example, it allows to evaluate if a reference model is achievable with the
selected basis functions with acceptable error.
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3.2.2 Finding a sparse controller

The FPS defined in the previous subsection does not take into account assumption 4, that is, the feasible
controllers can have any cardinality. Under Assumption 4, a feasible parameters set can be defined, where
controllers have the structure of C∗(θ∗), i.e.,

Definition 3. Feasible Sparse Parameters Set (FSPS):

FSPS = {θ ∈ Θ : supp(θ) = supp(θ∗),

‖Yc − Φθ‖ℓp ≤ δp

}

(3.17)

However, the support of the optimal controller is unknown. The sparsest controller, compatible with
hypotheses and experimental data might be found solving the following optimization problem:

θ∗ =argmin
θ∈Θ

‖θ‖0 (3.18)

s.t.

‖Yc − Φθ‖ℓp ≤ δp

In fact, maximizing the sparsity of a vector corresponds to minimizing its l0 quasi-norm. However, the
ℓ0 quasi-norm is a non-convex function and its minimization is, in general, an NP-hard problem. In an
identification framework, convex relaxations, see e.g. Tropp (2006); Donoho et al. (2006); Fuchs (2005),
and greedy algorithms, see e.g. Tropp (2004), are the main approaches to deal with this problem.
Instead of minimizing the support of the controller, a different approach is to limit the complexity of the
controllers set to a fixed number of basis functions mθ. This leads to the next limited complexity feasible
parameters set:

Definition 4. Limited complexity Feasible Parameter Set (FPS):

FPS(mθ) =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δp ∧ ‖θ‖0 = mθ

}

(3.19)

Note that FPS(mθ) is the union of (mmax
mθ

) subsets with the same cardinality and, to fully characterize the
set, it is necessary to verify the feasibility condition established in Theorem 4 for each sub-set of bases
guaranteeing ||θ||0 = mθ, this is a combinatorial problem intractable for large sets of basis functions.
Instead of verifying the feasibility of each sub-set in FPS(mθ), in this work we propose a “smart” selection
of active basis functions, following an approach similar to Novara (2016), where a greedy algorithm is
proposed in the context of system identification for fault detection.
The proposed limited-complexity controller estimation algorithm has two steps. First, the support of a
particular controllers set is estimated and then, an interpolatory solution is provided.
Consider the optimization problem

θ1 =argmin
θ∈Θ

‖θ‖1 (3.20)

s.t.

‖Yc − Φθ‖ℓp ≤ δp

where δp guarantees a non-empty FPS, according to Theorem 4. Recall that the ℓ1 norm is the convex
envelope of the ℓ0 quasi-norm, and its minimization yields a sparse vector θ1 Tropp (2006); Donoho et al.
(2006); Fuchs (2005).
From the optimal solution θ1 obtained in (3.20), the following definition provides an ordered set of bases.
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Definition 5. Let
r(θ1)

.
=
{

i1, ...immax :
∣

∣θ1i1
∣

∣ ≥ ... ≥
∣

∣θ1immax

∣

∣

}

.

For any mθ ∈ {1, 2, . . . ,mmax}, the support of any controller of complexity mθ is

λ(mθ) = {i1, i2, . . . , imθ
} (3.21)

Note that r(θ1) is the set of basis indexes, sorted by the amplitude of the elements of θ1.
From the previous ordered set of bases, the Feasible Sparse Parameters Set is defined as:

Definition 6. Feasible Sparse Parameters Set (FSPS) of complexity mθ:

FSPS(mθ) =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δs ∧

θi = 0,∀i 6∈ λ(mθ)} (3.22)

Lemma 2. If δs ≥ δmin
s (mθ), for δmin

s (mθ) the solution to the convex optimization problem

δmin
s (mθ) = minθ∈Θ δ (3.23)

s.t.

‖Yc − Φθ‖ℓp ≤ δ

δ ≥ 0

θi = 0,∀i 6∈ λ(mθ)

Then, FSPS(nθ) 6= ∅.

Corollary 3. Let ǫ(mθ) = δmin
s (mθ)− δmin

p , then ǫ(mθ) ≥ 0.
Moreover, if ǫ(mθ) = 0, then FSPS(mθ) ⊂ FPS.

The previous results follow from the fact that, for any δ, the feasible set in optimization problem (4.33)
contains the feasible set in problem (3.23).
For any mθ, such that ǫ(mθ) = 0, the selected subset of basis functions guarantee the same accuracy
explaining the available data than the full basis set. It follows that the behavior of ǫ(mθ) is an indicator of
the trade-off between accuracy and sparsity, allowing the designer to select a proper controller complexity
mθ.
Once the support of the controller is defined, the final step in the controller tuning procedure is to select
a vector of parameters θ̂ belonging to FSPS(mθ), guaranteeing an small closed-loop error. Two solutions
are proposed:

• The following optimization problem allows to identify an interpolatory estimate, minimizing the
controller output error on the available data set:

θ̂I = arg min
θ∈Θ

‖Yc − Φ(t)θ‖ℓp (3.24)

s.t.

θi = 0,∀i /∈ λ(mθ)

• A central estimate, given by the Chebyshev center of the FSPS(mθ), can also be employed, min-
imizing the worst-case error in the parameter space, but increasing the computational complexity
of the tuning process.

θ̂C = arg min
θ

max
θ′∈FSPS(mθ)

∥

∥θ − θ′
∥

∥

ℓq
(3.25)

s.t.

θi = 0,∀i /∈ λ(mθ)
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Now we are in a position to propose a limited-complexity controller estimation algorithm as follows.

Algorithm 2. Sparse Set Membership tuning algorithm (SSMT)

1. Collect a data set D performing an experiment starting with the plant initially at rest. Note that
the assumptions on noise do not require open-loop operation.

2. Select a proper reference model M and basis functions set {β1, β2, . . . , βmmax}.

3. Obtain a lower noise bound δp (see Theorem 4).

4. Solve the optimization problem

θ1 =argmin
θ∈Θ

‖θ‖1 (3.26)

s.t.

‖Yc − Φθ‖ℓp ≤ δp

and construct vector r(θ1) as in Definition 5.

5. Select an sparsity error tolerance bound ǫmax and perform the following iteration:

for j = 1 : mmax − 1

mθ = mmax − j

θ(j) = argmin
θ∈Θ

‖Yc − Φθ‖ℓp

s.t.

θi = 0,∀i 6∈ λ(mθ)

if ‖Yc − Φθ(j)‖ℓp ≤ δp + ǫmax

θ̂ = θ(j)

else

break

end

After, arranging the elements of θ1 in decreasing amplitude order, in step 5 the bases with smaller
coefficients are removed, one by one, until the given threshold ǫmax for the output error increment is
reached.

Remark 4. ǫmax can be tuned to suitably manage the trade-off between accuracy and sparsity in step 5,
since large values of ǫmax lead to large sparsity, that is, mθ ≪ mmax.

Under suitable conditions on Φ and θ1, the results in Novara (2012) guarantee that θ̂, derived by Algorithm
1, is maximally sparse with the same support as θo.

3.3 Numerical Case Study

In this section, the proposed approach is evaluated on simulated data, generated by a flexible-transmission
model, comparing its performance against a sparse-CbT algorithm, proposed in Formentin and Karimi
(2013). As far as the authors are aware, it is the only reported method that uses a sparse approach to
solve Problem 2.
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Consider the flexible transmission system introduced as a benchmark for digital control design in Landau et al.
(1995). The plant transfer function is:

P (q−1) =
0.28261q−3 + 0.50666q−4

1− 0.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4

The control objective is given in terms of model-reference specifications, given by:

M(q−1) =
(1− α)2 q−3

(1− αq−1)2

where α indicates the location of the poles defining the desired loop speed and bandwidth. As in previous
works with this benchmark, it is used Ts = 0.05 s and α = 0.6. The basis functions parametrizing the
controller are:

βi(q
−1) =

q1−i

1− q−1
, i = 1, 2, ...,mmax .

It is assumed mmax = 12.
First, a data set of N = 200 samples is generated with the system operating in open loop, input u(t) is
generated as a i.i.d noise with variance 4. The plant output w(t) is affected by additive output noise v(t)
generated as i.i.d. samples of a uniform distribution with zero mean an a Signal to Noise Ratio (SNR) of
20dB. The SNR is calculated as

SNR = 10log

∑N
t=1 y(t)

2

∑N
t=1 v(t)

2
.

Then, Theorem 4 is employed to determine lower bounds on the output noise norm δmin
p . p = 2 is selected

as signal norm and different reference models (i.e different α values) are tested for several mmax values.
In this case, all the mmax basis functions are employed. Results are shown in Figure 5.4. Note that, for
fast reference models (α small), the noise bound is high even for a large set of basis. On the other side,
for α = 0.6, δmin

2 ≈ 2.8 can be selected as a validated bound.
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Figure 3.3: Lower noise bounds for different reference models and controller complexities (mmax).

The next step is to execute step 5 in Algorithm 1. Different ǫmax values are considered, in order to
highlight the trade-off between accuracy and sparsity. Results are reported in Figure 3.4. It is shown
that increasing ǫmax leads to higher sparsity. When ǫmax = 0, i.e., FSPS ∈ FPS, 10 bases are selected
by the algorithm, while ǫmax = 0.8 offers an acceptable trade-off to obtain a ”low-complexity” controller.
In this case the estimated sparse-controller is:

39



C(θ̂) =
0.1006 − 0.0308q−1 + 0.0625q−5

1− q−1

The complexity is mθ = 3, and the bases selected by the algorithm are βi(q
−1) = q1−i

1−q−1 , i = 1, 2, 6.
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Figure 3.4: Sparsity results for different ǫmax values.

Finally, the solution proposed in Formentin and Karimi (2013) is applied to the available data set. The
sparse CbT algorithm relies on ℓ1 regularization. The cost function to be minimized is:

θ̂(j) = argmin
θ

[

J(θ) + λ
∥

∥

∥
W (j)θ

∥

∥

∥

1

]

(3.27)

where J(θ) is the 2-norm of the correlation signal between a model error and a properly selected instru-
mental variable, W is a weighing diagonal matrix and j is a counter index.
Parameters l = 30 (instrumental variable length), λmax = 0.15 (upper bound on regularization weight),
jmax = 10 (maximum number of iterations), and ǫ = 0.01 (lower bound of weights in matrix W ) are
selected, according to the criteria given in Formentin and Karimi (2013). Initially, λ = 0.01 is employed
but the algorithm does not converge (i.e. when j = jmax, ‖θ‖0 > mθ ), results are reported in Table 3.1.
A second test with λ = 0.12 is performed and the results are reported in table 3.2. It can be seen that
the algorithm converges after 3 iterations.

Table 3.1: SCbT convergence results for λ = 0.01

iteration 1 2 3 4 5 6 7 8 9 10

‖θ‖0 12 12 10 8 8 8 8 7 7 7

Table 3.2: SCbT convergence results for λ = 0.12

iteration 1 2 3 4 5 6 7 8 9 10

‖θ‖0 12 5 3 3 3 3 3 3 3 3
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The sparse-controller obtained is

C(θ̂) =
0.0951 − 0.0235q−1 + 0.0643q−5

1− q−1

Note that the bases selected by the SCbT algorithm coincide with those identified by the SSMT algorithm.

3.3.1 Monte-Carlo test

A final test is performed, where a Monte-Carlo experiment allows to evaluate the behavior of the algorithm
for 100 realizations of noise v(t), leading to 100 data sets D, all of them maintaining a SNR ≈ 20dB.
For each data set and method, a controller has been tuned and tested on the model of the plant P . Four
cases are addressed, N = 300, N = 200, N = 100 and N = 70. The controllers have been tuned as
described in the previous example. In the SCbT method l = 30 or l = 20 is used according to data length
N .
For each data set size N , the performance of the estimated controllers is measured via simulation. The
quality of the resulting control action is measured as the maximum error (Me) and the root mean square
error (RMSE) of the closed-loop step response with respect to the reference model. The average and
worst-case results are shown in Table 3.3.
As can be seen in Table 3.3, for the case of N = 300 the results are comparable for both methods. But,
for N = 200, the RMSE almost doubles for the SCbT method. For the cases N = 100 and N = 50,
both performance measures for the controllers obtained via SSMT method keep constant, while those
achieved via SCbT algorithm increase. It is highlighted that in all cases the SSMT method proposed in
this work shown better results than the SCbT method.
Figure 3.5 shows the percentage of experiments (noise realizations) for which, each algorithm properly

estimated the optimal basis functions βi(q
−1) = q1−i

1−q−1 , i = 1, 2, 6. For N = 300 both methods are able
to recover the correct basis. However, for smaller data sets, the SCbT method is not always able to find
the correct bases to construct the sparse-controller, even when the number of iterations jmax = 15 is
selected, this was expected because the condition ℓ/N ≪ 1 is not fulfilled, such condition is required for
the correlation method (see details in Karimi et al. (2007)). For N = 70, correct bases are obtained in
less than 50% of the experiments for the SCbT method. Moreover, in some cases it produces unstable
closed-loops. However, the performances measures reported in Table 3.3 consider only stable controllers.

Table 3.3: Results for Monte-Carlo experiment

Case Measure SSMT SCbT

N=300, RMSE/max(RMSE) 0.0048/0.0051 0.0068/0.0093

l=30 Me/max(Me) 0.1996/0.2025 0.2437/0.2770

N=200, RMSE/max(RMSE) 0.0050/0.0051 0.0100/0.0102

l=30 Me/max(Me) 0.1941/0.2053 0.2641/0.2745

N=100, RMSE/max(RMSE) 0.0041/0.044 0.0235/0.1153

l=30 Me/max(Me) 0.1914/0.1950 0.3650/0.5602

N=70, RMSE/max(RMSE) 0.0048/0.0051 0.0812/0.1133

l=20 Me/max(Me) 0.1914/0.1950 0.2599/0.2776

3.4 Conclusions

We have developed a new Data-Driven approach to design limited-complexity controllers for linear systems
using Set Membership techniques and sparse identification methods. An algorithm has been proposed
in order to solve the sparse-controller tuning problem, supported by feasibility theorems that provide a
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Figure 3.5: Results for bases selection.

single parameter to adjust the complexity-accuracy trade-off.

The proposed algorithm here avoids solving big combinatorial problems that arise when the dimension
of the vector parameterizing the candidate controllers is large and the number of desired parameters is
much lower.

A benchmark flexible transmission model is employed to illustrate the performance of the proposed
methodology (SSMT), in comparison to the sparse correlation based tuning approach (SCbT). It is found
that both approaches offer similar performance when the size of the data set is much larger than the
dimension of the controller parameters vector. Notwithstanding, the SCbT controllers are strongly af-
fected when data set size is reduced, while the SSMT controllers exhibit good performances even when
the controller parameters are estimated from reduced data sets. Moreover, SSMT method has just one
parameter to be adjusting and it has a direct interpretation as modeling error bound, simplifying the
tuning procedure.
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Chapter 4

2 DoF controller structures

It is well known that the main advantage of Two-Degree-of-Freedom controllers (2DoF) over 1DoF, is
that the first allow to tune the reference model for the closed-loop function and the reference model for
the sensitivity at the same time. However, few work has been performed about tuning methods for 2DOF
controllers via data-driven approaches, see e.g. Lecchini et al. (2002b); Previde et al. (2010).

4.1 Problem formulation

In this Section, the data-driven 2DoF controller design problem is formulated. It is proposed a scheme
to avoid the requirement of the plant model P (q−1) in the procedures for: (i) sensitivity tuning and, (ii)
closed-loop reference model tuning.

P

Figure 4.1: Two-Degree-of-Freedom feedback control system

Consider the discrete-time linear-time invariant (LTI) single-input single-output (SISO) 2DoF feedback
control scheme, depicted in Figure 4.1, where q−1 denotes backward shift operator, P (q−1) is the plant
transfer function, Cf (ρ, q

−1) and Cs(θ, q
−1) are feed-forward controller and main controller transfer func-

tions respectively, ρ and θ are vectors of controllers parameters. For the system interconnection shown in
Figure 4.1, the aim of the controller tuning procedure is to select optimal controllers Co

f and Co
s minimizing

some performance criterion. For example, the following two optimization problems can be stated:

Co
s (θ, q

−1) = argmin J1(θ) (4.1)

Co
f (ρ, q

−1) = argmin J2(ρ, θ) (4.2)

for the costs

J1(θ) =

∥

∥

∥

∥

S(q−1)−
1

1 + P (q−1)Cs(θ, q−1)

∥

∥

∥

∥

s

(4.3)
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and

J2(ρ, θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)(Cs(θ, q

−1) + Cf (ρ, q
−1))

1 + P (q−1)Cs(θ, q−1)

∥

∥

∥

∥

s

(4.4)

where s is a proper system norm, M(q−1) is a model reference for the closed-loop function (I/O transfer
function), and S(q−1) is a reference model for the sensitivity function. Note that problems (4.1) and (4.2)
should be solved sequentially. The solution of problem (4.1) corresponds to the controller Cs(θ). Then,
when such controller is known, problem (4.2) can be solved in order to obtain controller Cf (ρ).

If P (q−1) is known, problems (4.1) and (4.2) can be seen as a loop-shaping problem and, for H2, H∞,
and l1 norms, known techniques exist to solve it under proper basis selection Zhou and Doyle (1998).
However, when system P (q−1) is unknown, such problems can not be solved directly.

Before to state the data-driven controller tuning problem, some definitions and remarks are presented.

Definition 7. Sensitivity matching error transfer function: The sensitivity matching error transfer func-
tion Es(q

−1) is defined as:

Es(q
−1) = S(q−1)−

1

1 + P (q−1)Cs(θ, q−1)
(4.5)

Definition 8. Sensitivity matching error transfer function: For any given sensitivity function S(q−1),
the ideal controller C∗

s (ρ, q
−1) is defined as the controller such that the condition

Es(q
−1) = 0 (4.6)

is satisfied.
Therefore, the ideal controller is

C∗
s (θ, q

−1) =
1− S(q−1)

P (q−1)S(q−1)
(4.7)

It is worth noting that, C∗
s (ρ, q

−1) could be complex or, in the worst case, not physically realizable.
However, the former definition plays a key role in our approach for data-driven controller tuning.

Definition 9. Model matching error transfer function:

Em(q−1) = M(q−1)−
P (q−1)(Cs(θ, q

−1) + Cf (ρ, q
−1))

1 + P (q−1)Cs(θ, q−1)
(4.8)

Definition 10. Ideal controller for model-reference tuning: If we assume that ideal controller C∗
s (θ, q

−1)
is known, the ideal controller C∗

f (ρ, q
−1) is defined as the system such that the condition

Em(q−1) = 0 (4.9)

is satisfied.
Therefore, the ideal controller is

C∗
f (ρ, q

−1) =
P (q−1)C∗

s (θ, q
−1)[M(q−1)− 1] +M(q−1)

P (q−1)
(4.10)

Evidently, C∗
f (ρ, q

−1) can also be complex and even not physically realizable.

As in the previous sections, the controllers to implement are parametrized as a linear combination of fixed
basis functions, that is,
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Cs(θ, q
−1) =

m
∑

i=1

θiβi(q
−1)

Cf (ρ, q
−1) =

mρ
∑

i=1

ρiβ
ρ
i (q

−1) (4.11)

Where m and mρ are designated as the controllers order.

Based on the Assumptions 1 and 3 and previous definitions, a new controllers tuning problem can be
stated as follows:

Problem 3. Data-Driven Two-degree-of-freedom tuning: Given a data set D generated as in Assumption
1, a noise bounded as Assumption 3, a reference closed loop model M(q−1), a sensitivity model S(q−1).
Find vectors θ̂ and ρ̂ that approximately solve problems stated in (4.1) and (4.2).

As above mentioned, problems 4.1 and 4.2 can be sequentially solved, in order to solve the problem 3 .
Results of the next two subsections allow to tackle the sub-problems involved. The technique proposed
here is named Output Error Approach (OEA).

4.2 Sensitivity tuning via Set-membership

In order to pose the problem in a set-membership framework, the next lemma is proposed.

Lemma 3. Given a data set D generated as in Assumption 1 affected by noise bounded as in Assumption
3. Then, any controller Cs(θ) satisfies the time-domain relation,

e(θ, t) = S2Cs(θ)y(t)− S(1− S)u(t) + d(t) (4.12)

where e(θ, t) is the output of the model matching error sensitivity transfer function,

Es(q
−1) = S(q−1)−

1

1 + P (q−1)Cs(θ, q−1)
(4.13)

and the unknown signal d(t) is bounded as

‖d(t)‖ℓp ≤
∥

∥S2Cs(θ)
∥

∥

ℓp,ℓp
ǫp = δsensp (4.14)

where ℓp ∈ [2,∞] and
∥

∥S2Cs(θ)
∥

∥

ℓp,ℓp
is the proper induced norm of the system relating v(t) and d(t).

Proof: From Definition 7, Es can be rewritten as

Es =
1

1 + PC∗
s (θ)

−
1

1 + PCs(θ)
(4.15)

since the Equation (4.7) indicates that 1
1+PC∗

s (θ)
= S.

Note that, to simplify notation, we drop the backward shift operator q−1. Now, the sensitivity matching
error transfer function also is given by

Es =
(1 + PCs(θ))− (1 + PC∗

s (θ))

(1 + PC∗
s (θ))(1 + PCs(θ))
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P

Figure 4.2: Block diagram for sensitivity tuning

and, if we introduce the following approximation

1

1 + PCs(θ)
≈

1

1 + PC∗
s (θ)

= S, (4.16)

then, Es is given by

Es ≈ S[SCs(θ)P − SC∗
s (θ)P ].

Finally, using (4.7) to replace C∗
s (θ), the following expression is obtained,

Es ≈ S2Cs(θ)P − S(1− S). (4.17)

Since the transfer function of the plant is unknown, we can multiply both sides of above equation by
signal u(t), in such way the following model-free equation is obtained:

e(θ, t) = S2Cs(θ)w(t)− S(1− S)u(t) (4.18)

Now, in order to avoid using the plant transfer function, the input signal u(t) is applied to the system in
eq. (4.18), as depicted in the block diagram of Fig. 4.2. In this case, the following model-free equation is
obtained:

ǫs(θ, t) = S2Cs(θ)w(t)− S(1− S)u(t) (4.19)

= S2Cs(θ)(y(t) + v(t))− S(1− S)u(t) (4.20)

= S2Cs(θ)y(t)− S(1− S)u(t) + d(t) (4.21)

where d(t) = S2Cs(θ)v(t).

Finally, from Assumption 3, for any controller Cs(θ) guaranteeing an internally stable loop, the noise d(t)
can be bounded as,

‖d(t)‖ℓp ≤
∥

∥S2Cs(θ)
∥

∥

ℓp,ℓp
ǫp = δsensp

Now, we are in position to define a Feasible Parameters Set (FPSCs) as the set of all parameters θ ∈ Θ
that are compatible with hypotheses and data, as follows,

Definition 11. Feasible parameters set to sensitivity tuning:

FPSCs = {θ ∈ Θ :
∥

∥S2Cs(θ)w(t)− S(1− S)u(t)
∥

∥

ℓp
< δsensp } (4.22)

Theorem 5. Given a dataset D as Assumption 1, a sensitivity model S(q−1), a noise bounded as As-
sumption 3, and a set of basis functions [β1(q

−1), . . . , βm(q−1)]. If δp ≥ δsens∗p , for δsens∗p the solution to
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the convex optimization problem

δsens∗p = minθ∈Θ,ε∈ℜ δ (4.23)

s.t.
∥

∥S2Cs(θ)w(t)− S(1− S)u(t)
∥

∥

ℓp
< δ

δ ≥ 0

Then, FPSCs 6= ∅.

Remark 5. The Chebyshev center calculated using Theorem 2 can be employed to calculate the controller
parameters, but this time using FPSCs.

4.3 Closed-loop reference model tuning

In order to pose this problem in a set-membership framework, the next lemma is proposed.

Lemma 4. Given a data set D generated as in Assumption 1 affected by noise bounded as in Assumption
3, and a controller Cs(θ̂, q

−1). Then, any controller Cf (ρ, q
−1) satisfy the time-domain relation

e(ρ, θ, t) = Mu(t)− S
[

Cs(θ̂) + Cf (ρ)
]

y(t) + d(t) (4.24)

where e(ρ, t) is the output of the model matching error transfer function,

Em(q−1) = M(q−1)−
P (q−1)(Cs(θ̂, q

−1) + Cf (ρ, q
−1))

1 + P (q−1)Cs(θ̂, q−1)
(4.25)

and the unknown signal d(t) is bounded as

‖d(t)‖ℓp ≤
∥

∥

∥
S(Cs(θ̂) + Cf (ρ))

∥

∥

∥

ℓp,ℓp
ǫp = δMp (4.26)

Proof: From Definition 9, Em can be rewritten as

Em(q−1) = M(q−1)−
P (q−1)(Cs(θ̂, q

−1) + Cf (ρ, q
−1))

1 + P (q−1)Cs(θ̂, q−1)
(4.27)

Now, taking into account that that 1
1+PC∗

s (θ)
= S ≈ 1

1+PCs(θ̂)
, then Eq. 4.27 can be rewritten as follows

Em(q−1) ≈ M(q−1)− S(Cs(θ̂, q
−1) + Cf (ρ, q

−1))P (q−1) (4.28)

t)

P

Figure 4.3: Block diagram for closed-loop model reference tuning

Since the transfer function of the plant is unknown, we can multiply both sides of above equation by
signal u(t) as is depicted in Figure 4.3, in such way the following model-free equation is obtained:
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e(ρ, t) = Mu(t)− S
[

Cs(θ̂) + Cf (ρ)
]

w(t) (4.29)

= Mu(t)− S
[

Cs(θ̂) + Cf (ρ)
]

(y(t) + v(t)) (4.30)

= Mu(t)− S
[

Cs(θ̂) + Cf (ρ)
]

y(t) + d(t) (4.31)

where it is easy to deduce that d(t) = S
[

Cs(θ̂) + Cf (ρ)
]

v(t).

Finally, from Assumption 3, and given a controller Cs(θ̂) that guarantees an internally stable loop, the
noise d(t) can be bounded as,

‖d(t)‖ℓp ≤
∥

∥

∥
S(Cs(θ̂)) + Cf (ρ))

∥

∥

∥

ℓp,ℓp
ǫp = δMp

Remark 6. Under the assumption that Cs(θ̂)) is a stabilizing controller, an easy way to guarantee that
d(t) is bounded is selecting Cf (ρ) controller as Cf (ρ) ∈ H∞

Now, it is possible to define a Feasible Parameters Set (FPSCf
) as the set of all parameters ρ ∈ P that

are compatible with hypotheses and data, as follows,

Definition 12. Feasible parameters set to closed-loop model reference tuning:

FPSCf
= {ρ ∈ P :

∥

∥

∥
Mu(t)− S

[

Cs(θ̂)) + Cf (ρ)
]

w(t)
∥

∥

∥

ℓp
< δMp } (4.32)

Theorem 6. Given a Cs(θ̂), a dataset D as Assumption 1, a reference model M(q−1), a noise bounded
as Assumption 3, and a set of basis functions [βρ

1(q
−1), . . . , βρ

mρ(q−1)]. If δp ≥ δM∗
p , for δM∗

p the solution
to the convex optimization problem

δM∗
p = minρ∈P,ε∈ℜ δ (4.33)

s.t.
∥

∥

∥
Mu(t)− S(Cs(θ̂) + Cf (ρ))w(t)

∥

∥

∥

ℓp
< δ

δ ≥ 0

Then, FPSCf
6= ∅.

Remark 7. The Chebyshev center calculated using Theorem 2 can be employed to calculate the controller
parameters, but this time using FPSCf

.

4.4 Illustrative examples

4.4.1 Comparison Set-membership approaches

In this Section a numeric example is used to compare our approach (OEA) against Errors in Variables
approach, which has been proposed in Cerone et al. (2017) for 1DoF controller tuning problem. In this
work such method has been adapted to 2DoF controller tuning problem. Details can be found in Annex
A.3.

Consider the LTI stable system

P (q−1) =
q−1

1− 0.6q−1
(4.34)
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This system has been employed in Campi et al. (2002) for controller design from data with VRFT ap-
proach.

The goal is to find the controllers Cs(q
−1) and Cf (q

−1) such that the sensitivity function and I/O transfer
function behave as

S(q−1) =
1− q−1

1− 0.4q−1
(4.35)

M(q−1) =
0.8q−1 − 1.04q−2 + 0.336q−3

1− 1.6q−1 + 0.84q−2 − 0.144q−3
(4.36)

If system P (q−1) is known, simple algebra leads to the following controllers:

Cs(q
−1) =

0.6− 0.36q−1

1− q−1
, Cf (q

−1) = 0.2 (4.37)

The system is excited by a random input sequence u(t) uniformly distributed in the range [−3, 3]. To
compare the effect of the data set size, experiments with N = 100, N = 200 and N = 300 are considered.
The plant output sequence y(t) is corrupted by random additive noise v(t). In this work two different
cases are investigated, the first with a SNR ≈ 20dB (moderate noise) and the second with SNR ≈ 30dB
(small noise).

If we fix the value of aCs

1 = 1, in order to ensure integral action, and a
Cf

1 = 0 to ensure a class of propor-

tional controllers for Cf , then the parameters θ∗ = [bCs
0 , bCs

1 ] = [0.6,−0.36] and ρ∗ = [b
Cf

0 ] = [0.2] must be
found.

4.4.1.1 Computational solution

For the OEA solution, we select p = 2, noise bounded in 2-norm. For all cases of N and SNR, δ2 = 3 is
selected, since preliminary testing indicates that lower values produce unfeasible results (i.e FPS = ∅).
The CVX Matlab toolbox is used to solve problems (2.18) and (2.19).

For the EiVA ∆v is known. However, it is worth noting that some tests led to infeasible results, therefore
choosing larger ∆v (+3%) is necessary. Problems (A.14) and (A.15) are solved by means of a convex
relaxation approach, as proposed in Cerone et al. (2012). Matlab implementation of the sparse semidef-
inite programming (SDP) relaxation method proposed in Waki et al. (2008) has been used to relax the
polynomial optimization problems, for a relaxation order δ = 2.

Both frameworks are executed in Windows environment, on a Personal computer with Intel core i7-6700T
(2.8 GHz) processor.

4.4.1.2 Result analysis

The estimated parameters obtained via OEA and EiVA for different N and SNR values are shown in
Tables 4.1 and 4.2. The average computation time required to estimate one parameter, for both settings, is
reported in Table 4.3. Considering that the most challenging setting is with N = 100 and SNR = 20dB,
the frequency response of the required M and S and the estimates via both approaches are shown in
Figures 4.4a and 4.4b.
According to Table 4.1, in the case of moderate noise, the mean estimation error for the OEA is near
to 2%, and the worst case is 4%, while for EiVA the mean estimation error is near to 1% and the worst

49



case is 8%. On the other hand, in the case of small noise, Table 4.2 indicates that for the OEA the mean
estimation error is near to 1%, and the worst case is 2%, while for EiVA the mean estimation error is
near to 2% and the worst case is 4%. It can be seen that the EiVA obtains better estimates for the Cs

parameters, while the OEA gives better approximations for the Cf parameters. When the noise is low,
OEA offers better performance for all the data set sizes.

Table 4.3 illustrates that OEA is clearly faster than EiVA. The execution time is 100 times lower for the
OEA. Moreover, for the EiVA the computational cost increases more than linearly as N increases, on the
other hand, for the OEA it remains stable.

Table 4.1: Parameters estimated via both approaches for SNR = 20dB

N=100 N=200 N=300
Method Parameter Estimate Estimate Estimate

(Error %) (Error %) (Error %)

bCs
0 = 0.6 0.586 (2%) 0.589 (2%) 0.587 (2%)

OEA bCs
1 = −0.36 -0.349 (3%) -0.355 (2%) -0.347 (4%)

b
Cf

0 = 0.2 0.197 (1%) 0.197 (1%) 0.199 (1%)

bCs
0 = 0.6 0.593 (1%) 0.582 (3%) 0.607 (1%)

EiVA bCs
1 = −0.36 -0.357 (1%) -0.360 (0%) -0.358 (1%)

b
Cf

0 = 0.2 0.216 (8%) 0.221 (2%) 0.201 (1%)

Table 4.2: Parameters estimated via both approaches for SNR = 30dB

N=100 N=200 N=300
Method Parameter Estimate Estimate Estimate

(Error %) (Error %) (Error %)

bCs

0 = 0.6 0.593 (1%) 0.601 (0%) 0.596 (1%)

OEA bCs

1 = −0.36 -0.354 (2%) -0.36 (0%) -0.357 (1%)

b
Cf

0 = 0.2 0.197 (1%) 0.199 (0%) 0.2 (0%)

bCs

0 = 0.6 0.590 (2%) 0.587 (2%) 0.601 (0%)

EiVA bCs

1 = −0.36 -0.369 (2%) -0.347 (4%) -0.362 (0%)

b
Cf

0 = 0.2 0.192 (4%) 0.198 (1%) 0.202 (1%)

Table 4.3: Average computation time for both approaches

Method Average time [seconds]
N=100 N=200 N=300

OEA 0.42 0.44 0.45
EiVA 43 165 218
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Figure 4.4: Bode plot results.

4.4.2 Comparison against VRFT

In Lecchini et al. (2002a) the VRFT technique was adapted for 2DoF controllers tuning. In this Section,
our approach is tested against VRFT by means of an example shown in the mentioned paper.

Consider the LTI stable system

P (q−1) =
0.1622q−1 − 0.01622z−2

1− 1.7q−1 + 0.8825z−2
(4.38)

The goal is to find the controllers Cs(q
−1) and Cf (q

−1) such that the sensitivity function and I/O transfer
function behave as

S(q−1) = 1−
(1− β)q−1

1− βq−1
, β = 0.8 (4.39)

M(q−1) =
(1− α)q−1

1− αq−1
, α = 0.4 (4.40)

The magnitude bode plots from P , M and S can be observed in Figure 4.5
The system is excited by a random input PRBS sequence u(t) in the range [−2, 2] with N = 512. The
output of the plant if affected by an additive stochastic disturbance signal d(t) having the following form:

v(t) =
0.3

1− 0.7q−1
ε(t) (4.41)

where ε(t) is selected such that SNR = 20dB. In order to compare our results against VRFT methodology,
we employ the controllers reported in Lecchini et al. (2002a). Note that, we can’t compare directly
the parameters because the 2DoF structures are different, that is the reason why we only compare the
performance regarding to sensitivity and reference model achieved, as is shown in the Figures 4.6a,
4.6b, 4.7a and 4.7b. Results indicate a better performance with our approach to sensitivity shaping,
however, better reference model tracking is attained via VRFT. It is worth noting that VRFT requires
two experiments to deal with noisy measurements, while our approach only requires one experiment.
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Figure 4.5: Magnitude Bode plots: The plant (continuous line), the reference-model M (bold line) and
the reference sensitivity model S (dotted line

4.5 Conclusions

Taking into account the method proposed in Chapter 2, one novel method to solve the 2DoF data-driven
controller tuning problem has been proposed, such has been named called Output-error approach (OEA).
In order to validate our approach, the Errors-in-Variables approach proposed in Cerone et al. (2017) for
1DoF has been adapted to solve the 2DoF problem. Both methods are developed within a Set Mem-
bership framework. The methods allow to handle Unknown but Bounded noises, without any statistical
hypothesis. The approaches allows shaping the sensitivity and I/O transfer functions, without requiring
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a model of the plant.

Results indicate that the computational cost, in terms of execution time of Errors-In-Variables approach is
higher than the our setting, even three hundred times bigger. It can be concluded that similar estimation
errors are presented in both approaches. It is a highlighted that our approach achieves better results
for the feed-forward controller, which is estimated in a second step after the estimation of the feedback
controller parameters.

A disadvantage of the Output-Error approach is the controller must be linearly-parametrized, while for
Errors-in-Variables approach the controller class allows to estimate the poles of the transfer function.
Further research is required to test the methods in a realistic setting.
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Chapter 5

A Youla-Kucera Parametrization for
Data-driven Controllers Tuning

One of the main challenges in the context of DDC methods is guaranteeing stability. Considering that
no plant model is available in this framework, a precise stability test cannot be performed. A possibility
is to test the controller before actual implementation, van Heusden et al. (2009) (i.e. a-posteriori tests).
In Kammer et al. (2000) some a-posteriori stability estimators are proposed for an iterative DDC tuning
scheme. In Sala and Esparza (2005) an invalidation test step, based on the available data, is employed
for a non-iterative DDC scheme, in order to detect if the controller may led to unstable closed-loops. This
test requires the accurate identification of a possibly unstable system in an errors-in-variables problem.

Some attempts to incorporate a stability constraint at the design step in non-iterative DDC can be found
in Lanzon et al. (2006) and Van Heusden et al. (2011a). Both methods consider an extended PID con-
troller structure leading to convex optimization problems. However, such methods do not offer acceptable
performances when the desired reference model is not achievable employing the selected controller struc-
ture. In Battistelli et al. (2018), the unfalsified control theory is employed to derive relations between the
choice of the performance criterion to be optimized and the closed-loop stability conditions. However, the
controller is non-linearly parametrized, leading to non-convex optimization problems.

The Youla-Kucera parametrization is a fundamental result in system theory that allows to parametrize all
the controllers that stabilize a given plant. It has been extensively applied in optimal and robust control
when designing model-based controllers, see e.g. Doyle et al. (1991). However, in its original form it is
not applicable when the plant model is not available.

In this paper, Youla-Kucera parametrization is employed to solve the problem of controllers design with-
out requiring a process model. The proposed controller structure allows to reach more stringent reference
models than those proposed previously in the literature, maintaining a convex optimization problem to
tune the controller parameters. The approach is a non-iterative solution that exploits the CbT formula-
tion. Thus, the controller tuning procedure does not require iterations or multiple experiments.

The outline of the chapter is as follows. In Section 5.1, the problem formulation is presented. In Section
5.2, a stabilizing controller structure is comprehensively formulated. In section 5.3, employing the struc-
ture proposed, a tuning scheme inspired by the CbT approach is developed. In Section 5.4 the proposed
solution is applied to two simulated controller design problems, comparing it with the standard CbT
scheme. Finally, in Section 5.5 the solution is extended to the MIMO case. The conclusions end the
chapter in Section 5.6.
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5.1 Statement of the problem

In this section, the data-driven controller (DDC) tuning problem is formulated. Consider again a discrete-
time linear-time invariant (LTI) single-input single-output (SISO) feedback control scheme, as depicted
in Fig. 2.1, where q−1 denotes the backward shift operator, P (q−1) is a stable plant transfer function,
C(θ, q−1) is the controller transfer function, θ is a vector of controller parameters, r(t) is the reference
signal, v(t) is output noise/disturbance, u(t) and w(t) are the plant input and output signals, respectively.

For the system interconnection in Fig. 2.1, the aim of the controller tuning procedure is to select an
optimal controller Co(θo) minimizing some performance criterion and guaranteeing internal stability. For
example, an optimization problem can be stated as:

Co(θ, q−1) = argminJMR(θ) (5.1)

s.t.

Loop internally stable

For the cost function

JMR(θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)

∥

∥

∥

∥

2

2

(5.2)

Being M(q−1) a strictly proper reference model for the closed-loop system (i.e. M 6= 1), where perfor-
mance specifications are embedded. Now, considering the Assumption 1 about availability of experimental
data, a data-driven stabilizing controllers tuning problem can be stated as follows:

Problem 4. Data-Driven Stabilizing Controller Tuning: Given a dataset D generated as in Assumption
1 and a reference model M(q−1). Find a controller Ĉ(θ) that solves (5.1).

5.2 A stabilizing controller structure

Let us recall that the set of all the stabilizing controllers C(θ, q−1) for the loop in Fig. 2.1, given a stable
plant P (q−1) can be expressed as

Csta =

{

C(θ, q−1) =
Q(θ, q−1)

1− P (q−1)Q(θ, q−1)
: Q(q−1) ∈ H∞

}

(5.3)

where Q(θ, q−1) is any stable and proper transfer function. The previous result is known as the Youla-
Kucera parametrization for a stable plant Doyle et al. (1991).
When the Youla-Kucera parametrization is adopted to find an optimal controller solving (5.1), the cost
function (5.2) can be rewritten as

JMR(θ) = JQ(θ) =
∥

∥M(q−1)−Q(θ, q−1)P (q−1)
∥

∥

2

2
(5.4)

That is, the complementary sensitivity function of the loop becomes Q(θ, q−1)P (q−1).

Assumption 6. For the given closed-loop reference model M(q−1), there exist an optimal filter Q∗(θ∗, q−1)
such that,

M(q−1) = Q∗(θ∗, q−1)P (q−1) (5.5)
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Remark 8. From the previous assumption, the optimal controller C∗(θ∗, q−1), which solves Problem 4 is,

C∗(θ∗, q−1) = Q∗(θ∗, q−1)(1−M(q−1))−1 (5.6)

It is worth noting that only the term Q∗(θ∗, q−1) is unknown, since M(q−1) is proposed by the user.

Given the previous analysis, from now on we focus in the problem to estimate Q∗(θ∗, q−1), such that the
cost function (5.4) is minimized.

5.2.1 A structure for Q.

Several structures can be assumed to design the filter Q(θ, q−1). For example, recursive polynomial
structures such as ARX, ARMAX or OE, can be employed. The only requirement is that Q(θ, q−1) ∈
H∞. However, imposing stability constraints in autoregressive structures, such as AR or ARMAX, leads
to complex non-linear constraints, turning the tuning problem into a highly non-convex optimization
program, see e.g. Ljung (1999). On the other hand, Finite Impulse Response (FIR) models guarantee
stability without additional constraints. Therefore, a FIR structure is adopted for Q(q−1 as follows,

Q(θ, q−1) =

mq
∑

i=1

θiq
−(i−1), (5.7)

where mq is the filter impulse response length.
Then, the controller design problem becomes a parametric estimation problem, where the filter parameters
are selected from the set:

Q =
{

Q(θ, q−1) : θ ∈ Θ ⊆ Rmq
}

5.2.2 The Q filter in terms of data.

Notice that to estimate a filter Q̂(θ, q−1) minimizing (5.4) it is required the knowledge of the plant P (q−1).
But, under the assumptions of the framework, the plant is unknown. The following Lemma allows to
relate the model-based cost function with a data-based error signal.

Lemma 5. Given an asymptotically stable system P (q−1) and a data set D generated as in Assumption
1, any stable filter Q(θ, q−1) ∈ Q satisfies the time-domain relation:

e(θ, t) = Mu(t)−Q(θ)(w(t)− v(t)) (5.8)

where e(θ, t) is the output of the model matching error transfer function (i.e., the argument of cost function
in Eq. 5.2),

Em(q−1) = M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)
. (5.9)

Moreover, if the reference model M(q−1) satisfies Assumption 6, there exist an optimal filter Q(θ∗, q−1)
such that:

e(θ∗, t) = 0

then
Mu(t) = Q(θ∗)(w(t) − v(t)) (5.10)

Remark 9. In most previous approaches to DDC tuning (i.e. CbT,VRFT,..) it has been considered the
approximation 1/(1 + P (q−1)C0(θ, q−1)) ≈ 1/(1 + P (q−1)C(θ, q−1)) to obtain a time expression which
approximates the cost function (5.2). Note that such approximation is not required in our approach.
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From the previous development, we are able to cast the problem to tune a filter Q(θ, q−1) into an identi-
fication problem as follows:

Problem 5. Given the signals

yq(t) = M(q−1)u(t), uq(t) = w(t)

Estimate from data an optimal filter Q(θ∗, q−1) that satisfies the relation:

yq(t) = Q(θ∗, q−1)uq(t) (5.11)

Note that the previous estimation problem is a system identification problem for system Q where the
output yq(t) is measured without noise and the input uq(t) is noisy (see Figure 5.1).

M

P

v(t)

u(t)

Q(θ,t)

e(θ,t)

w(t)

Figure 5.1: Block diagram for Q tuning problem

5.3 Q̂ tuning scheme

In Problem 5 the estimation of Q has been posed as an identification problem where the input uq(t) is
noisy and the output yq(t) is free of noise, i.e., an Errors In Variables (EIV) problem. In this work, we
assume that v(t) is i.i.d noise, however, is possible to adapt the formulation to deal with Unknown but
Bounded noises, following Set-Membership identification methods, such as Cerone et al. (2017).

The instrumentals Variables (IV) method is a well know procedure to deal with EIV identification prob-
lems, Soderstrom and Stoica (1983). A proper selection of the IV vector is a key point to obtain good re-
sults. In the framework of DDC design three alternatives to select the IV have been proposed. Campi et al.
(2002) proposes two alternatives, in the first one a second experiment with the same input is required
to define the IV, and the second one consist into estimate a model P̂ of the plant. The former option is
difficult to achieve in realistic applications, and the last one does not make sense in the DDC framework.
A third option to select the IV has been proposed in Karimi et al. (2007). In the following, we adapt such
method to our framework, since it does not require a second experiment neither the plant identification.

5.3.1 Correlation approach to tune Q̂

Let the correlation function be defined as follows

f(θ) = lim
N→∞

1

N

N
∑

t=1

E {ζw(t)e(θ, t)} (5.12)

Where E {·} indicates the mathematical expectation. ζw(t) is a vector of instrumental variables well
correlated with u(t) and uncorrelated with v(t) given by,
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ζw(t) = [uw(t+ l),uw(t+ l − 1), · · · uw(t),

uw(t− 1), · · · , uw(t− l)]T
(5.13)

where uw(t) is generated as a filtered version of the plant input, uw(t) = W (q−1)u(t), l is an proper
integer and e(θ, t) is the data matching error defined in (5.8). Details for the selection of l can be found
in Karimi et al. (2007).

For the cost function

Jc(θ) = fT (θ)f(θ) (5.14)

The optimal parameters defining filter Q are selected as

θ̂ = argmin
θ

fT (θ)f(θ) =
l
∑

τ=−l

R2
euw

(τ) (5.15)

where Reuw(τ) is the cross-correlation function between e(θ, t) and uw(t), that is

Reuw(τ) = lim
N→∞

1

N

N
∑

t=1

E {e(θ, t)uw(t− τ)}

From (5.8), the previous equation can be rewritten as

Reuw(τ) = lim
N→∞

1

N

N
∑

t=1

E {[M − PQ(θ)]u(t)Wu(t− τ)}

Then, the cost function can also be represented in frequency domain by means of applying the Parseval’s
theorem, as follows:

lim
l→∞

Jc(θ) =
1

2π

ˆ π

−π

|[M − PQ(θ)]W |2Φ2
u(w)dw (5.16)

where Φ2
u(w) is the spectrum of the input signal. Finally, it is easy to note that W (q−1) = 1/Φu(w) is

required for criteria (5.4) and (5.16) being equal. In this way, liml→∞ Jc(θ) is a good approximation of
JMR(θ).

Remark 10. Note that our main aim is minimizing the model matching error in (5.4) and in turn (5.9).
But in order to apply the correlation method to tune the parameters of Q, a data error expression is
required (i.e. e(θ, t) in (5.12)).Therefore, we have considered that the model matching error in (5.4) can
be represented by means of a time expression in (5.8), this theoretical assumption can be approximated in
practice when a signal u(t) persistently exciting is employed, it means that its spectrum is rich enough to
excite the dynamics of M .

5.3.2 Selecting a proper number of parameters

In order to choose a proper filter impulse response length mq, now we analyze the set of equations that
define the filter impulse response. From Equation (5.4) the impulse response error can be expressed as:

eh(θ, k) = hM (k)− hP (k) ∗ hQ(θ, k) (5.17)

where hM (k), hP (k) and hQ(θ, k) are the reference model, plant and Q impulse response correspondingly.
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Let us recall that we have assumed M is a stable and strictly proper, therefore, its impulse response hM

is such that
∣

∣hM (k)
∣

∣ ≤ Lρk for k = 0, 1, 2, ... given a finite bound L > 0 and decay rate ρ ∈ (0, 1), that is,
hM (k) decays exponentially. Therefore one may assume that the impulse response of M is negligible for
k ≥ LM , for a LM reasonable value.

Now, given that P is stable, Q is FIR and hM (t) is selected by the user, a necessary condition to achieve
eh(θ, k) ≈ 0 is that mq ≥ LM .

Remark 11. Reference models with small values of LM (i.e impulse response energy is concentrated in
the first coefficients) are strongly recommended because they lead to low-complexity controllers. In other
cases, a controller order reduction step is advisable.

5.3.3 Procedure to tune Q̂

Given a data set generated as in Assumption 1, a reference model M and a filter length mq, properly
selected. The following procedure leads to a controller that approximately minimizes (5.2).
Given the structure for Q, it can be said that

Q(θ, q−1) = βT (q−1)θ (5.18)

where
β(q−1) =

[

1, q−1, · · · , q−(mq−1)
]

(5.19)

Now, define the regressor as

φ(t) = β(q−1)uq(t) (5.20)

Then, note that the error signal e(θ, t) can be expressed as

e(θ, t) = yq(t)− φ(t)θ (5.21)

In terms of data, the Equation 5.15 for W = 1 is estimated as

fN (θ) =
1

N

N
∑

t=1

ζw(t) [yq(t)− φ(t)θ] (5.22)

Recalling that ζw(t) is defined in Equation (5.13), it is possible to estimate the parameters of Qminimizing
the criterion

JN (θ) = fT
N (θ)fN (θ). (5.23)

the Least squares solution is:

θ̂ = (XTX)−1XTZ (5.24)

where

X =
1

N

N
∑

t=1

ζw(t)φ
T (t), (5.25)

Z =
1

N

N
∑

t=1

ζw(t)yq(t) (5.26)

Finally, the controller to implement is given by

C(θ̂, q−1) = Q(θ̂, q−1)(1−M(q−1))−1 (5.27)

59



5.3.4 Stability margin estimation

Once a controller has been estimated by the previous procedure, it is necessary to estimate whether it
guarantees an internally stable loop. A stability margin can be determined using the Small Gain Theorem,
Doyle et al. (1991), considering the uncertainty associated to the estimated controller. The loop in Fig.
2.1 can be reformulated as shown in Fig. 5.2. From this scheme, the Small Gain Theorem leads to the
following condition:
The controller given by

C(θ̂, q−1) = Q(θ̂, q−1)(1−M(q−1))−1 (5.28)

achieves a robustly stable loop if

δQ(θ) = ‖∆θ‖∞ = ‖M(q−1)− P (q−1)Q(θ̂, q−1)‖∞ < 1 (5.29)

Qs
1-M

Qs
1-M

Q-

P
u

v

r e

x

+

-

+

+ +

+

Figure 5.2: Closed-loop with representation of the controller error Q̂−Qs

1−M

Eq. 5.29 is a tool to determine the stability of the loop, the approach in van Heusden et al. (2007) can be
employed as it requires one data batch to estimate the norm, as in Assumption 1. However, data-driven
methods only allow to estimate lower bounds of the system H∞ norm, converging to the actual norm for
infinite data lengths. In practice, a finite number of data is available, thereby only an under estimate of
the stability condition is available. Moreover, the small gain theorem provides an stability condition for
any unstructured uncertainty with norm less than 1. Therefore, the estimated condition in (5.29) can be
employed as a guide only. The stability condition of a controller that leads to an estimated norm lower
than 1 can be invalidated by new data, while a controller that leads to a norm larger than 1 can produce
a stable loop for the particular structure of the uncertainty. In conclusion, δQ(θ) values near to zero,
indicate a lower risk that the controller led to stable closed loops.
From now on, our method will be called Youla-Kucera data driven controllers tuning (YK-DDC).

5.4 Numerical examples

In this Section, the Youla-Kucera data driven controllers tuning (YK-DDC) method proposed in the
previous sections is evaluated in simulation. The performance of the solution is compared with the
Correlation-based Tuning (CbT) method presented in Van Heusden et al. (2011a).

5.4.1 Flexible transmission

Consider the flexible transmission system introduced as a benchmark for digital control design by Landau et al.
(1995). The plant is

P (q−1) =
0.28261q−3 + 0.50666q−4

1− 0.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4

The control objective is given in terms of model-reference specifications. Two classes of reference models
are tested,
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M1(q
−1) =

(1− α)2 q−3

(1− αq−1)2
, M2(q

−1) =
0.6q−5

1− 0.75q−1 + 0.35q−2

considering under and over-damped required closed-loop behaviors.
The Correlation-based Tuning (CbT) method, presented in Van Heusden et al. (2011a), is employed in
order to evaluate the performance of our approach. In CbT approach, the controller is parametrized as:

C(θ, q−1) =
m
∑

i=1

θiq
−(i−1)

1− q−1
(5.30)

Case I: Reference Model M1.

In this case, α indicates the location of the poles defining the desired loop speed and bandwidth (See
Figure 5.3). As the first step, data set is generated using a PRBS signal with N = 512 samples as plant
input. We assume Φu(ω) ≈ 1. White noise is added to the plant output. The noise variance is selected
such that the Signal to Noise Ratio (SNR) is approximately 20dB. The SNR is calculated as

SNR = 10log

∑N
t=1 y(t)

2

∑N
t=1 v(t)

2
.
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Figure 5.3: Reference models M1 class for diferrent α values

Before applying both methods to tune the controllers (i.e. YK-DDC and CbT) we analyze the realizability
of the different reference models employing our controller structure. To achieve this, we have evaluated
the cost function JN in eq. (5.23) for different α and mq values. The obtained results are shown in Figure
5.4. It can be observed that JN decreases as α increases, that means better results are obtained for slow
reference models (i.e low bandwidth), however, it is necessary to select high values of mq. On the other
hand, for the references model with high bandwidth fewer parameters are necessary, but results in terms
of tracking the reference model worsen. We choose the case of α = 0.5 (see Figure 5.5), therefore, mq

must be greater than 8. We select mq = 11 taking into account the step response of M (see Subsection
5.3.2).

A Monte-Carlo simulation is carried out, therefore, 1000 reference signals u(t) are generated and applied
to the plant P , maintaining N = 512. The set of output signals y(t) is corrupted by noise v(t) maintaining
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N

Figure 5.4: Cost function for reference models M1, evaluated for different α and mq parameters.
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Figure 5.5: Step response and bode plot of reference model M1 for α = 0.5

a SNR ≈ 20dB, leading to 1000 data sets D. For each data set, a set of controllers has been tuned via
the procedure in subsection 5.3.3 employing l = 20, then the controllers are tested in closed-loop with
the actual model of the plant P . For the CbT algorithm, it has been assumed m = 6 and also l = 20 as
the instrumental variables length, the same values are assumed in Van Heusden et al. (2011a). Results,
in terms of step response, are depicted in Figure 5.6 for both methods.

For all controllers tuned via both approaches δ̂(θ) is estimated via the method in van Heusden et al. (2007),
employing proper signals e(θ, t) for each approach. In CbT approach 16 controllers led to δ̂(θ) ≥ 1, while
in our approach all controllers led to δ̂(θ) ≤ 1. Results for stability criterion are reported in Table 5.1.
Nevertheless, none of the controllers obtained via both approaches leads to unstable loops. It is worth
noting that, according to Figure 5.6, the tracking of the reference model is better for the controllers ob-
tained by means of our approach. The quality of the control action is measured employing the maximum
error EMAX and the root mean squared error ERMS of the closed-loop step response, the results are
reported in Table 5.2.

Now, in order to validate the Q filter estimation procedure, our Q filters are compared with the op-
timal Q∗ filter in terms of frequency response, such results are depicted in Figure 5.7. Note that, in this
case, P is known, therefore the optimal Q filter is known, that is Q∗ = M1P

−1.

Now, as an example, one of the 1000 controllers C(θ, q−1) is reported in Equation (5.31).
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Figure 5.6: Step response of M1 (black line), results for 1000 controllers tuning via our approach (contin-
uous blue lines) and results for 1000 controllers tuning via CbT (dashed red lines)

.

Employed δ̂(θ)

Method Max Min Mean

Case I CbT 1.433 0.193 0.393
YK-DDC 0.531 0.179 0.241

Case II CbT 2.610 0.970 1.101
YK-DDC 0.510 0.171 0.261

Table 5.1: Stability results for infinity norm criterion for both approaches.
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Figure 5.7: Magnitude Bode plots of Q∗ (continuous blue line), and for 1000 Q filters tuning by procedure
in subsection 5.3.3 (dashed black lines)
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Employed Quality measures

Method EMAX ERMS

Case I CbT 0.1819 0.0563
YK-DDC 0.1489 0.0413

Case II CbT 0.5184 0.1415
YK-DDC 0.1091 0.0298

Table 5.2: Quality control results for both approaches in both cases.

C(θ, q−1) =

11
∑

i=1

θiq
−(i−1)(1−M1(q

−1))−1 (5.31)

where the vector θ = [0.54,−0.66, 1.01,−0.97, 1.01,−0.6, ... 0.7,−0.43, 0.37,−0.16, 0.07]
Finally, replacing M1 the resulting controller is

C(ρ, q−1) =

∑13
i=1 ρiq

−(i−1)

1− q−1 + 0.25q−2 − 0.25q−3
(5.32)

where the vector ρ = [0.54,−1.21, 1.81,−2.59, 2.24,−1.86, ... 1.56,−1.29, 0.98,−0.64, 0.32,−0.11, 0.02]

Case II: Reference Model M2.

In this case, a more stringent reference model with underdamped behavior is imposed. The aim is to
evaluate the robustness of the design procedure when the reference model can produce unstable loops.
The step response and bode plot of M2 are shown in Figure 5.8.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

A
m

p
lit

u
d

e

100 102
-15

-10

-5

0

5

10

M
a

g
n

it
u

d
e

 (
d

B
)

Bode Diagram

Frequency  (rad/s)

Figure 5.8: Step response and bode plot of reference model M2

In order to select a proper mq , the cost function JN is evaluated. Results are depicted in Figure 5.9.
As the first case, a data set with N = 512 and SNR ≈ 20dB.(SNR) is generated. A Monte-Carlo
experiment with 1000 data sets is performed. mq = 13 is employed based on the step response in Figure
5.8. The same parameters as in the case I are selected for the CbT approach. The resulting closed-
loop step responses are depicted in Figure 5.10. As can be observed, the performance obtained with the
YK-DDC controllers (blue lines) is better than with CbT controllers.
For all controllers tuned via both methods δ̂(θ) is estimated via the method in van Heusden et al. (2007).
For the CbT approach, 77% of the controllers led to δ̂(θ) ≥ 1, while with the YK-DDC approach, all the
controllers led to δ̂(θ) < 1. Results for stability criterion are reported in Table 5.1. Nevertheless, when
evaluated on the actual plant, only 7 of the controllers obtained via CbT lead to unstable loops and all
the controllers obtained via YK-DDC yield stable loops.
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tinuous blue lines) and results for 1000 controllers tuning via CbT (dashed red lines)

.

5.4.2 Non-minimum phase plant equipped with integrator

In order to test the approach on an demanding condition, we take the next example from Battistelli et al.
(2018). Consider the problem of controlling an unknown system with continuous-time transfer function
given by

P (s) =
s− 0.5

s(s2 + 2s + 1)

The case of unstable (marginally stable) plants must be deal with employing an initial stabilizing con-
troller. Although such a controller guarantees stability, it does not achieve the required performance.

The control requirements are given by the reference model:

M(s) =
1

w2
n ∗ (s2 + 2ζs/wn + 1/w2

n)

where, wn = 4.5 and ζ = 0.4.
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The proportional controller Cs = −0.35 is connected in closed loop with the plant, in order to assure
stability and allowing to collect the data set D. Now, the feedback interconnection of P (s) and Cs is con-
sidered as the new plant P to be controlled (see Figure 5.11), with input u(t) and output w(t) = y(t)+v(t).

A Monte-Carlo experiment is performed on the new plant, 100 realizations of u(t) are generated and
applied to the plant, each one elapsing 1280 s and using Ts = 2.5 s, thus N = 512.

The set of output signals y(t) is corrupted by noise v(t) maintaining a SNR ≈ 20dB. The reference
model is discretized by means of the zero-order hold method with sampling time Ts. Taking into account
the step response of the reference model M , mq = 12 is selected. The same parameters as in the previous
example are selected for the CbT approach. The performance in terms of frequency response obtained
for the 100 controllers is illustrated in the Figure 5.12. The architecture of the closed-loop implemented
is presented in Figure 5.11.

v��)

r��) w(k)
P(q )C(0,q )

-1 -1

C(q )
-1

s

Figure 5.11: Cascade control for the non-minimum phase plant
.

As in the previous example, for all controllers tuned via both methods δ̂(θ) is estimated,employing the
proper signals e(θ, t) for each approach. In CbT approach , the worst case for δ̂(θ) was 0.99 (i.e. there
exist a bigger risk that the controller led to unstable loop) and the mean was 0.54, while in our approach,
the worst case was 0.61 and the mean was 0.37.

5.5 Extension to MIMO case

In this section, the Youla-Kucera Parametrization for Data-driven Controllers Tuning is adapted to the
MIMO case.

Consider now a plant P (q−1) with n inputs u(t) and n outputsw(t), a controller transfer matrixC(θ, q−1),
and a reference model matrix M(q−1) for the closed-loop system. Consider also the Assumption about
the availability of experimental data:

Assumption 7. P (q−1) is unknown. The available information on P (q−1) is a set of input-output data
generated by P (q−1), initially at rest,

D = {w(t),u(t), t = 1, 2, ..., N} (5.33)

Where

w(t) =

t
∑

j=0

hju(t− j) + v(t),

where hj are the impulse response coefficients matrix of P (q−1), y(t) =
∑t

j=0 hju(t− j) is the noise-free
output vector, and v(t) is the plant output noise/disturbance vector.
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Figure 5.12: Magnitude Bode plots of M (black line), results for 100 controllers tuning via our approach
(continuous blue lines) and results for 100 controllers tuning via CbT (dashed red lines)

.

Following the same analysis performed in the SISO case, when the Youla-Kucera parametrization is
adopted the optimal controller C∗(θ∗, q−1) is,

C∗(θ∗, q−1) = Q∗(θ∗, q−1)(I −M(q−1))−1 (5.34)

As in the SISO case, we select Finite Impulse Response (FIR) models for Q∗(θ∗, q−1) filter, since such
guarantee stability without additional constraints. For n = 2 the filter parametrization is:

Q2x2(θ, q
−1) =

[
∑mq

i=1 θiq
−(i−1)

∑mq

i=1 θmq+iq
−(i−1)

∑mq

i=1 θ2mq+iq
−(i−1)

∑mq

i=1 θ3mq+iq
−(i−1)

]

(5.35)

Now, given an asymptotically stable system P (q−1) and a data set D generated as in Assumption 7, any
stable filter Q(θ, q−1 satisfies the time-domain relation:

e(θ, t) = Mu(t)−Q(θ)(w(t)− v(t)) (5.36)

which is useful to cast the problem to tune a matrix filter Q(q−1) into an identification problem as
follows:

Problem 6. Given the signals

yq(t) = M(q−1)u(t), uq(t) = w(t)

Estimate from data an optimal filter Q(θ∗, q−1) that satisfies the relation:

yq(t) = Q(θ∗, q−1)uq(t) (5.37)

As in the SISO case, the previous estimation problem is a system identification problem for system Q

where the output yq(t) is measured without noise and the input uq(t) is noisy.
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5.5.1 Q̂ tuning scheme in the MIMO case

In Problem 6 the estimation of Q has been posed as an identification problem. In this case, we have
neglected the effect of v(t). As future work, a set-membership or correlation-based framework can be
employed to deal with noise measurements.
Given a data set generated as in Assumption 7, a reference model M and a filter length mq, properly
selected. The following procedure leads to a controller that approximately minimizes reference model
criterion.
Given the structure for Q, it can be said that

Q(θ, q−1) = βT (q−1)θ (5.38)

where
β(q−1) =

[

1, q−1, · · · , q−(mq−1)
]

(5.39)

and θ must be organized conveniently according to Q structure. In case of n = 2 see Equation (5.35).
Now, define the regressor as

φ(t) = β(q−1)uq(t) (5.40)

Then, note that the error signal e(θ, t) can be expressed as

e(θ, t) = yq(t)− φ(t)θ (5.41)

Now, considering that the part of e(t) produced by v(t) is white noise, the least-squares criterion is
proposed to tune Q. Let us define the following cost function.

JN (θ) =
1

N

N
∑

t=1

(yq(t)− φ(t)θ) (5.42)

the Least squares solution is:

θ̂ =

[

N
∑

t=1

φ(t)φ(t)T

]−1 N
∑

t=1

φ(t)yq(t) (5.43)

Finally, the controller to implement is given by

C(θ̂, q−1) = Q(θ̂, q−1)(I −M(q−1))−1 (5.44)

Remark 12. In practice, M is diagonal because uncoupled loops are desirable. Therefore, the inverse
exists as long as each element of the matrix M be invertible.

5.5.2 2-DOF helicopter case study

The 2-DOF helicopter is an important model from the control engineering point of view due to its wide
non-linear characteristics, highly cross-coupling effects, and instability in open loop (Patel and Mehta,
2019). The 2-DOF helicopter model (fixed base) with two propellers driven by DC motors is shown in
Figure 5.13. The elevation of the nose over the pitch axis is controlled by the front propeller and the
rotational motion around the yaw axis is controlled by the back propeller.
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Figure 5.13: 2-DOF helicopter system. Courtesy : Quanser Inc.

5.5.2.1 Controller tuning problem

In this section a tracking problem is posed 1, the aim is to follow a given yaw and pitch displacement.
The system has two inputs and two outputs (i.e. n = 2), the voltage vp (Voltage for pitch axis) and vy
(Voltage for yaw axis) are the manipulated variables (u), measured in Volts. The outputs are ya and pi,
these are yaw and pitch angles respectively, measured in deg. The loop performance specifications are
defined as a reference model matrix that allows uncoupling the dynamics of the two degrees of freedom,
as follows

M (q−1) =

[

M11 0
0 M22

]

(5.45)

and, to select M11 and M22 next loop specifications are keeping in mind

Pitch =















Steady state error = 0
Settling time ≤ 3[s]
Rise time ≤ 2[s]

Maximum overshoot ≤ 10%















, Y aw =















Steady state error = 0
Settling time ≤ 7[s]
Rise time ≤ 3[s]

Maximum overshoot ≤ 10%















(5.46)

The reference models M11 and M22 can be selected of any order. In practice, several combinations has
been tested employing first and second order models. To this report, the reference model of the Equation
(5.47) is selected.

M =

[

10
3s+10 0

0 2.52

s2+2∗0.592∗2.5s+2.52

]

(5.47)

5.5.2.2 Experiment design

As mentioned in the previous chapter, the case of unstable plants must be deal with employing an initial
stabilizing controller. In this case, a state-space feedback controller is connected in closed-loop with the
plant, in order to assure stability and allowing to collect the data set D, as shown in Figure 5.14. It must
be highlighted that the initial controller allows stabilizing the closed-loop, but it does not guarantee the
loop specifications mentioned above.

1 These results are extracted from the master thesis project developed by Lenin Samuel Marin. Maestŕıa en ingenieŕıa
electrónica, Pontificia Universidad Javeriana 2019.
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Figure 5.14: 2-DOF helicopter system connected with the stabilizing controller.

The controller K and the G filter employed are in Equations (5.48) and (5.49) respectively.

K =

[

21.11 1.99 10.98 1.38
−1.99 21.11 −0.39 11.99

]

(5.48)

G =
[

C(BK −A)−1B
]−1

(5.49)

where A ,B and C are taken from the model provided by Quanser Inc. A PRBS signal with N = 14000
is used as input (vy, vp), Fs = 80[Hz] is employed . Outputs y and p obtained are depicted in Figures
5.15b and 5.15a respectively.

(a) Pitch position obtained for PRBS input, blue line (b) Yaw position obtained for PRBS input, blue line

Figure 5.15: Pitch and Yaw signals obtained for PRBS input

Given the sampling frequency Fs = 80[Hz], the reference corresponding reference model is

M(q−1) =

[

0.06050q−1

1−0.9394q−1 0

0 0.0006928q−1+0.000682q−2

1−1.955q−1+0.9566q−2

]

(5.50)

5.5.2.3 Results

To estimate the controller mq = 15 is selected, taking into account the analysis in subsection 5.3.2. With
all ingredients defined, the Q̂ tuning procedure of subsection 5.5.1 is performed.The controller resulting
is
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C(q−1) =





∑16
i=1 Aiq

−(i−1)

1−q−1

∑17
i=1 Biq

−(i−1)

1−q−1
∑16

i=1 Ciq
−(i−1)

1−1.95q−1+0.95q−2

∑16
i=1 Diq

−(i−1)

1−1.95q−1+0.95q−2



 (5.51)

where,

A = [4.54,−3.52,−1.42,−0.63,−0.17, 0.03, 0.005, 0.41, 0.34, 0.10, 0.38, 0.33, 0.15,−0.03,−0.07,−0.42] (5.52)

B = [−2.165, 1.736, 1.261, 0.366,−0.079,−0.244,−0.165,−0.582,−0.514, 0.162,−0.354,−0.393, 0.324, 0.559, 0.863,−0.779] (5.53)

C = [−2.39, 4.91,−1.60,−0.70,−0.38,−0.22, 0.43,−0.72, 0.33,−0.04,−0.21, 0.56,−0.12, 0.99, 2.23,−5.61, 2.54] (5.54)

D = [12.85,−25.20, 9.21, 1.94, 1.26, 0.95,−0.46, 0.30, 0.45,−0.89, 0.48,−0.60, 0.19,−1.57,−0.57, 2.53,−0.85] (5.55)

The final controller architecture for our approach is the same as in the case of non-minimum phase plants
(see Figure 5.17). Now, in order to validate our controller (YK-DDC), the LQR+I controller provided
by Quanser Inc. is used to perform a comparison. The experimental results are summarized in Table 5.3
and depicted in Figure 5.16.

Table 5.3: Results for YK-DDC and LQR+I controller in the case of 2DOF helicopter

Pitch position (p) Yaw position(y)
YK-DDC LQR+I M YK-DDC LQR+I M

Reference model class Over-damped Under-damped

Maximum overshoot N/A N/A N/A 5% 11.8% 10%

Rise time 0.78 [s] 0.66 [s] 0.25 [s] 1.75 [s] 1.22 [s] 0.6 [s]

Settling time 2.22 [s] 6.07 [s] 1[s] 2.3 [s] 14.4 [s] 2 [s]

Steady state error 0% 0% 0% 0% 0% 0%

(a) Pitch position with YK-DDC controller (blue
line), output of reference model (orange line)

(b) Yaw position with YK-DDC controller(blue
line), output of reference model (orange line)

Figure 5.16: Pitch and Yaw positions via YK-DDC controller

According to the results in Table 5.3, in the case of the pitch position, the rise time achieved is comparable
for both controllers, however, the settling time achieves via the YK-DDC controller is near to three times
smaller than the LQR+I controller. For the yaw position, the settling time for the YK-DDC controller is
near to seven times smaller than the LQR+I controller, the rise time for both controllers is comparable
and the maximum overshoot for the YK-DDC is half of the obtained for the LQR+I controller.
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Figure 5.17: Cascade controller for the 2DOF helicopter

5.6 Conclusions

In this chapter, in the SISO case, we have presented a solution to the controller design from data prob-
lem, based on a Youla-Kucera parametrization of the controller. Departing from a set of input-output
data measured from an stable, linear, time-invariant, SISO system, we have proposed a procedure to
estimate a Finite Impulse Response filter that parametrizes an stabilizing controller, without requiring
the plant model. The presented method translates the controller design process into an errors-in-variables
identification problem and the solution is obtained by least-squares estimation. An a-posteriori stability
estimation procedure has been derived, allowing to estimate from data the possible failure of the stabil-
ity requirement (in the SISO case). The performance of the solution has been illustrated by means of
Monte-Carlo simulations. Further research is required to state a robust stability test.

The approach of the SISO case has been extended to the MIMO case. A procedure to tune the con-
troller is proposed employing the least-squares method. This extension is experimentally evaluated on a
2-DoF Helicopter. Our approach achieves better results compared with the LQR+I controller proposed
by the system manufacturer since the former meets the control requirement with smaller settling time and
smaller maximum overshoot. However, given that the 2DOF helicopter is unstable an initial stabilizing
controller is required to collect the dataset and to construct a cascade control strategy. Further research
is required to deal with noise in the data-driven approach to the MIMO case proposed here.
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Chapter 6

Application in essential oil extraction
processes

6.1 Introduction

Essential Oil (EO) is an agro product which has great prospect to be developed (Kusuma et al., 2018). The
essential oils market accounted for USD 4.46 Billion in 2016, according to the Observatory of Economic
Complexity (Simoes, 2018), and it is projected to reach USD 11.19 Billion by 2022. The top exporters of
EO are India (14%) and the United States (14%), while the main importers are the United Sates (24%),
France (8.8%), Germany (8.2%) and the United Kingdom (6.6%). EO from aromatic plants and spices
are highly prized in the pharmaceutical, food, and cosmetic industries, due to their fragrance, antioxidant
and anti-microbial properties (Burt, 2004). Lavender oil is one example of EO obtained form aromatic
plants. The annual production of lavender essential oil es estimated in more than 1.300 tonnes, being
France and Bulgaria the main producers (Krausz, 2014). According to Stashenko (2009), in Colombia
(Cundinamarca, Boyacá and Eje cafetero) there is good experience in the cultivation and commercializa-
tion of aromatic plants for fresh sale, however, it is not so for the essential oils; in Colombia, most relevant
works in this sense have been carried out in the CENIVAM research center of the Universidad Industrial
de Santander.

The commercialization of essential oils depends largely on their quality, which depends on several factors
that can be classified into two groups: The first group is related to the pre-harvest stage, factors such
as origin and harvesting time are part of this group. It is worth mentioning that this group of factors is
beyond the scope of this project; the second group is related to the extraction process, we can say that the
factors related to quality are: processing temperature, pressure, batch-time and in some cases extraction
technology used.

Essential oils (EO) are complex mixtures of volatile compounds extracted from a large number of plants.
In general they represent a small fraction of plant composition (less than 5% of the vegetable dry matter)
and comprise mainly hydrocarbon terpenes (isoprenes) and terpenoids (Asbahani et al., 2015). Antimi-
crobial or other biological activities of EO are directly correlated to the presence of bioactive volatile
components. Chemically, the EO consist of terpene compounds (mono-, sesqui-, and diterpenes), alco-
hols, acids, esters, epoxides, aldehydes, ketones, amines, and sulfides) (Calo et al., 2015). Some terpenes
are potent drugs against diseases such as cancer (Ebada et al., 2010). The functional role of aromatic
plants, spices, and constituents is an important research topic (Loizzo et al., 2009).

Essential oil is stored in different parts of plants, for example in leaves, flowers, stems, roots, etc. The lo-
cation depends on the plant variety (Vargas A, 2008) and, according to Sovová (2005), EO is deposited in
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various types of cavities (vacuoles, glands, and others). In aromatic plants, the EO is stored in glandular
trichomes on the outer surface of flowers and leaves, develop from epidermal cells. They are charac-
teristic of the Lamiaceae family (Turner et al., 2000). There are many types of glandular trichomes:
sessile and stalked trichomes. The latter can be of three types: peltate, capitate or digitiform trichomes
(Asbahani et al., 2015).

There exist multiple essential oil extraction techniques for aromatic plants (Stashenko, 2009). The most
employed ones are hydro-distillation, steam distillation and steam-water distillation. Some new techniques
have been proposed, such as supercritical fluids extraction (SFE), microwave assisted hydrodistillation
(MWD), and ohmic-assisted hydrodistillation (OAHD). The new techniques offer advantages such as
higher extraction speeds, lower operation temperature or avoidance of organic solvents usage (which
are potentially harmful in terms of environmental impact) (Arranz et al., 2015; Hashemi et al., 2017).
However, in industrial scale implementations it is preferred to use steam distillers because those imply
lower initial installation costs, lower operating and maintenance costs (Masango, 2005). One drawback
of steam-distillation and hydrodistillation methods is the thermolability of the essential oil constituents,
which undergo chemical degradation due to the high applied temperatures (Arranz et al., 2015).

This part of dissertation is organized as follows. In the first section, an optimal control approach to
steam distillation is posed, developed and tested in simulation. In the second section, the ohmic-assisted
hydrodistillation process is explained, and the design of a lab-scale ohmic distiller is showed. The third
section describes some experimental tests for different input power trajectories in the OAHD process.
Finally, in section 4 two data-driven techniques are employed to tune temperature controllers in the
OAHD process.

6.2 An optimal control approach to steam distillation of essential oils

from aromatic plants

6.2.1 Extraction process model

The model employed in this section is taken from Cerpa et al. (2008). Details of the model are reported
in this chapter as a necessary background to discuss the dynamic optimization solution. Before describing
the model, it is important to give an brief explanation of the extraction process

6.2.1.1 Process description

Figure 6.1 shows the diagram of an steam distiller. In this equipment, water is heated in a boiler to
produce superheated steam, which is transported through a pipe to the vessel, steam helps to release
the molecules of essential oil from the plant, by increasing temperature and pressure. The oil molecules
released from the plant then mix with the steam. That mixture rises through the distiller and reaches the
condenser, this device allows the mixture to cool and change to liquid phase. Finally, the liquid mixture
reaches the florentine, in which oil and water are separated. Such water is known as hydrolate or hydrosol
and is valuable in several industries.

6.2.1.2 Model description

It is a phenomenological model able to reproduce the essential oil recovery from process variables. The
following assumptions were used to derive the model:

1. The system is isothermal and isobaric.

2. The bed of leaves and stems is considered as a batch.
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Figure 6.1: Steam distiller

3. The porous bed formed by the plant is stable. No changes in form or disposition take place during
the process.

4. Vapor phase inside the distillation vessel is considered perfectly mixed, with constant flow rate. Oil
accumulation in the vapor phase is neglected.

5. All oil inside trichomes is extracted during the process.

6. Four-phase system: oil inside the trichome, condensed water, free-oil outside the trichome, and
vapor phase.

7. Essential oil is considered as a mixture of 10 components. Oil composition inside trichomes (wt
ir)

agrees with distilled essential oil collected during the entire process. Composition is determined by
GC/MS.

8. Condensed water and essential oil are completely immiscible.

9. The steam stream fed to the distillation vessel is oil-free (Cin = 0)).

10. Fixed bed porosity.

The model considers three stages in the oil obtaining process: (i) thermal oil exudation from the glandular
trichomes, (ii) vapor liquid equilibrium at the interface, and (iii) vapor phase oil mass transfer.

The following three equations represent the dynamics of the three stages:

ṁtr→os = −
d(GW )

dt
= KtrGW (6.1)

dMos

dt
= KtrGW −

KgM
os

hρeo
(C∗ − C) (6.2)

dM sd

dt
= ṁos→vp = QC (6.3)

where C is the essential oil mass concentration in the vapor-phase, the model parameters are defined
in Table 6.1 and the rest of the variables will be defined when used. In this work, the essential oil is
considered as a single constituent, that is, the model generates the same extraction dynamics for each
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essential oil constituent.

In order to obtain a state space representation of the process for the formulation of the optimal control
problem, the state vector (x) and the manipulated input (u) are defined as follows:

x = [x1, x2, x3]
T =

[

G,Mos,M sd
]T

, u = Q (6.4)

Where x1 = G is the oil mass inside trichomes per mass of fresh plant [g/g] (stage I), x2 = Mos is the oil
mass in aqueous layer [g] (stage II), x3 = M sd is the oil mass collected [g] (stage III), and u = Q is steam
volumetric flow, [cm3/min]. Using the above definitions, and the auxiliary equation

dM sd

dt
=

KgM
osQ

(Qhρeo +KgMos)
C∗, (6.5)

it is possible to obtain the state space representation shown in (6.6).

ẋ1 = −KtrWx1

ẋ2 = KtrWx1 −
KgC

∗x2
hρeo

[

1−

(

Kgx2
uhρeo +Kgx2

)]

(6.6)

ẋ3 =
KguC

∗x2
(uhρeo +Kgx2)

Table 6.1 shows the model parameters. According to (Cerpa et al., 2008), all parameters of the above
model are constant except the mass transfer coefficient Kg, which varies with Q. From the reported
experimental data, it is observed that Kg exhibits an affine relation with Q, approximated by the following
expression:

Kg = 4.7 ∗ 104(Q− 74400) + 31.4 (6.7)

From the available data, relation (6.7) is valid for 21100 < Q < 100000[cm3/min], which are the minimum
and maximum flow rates evaluated.

6.2.1.3 Model analysis

A next step is to simulate the model (6.6), in order to analyze the dynamic behavior. It is important to
mention that there exists a filling time tfill required to warm up the distiller, and the model equations
are valid from tfill. Without loss of generality we assume tfill = 0

Equations (6.6) are solved with an implicit fixed-step numerical method in Simulink (ODE14x). Simula-
tion parameters used are shown in Table 6.1. A constant steam flow Q = 30[Kcm3/min] is assumed.

The evolution of the three states is shown in Figure 6.2. As expected, x1 has an exponentially decreasing
behavior as proposed in Benyoussef et al. (2002). Note that W is constant. State x3 increases quickly
over the first time interval (first 20 minutes) but at the final interval it increases slowly. That means that
most of the oil is collected during first time interval. Finally, the most interesting dynamic corresponds
to state x2, since the aqueous layer is a bridge that allows the transportation of oil from trichomes toward
the vapor phase. Note that an important amount of oil essential is stored in such layer at the initial
time interval of the process (i.e the 20 first minutes), and this effect is undesirable. To reduce energy
consumption, oil should go through directly from the trichomes towards vapor phase.
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Figure 6.2: Model analysis

Table 6.1: Model parameters and initial conditions

Name Description Value

W Fresh plant mass 2175[g]

Ktr Exudation kinetic constant 0.072min−1

C∗ Oil mass concentration-equilibrium 0.001[g/cm3]

h Oil spots average thickness 115 ∗ 10−4[cms]

ρeo Essential oil liquid density 1[g/cm3]

x1(0) Initial oil mass fraction inside trichomes 0.07[g/g]

x2(0) Initial oil mass in aqueous layer 0[g]

x3(0) Initial oil mass collected 0[g]

6.2.2 Optimal oil extraction control problem

In an industrial essential oil extraction distiller plant, the main purpose is to maximize the yield of
extraction and, at the same time, minimize the energy consumption.

Extraction yield (Y ) is defined, at any given time t, as

Yt = 100
M sd

t

W
= 100

x3(t)

W
(6.8)

Energy consumption in a steam distillation plant can be measured as the volume of steam used during
the extraction process. Therefore the energy consumption for a batch of length tf is

E =

ˆ tf

t=0
Q(t)dt =

ˆ tf

t=0
u(t)dt. (6.9)

6.2.2.1 Optimal control problem

From the previous discussion, the optimal operation of the extraction process has two objectives: max-
imization of yield and minimization of steam. A multi-objective control problem is formulated as a
weighting sum of (6.8) and (6.9), as follows:

min
u(t)

J =

ˆ tf

t=0
(−x̄3(t) + γū(t)) dt

s.t. ẋ(t) = f(x, u)

Umin < u(t) < Umax

(6.10)
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Where the dynamic constraint ẋ(t) = f(x, u) is given by (6.6), x̄3(t) = x3(t)/max(x3(t)) and ū(t) =
u(t)/max(u(t)). γ is a weighting factor that allows the user to balance the trade-off between yield and
energy savings, and the effect is studied in next section.

Note that problem (6.10) is nonlinear and the structure is not input-affine. Therefore, an analytic
solution by means of necessary conditions (Pontryagin’s maximum principle) is not an easy task. The
resulting Hamiltonian, Eq. (6.11), does not allow separation of the Lagrange multipliers (λ) from the
manipulated variable (u).

H (x, t, λ) = − x3(t) + γu(t)− λ1(t)KtrWx1(t)

+ λ2(t)

[

KtrWx1(t)−
KgC

∗x2(t)

hρeo

[

1−

(

Kgx2(t)

u(t)hρeo +Kgx2(t)

)]]

+ λ3(t)

[

Kgu(t)C
∗x2(t)

(u(t)hρeo +Kgx2(t))

]

(6.11)

A numerical optimization tool is employed to solve the problem, whose model is represented by Differ-
ential Algebraic Equations (DAE). APMonitor has been selected as the optimization tool. This software
has been previously used in similar applications, see e.g. (Hedengren et al., 2014; Safdarnejad et al.,
2015b),(Safdarnejad et al., 2015a) and (Afram and Janabi-Sharifi, 2017). Internally, APMonitor con-
verts the DAE system into a nonlinear programming form (NLP) by means of a technique known as
orthogonal collocation on finite elements. It is possible to select different solvers, like active set solver
(APOPT), reported in Jacobsen et al. (2013) or an interior point method (IPOPT), Wächter and Biegler
(2006).

6.2.3 Results & discussion

Different solutions to problem (6.10) are presented and discussed in this section. Consider the process
described by Eq. (6.6), with parameters in Table 6.1 and steam flow rates limits defined in the modeling
section. Several optimal input trajectories can be found by varying the weighting factor γ. Without loss
of generality, tf = 100[min] is fixed as the batch length.

6.2.3.1 Case I: Maximizing yield

A first approach is to neglect energy consumption (i.e volume of steam), that is, to solve problem (6.10)
with γ = 0. The results are shown in Figure 6.3. Notice that the optimal u(t) trajectory starts at the
lowest permitted flow and quickly saturates at the upper flow limit. The steam flow is kept low at the
beginning because at that time there is no oil available in the aqueous layer (i.e x2 = 0). This is an
interesting result, because in any static optimization solution, u(t) is fixed during the whole extraction
process, producing a waste of water and energy for little additional separation.

6.2.3.2 Case II: Minimizing energy

A second test is performed, minimizing volume of steam only. In order to obtain such effect γ = 100 is
selected (it should be ∞). The trivial solution is to completely curtail steam flow at every time. However,
the lower bound on stem flow, fixed in (6.10), does not allow to fix a flow lower than Umin. The resulting
trajectories are reported in Figure 6.4. The numerical solution is u(t) = Umin at every time, as expected,
although the yield obtained at the final time is low when compared with the yield in case I. At t = tf
more than 12% of the available oil has not been extracted.
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Figure 6.3: Results in case I
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Figure 6.4: Results in case II

6.2.3.3 Case III: Trade-off between yield and energy

To obtain a balance between yield of extraction and energy consumption, γ was varied within the interval
[0.01 0.9]. Results are summarized in Table 6.2. Energy savings (Wsv) and yield reduction (Y o) are
evaluated with respect to a batch with constant maximum steam flow.

Figure 6.5 presents the optimal solution for γ = 0.02. Steam flow trajectories obtained by means of dif-
ferent γ values are depicted in Figure 6.6a. Note that as the weighting parameter is reduced, the optimal
strategy maintains the maximum steam flow during more time. However, there is always a point where
flow is reduced, minimizing energy consumption.

Figure 6.6b shows the Pareto front of the multi-objective problem. Notice that from γ ≥ 0.02 the yield
of extraction decreases quickly below 99%, while the saving in steam consumption are more than 60%.
This is an important finding for industrial applications.

In the following, the weighting parameter is fixed as γ = 0.02. Table 6.3 summarizes the results for three
cases studied. The following remarks can be highlighted:
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Figure 6.6: Effect of gamma and Pareto front

1. When maximizing yield only (case I), it is not necessary to apply maximum steam flow while there
is not oil in the aqueous layer (i.e x2 = 0).

2. In order to save energy, it is desirable to maintain mass in the aqueous layer x2 as small as possible,
this fact is confirmed if the results of cases I and III are compared with case II; note that the
maximum x2 value in the case II is near to 20[g] when t ≈ 7[min], that means, at such time there is
an important amount of oil stored in the aqueous layer. Meanwhile in case I and III, the maximum
x2 value is nearly 3[g].

6.2.3.4 Sensitivity analysis

According to Cerpa et al. (2008), parameters Ktr and h do not depend on operating conditions, but vary
with the aromatic plant. However, in industrial applications, it is desirable to obtain operating condi-
tions that perform well for several aromatic plants, i.e the optimal input should not change significantly if
parameters Ktr and h are modified. Likewise, energy savings should be maintained and yield not reduced.
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Table 6.2: Results for different γ values

γ Steam volume Steam Yield % Y o
cm3 saved (Wsv)

0.01 4.45M 55% 6.61 99.6%

0.02 3.75M 62% 6.56 98.9%

0.03 3.36M 66% 6.50 98.1%

0.05 2.97M 70% 6.41 96.7%

0.1 2.60M 74% 6.26 94.5%

0.2 2.35M 76% 6.10 92.0%

0.3 2.26M 77% 6.01 90.0%

0.5 2.18M 78% 5.90 89.0%

0.7 2.14M 79% 5.83 87.9%

0.9 2.12M 79% 5.78 87.0%

Table 6.3: Results for different weighting factors

Experiment Steam volume [cm3] Yield of extraction [%]

Case I (γ = 0) 9.96 M 6.62

Case II (γ = 100) 2.11 M 5.74

Case III (γ = 0.02) 3.75 M 6.56

In order to evaluate the dependence of the optimal conditions on the aromatic plant parameters, a
sensitivity analysis is performed, considering variations within ±10% of nominal values, maintaining
γ = 0.02. Results are shown in Table 6.4. Yield is maintained at 99% of maximum extraction for all
conditions, while energy savings are 59% in the worst case. Figure 6.7 reports the steam flow trajectories
obtained when considering the parameters in Table 6.4. Note that solutions are concentrated around the
nominal optimal condition. Product variations do not cause important losses in yield or increments in
energy requirements. Table 6.4 also shows that when plants present higher Ktr and h parameters, greater
energy savings can be achieved.
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Figure 6.8: Optimal trajectory for non-automated plants

Table 6.4: Sensitivity analysis (γ = 0.02): Effect on saved energy

Saved energy [%] h− 10% h− 5% h h+ 5% h+ 10%

Ktr − 10% 59 60 61 61 62

Ktr − 5% 60 61 62 62 63

Ktr 61 62 62 63 63

Ktr + 5% 62 63 63 64 64

Ktr + 10% 63 63 64 64 65

6.2.3.5 Applicability discussion

The optimal trajectories obtained as solution to problem (10) imply changes in steam flow at each sample
time. In this case, every minute. Such changes are not a problem in automated plants. However, in
manual or semi-automatic plants, operators should adjust the manipulated variable constantly, making
this approach difficult to run in practice.

A possible alternative to this drawback is proposed now. In order to reduce the number of flow adjust-
ments, the optimal trajectory is sampled at a lower rate that the control problem solution and the flow
level is averaged for any given interval. Figure 6.8 shows the resulting extraction when the number of
changes is reduced to 10 moves during the batch. It can be seen that the yield increases 0.6% with respect
to the optimal solution shown in Table 6.3, and the energy consumption increases 3%. Although it does
not offer an optimal performance, energy saving is high and the reduced amount of flow changes makes
this approach easier to implement in non-automated plants.

6.3 Ohmic-assisted hydrodistillation (OAHD)

6.3.1 Process description

As mentioned above, there exist multiple essential oil extraction techniques. The OAHD method is part
of the modern techniques of essential oil extraction. According to Seidi Damyeh et al. (2016) its main
advantage over conventional distillation is that, for the OAHD method, shorter extraction times and lower
energy consumption are obtained, thereby, it is environmentally friendly. In OAHD the short extraction
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time is due to the rapid increase in temperature as a result of internal heating and electroporation1,
produced by electrical current passing through the material (Damyeh and Niakousari, 2016).

The ohmic heating (OH) technology is employed in OAHD method. OH is defined as a process wherein
electric current is passed through materials with the primary purpose of heating them (Knirsch et al.,
2010). In OH there is no need to transfer heat through solid-liquid interfaces or inside solid particles
once the energy is dissipated directly into the material to heat. A large number of existing and potential
applications have been proposed for OH, including blanching, evaporation, dehydration, fermentation,
extraction, sterilization, pasteurization and heating of foods to serving temperature, including military
or long-duration space missions (Knirsch et al., 2010). OAHD is one way of using ohmic heating in an
extraction process where the material is a water-vegetal mixture.

The extraction process in OAHD is similar to the steam distillation process described in Subsection 6.2.1,
but the heating method is different. Figure 6.9 shows the main parts of the OAHD plant constructed
for this research project. In this equipment, a mixture of water-salt-plants is heated in an ohmic-heater
camera by electric current. Salt is required since in general, the conductivity of a plant is not enough to
allow electrons to flow. Essentially, the camera is a vessel equipped with two electrodes. The mixture
temperature is increased in order to bring it to the boil point (during this stage the voltage can also
produce electroporation (Seidi Damyeh et al., 2016; Gavahian et al., 2019)). At this point, steam is pro-
duced, this steam drags the oil molecules that are released from the plant. That mixture rises through
the camera and reaches the condenser, this device allows the mixture to cool and change to liquid phase.
Finally, the liquid mixture reaches the Clevenger apparatus, in which oil and water are separated. The
Clevenger allows refilling the OH camera with water, in order to maintain the water level into the camera.

Condenser

Clevenger

OH Camera

Figure 6.9: Left: Ohmic heating system constructed. Right: Ohmic heating designed

6.3.2 Ohmic heating distiller design

As a starting point to design an ohmic distiller, we can select the aromatic herb and the mass to be
processed. In literature, the maximum capacity reported is 20 [g] of vegetal mass (Hashemi et al., 2017)
in the case of the extraction of essential oil from oregano. In this work, we opt to work with essential oil
from Eucalyptus since the high yield facilitates the measure of its extraction kinetic. For the Eucalyptus,
the yields obtained and reported in the literature are between 0.8% and 5%. Considering the minimum
yield and 100 [g] of Eucalyptus, then 0.8 [mL] of essential oil can be expected. Such volume is measurable

1 A non-thermal effect, which may facilitate the extraction of essential oil via the breakdown of cell membranes through
the electric energy which cause the cell walls and membranes become permeable
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without additional process, that is why we have set out to construct a distiller for 100 [g] of vegetal mass.
In Gavahian et al. (2012) the plants-water recommended ratio is (10% [w/v]) therefore, 1 [L] of water is
required. Finally, assuming that an AC power supply of 120 V [rms] at 60 [Hz] is available, and taking
into account that 8 [A] is the maximum current reported (Gavahian et al., 2012, 2018), we have selected
an extraction maximum power of 1 [kW], avoiding an oversized condenser.

The previous discussion indicates that the design of a distiller for OAHD is mainly composed of two parts:
(i) camera,(ii) condenser. As above mentioned we have set out to design a camera with the capacity for
100 [g] of vegetal mass. Once the camera measures are defined, the condenser is designed taking into
account the maximum extraction power, which in this case is assumed of 1 [kW]. We also assume that an
AC power supply of 120 [Vrms] at 60 [Hz] is available.

6.3.2.1 Camera design

All cameras reported in the literature are designed with a cylindrical shape in order to achieve uniformly
heated material (i.e. avoiding cool points). Assuming such shape in our design, the direction of the
electric field remains as a design parameter, since it can be axial or radial. As a part of this Ph.D. thesis
in (Valderrama, 2018) we have showed that the radial direction is not proper for commercial AC power
supplies (i.e. 120-240 [Vrms]), because such an option leads to camera dimensions where it would not be
possible connecting sensors and to charge the mixture. Now, assuming a cylindrical camera with axial
electric field, as depicted in Fig. 6.10, the parameters to design are: L the gap between the electrodes and
A is the surface area of each electrode. Taking into account that the material put into an Ohmic heater
behaves as an electrical resistance (R) (Sakr and Liu, 2014). The relation between such variables is:

R =
L

Aσ
(6.12)

where σ is the mixture conductivity. Considering that the plant conductivity is negligible, then the con-
ductivity will be produced mainly by the mixture salt-water (distilled water). In Gavahian et al. (2012)
it has been recommended salted water (1% NaCl, [w/v]). Now, considering that in ambient temperature
the seawater conductivity is 5 [s/m] and its salt concentration is (3.5% NaCl, [w/v]) and, the conductivity
of distilled water is negligible, therefore, the conductivity of our mixture can be estimated as 1 [s/m]
approximately.

Given an AC power supply of 120[V ] and Pmax = 1[kW ], is true that Imax = 8.3[A] therefore the next
expression can be stated:

Pmax = I2R = 1000 = 8.32
L

A ∗ 4
(6.13)

Figure 6.10: Ohmic heating camera with axial electric field
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Where σ = 4 is assumed because the conductivity increases with temperature. Recalling that the capacity
assumed is 100[g], and taking into account the plants-water recommended (10% [w/v]), then the water
volume is 1[L] (i.e. The minimum camera volume is 1[L]),consequently, given the cylindrical shape the
next expression for the camera volume must be fulfilled.

Vmin = 1 = L ∗ A (6.14)

Equations (6.13) and (6.14) lead to L = 24[cm] and the area of the electrode A = 41[cm2]. Finally,
in order to avoid steam contact with the electrodes, we opt for a cylindrical camera and semi-circular
electrodes, as can be seen in Fig. 6.11.

The selection of the cover material of the camera also is an important design decision, because such
material must be electrical insulate, moreover, a low thermal conductivity is desirable in order to maintain
the temperature into the camera. The Teflon is considered ideal for this application, because it has low
thermal conductivity (≈ 0.2[W/m.K]) and a high electrical resistivity (> 1018ohm − cm). In this work,
we propose to use Nylon 66, which has high electrical resistivity(> 1010ohm − cm) and its thermal
conductivity is (≈ 0.25[W/m.K]) while allowing a price reduction of 70% with respect to Teflon. The
camera contains a steam outlet and three holes for sensors and material feeding, moreover, in order to
avoid the contact of vegetal mass with the electrodes two nylon grooved discs were set up.

Figure 6.11: Ohmic heating camera- Measures in [mm]

6.3.2.2 Condenser designing

Once the camera has been designed for an extraction power of 1 [kW], we are in a position to design the
condenser, which must be able to allow the mixture (i.e. water steam and essential oil steam) cooling
and change to the liquid phase. We opt for a conventional vertical cylindrical glass condenser. The heat
needed in the condenser is given by,

Q̇ = −λ.F (6.15)
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where Q̇ is heat flow in [kJ/h], λ is the latent heat of steam in [kJ/kg] and F is the steam flow rate
in [kg/h].According to (Howell, 1992), assuming that steam is composed of water only, for pressure of 1
[atm], it is known that λ ≈ 2275[kJ/kg] when temperature is 92.5[0C] (i.e. saturated steam), and when
the power is 1[kW] the steam flow rate expected is F ≈ 1.75[kg/h]. Therefore, the heat needed in the
condenser is Q̇ = −3981[kJ/h]. Now, according to Thompson (1987) for a condenser is true that,

Q̇ = U.Ac.∆TLM (6.16)

where U is the heat transfer coefficient in [kJ/(m2.h.◦C)], Ac is the condenser area in [m2] and ∆TLM is
the temperature difference in a logarithmic scale. The latter is employed since the temperature gradient
varies with the position of the mixture in the condenser.

∆TLM =
∆T1 −∆T2

ln
(

∆T1
∆T2

) (6.17)

where ∆T1 = T1− t2, and ∆T2 = T2− t1. T1 is input steam temperature, t2 input cold water temperature.
T2 is output steam temperature, t2 output warm water temperature. According to the conditions of the
laboratory the next values are assumed: T1 = 93◦C, t2 = 17◦C, T2 = 70◦C, and t1 = 50◦C. Therefore
∆TLM = 42◦C.

Now, for steam water the heat transfer coefficient can be assumed as U = 7650[kJ/(m2.h.◦C)] (Howell,
1992). Given all parameters, Equation 6.16 allows to estimate the condenser area, as

Ac =
Q̇

U.∆TLM
= 0.012[m2] (6.18)

Finally, considering a conventional vertical cylindrical glass condenser, its area is given by,

Ac = 2πrh (6.19)

where r is radius and h is height. Assuming r = 1.28[cm], applying Equation 6.19 h = 15[cm] is obtained.
To assure total steam to liquid change h = 25[cm] is selected, avoiding essential oil steam leakage. As
mentioned above, in the lab-scale, a distiller for OAHD must be equipped with a Clevenger apparatus
that is required to separate oil and water. The designed pair condenser-Clevenger is depicted in Figure
6.12.

6.4 Experimental tests for input power trajectories in OAHD process

In the section 6.2, an optimal control problem has been formulated in order to save energy during the ex-
traction process while maintaining the yield of extraction for the steam distillation case. The availability
of the kinetic model in Cerpa et al. (2008) allowed solve of the optimal control problem, unfortunately, in
literature, as far as the author knows, no kinetic model for OAHD have been proposed, useful to optimize
the operation, however, notice that the steam is the common oil transport medium for OAHD and steam
distillation. Moreover, in both processes, it has been observed that the rate of essential oil accumulation
decreases as the time passes, in spite of that, in all literature consulted, the steam flow rate for steam dis-
tillation is maintained constant during the period of extraction (see e.g. Gawde et al. (2014); Cerpa et al.
(2008); Cassel et al. (2009)), the same happens in OAHD, the extraction power is maintained constant
during the period of extraction (see e.g. in Roohi and Hashemi (2019); Gavahian et al. (2015, 2018)).
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Figure 6.12: Condenser-clevenger designed. Linear measures in [mm]

Therefore one can formulate the hypothesis that the reduction of the rate of extraction is due to the less
essential oil availability to drag.

The above analysis allows formulating the next hypothesis. In order to save energy during the extraction
process while maintaining the yield of extraction in an OAHD process, the input power trajectory is not
necessarily constant, moreover, it can be reduced during the extraction period.

From now on in this chapter, all of our efforts are aimed to work on such a hypothesis.

6.4.1 Materials and methods

6.4.1.1 Vegetal mass

As above mentioned, there exist several aromatic plants susceptible to extract their EO, however, the
yields reported in the literature are generally low. For the Eucalyptus, the yields obtained and reported
in literature are between 0.8% and 5%. The eucalyptus globulus leaves were collected at Duitama, Boyacá.
It is worth noting that the leaves were taken from the same plant and processed in a fresh condition.
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6.4.1.2 The mixture

For each extraction batch, 100[g] of fresh leaves are processed. The plants:water ratio used for the extrac-
tion process was 1:10 as proposed in the Ohmic-heating distiller design section (i.e. 10% [w/v]); thereby
1 [L] of water was required for each batch. The employed salt-water ratio was 1% NaCl [w/v], so 10 [g]
of NaCl were added for each batch.

6.4.1.3 Experimental setup

The distiller for OAHD designed and constructed as was described in the previous section is employed
to perform the extraction experiments. Its main characteristics are (i) Volumetric capacity 1 [L] for the
mixture plants:water, and 1 [L] for produced steam. (ii) Maximum working power 1 [kW] to guarantee
the efficiency of the condenser. To vary the extraction power a digitally controlled dimmer regulated
by LabView is employed. Such a dimmer module also includes a wattmeter. An electrically isolated
thermocouple is employed to register the temperature of the mixture (TC2198JG120A120 fabricated by
MINCO). Its signal is acquired by the NI9210 acquisition module constructed by National Instruments.
Notice that, during the extraction process the mixture is electrically charged, then any conventional ther-
mocouple could not work properly. Figure 6.13 illustrates the experimental setup.

Laptop

with 

LabVIEW

Dimmer-wattmeter

NI 9210 module

Thermocouple

OH Camera

Condenser

Clevenger

Figure 6.13: Experimental setup

6.4.1.4 Experiment description

Each batch extraction experiment can be divided into two time periods, the first one is the time required
by the mixture plants-water to reach the boiling point (tb)(i.e. heating period), and the last one is the
extraction period (te), that is, the time measured from tb and required to extract as much essential oil as
possible. Preliminary tests led to select te = 37[min], because after such time no measurable essential oil
was extracted. The aim is to evaluate the hypothesis about the extraction period. To do that, two input
power trajectories are tested, the first one maintains a constant power during all the extraction period,
and the second one is a decreasing input power trajectory inspired by the results in the previous chapter.
An open-loop control structure is employed to vary the input power. The dimmer employs a PWM signal
as the manipulated variable, and the duty cycle (d) is sent from LabVIEW.
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6.4.2 Experiments performed

6.4.2.1 Scenario I: Constant input power trajectory

Five batch extraction experiments with constant input power were performed. The dimmer is connected
to a power source of 120 [VRMS] and the duty cycle employed to this experiments is 100%. As an exam-
ple, an input power trajectory and the variation of the temperature profile are depicted in Figure 6.14. As
expected, during the heating time period the input power is not constant, due to the electrical resistance
associated with the temperature, however, after the boiling point is reached (i.e. extraction time period),
the input power remains almost constant and near to 700[W ].
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Figure 6.14: Example for constant input power trajectory

The kinetic of extraction resulting in the five experiments is depicted in Figure 6.16. An example of the
essential oil accumulated in the Clevenger is shown in Figure 6.15.

Figure 6.15: Essential oil accumulated in the Clevenger

6.4.2.2 Scenario II: Decreasing input power trajectory

As mentioned, in this part of the book, the similarities between steam distillation and OAHD will be
exploited in order to propose an input power trajectory for OAHD, such that it allows saving energy
maintaining the yield of extraction. As the first step to pose an input power trajectory, the maximum
and minimum input power values are proposed. The maximum input power level is limited for the ac-
tuator, in this case, it corresponds to the maximum duty cycle (100%) which produces ≈ 700[W ]. The
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Figure 6.16: Yield obtained in five experiments with constant input power trajectory. The mean values
are represented with black continuous line

minimum input power level is detected by means of preliminary tests to maintain the boiling point in the
camera, 250[W ] input power achieves such a goal.

Results from subsection 6.2.3.3 shown that several input flow trajectories (u(t)) allow saving energy, and
the energy-saving depends on the γ parameter value. We propose employing the input flow trajectory
resulting from γ = 0.02 (see Figure. 6.17a) to find an analogous input power trajectory for OAHD.
Notice that selecting γ = 0.02 it can be expected 62% of energy savings according to Table 6.2. Finally,
considering four input power adjustments, the previous analysis and that the extraction time employed
in steam distillation case is te = 100[min] but for OAHD is te = 37[min] (i.e. The same time employed
in scenario I), the analogous input power trajectory for γ = 0.02 in OAHD case is depicted in Figure 6.17b.

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10

u
 [

c
m

3
/m

in
]

×104

γ =0.02

(a) Optimal input steam flow for γ = 0.01

0 5 10 15 20 25 30 35

Time [min]

250

300

350

400

450

500

550

600

650

700

In
p
u
t 
P

o
w

e
r 

[W
]

(b) Input decreasing power trajectory proposed employ-
ing 4 adjustments during extraction

Figure 6.17: Analogous trajectories for steam distillation (a) and OAHD (b)

Five batch extraction experiments with decreasing input power were performed. The dimmer is connected
to a power source of 120 [VRMS] rms and the input power is manipulated in such way to obtain a
decreasing input power as proposed. As an example, an input trajectory and the temperature profile
resulting are reported in Figure 6.18. Notice that, in order to do a fair comparison, the extraction time
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Table 6.5: Energy consumption in two different trajectories

Energy consumption [Wh]

Procedure Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Constant input power 464.8 450.2 469.8 426.4 466.0

Decreasing input power 259.4 249.7 257.9 257.5 250.4

employed is the same as constant input power experiments. The kinetic of extraction resulting in the five
experiments is depicted in Figure 6.19.
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Figure 6.18: Example for decreasing input power trajectory
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Figure 6.19: Yield obtained in five experiments with decreasing input power trajectory. The mean values
are represented with black continuous line

6.4.3 Analysis and comparison

As mentioned above, we are interested in saving energy during the extraction process while maintaining
the yield of extraction in an OAHD process. Now, we compare the results with respect to saved energy.
Energy consumption has been calculated during the extraction period (te = 37[min]) and the results for
the two trajectories are reported in Table 6.5. Results indicate that employing a decreasing input power
trajectory allows 44% of energy savings on average.
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Table 6.6: Yield obtained in the experiments

Procedure
Total yield in experiment [mL]

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Maximum constant power 1.5 1.3 1.5 1.5 1.5

Decreasing power 1.4 1.4 1.7 1.5 1.6

The T-student test allows to establish the differences between the means of the two samples. We use such
a test to prove that the total yield obtained for both scenarios is the same.

Defining X1 as yield obtained via maximum constant power, and X2 as yield obtained via decreasing
power, and considering thatX1 andX2 comes from normal distributions, from data in Table 6.6, x̄1 = 1.46,
x̄2 = 1.52, s1 = 0.09, s2 = 0.13, and n1 = n2 = 5. Assuming the variance is the same, in order to probe
the null hypothesis (i.e. µ1 − µ2 = 0) for a level significance of α = 0.05, the next values are calculated.

S2
p =

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 + 2

= 0.008

therefore,

T0 =
x̄2 − x̄1

Sp

√

1
n1

+ 1
n2

= 1.03

Now, since g.d.l = 2∗n1−2 (degree of freedom) then in this case g.d.l = 8, according to the critical values
of a T-student distribution T = 2.306, in conclusion T0 = 1.03 < T indicates that the null hypothesis
cannot be rejected. Thereby, we conclude that the mean yield obtained via both procedures is statistically
the same.

6.5 Controlling the heating curve

Several authors have indicated that in OAHD process there exists a nonthermal effect known as electro-
poration, which may facilitate the extraction of essential oil via the breakdown of cell membranes through
the electric field which causes the cell walls and membranes to become permeable. However, in literature,
such an effect has not been quantified. An estimation of the electroporation effect can be useful in order to
obtain a dynamic model for the OAHD process. To quantify the electroporation impact isolated from of
the temperature effect is required, therefore, a possible way to quantify such a effect can be by controlling
the temperature of the mixture into the camera during the heating time period, employing different input
AC voltages, for later evaluating the resulting kinetic of extraction. To avoid model identification step,
in this section, two data-driven controller tuning strategies are evaluated experimentally using the Ohmic
heating distiller previously described in this chapter. The first strategy is the Youla-Kucera parametriz-
ing data-driven controllers tuning (YK-DDC), comprehensively explained in chapter 5, and the second
strategy is Correlation-based tuning (CbT) proposed by Karimi et al. (2007). The latter is selected in
order to do a fair comparison since both strategies employ the same input information.

6.5.1 Controller design tuning problem

A tracking problem is posed, where the aim is to follow a given temperature trajectory. The duty cycle
(provided by the dimmer) is the manipulated variable (u), measured in percentage, and the output vari-
able is the temperature, measured in (◦C). The reaction curve for u = 100% is shown in Figure 6.20.

The loop performance specifications are defined as a first-order reference model M , as shown in (6.20), its
rise time (tr) is selected considering the slope of the reaction curve in Figure 6.20, notice that employing
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Figure 6.20: Reaction curve in OAHD for u = 100%

100% of the duty cycle, to increase temperature 1◦C, 15 seconds are required. That is why tr = 20 is
chosen for the reference model. Step response of reference model is shown in Figure 6.21.

M =
0.2z−1

1− 0.8z−1
(6.20)
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Figure 6.21: Reference model for temperature control in OAHD process

6.5.2 Tuning procedure

In this case, T = 90◦C is selected as operating point. Therefore, datasets D required for both strategies
are obtained as follows: employing Ts = 2[s], a PRBS signal with N = 512 samples is used as input u and
temperature is measured, both signals are depicted in Figure 6.22. Notice that the temperature range is
around the operating point previously selected.

The first step in the tuning procedure is to define the number of basis to be employed. For CbT m = 6
basis is selected, while for YK-DDC mq = 5, the latter is selected taking into account the impulse response
length of the reference model M . Employing the dataset from figure 6.22 both methods are applied. The
resulting controller for CbT method is reported in Equation (6.21), while the YK-DDC controller is shown
in Equation (6.22).

Kcbt =
130.9 − 154z−1 + 26.82z−2 − 8.87z−3 + 4z−4 + 3.17z−5

1− z−1
(6.21)
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Figure 6.22: Dataset used for both strategies in temperature control for OAHD process

Kyk =
219.6 − 372.5z−1 + 222.8z−2 − 63.85z−3 − 21z−4 + 22z−5

1− z−1
(6.22)

Each controller is tested with an experiment in closed-loop employing different temperature references.
The results for CbT are depicted in Figure 6.23, and the results for YK-DDC are shown in Figure 6.24.
In both figures, the duty cycle (u) is shown also.
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Figure 6.23: Tracking results for CbT controller in OAHD process.Reference is the black line, the tem-
perature is green dashed line and, duty cycle is the orange continuous line.

The closed-loop step-response achieved by the controllers are depicted in Figure 6.25. It must be high-
lighted that in the case of YK-DDC controller the rise time tr = 35[s] and in the case of the CbT controller
tr > 100[s]. The results indicate that the performance obtained via the YK-DDC method is better than
the achieved with the CbT approach,even though the same controller structure is implemented.
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Figure 6.24: Tracking results for YK-DDC controller in OAHD process.Reference is the black line, the
temperature is green dashed line and, duty cycle is the orange continuous line.
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Figure 6.25: Tracking results for YK-DDC controller green dashed line. CbT controller red continuous
line. Reference model (M) in blue line. Reference is black line

6.6 Conclusions

In this chapter, optimal operating conditions for the extraction of essential oils by steam distillation has
been proposed. Starting from an existing kinetic model of the process, an optimal control problem has
been formulated in order to save energy during the extraction process while maintaining the yield of ex-

95



traction. A linear relationship between mass transfer coefficient ( Kg ) and steam flow rate ( u ) has been
obtained from experimental data previously reported in literature. Based on that relation, a non-linear
state space model has been derived and employed in the solution of the optimal control problem. Numer-
ical solutions to the problem were obtained using the software APMonitor. The results give insight into
the efficient operation of essential oils extraction for the industry. The solutions show that optimal steam
flow trajectories are not necessarily constant, as previously mentioned in the literature. The trade-off
between yield and energy savings is an important finding of the proposed framework. A Pareto front
guides the selection of the best-operating conditions. In an industrial environment, this selection would
require better costs analysis, specifically the costs implied in steam production and the value of essential
oil. Results of the sensitivity analysis indicate that the optimal conditions do not suffer strong changes
with parameters of the vegetable material. For 10% variations in critical parameters, yields above 99%
of the maximum are obtained, while energy savings are between 59% and 65%.

A lab-scale ohmic distiller able to extract EO from 100[g] of vegetal mass (aromatic herb), employing 1[L]
of salted water, and a maximum input power of 1[kW ], has been designed and constructed. The selected
characteristics of the distiller allowed to obtain measurable essential oil quantity from Eucalyptus, in
order to obtain kinetic extraction curves.

Given some phenomenological similarities between steam distillation and OAHD, the optimal input tra-
jectories found to the former were extended to OAHD during the extraction time period. In order to
save energy, the experimental results for OAHD indicate that the optimal input power is not necessarily
constant. Numerical results indicate that employing a decreasing input power trajectory allows 44% of en-
ergy savings on average, maintaining the yield statistically equal to the yield with a constant input power.

The DDC method proposed in Chapter 5 is employed to control the temperature in the camera of the ohmic
distiller. In order to evaluate the performance of our method, the CbT method is used. Both approaches
allowed tuning controllers with the same structure; however, in light of results, our controller offers better
tracking results than CbT controller, specifically, the rise time is three times lesser, maintaining null
overshot and null steady-state error. Future experimental work to quantify the electroporation effect in
OAHD by employing the controllers designed is required.
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Chapter 7

Conclusions

In this dissertation are proposed new methods for the design of controllers from data for linear systems,
useful when the plant model is unavailable, two frameworks have been considered using set-membership
techniques (SMT) and the Youla-Kucera parametrization (YK-DDC). The developed methods have been
extensively evaluated in simulation and experimental settings.

In the SMT approach proposed, the UBB noise hypothesis leads to a novel overbound formulation,
which derives linear constraints resulting in a convex problem. In the set-membership framework, only
one oriented work to controller design from data is known by the author, where polynomial optimization
constraints are stated, which result in a non-convex problem. Two SMT extensions have been proposed,
the first one allows to design limited-complexity controllers using sparse identification methods, to meet
this aim, this is the first attempt in the literature that employs Set-Membership techniques. The pro-
posed algorithm avoids solving big combinatorial problems that arise when the dimension of the vector
parametrizing the candidate controllers is large and the number of desired parameters is much lower,
moreover, when comparing with literature, our method has just one parameter to be adjusting and it
has a direct interpretation as modeling error bound, simplifying the tuning procedure. The second ex-
tension proposes a procedure to estimate controllers capable of approaching a given closed-loop reference
model and a sensitivity transfer function. To do this, an efficient solution based on convex optimization
is proposed, in literature, this the first attempt at employs set-membership to meet this aim. On the
other hand, Youla-Kucera parametrization is employed to solve the problem of controllers design without
requiring a process model. The proposed controller structure allows reaching more stringent reference
models than those proposed previously in the literature, maintaining a convex formulation and a proce-
dure to estimate the closed-loop stability. In addition, the YK-DDC approach has been extended to the
MIMO case and it has been experimentally evaluated.

The proposed SMT approach has been experimentally validated on an active suspension system via
a Monte-Carlo experiment using one hundred controllers estimated with the SMT algorithm, and it has
been compared with VRFT methodology. Results have shown that using the same information about
the plant to be controlled, the VRFT controllers are strongly affected by the size of the dataset while
the SMT controllers exhibit good performances, even when they are estimated from reduced datasets.
The proposed YK-DDC extension to the MIMO case has been experimentally validated on a 2-DoF Heli-
copter. This is an important model from the control engineering point of view due to its wide non-linear
characteristics, highly cross-coupling effects, and instability in open-loop. Experimental results showed
that our approach achieves better results compared with the LQR+I controller proposed by the system
manufacturer since the former meets the control requirement with lower settling time and smaller max-
imum overshoot. However, given that the 2DOF helicopter is unstable an initial stabilizing controller is
required to collect the dataset and to construct a cascade control strategy.
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Regarding essential oil extraction processes, a lab-scale ohmic distiller able to extract EO from 100[g]
of vegetal mass (aromatic herb), employing 1[L] of salted water, and a maximum input power of 1[kW ],
has been designed and constructed by the author. The selected characteristics of the distiller allowed
to obtain measurable essential oil quantity from Eucalyptus, in order to obtain the kinetic extraction
curves. In steam distillation, an optimal control problem has been formulated and solved in order to save
energy during the extraction process while maintaining the yield of extraction. The results give insight
into the efficient operation of essential oil extraction for the industry. Our solutions show that optimal
steam flow trajectories are not necessarily constant, as previously mentioned in the literature. Given some
phenomenological similarities between steam distillation and Ohmic assisted hydrodistillation (OAHD),
the optimal input trajectories found to the former were extended to OAHD during the extraction time
period. Experimental results indicate that our input trajectories allow 44% of energy savings on average,
maintaining the yield statistically equal to the yield with a constant input. In addition, the proposed
YK-DDC approach is applied for the regulation of temperature in an ohmic-heater, where experimental
results show that our controller offers better tracking results than a procedure extracted from recent
literature.

As future work, in both proposed data-driven techniques, further research is required to state a
stability test that guarantees closed-loop stability. Current results lead to think that the key point is in
the controller structure, which must be consistent with the plant structure, this would require certain
assumptions about plant prior to the estimation of controller parameters. In the proposed YK-DDC
approach for the MIMO case, further research is required to deal with noise. The constructed lab-scale
ohmic distiller, its instrumentation and control equipment are constituted as a new experimentation
platform. Employing a proper set of experiments, our platform could be used to state an OAHD model in
order to quantify the electroporation impact, this would permit to design optimal input trajectories that
include the heating time period in order to save energy and/or to get better extraction yields. Finally, it
is highlighted that our platform allows extracting essential oil from any aromatic herb, therefore, several
future works can be carried out to investigate the kinetic curves for different vegetal mass.
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Appendix A

Annexes

A.1 Annex I: VRFT

VRFT is a well-known method for tuning controllers avoiding to build a model of the plant. Such method
is deeply explained in Lecchini et al. (2002b), notwithstanding, for the sake of completeness in this section
the main features of the method are explained. In this framework, as in the Set Membership case, the
aim is to modify Problem (2.1) avoiding the requirement of the knowledge of the plant model.

The solution is to build a virtual reference signal rv(t) from the reference model and the available output
measurements in D, i.e.,

rv(t) = M−1(q−1)y(t),

From this signal, the virtual error can be obtained as

ev(t) = rv(t)− y(t).

Fig. A.1 shows the resulting scheme. Note that ev(t) and u(t) are the input and output of the controller
to be identified. The model based cost function in (3.2), for the case of a H2 norm, is replaced by the
signal based cost function

Jl(θ) =
1

N

N
∑

t=1

(

ul(t)− C(θ, q−1)el(t)
)2

, (A.1)

following a PEM ( Prediction Error identification Method) approach, see e.g., Ljung (1999). The subscript
l indicates that signals ev(t) and u(t) are filtered by the system

L(q−1) = (1−M(q−1))M(q−1) (A.2)

i.e., el(t) = L(q−1)ev(t) and ul(t) = L(q−1)u(t). It is shown in Lecchini et al. (2002b) that this filter
guarantees an asymptotic convergence of the argument that minimizes (A.1) to the minimizer of (2.1).

When measurement noise v(t) is considered, the minimizer of (A.1) becomes a biased estimate. In order
to get unbiased results, it is necessary to perform a second experiment using the same input (repeated
experiment) or to obtain a model of the plant (system identification). These approaches are not evaluated
in the case study because they require more information than the Set Membership approach.

The following algorithm summarizes the VRFT method.

Algorithm 3. VRFT Algorithm
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Figure A.1: VRFT tuning problem block diagram

1. Collect a dataset D performing an experiment starting with plant at rest. A low noise condition
should be guaranteed in order to avoid biased results.

2. Select a proper reference model M(q−1) and basis functions βi(q
−1).

3. Obtain the virtual reference and error signals

rv(t) = M−1y(t)

and
ev(t) = y(t)− rv(t).

4. Filter the virtual error ev(t) and plant input u(t) as

el(t) = L(q−1)e(t), ul = L(q−1)u(t)

with the system in (A.2).

5. Solve the least-squares problem

θV R = arg min
θ∈ℜm

1

N

N
∑

t=1

(

ul(t)−
m
∑

i=1

θiβi(q
−1)el(t)

)2

. (A.3)

6. Select as controller the system

CV R(θV R, q−1) =

m
∑

i=1

θV R
i βi(q

−1)

A.2 Annex II: sparse-CbT algorithm

In this section, some aspects of sparse-CbT are briefly explained. As the first step to solve the Problem
2, the cost function in Eq. (3.2) that depends on the process model is transformed to the model-free
equation:

e(θ, t) = Mu(t)− C(θ) (1−M) y(t). (A.4)

When data are collected in a noisy environment, the method resorts to the correlation approach to identify
the controller. Specifically, an extended instrumental variable ξ(t) correlated with u(t) and uncorrelated
with v(t) is introduced to decorrelate the error signal e(θ, t) and u(t). ξ(t) is defined as
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ξ(t) = {u(t+ l), ..., u(t), ..., u(t − l)}

where l is an integer sufficiently large. The correlation function is

fN,l(θ) =
1

N

N
∑

t=1

ξ(t)e(θ, t)

and the correlation criterion function is

JN,l(θ) = fT
N,l(θ)fN,l(θ) (A.5)

As a second step to solve Problem 2, it is proposed using ℓ1 regularization to deal with the sparsity
problem. In order to force to zero some elements of the parameter vector θ, a regularization term is added
to the cost function:

J̃N,l(θ) = JN,l(θ) + λ ‖θ‖0 , λ ∈ R
+ (A.6)

Finally, the ℓ1 norm is used instead of ℓ0 quasi-norm to obtain a convex relaxation of (A.6), leading to
the algorithm shown below:

Algorithm 4. Sparse Correlation Based Tuning (SCbT)

1. Set mmax, ǫ > 0 and the maximum number of iterations allowed jmax.

2. Set the iteration counter j = 0 and the weighting diagonal matrix W (0) equal to the identity matrix.

3. Solve the mixed ℓ1 − ℓ2 weighted minimization problem

θ̂(j) = argmin
θ

[

JN,l(θ) + λ
∥

∥

∥
W (j)θ

∥

∥

∥

1

]

(A.7)

4. Update the diagonal elements wi of the weighting matrix W as

w
(j+1)
i =

1
∣

∣

∣
θ
(j)
i

∣

∣

∣
+ ǫ

, i = 1, ...,mmax;

5. Terminate the iterations on convergence or when j = jmax. Otherwise, go to step 3.

A.3 Annex III: Errors in Variables to 2DoF controller tuning problem

In this Annex, the approach in Cerone et al. (2017) is used to cast the 2DoF controller tuning problem
into an Errors-In-Variables identification problem.
From the model-free eq. (4.18), we define the Feasible Controller Set (FCS) for the sensitivity tuning
problem as:

Dcs ={Cs(θ) ∈ C : Cs(θ)S
2 [y(t) + v(t)]− S(1− S)u(t) = 0

|v(t))| ≤ ∆v,∀t = 1, ...N}
(A.8)

Where the noise sequence v(t) affects the system input. In this work, the class C includes all the linear
time-invariant (LTI) controllers of order at most max(na, nb), i.e.,
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(Cs(θ) ∈ C) ⇔ Cs(θ) =
b0 + b1q

−1 + ...bnb
q−nb

1 + a1q−1 + ...anaq
−na

, θ = [a1, a2, ..., ana , b0, b1, ..., bnb
], θ ∈ R

nθ (A.9)

In the same way, from eq. (4.28), it is possible to define the FCS for the model reference tuning problem
as:

Dcf ={Cf (ρ) ∈ C : Mu(t)− S [Cs(θ) + Cf (ρ)] (y(t) + v(t)) = 0

|v(t))| ≤ ∆v,∀t = 1, ...N}
(A.10)

where the same class C in eq. (A.9) is considered.

Result. The Feasible controller sets (A.8) and (A.10) are defined by the following set of equalities

Dcs ={(θ, v) ∈ R
N+nθ :

m(t) +

na
∑

i=1

aim(t− i) =

nb
∑

i=o

bj(y(t− j)− v(t− j)),

|v(t)| 6 ∆v,∀t = na + 1, ...N}

(A.11)

Dcf ={(ρ, v) ∈ R
N+nρ :

f(t) +

na
∑

i=1

aif(t− i) =

nb
∑

i=o

bj(y(t− j)− v(t− j)),

|v(t)| 6 ∆v,∀t = na + 1, ...N}

(A.12)

Where

m(t) =
1− S(q−1)

S(q−1)
u(t), f(t) =

M(q−1)

S(q−1)
u(t) (A.13)

Note that for a controller to belong to Dcs or Dcf , it is necessary to find a noise sequence v(t), satisfying
Assumption 3, such that equality (A.12) and (A.11) are satisfied for all the available data samples.

The structure of the equations defining the FCS in (A.11) and (A.12) is similar to the identification
problem reported in Cerone et al. (2012). It can be concluded that the data-driven controller (i.e for
2DoF) tuning problem is equivalent to a set-membership errors-in-variables identification problem, in the
specific case where the output noise is identically zero, and only the input data are corrupted by noise.
This result was remarked in Cerone et al. (2017) for a 1DoF problem.

Theorem 2 allows to obtain central estimates for the EiVA setting a θc = (θ + θ)/2 and ρc = (ρ + ρ)/2,
where,

θj = max
(θ,v)∈DCs

θj, θj = min
(θ,v)∈DCs

θj, (A.14)

ρj = max
(ρ,v)∈DCf

ρj , ρ
j
= min

(ρ,v)∈DCf

ρj , (A.15)

Optimization problems in (A.14) and (A.15) are non-convex because there are nonlinear constraints in
the equalities defining the sets DCs and DCf

. Moreover, they are semialgebraic problems where the
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number of optimization variables is N + nθ or N + nρ respectively. It can be seen that the constraints
include bilinear terms (products between noise samples and unknown parameters), so they are polynomial
problems. Furthermore, such problems have a sparse structure when the objective function and each
constraint defining the feasible region involve a small subset of variables Piga (2009).
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Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57.
doi:10.1007/s10107-004-0559-y.

Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H., 2008. Algorithm 883: Sparsepop - a
sparse semidefinite programming relaxation of polynomial optimization problems. ACM Transactions
on Mathematical Software 35. doi:10.1145/1377612.1377619.

Yubai, K., Usami, H., Hirai, J., 2009. Correlation-based Direct Tuning of MIMO Controllers by Least-
squares and Its Application to Tension-and-speed Control Apparatus. Design , 931–936.

Zhou, K., Doyle, J.C., 1998. Essentials of Robust Control. Prentice Hall Inc, Upper Saddle River, NJ,
USA.

111

http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1145/1377612.1377619

	Introduction
	A set-membership approach to DDC
	Statement of the problem
	Set-Membership approach
	Active suspension Tuning Case Study
	Controller tuning problem
	Monte-Carlo experiment
	Process disturbance experiment

	Conclusions

	Limited-complexity Controller Tuning
	Sparse controller tuning problem
	A sparse Set Membership framework for controller tuning
	The Feasible Parameters Set
	Finding a sparse controller

	Numerical Case Study
	Monte-Carlo test

	Conclusions

	2 DoF controller structures
	Problem formulation
	Sensitivity tuning via Set-membership
	Closed-loop reference model tuning
	Illustrative examples
	Comparison Set-membership approaches
	Computational solution
	Result analysis 

	Comparison against VRFT

	Conclusions

	A Youla-Kucera Parametrization for Data-driven Controllers Tuning
	Statement of the problem
	A stabilizing controller structure
	A structure for Q.
	The Q filter in terms of data.

	 tuning scheme
	Correlation approach to tune 
	Selecting a proper number of parameters
	Procedure to tune 
	Stability margin estimation

	Numerical examples
	Flexible transmission
	Non-minimum phase plant equipped with integrator

	Extension to MIMO case
	 tuning scheme in the MIMO case
	2-DOF helicopter case study
	Controller tuning problem
	Experiment design
	Results


	Conclusions

	Application in essential oil extraction processes
	Introduction
	An optimal control approach to steam distillation of essential oils from aromatic plants
	Extraction process model
	Process description
	Model description
	Model analysis

	Optimal oil extraction control problem
	Optimal control problem

	Results & discussion
	Case I: Maximizing yield
	Case II: Minimizing energy
	Case III: Trade-off between yield and energy 
	Sensitivity analysis
	Applicability discussion


	Ohmic-assisted hydrodistillation (OAHD)
	Process description
	Ohmic heating distiller design
	Camera design
	Condenser designing


	Experimental tests for input power trajectories in OAHD process
	Materials and methods
	Vegetal mass
	The mixture
	Experimental setup
	Experiment description

	Experiments performed
	Scenario I: Constant input power trajectory 
	Scenario II: Decreasing input power trajectory 

	Analysis and comparison

	Controlling the heating curve
	Controller design tuning problem
	Tuning procedure

	Conclusions

	Conclusions
	Annexes
	Annex I: VRFT
	Annex II: sparse-CbT algorithm
	Annex III: Errors in Variables to 2DoF controller tuning problem


