COMPARACIÓN DEL EFECTO NEUROMUSCULAR DEL VENENO DE LAS SERPIENTES CORAL *MICRURUS DISSOLEUCUS* Y *MICRURUS MIPARTITUS*

María Camila Renjifo Ibáñez

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE CIENCIAS

CARRERA DE BIOLOGIA

Bogotá, D. C.

Febrero de 2009

COMPARACIÓN DEL EFECTO NEUROMUSCULAR DEL VENENO DE LAS SERPIENTES CORAL *MICRURUS DISSOLEUCUS* Y *MICRURUS MIPARTITUS*

María Camila Renjifo Ibáñez

TRABAJO DE GRADO

Presentado como requisito parcial

Para optar al título de

Biólogo

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE CIENCIAS

CARRERA DE BIOLOGÍA

Bogotá, D.C.

Febrero de 2009

"La Universidad no se hace responsable por los conceptos emitidos por sus alumnos en sus trabajos de tesis. Solo velará por que no se publique nada contrario al dogma y a la moral católica y por que las tesis no contengan ataques personales contra persona alguna, antes bien se vea en ellas el anhelo de buscar la Verdad y la Justicia".

Artículo 23 de la Resolución Nº 13 de Julio de 1946

COMPARACIÓN DEL EFECTO NEUROMUSCULAR DEL VENENO DE LAS SERPIENTES CORAL MICRURUS DISSOLEUCUS Y MICRURUS MIPARTITUS

María Camila Renjifo Ibáñez

APROBADO

Alain Riveros Rivera MSc.

Director

Claudia Cifuentes MSc.

Asesor

Carmen Helena Moreno Pontificia Universidad Javeriana

Jurado

Santiago Ayerbe Universidad del Cauca Jurado

COMPARACIÓN DEL EFECTO NEUROMUSCULAR DEL VENENO DE LAS SERPIENTES CORAL *MICRURUS DISSOLEUCUS* Y *MICRURUS MIPARTITUS*

María Camila Renjifo Ibáñez

APROBADO

Ingrid Schuler, Ph.D Decana Académica Facultad de ciencias Andrea Forero Directora carrera de Biología Facultad de Ciencias

Dedicado al Dr. Gabriel Pascual

Agradecimientos

A mi padre, Juan Manuel Renjifo, por heredarme su amor hacia Colombia y sus serpientes, por ser un apoyo incondicional en el desarrollo de éste trabajo

A mi madre, Patricia Ibáñez por ser mi amiga incondicional, por ser mi apoyo en todos los momentos.

Quiero expresar mi agradecimiento a las siguientes personas y entidades:

Al Departamento de Ciencias fisiológicas de la Universidad Javeriana, especialmente al Dr. Alain Riveros y al Dr. Armando Sánchez. Igualmente quisiera agradecer al personal del departamento, quienes siempre me colaboraron: Jesus, Berta, Rosalba y Nora.

Al Instituto Nacional de Salud, especialmente a Jaime Ramírez, Francisco Ruiz, Carlina Gonzalez y Luz de Camacho por su colaboración con la liofilización de los venenos y por brindarme algunos químicos necesarios para la elaboración del proyecto

A Luis Ucross y Jairo Maldonado, por brindarme los animales para poder realizar el estudio de sus venenos.

A Henry Aceros, Darío Riascos y Silvia López, por varios años de trabajo de laboratorio en este proyecto, por apoyarme y ayudarme incondicionalmente.

A Wayne Hodgson y a Bryan Fry por sus consejos y lectura crítica del documento.

A Andrés Morales, Álvaro Andrés Velásquez, Mario Alejandro Lozano y Mauricio Santos, por su ayuda, la lectura crítica del documento y las discusiones acerca de los resultados obtenidos.

1

TABLA DE CONTENIDO

1.	INTRODUCCIÓN					
2.	MARCO TEÓRICO Y REVISIÓN DE LITERATURA					
2.1.	Envenenamientos causados por serpientes coral en Colombia					
2.1.1.	Veneno de serpientes coral (género Micrurus)	3				
2.2.	Transmisión Neuromuscular	3				
2.2.1.	El músculo esquelético	6				
2.2.1.1	Estructura del receptor de acetilcolina	8				
2.2.2.2.	Mecanismo de contracción muscular	9				
2.3.	Inhibición de la neurotransmisión por el veneno de serpientes coral	.10				
2.3.1.	Inhibición presináptica	.11				
2.3.3.	Inhibición al músculo	. 15				
3.	FORMULACIÓN DEL PROBLEMA Y JUSTIFICACIÓN	.21				
3.1.	Formulación del Problema	.21				
3.2.	Pregunta de investigación	. 22				
3.3.	Justificación de la investigación	.22				
4.	OBJETIVOS	. 23				
5.	MATERIALES Y METODOS	.24				
5.1.	Diseño de la investigación	.24				
5.1.1.	Población de estudio y muestra de la población de estudio	.24				
5.1.2.	Variables del estudio	. 25				
5.2.	METODOS	. 25				
5.2.1.	Extracción del veneno	. 25				
5.2.2.	Liofilización del veneno	. 25				
5.2.3.	Disección y montaje de la preparación					
5.2.4.	Experimentos					
5.3.	Recolección de la información	. 29				
5.4.	Análisis de la información	.31				
5.4.1.	Neurotoxicidad	. 32				
5.4.1.1.	Respuesta al agonista ACh	.32				
5.4.2.	Inhibición de fosfolipasa A2	.32				
5.4.3.	Reversión del efecto neurotóxico	.33				
5.4.4.	Miotoxicidad	. 33				

5.4.4	.1. Incremento en la tensión de la línea de base	33					
5.4.4.2. Respuesta al KCI							
6.	6. RESULTADOS						
6.1.	Neurotoxicidad	34					
2.1.	2.1. Inhibición de fosfolipasa A2 (PLA2)						
2.2.	2.2. Reversión del efecto neurotóxico						
2.3.	2.3. Miotoxicidad						
7.	7. DISCUSION						
7.1.	Actividad neurotóxica postsináptica del veneno de M. mipartitus y M.						
diss	oleucus	50					
7.2.	Actividad neurotóxica presináptica del veneno de M. mipartitus y M.						
diss	oleucus	51					
7.3.	Actividad miotóxica de los venenos de M. mipartitus y M. dissoleucus	53					
7.4.	Modelo del efecto neuromuscular del veneno de <i>M. mipartitus</i> y <i>M.</i>						
diss	oleucus	56					
8.	PERSPECTIVAS	57					
8.1.	Perspectivas médicas	57					
8.2.	Perspectivas ecológicas	58					
9.	CONCLUSIONES	59					
10.	RECOMENDACIONES	60					
11.	REFERENCIAS	60					
ANEXO	1: Filogenia de serpientes coral	73					
ANEXO	2: Datos brutos Amplitud	74					
2.1.	Datos amplitud de los experimentos control	74					
2.2.	Datos amplitud de los experimentos con veneno de <i>M. mipartitus</i>	75					
2.3	Datos amplitud experimentos con veneno de <i>M. dissoleucus</i>	76					
ANEXO	4: Datos amplitud en pruebas de reversión con neostigmina (5μM) para 10 μg/ml de	l					
venenc	de M. mipartitus	78					
ANEXO	5: Datos brutos línea de base	79					
5.1.	Datos línea de base de los experimentos control	79					
5.2.	5.2. Datos línea de base de los experimentos con veneno de <i>M. mipartitus</i> 80						
5.3.	5.3. Datos línea de base de los experimentos con veneno de <i>M. dissoleucus</i>						
ANEXO	6: Datos de amplitud para Agonistas ACh y KCl	82					
6.1.	Datos de los experimentos Control	82					

6.2. Datos de experimentos con veneno de <i>M. mipartitus</i>	82
6.3. Datos de experimentos con veneno de <i>M. dissoleucus</i>	83
ANEXO 7: Valores pruebas estadísticas	84
ANEXO 8: Pruebas de comparación mútiple	85

INDICE DE FIGURAS

Figura 1: Exocitosis y degradación de vesículas de acetilcolina en la unión
neuromuscular
Figura 2: Estructura del músculo esquelético7
Figura 3: Estructura de la miofibrilla del músculo esquelético8
Figura 4: Composición de las unidades del receptor nicotínico en la superficie de la
placa terminal del músculo esquelético9
Figura 5: Modelo de acción de las β -NT en la unión neuromuscular13
Figura 6: Contracción muscular generada en la preparación in vitro del músculo cervical
digástrico de pollo17
Figura 7: Serpientes coral (género Micrurus) utilizadas en el estudio22
Figura 8: Preparación in vitro del músculo cervical digástrico de pollo26
Figura 9: Organización y montaje de la preparación in vitro de musculo cervical
digástrico de pollo
Figura 10: Registro de las contracciones musculares evocadas al nervio29
Figura 11: Registro de los datos de las contracciones musculares evocadas al nervio en
el software CHART 5.1®
Figura 12. Experimentos realizados en la evaluación del modo de acción del veneno de
M. mipartitus y M. dissoleucus
Figura 13: Efecto del veneno de <i>M. mipartitus</i> en dosis de 3 µg/ml (n=5) y 10 µg/ml
(n=6), y control (n=6) en las contracciones evocadas al nervio (Voltaje supramáximo, 0,2
ms de duración y 0,1 Hz) en la preparación neuromuscular de pollo
Figura 14: Efecto del veneno de <i>M. dissoleucus</i> 3 µg/ml (n=5), 10 µg/ml (n=5), 50 µg/ml
(n=5) y control (n=6) en las contracciones evocadas al nervio
Figura 15: Comparación de la inhibición de las contracciones con el veneno de M.
mipartitus y M. dissoleucus
Figura 16: Interacción de variables (especie y dosis) en la amplitud de la contracción en
el t ₅₀
Figura 17: Respuesta del veneno de <i>M. mipartitus</i> 3 µg/ml (n=5) y 10 µg/ml (n=6) y
control (n=6) frente al agonista ACh (1mM) en la preparación neuromuscular de pollo38
Figura 18: Respuesta del veneno de <i>M.dissoleucus</i> 3 µg/ml (n=5), 10 µg/ml (n=5) y 50
μg/ml (n=6) y control (n=6), frente al agonista ACh (1mM) en la preparación
neuromuscular de pollo
Figura 19: Comparación de la amplitud de la contracción generada por el agonista
acetilcolina (ACh) en presencia del veneno de M. mipartitus y M. dissoleucus
Figura 20: Interacción de variables (especie y dosis) en la amplitud de la contracción
generada por el agonista ACh)40

Figura 21: Efecto del veneno de <i>M. mipartitus</i> (3 µg/ml) con Sr ²⁺ y con Ca ²⁺ en las
contracciones evocadas al nervio (Voltaje supramáximo, 0.2 ms de duración y 0.1 Hz) en
la preparación neuromuscular de pollo40
Figura 22: Efecto del veneno de <i>M. dissoleucus</i> (3 µg/ml) con Sr ²⁺ y con Ca ²⁺ en las
contracciones evocadas al nervio (Voltaje supramáximo, 0.2 ms de duración y 0.1 Hz) en
la preparación neuromuscular de pollo41
Figura 23: Efecto del veneno de <i>M. mipartitus</i> (10 µg/ml, n=6) solo y con adición de
neostigmina 5 μ M (10 μ g/ml, n=5) en el t ₅₀ de inhibición de las contracciones en la
preparación neuromuscular de pollo42
Figura 24: Efecto del veneno de <i>M. mipartitus</i> 3 µg/ml (n=5) y 10 µg/ml (n=6) y control
(n=6) en la tensión de la línea de base de la preparación neuromuscular de pollo43
Figura 25: Efecto del veneno de <i>M. dissoleucus</i> 3 µg/ml (n=5) y 10 µg/ml (n=6) y control
(n=6) en la tensión de la línea de base en la preparación neuromuscular de pollo44
Figura 26: Comparación del incremento en la tensión de la línea de base con el veneno
de <i>M. mipartitus</i> y <i>M. dissoleucus</i> 45
Figure 27: Interpretén de variables (especie y desis) en la tensión de base en el t
Figura 27. Interaction de Vanables (especie y dosis) en la tension de base en el t ₅₀ 40
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 µg/ml (n=5) y 10 µg/ml (n=6) y
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μ g/ml (n=5) y 10 μ g/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46 Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μ g/ml (n=5), 10 μ g/ml (n=5) y 50
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μ g/ml (n=5) y 10 μ g/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46 Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μ g/ml (n=5), 10 μ g/ml (n=5) y 50 μ g/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparación
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μ g/ml (n=5) y 10 μ g/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46 Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μ g/ml (n=5), 10 μ g/ml (n=5) y 50 μ g/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 47
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) ycontrol (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo46Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μg/ml (n=5), 10 μg/ml (n=5) y 50μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparaciónneuromuscular de pollo
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) ycontrol (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μg/ml (n=5), 10 μg/ml (n=5) y 50μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparaciónneuromuscular de pollo
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) ycontrol (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μg/ml (n=5), 10 μg/ml (n=5) y 50μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparaciónneuromuscular de pollo
Figura 27: Interacción de Variables (especie y dosis) en la tension de base en en t ₅₀ 46 Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo46 Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μg/ml (n=5), 10 μg/ml (n=5) y 50 μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparación neuromuscular de pollo
Figura 28: Respuesta del veneno de <i>M. mipartitus</i> 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 46 Figura 29: Respuesta del veneno de <i>M. dissoleucus</i> 3 μg/ml (n=5), 10 μg/ml (n=5) y 50 μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparación neuromuscular de pollo 47 Figura 30: Comparación de la amplitud de la contracción generada por el KCI en presencia del veneno de <i>M. mipartitus y M. dissoleucus</i>

INDICE DE TABLAS

Tabla 1: Información reportada acerca de los efectos neuromusculares de los ven	ienos
de algunas especies de serpientes coral	11
Tabla 2: Diseño de la investigación experimental.	24
Tabla 3: Variables independientes y dependientes de la investigación	25

RESUMEN

Los venenos de serpientes de coral (género Micrurus) han sido reportados por tener un amplio espectro de actividades farmacológicas que incluyen acciones pre y/o postsinápticas así como también miotóxica. Mientras algunos estudios han investigado los efectos humanos potenciales, la actividad de neurotóxica de venenos de serpientes coral ha sido poco investigada en términos de relaciones ecológicas y evolutivas entre el grupo. El propósito de este estudio fue investigar los efectos fisiológicos en la neurotransmisión del veneno de las especial altamente relacionadas filogenéticamente Micrurus dissoleucus que habita principalmente en regiones séricas a semiáridas y Micrurus mipartitus la cual habita en una gran variedad de hábitats que incluyen bosque montano bajo y bosque nublado. El efecto in vitro del veneno fue examinado utilizando la preparación de músculo cervical digástrico de pollo. El veneno de M. mipartitus causó una inhibición dosis dependiente de las contracciones evocadas al nervio (0,1 Hz, 0,2 ms, Voltaje supramáximo), e inhibió significativamente la respuesta apreciablemente a la acetilcolina exógena, indicando la presencia de neurotoxinas postsinápticas. La adición de Neostigmina (5 mM) no revirtió la inhibición causada por este veneno (10µg/ml). El veneno de M. dissoleucus (3-50 µg/ml) parece ser miotóxico indicado por la falta de inhibición a las contracciones evocadas al nervio (0,1 Hz, 0,2 ms, Voltaje supramáximo), el aumento significativo en la tensión de línea de base (3 y10 µg/ml) y la inhibición de la respuesta al KCI. La inhibición de fosfolipasa A2, reemplazando Ca2+ (2,5 mM) en la solución fisiológica por Sr²⁺ (10 MM) atenuó la inhibición de contracciones indirectas, indicando la participación de PLA2 en la acción miotóxica del veneno. Los resultados demuestran las diferencias presentes en el veneno de especies altamente relacionadas filogenéticamente y sugieren una diversidad hasta ahora insospechada de acciones farmacológicas en un solo linaje, que tiene implicaciones en el manejo clínico de los envenenamientos y brinda una luz adicional acerca de las fuerzas que conducen la evolución de veneno.

ABSTRACT

The venoms of coral snakes (genus *Micrurus*) have been reported to have a broad spectrum of pharmacological activities that include pre and/or postsynaptic actions as well as myotoxic activity. While some studies have investigated potential human effects, the neurotoxic activity of coral snake venoms has been poorly investigated in terms of ecological and evolutionary relationships among the group. The purpose of this study was to investigate the physiological effects on neurotransmission of the venom of the closely related species Micrurus dissoleucus that lives mainly in xeric to semiarid regions and Micrurus mipartitus, that is found in a wide range of habitats including lower montane wet forest and cloud forest. The in vitro effects of the venom were examined using the chick biventer cervicis nerve muscle preparation. M. mipartitus venom caused a concentrationdependent (3-10µg/ml) inhibition of nerve-mediated twitches (0.1 Hz, 0.2 ms, supramaximal V), and significantly inhibited responses to exogenous acetylcholine ACh, indicating the presence of postsynaptic neurotoxins. The addition of Neostigmine (5 mM) didn't reverse the inhibition caused by this venom (10 µg/ml). The venom of M. dissoleucus (3-50 µg/ml) appears to be myotoxic as indicated by a slowly developing contracture of the indirect twitches (2 ms, 0.1 Hz, supramaximal V), the significant increase in baseline tension (3-10 µg/ml) and the inhibition of the response to KCI. The inhibition of phospholipase A2 by replacing Ca^{2+} (2.5 mM) in the physiological solution with Sr²⁺ (10 mM) attenuated the inhibition of indirect twitches, indicating the involvement of a PLA2 component in the miotoxic action of the venom. The results demonstrate a hitherto unsuspected diversity of pharmacological actions in a single lineage, which have implications on clinical management of envenomings and shed additional light on the forces driving venom evolution.

1. INTRODUCCIÓN

El veneno de serpientes las coral (Familia Elapidae, género *Micrurus*), ha sido reportado por su actividad principalmente neurotóxica; este tipo de veneno no puede cruzar la barrera hematoencefálica, y por ende, su blanco de acción más importante se encuentra en el sistema nervioso periférico, específicamente en la unión neuromuscular. Los venenos de serpientes coral son capaces de inhibir la neurotransmisión en diferentes puntos y de diferentes formas, así, la variación existente en su composición puede alterar significativamente el tipo y características del bloqueo neuromuscular que induzcan.

Los venenos de serpientes son una mezcla de compuestos que han evolucionado para favorecer la captura y digestión de las presas. La respuesta a factores ecológicos característicos del hábitat de cada serpiente, como la disponibilidad y tipos de presas presente en cada lugar, hace que puedan existir diferencias en el veneno de especies cercanas filogenéticamente, e incluso, entre poblaciones de la misma especie.

Para conocer las características del veneno de serpientes coral, originadas por la especialización de las serpientes en diferentes hábitats, con diferente disponibilidad de presas, y lo que implican dichas condiciones en cuanto al efecto neurotóxico de su veneno, resulta apropiado evaluar el modo de acción del veneno de las especies *Micrurus dissoleucus y Micrurus mipartitus*. Estas especies presentan una alta relación filogenética, pero así mismo, presentan diferencias ecológicas significativas que podrían verse reflejadas en la composición de su veneno. El estudio se realizó por medio del efecto del veneno en una preparación *in vitro* de órgano aislado (músculo cervical digástrico de pollo), con el fin de determinar las características de la inhibición que produce en la transmisión neuromuscular.

2. MARCO TEÓRICO Y REVISIÓN DE LITERATURA

2.1. Envenenamientos causados por serpientes coral en Colombia

Los accidentes causados por serpientes venenosas representan un problema de salud a nivel mundial (de Roodt et al. 2004). En América, las serpientes responsables del 5% de los accidentes pertenecen a la familia Elapidae (Russell et al. 1997; Gutierrez 2002), la cual comprende tres géneros, *Leptomicrurus, Micruroides y Micrurus*, de los cuales el último es el más común debido a su amplia distribución desde la Patagonia hasta Estados Unidos (Campbell & Lamar 1989). Aunque el índice de mordeduras causadas por las serpientes coral en Colombia depende del área geográfica y es relativamente bajo, presenta alta morbilidad y mortalidad (Pineda & Renjifo 2002; Campbell & Lamar 2004). Para Colombia se ha reportado que son responsables de tan solo el 1,58% del total de los accidentes atribuidos a serpientes venenosas, pero el 80% de los casos resulta en muerte (Silva-Haad & Rodriguez 1985). Los venenos de serpientes coral profundas implicaciones clínicas de su acción. La naturaleza y severidad de los envenenamientos depende factores como la variación en la composición bioquímica de los venenos (Daltry et al. 1996; Hodgson & Wickramaratna 2002).

El blanco de acción más importante para las neurotoxinas presentes en los venenos de serpientes coral se encuentra en el sistema nervioso periférico. Debido a que estas moléculas de gran tamaño no pueden cruzar la barrera hematoencefálica (Harvey 1990), su blanco de acción se encuentra en las uniones neuromusculares esqueléticas, en donde actúan para inhibir la neurotransmisión en diferentes puntos y de diferentes formas. En el individuo envenenado, la acción de las neurotoxinas resulta en una parálisis descendiente que involucra progresivamente los músculos extraoculares, bulbares y respiratorios (Kuruppu et al. 2008). Los envenenamientos resultan en muerte principalmente por paro ventilatorio y la parálisis periférica de las extremidades (Lalloo et al. 1996).

El único tratamiento específico para los envenenamientos causados por el género *Micrurus* es la aplicación de un antiveneno; la mayoría de las muertes causadas por estos venenos ocurren por la falta o poca eficacia del tratamiento. Teniendo en cuenta que la capacidad neutralizante de un suero antiofídico depende de un patrón específico de componentes bioquímicos presentes en el veneno, se esperaría que al realizar un antiveneno contra algunas especies de serpientes coral cubriera también los envenenamientos causados por otras especies, pero se ha reportado que los antivenenos para estas serpientes no se comportan de esta manera (de Roodt et al.

2004). En realidad, existe una preocupante falta de neutralización por antiveneno producido por serpientes del mismo país (Moraes et al. 2003), lo cual se ha sugerido, puede deberse a la alta variación en el modo de acción de estas neurotoxinas, producto de la especialización de las serpientes en diferentes hábitats (Daltry et al. 1996).

2.1.1. Veneno de serpientes coral (género Micrurus)

El veneno de las serpientes coral contiene un gran número de sustancias enzimáticas y no enzimáticas. Las enzimas presentes incluyen fosfolipasas, las cuales hidrolizan fosfoglicéridos y son clasificadas según su sitio preciso de hidrólisis; para el caso de los venenos de serpientes, pertenecen al grupo A2 (Harris 1985; Dixon & Harris 1999). Otras enzimas comúnmente encontradas son las hialuronidasas, que actúan como un factor de dispersión destruyendo ciertas barreras en los tejidos y las L-aminoácido oxidasas, que presentan una acción catalítica. Se han reportado varias fosfatasas como la fosfodiesterasa y la anticolinesterasa, las cuales hidrolizan polinucleótidos e inhiben acetilcolinesterasa respectivamente. Existe un gran número de otras sustancias como complejos no enzimáticos que incluyen neurotoxinas presinápticas y postsinápticas, cardiotoxinas y factores líticos directos (Kocholaty et al. 1971; Kumar 1973). Ha sido reportado que las neurotoxinas son la toxina más letal y poderosa que se puede encontrar en los venenos (Tu 1973), ya que presentan formas muy diversas de bloquear la transmisión neuromuscular, dependiendo principalmente de la composición de las sustancias tóxicas presentes en el veneno (Hodgson & Wickramaratna 2002).

Antes de describir el modo de acción de las toxinas presentes en el veneno de serpientes coral, es importante reconocer los aspectos básicos acerca de cómo funciona la transmisión neuromuscular.

2.2. Transmisión Neuromuscular

La transmisión en la unión neuromuscular esquelética (Figura 1) está dada principalmente por la acción del neurotransmisor Acetilcolina (ACh) (Bowman 1993; Hodgson & Wickramaratna 2002; Naguib et al. 2002; Rand 2007). La ACh es sintetizada en el citoplasma de las terminales nerviosas a partir de la Colina (Ch) (producto de la ruptura del neurotransmisor en el espacio sináptico) y la Acetil Coenzima A (AcCoA), (presente en el citoplasma de la terminal nerviosa). La colina ingresa en la terminal por medio de un transportador de alta afinidad llamado HAChT o ChT (Naguib et al. 2002; Rand 2007) y la reacción de la que es producto el neurotransmisor es catalizada por la enzima Colina Acetiltransferasa (ChAT) (Sha et al. 2004; Rand 2007).

Figura 1: Exocitosis y degradación de vesículas de acetilcolina en la unión neuromuscular. Tomado de: Nalguib et al. 2002.

La ACh sintetizada en el citoplasma de la terminal nerviosa es transportada hacia las vesículas sinápticas por la acción de un transportador vesicular de ACh llamado VAChT (Rand 2007), el cual depende de un gradiente electroquímico de protones a través de la membrana de la vesícula, mantenido por una ATPasa de tipo V (Sha et al. 2004). El VAChT y el ChAT se encuentran correguladas por los mismos factores, y contribuyen en la función normal del sistema colinérgico (Mallet et al. 1998).

La acetilcolina se acumula en las vesículas sinápticas (VS). El lumen de cada vesícula contiene aproximadamente 5000 – 10000 moléculas de ACh, y cantidad que es llamada "cuanto" de neurotransmisor (Naguib et al. 2002). Las VS son organelos secretores especializados que permiten el paso de señales entre el nervio y el músculo, y se pueden dividir principalmente en dos tipos: uno listo para ser liberado llamado *pool* activo y uno de reserva, el cual contiene la mayor cantidad de vesículas almacenadas en redes filamentosas formadas por actina, sinapsina y espectrina (Rosahl et al. 1995; Augustine et al. 1999). La Sinapsina I presente en la membrana de las vesículas es la encargada

de unir las vesículas a los filamentos de actina y microtúbulos del citoesqueléto presináptico (Rosahl et al. 1995).

La liberación de ACh es un proceso dependiente del incremento de Ca^{2+} en la terminal nerviosa, lo cual resulta de la apertura de canales voltaje dependientes de Ca^{2+} por la despolarización de la membrana axonal (Katz & Miledi 1965; Dodge & Rahamimof 1967). Muchas formas de canales de potasio se encuentran en la membrana de la terminal nerviosa, incluyendo canales voltaje dependientes y canales de potasio activados por Ca^{2+} . El papel de los canales de K⁺ consiste en limitar la duración de la despolarización de la terminal nerviosa y por ende, también limitan la entrada de Ca^{2+} y la liberación del neurotransmisor (Naguib et al. 2002). Después del potencial de acción creado por la entrada de Ca^{2+} , se activa la fosforilación de la sinapsina I (Llinas et al. 1991) lo cual causa el debilitamiento de la interacción entre la Sinapsina I y los filamentos de actina y microtubulos del citoesqueléto, permitiendo la movilización de las VS desde el *pool* de reserva hacia el *pool* activo que se ubica cerca de la membrana presináptica (Naguib et al. 2002).

En un proceso llamado *docking* o atracamiento, las VS se adhieren a la zona activa de la membrana presináptica; este lugar se caracteriza por la presencia de regiones densas de electrones en la cara pre y postsináptica que contienen agrupaciones de canales de Ca²⁺ (Robitaille et al. 1990). Existe un complejo de tres proteínas sinápticas llamado SNARE esencial para el proceso de *docking*. Dos de estas proteínas, SNAP y Sintaxina I (o HPC1) se ubican en la zona activa de la membrana presináptica y la tercera, llamada sinaptobrevina se ubica en la membrana de la VS (Sudhof 1995). Este complejo permite la activación de una cascada de reacciones por la interacción proteína – proteína, necesario para que ocurra la exocitosis de la VS (Naguib et al. 2002).

Posterior al proceso de *docking*, se inicia el proceso de *priming*, necesario para preparar a la vesícula para la exocitosis. Una familia de proteínas de unión guanosin-trifosfato de bajo peso molecular llamadas Rabs son las encargadas de unir la vesícula a la membrana presináptica (Geppert et al. 1994). La proteína Rab3A mantiene una reserva normal de VS y facilita la exocitosis rápida durante la estimulación repetitiva en el momento en que el reciclaje de vesículas se limita. Cuando ocurre la exocitosis, la proteína Rab3A se disocia de la vesícula (Naguib et al. 2002). La liberación continua del neurotransmisor presente en las vesículas causa despolarizaciones pequeñas (0,5 – 1 mV) con corrientes transitorias en la membrana postsináptica (potenciales de placa miniatura o MEPP), insuficientes para desencadenar una contracción. Sin embargo; La suma de los potenciales miniatura sincrónicos produce el potencial de acción de placa terminal o EPP y por ende, la contracción muscular (Bowman 1993; Hodgson & Wickramaratna 2002; Naguib et al. 2002).

La fusión de la vesícula con la membrana presináptica resulta en la liberación de un "cuanto" de ACh en el espacio sináptico (ver Figura 1). (Bowman 1993; Naguib et al. 2002), acción que es terminada gracias a la rápida hidrólisis dada por la enzima acetilcolinesterasa (AChE) (un tipo de B- carboxiesterasa presente en la hendidura sináptica, responsable de la ruptura de ACh en colina (Ch) y acetato) (Nalguib et al. 2002). Esta enzima es muy abundante en la hendidura sináptica, la mayoría consiste de una forma asimétrica o A12 que consiste de tres tetrámeros de subunidades catalíticas unidas covalentemente a una cola de colágeno (McMahan et al. 1978). La eficiencia de la AChE depende de su actividad catalítica, su sitio activo se encuentra en el fondo de una hendidura estrecha que llega aproximadamente hasta el fondo de la proteína, en donde la ACh debe ingresar desbloqueando un anillo móvil presente en la hendidura (Zhou et al. 1998). La distribución de los nAChRs concuerda con la cantidad de moléculas de AChE (Hall & Sanes 1993). La ACh es regulada, en parte, por la actividad del músculo, debido a la despolarización evocada por el nervio en la membrana plasmática, de modo tal, que los músculos que presentan una alta actividad, presentan una mayor cantidad de la enzima (Rossi et al. 2000).

2.2.1. El músculo esquelético

Los músculos esqueléticos están constituidos por células alargadas y multinucleadas llamadas fibras musculares. Cada fibra está compuesta por una serie de subunidades llamadas miofibrillas, que se contraen gracias a un estímulo nervioso o eléctrico. Bajo el microscopio se puede observar que las miofibrillas presentan bandas claras y oscuras alternadas, cuya longitud varía durante el proceso de contracción; El espacio comprendido entre dos líneas Z comprende un sarcómero y constituye la porción mínima de una fibra muscular, que conserva la capacidad de contraerse (Figura 2) (Sánchez 2002; Kernell 2003).

Figura 2: Estructura del músculo esquelético. Modificado de Brewer (2002)

Cada miofibrilla se encuentra rodeada por una estructura aplanada llamada retículo sarcoplásmico, que hace referencia al retículo endoplasmático en otros tipos de células. Ubicado entre las miofibrillas se encuentra el sistema tubular T, formado por pequeñas invaginaciones de la membrana celular. Los túbulos T se encuentran separados del retículo sarcoplásmico y del sarcoplasma, pero se comunican directamente con el espacio extracelular (Figura 3). Las bandas claras, llamadas isotrópicas o bandas I, y las bandas oscuras, llamadas anisotrópicas o bandas A, se encuentran asociadas con proteínas filamentosas llamadas actina y miosina. Los filamentos de actina (fibras delgadas) son discontinuos y unen sus extremos en un disco Z. Los filamentos de miosina (fibras gruesas) se localizan en la parte central del sarcómero (Sánchez 2002).

A nivel molecular, los filamentos de actina presentan dos moléculas de actina G en forma de doble hélice. La polimerización de un gran número de éstas forma una molécula de actina F. Las fibras delgadas contienen otras dos proteínas, la tropomiosina, filamento protéico ubicado en la canal formada por la doble hélice de actina F, y la troponina, pequeño complejo molecular unido al filamento de tropomiosina. Un filamento grueso se encuentra formado por alrededor de 250 moléculas de miosina, en cada una se encuentra una cola y una cabeza globular que actúa como una ATPasa, que hidroliza el

ATP para producir ADP y fosfato inorgánico (Pi) (Ebashi 1972; Squire 1975; Sánchez 2002).

Figura 3: Estructura de la miofibrilla del músculo esquelético. Modificado de: Brewer (2002)

2.2.1.1 Estructura del receptor de acetilcolina

Cuando las moléculas de ACh liberadas en la exocitosis se unen al nAChR presente en el músculo esquelético (Bowman 1993; Naguib et al. 2002), se media la transducción del impulso nervioso (Hucho 1986).

La estructura de los receptores nicotínicos depende de cinco subunidades proteicas que se combinan para formar una unidad pentamérica: dos subunidades α en asociación con una subunidad β , δ y una ϵ (Figura 4A). Las subunidades α están compuestas por cuatro hélices desde M1 hasta M4, que se extienden en la membrana (Figura 4B) (Grosman et al. 2000; Rand 2007). Estas subunidades interactúan para formar un poro transmembranal, y también, bolsillos extracelulares de unión para la acetilcolina y otros agonistas y antagonistas (Hucho 1986). Los sitios de unión para la ACh se encuentran en la interfaz del dominio N terminal de las subunidades $\alpha\delta$ y $\alpha\epsilon$ (Pedersen & Cohen

1990). Una de las funciones más importantes de las subunidades $\alpha\delta$ y $\alpha\epsilon$ es estabilizar el estado de apertura del receptor. La unión simultánea de dos moléculas de ACh a un nAChR inicia un cambio conformacional que causa la apertura del poro, la duración de este estado depende del tiempo de duración de la acetilcolina en las subunidades indicadas del receptor (Bowman 1993; Grosman et al. 2000; Naguib et al. 2002).

Figura 4: Composición de las unidades del receptor nicotínico en la superficie de la placa terminal del músculo esquelético. **A.** Estructura pentamérica del receptor presente en la membrana postsináptica. **B.** Esquema de la subunidad α con sus terminales NH₂ y COOH en la superficie extracelular de la bicapa lipídica. Tomado de: Nalguib et al. 2002

La activación del receptor por el neurotransmisor (ACh), requiere que las dos subunidades α del receptor sean ocupadas. Los dos sitios exhiben cooperatividad, de forma que la unión a solo una de las subunidades facilita la unión de la otra. La unión de un agonista a las subunidades α induce un cambio conformacional en la proteína, lo cual resulta en la apertura del canal. El canal iónico es selectivo para cationes pequeños como Na⁺, K⁺ y Ca²⁺, pero el cambio mayor inducido por la apertura del canal, está dado por el flujo de iones de Na⁺. El flujo neto de iones de sodio ocurre en un gran número de receptores presentes en la membrana celular y produce el potencial de placa motora o EPP (Bowman 1993).

2.2.2.2. Mecanismo de contracción muscular

Una vez que la placa motora se despolariza, el potencial de acción recorre todo el sarcolema (membrana celular muscular) y es conducido hacia el interior de la fibra muscular a través del sistema de túbulos T. El acople exitación-contracción es el mecanismo por el cual un estímulo eléctrico inicia los eventos químicos en el músculo que conducen a la liberación de Ca²⁺ intracelular y por último causan una respuesta contráctil. La despolarización de la membrana mediada por la unión del neurotransmisor ACh a los receptores nicotínicos es transmitida a todas la fibras presentes en el músculo

a través del sistema de túbulos T. La despolarización dispara la liberación de Ca²⁺ desde el retículo sarcoplásmico, lo cual inicia la contracción mediante el deslizamiento de los filamentos contráctiles. Desde el sitio de su liberación, el Ca²⁺ se difunde hasta las proteínas contráctiles y se une a la troponina, provocándole un cambio conformacional que deja expuesto el sitio activo de la molécula de actina, de manera que la cabeza de la miosina puede unirse a él y formar un puente cruzado. La cabeza de la miosina rota 45°, ejerciendo una fuerza que jala al filamento delgado sobre el grueso y lo lleva hacia el centro del sarcómero. Después que la cabeza de miosina ha rotado por completo, ésta se disocia del filamento de actina y regresa a su posición inicial. La disociación del complejo es un proceso que requiere de energía de la hidrólisis del ATP (Huxley 1969; Eisenberg & Hill 1985; Brenner 1987). La fuerza de contracción y la longitud del sarcómero depende de su longitud inicial y es proporcional al grado de superposición que existe entre los filamentos de actina y miosina (Huxley & Hanson 1954).

Poco después de la liberación de Ca²⁺ el retículo sarcoplásmico reacumula el ion, con el fin de almacenarlo para ser liberado en el próximo potencial de acción. Cuando disminuye la concentración de Ca²⁺ intracelular, la troponina C libera los iones Ca²⁺, y se separa de la troponina I, lo cual resulta en que la disminución de la acción química recíproca entre la actina y la miosina causándose una relajación muscular (Eckert 1994; Holmes & Geeves 2000).

2.3. Inhibición de la neurotransmisión por el veneno de serpientes coral

Las serpientes coral han desarrollado potentes toxinas a través de su evolución, capaces de inhibir la transmisión neuromuscular en lugares presinápticos (como las β -neurotoxinas), por medio de la disminución de la liberación de ACh en la terminal nerviosa (Connolly et al. 1995; Hodgson & Wickramaratna 2002; Lewis & Guttman 2004), o en lugares postsinápticos por la acción de las α -neurotoxinas (α -NT), en donde su actividad se basa en el antagonismo con el neurotransmisor en los receptores nicotínicos del músculo esquelético, o bien, actuando directamente en el mpusculo esquelético (Endo & Tamiya 1991). Actualmente han sido muy pocos los estudios que reportan la actividad neurotóxica pre o postsináptica, o miotóxica de los venenos de las serpientes coral. En la Tabla 1 se muestra la información actualmente reportada acerca del efecto neurotóxico del veneno de las serpientes coral.

Especie	Acción presináptica	Acción post sináptica	Miotoxicidad	Referencia
M. frontalis		Х		Vital Brazil 1965; Vital Brazil et al. 1976/77; Vital Brazil and Fontana
M. lemniscatus		Х		1983/84, Vital Brazil 1990
M. dumerillii		Х		Serafim et al. 2002
M. spixii		Х		Vital Brasil 1990, Vital Brazil et al. 1983/84
M. fulvius		Х	Х	Wais 8 Ma Issae 1071: Caularte et al 1005
M. nigrocinctus		Х	Х	Weis & Wichsade 1971, Goulaite et al. 1995
M. corallinus	Х	Х		Vital Brazil 1987; Vital Brasil 1990, Vital Brazil & Fontana 1983/84

 Tabla 1: Información reportada acerca de los efectos neuromusculares de los venenos de algunas especies de serpientes coral.

2.3.1. Inhibición presináptica

Las neurotoxinas que causan la inhibición presináptica o β-neurotoxinas (β-NT), han sido aisladas de los venenos de las familias Elapidae y Viperidae, las cuales producen un bloqueo neuromuscular inhibiendo la liberación de ACh por diferentes medios (Hodgson & Wickramaratna 2002). Las neurotoxinas presinápticas pueden ser polipéptidos de cadena sencilla o toxinas constituidas por múltiples subunidades, con múltiples isoformas de una neurotoxina en particular que difieren en su secuencia de aminoácidos (Harris 1997).

Una particularidad de las β-NT es que son fuentes ricas en Fosfolipasas A2 (PLA2) (Harvey et al. 1994; Faelli et al. 1998; Hodgson & Wickramaratna 2002; Kuruppu et al. 2008) lo cual presumiblemente evolucionó de una acción inicial en la digestión de las presas hacia una función de inmovilización y muerte de las mismas (Rosenberg et al. 1989). Las PLA2 hidrolizan el enlace ester sn-2 de los fosfoglicéridos 1,2-diacil-3-sn produciendo ácidos grasos y lisofosfolípidos (Montecucco & Rossetto 2000; Hodgson & Wickramaratna 2002; Pungercar & Krizaj 2007; Kuruppu et al. 2008), dicha actividad catalítica es dependiente del Ca²⁺ (Verheij et al. 1981). Las β-neutotoxinas pueden estar compuestas por una o varias subunidades y siempre presentan un canal hidrofóbico en donde se encuentra la enzima, que se acomoda a las cadenas de ácidos grasos de los fosfolípidos (FL) permitiendo que el enlace ester sea clivado en el sitio activo de la enzima. La His48 y el Asp49 de la PLA2 se encuentran directamente involucrados en el proceso, de modo que una molécula de agua se une a la His48, y es usada para la hidrólisis, mientras que el Asp49 posiciona al ion Ca²⁺, coordinando a los grupos fosfato y *sn*-2 carbonil del fosfolípido (Yu et al. 1993; Montecucco & Rossetto 2000).

Teniendo en cuenta que en el momento en el que se realiza la fusión de las vesículas para la liberación del neurotransmisor se crea un poro de fusión que une los dos espacios acuosos antes aislados (por la membrana de las vesículas y la membrana de la terminal nerviosa), la presencia de lípidos de forma cónica invertida (como los lisoFL) en la membrana de la terminal nerviosa genera una curva cargada positivamente en el momento de la exocitosis, lo cual incrementa la capacidad de la membrana para realizar exocitosis (Strong et al. 1976; Montecucco & Rossetto 2000).

El incremento en la exocitosis permite que las β -NT se abran paso el lumen de las vesículas (Figura 6), en donde la enzima realiza una catálisis de los fosfolípidos presentes en la cara interna de la membrana vesicular (Montecucco & Rossetto 2000). El lumen de las vesículas sinápticas es rico en Ca²⁺ (Schmidt et al. 1980) y proporciona un ambiente ideal para la actividad catalítica de la enzima. Una vez las β -NT se encuentran internalizadas, el gradiente electroquímico de protones generado a través de la membrana vesicular por la ATPasa de tipo V (Sha et al. 2004), decrece el pH interior con el fin de acumular moléculas de ACh por medio del transportador vesicular VAChT (Rand 2007). Las PLA2 tienen una actividad óptima alrededor del pH neutro, pero se ha demostrado que preservan sustancialmente su actividad en pHs ácidos (Montecucco & Rossetto 2000). Los AG producto de la catálisis de la monocapa membrana vesicular interior se protonan en presencia del pH ácido y tienden a realizar *flip-flops* muy rápidamente hacia la capa externa (que se encuentra en contacto con el citosol de la terminal nerviosa), en donde se deprotonan (Wilschut et al. 1992; Kamp et al. 1993) (Figura 7)

Figura 5: Modelo de acción de las β-NT en la unión neuromuscular. Modificado de Montecucco & Rossetto (2000)

Entre más alto sea el empaquetamiento de lípidos en la capa interior de la vesícula y exista una predominancia de grupos cargados negativamente, más se promueve la formación de AG en la monocapa citosólica, de ésta forma, la actividad hidrolítica de la PLA2 combinada con el gradiente electroquímico de protones generado por la ATPasa causa el enriquecimiento de nuevos AG en la monocapa citosólica y de LisoFL en la monocapa lumenica (Montecucco & Rossetto 2000). Los AG son lípidos fusogénicos, altamente presentes en vesículas secretoras debido a ésta propiedad, en donde, debido a su forma cónica, promueven la formación de dobleces locales en las monocapas (Chernomordik et al. 1995; Piomelli et al. 2007). Los AG inducen la fusión de liposomas de varios tipos de lípidos sin requerir del incremento en la concentración de Ca⁺ (Meers et al. 1988), lo cual se complementa para causar una exocitosis, con la presencia de LisoFL presentes en la membrana de la terminal nerviosa, como se mencionó anteriormente (Montecucco & Rossetto 2000).

Igualmente, la propiedad fusogénica de las vesículas hace que no exista un gradiente de pH a través de la membrana haciendo que los AG se redistribuyan en las dos

monocapas de las vesículas. De éste modo, las membranas ricas en AG y LisoFL previenen la endocitosis, causando finalmente, que sea mayor la cantidad de ACh degradada por la AChE, que la que se enucentra disponible para despolarizar el músculo y causar su contracción (Montecucco & Rossetto 2000).

Las diferentes secuencias de PLA2 presentan similitudes en sus dobleces y solo unos pocos cambios en la secuencia de aminoácidos es suficiente para convertir una PLA2 pancreática no tóxica en las PLA2 altamente tóxicas que se pueden encontrar en venenos de serpientes, las cuales son específicas para diferentes tejidos y tipos celulares que dependen de la presa que el animal consuma (Montecucco & Rossetto 2000). Las PLA2 presentes en venenos de serpientes son miembros de una larga familia multigénica con diversas actividades farmacológicas, incluyendo neurotoxicidad, miotoxicidad, cardiotoxicidad, actividades anticoagulantes y hemolíticas (Lynch 2007).

2.3.2. Inhibición postsináptica

Las neurotoxinas que causan la inhibición postsináptica o α –NT son antagonistas del neurotransmisor y por lo tanto se unen con gran afinidad y especificidad sus sitios de unión en los receptores nicotínicos del músculo esquelético (Changeuxt et al. 1970), inhibiendo la apertura del canal asociado al receptor; de esta forma, las α -NT bloquean la transmisión en el músculo esquelético, lo cual causa la parálisis de la presa (Hodgson & Wickramaratna 2002). Las α -NT solo se encuentran en los venenos de la Familia Elapidae, habiéndose descrito más de 100 neurotoxinas (Dufton & Harvey 1989), sus secuencias difieren considerablemente entre especies, se sugiere que los sitios conservados constituyen un lugar funcional de unión al receptor de ACh, mientras que los sitios no conservados constituyen evolutivamente lo que ha sido la especialización en la captura de presas (Trémeau et al. 1995).

La acción de las α -NT se fundamenta en su antagonismo con los receptores nicotínicos, a los cuales se unen con gran afinidad (K_D= 10⁻¹² a 10⁻⁹ mol/L) y especificidad (Changeuxt et al. 1970). La estructura heteropentamérica del receptor presenta dos sitios específicos para la unión del neurotransmisor (localizado en la interfaz del dominio N terminal de las subunidades $\alpha \delta y \alpha \epsilon$) (Pedersen & Cohen 1990) que interactúan en una forma cooperativa, de modo que las neurotoxinas postsinápticas pueden inhibir la apertura del canal iónico asociado al receptor ocupando éstos dos sitios (Changeuxt et al. 1970). La mayoría de α -NT pertenecen a la familia de las toxinas de tres dedos (3FTx) y su estructura, como su nombre lo indica, presenta tres dedos indispensables para la unión con los receptores nicotínicos. Las 3FTx presentan un *scafold* formado por tres *loops* adyacentes que emergen de un núcleo globular e hidrofóbico que se encuentra entrecruzado con los puentes disulfuro (Menez 1998; Kini 2002; Nirthanan et al. 2003). Dependiendo de su secuencia, las α-NT se dividen dos grandes grupos, las de cadena corta, que consisten de 60-62 aminoácidos y contienen cuatro puentes disulfuro, o de cadena larga, que se componen de 66-74 aminoácidos y usualmente cinco puentes disulfuro (Endo & Tamiya 1999). Las de cadena corta, se asocian con el receptor nicotínico seis a siete veces más rápido que las de cadena larga, pero igualmente, tienden a disociarse cinco a nueve veces más rápido, lo cual indica que las de cadena larga presentan una mayor afinidad por el receptor (Servent et al. 1997).

2.3.3. Inhibición al músculo

La inhibición causada directamente en el músculo esquelético es dependiente de la actividad de PLA2 en el veneno. El mecanismo de acción miotóxico se encuentra dado por la hidrólisis de los fosfolípidos de membrana, al igual que en la terminal presináptica Pero esta vez en la membrana del retículo sarcoplásmico. Lo anterior causa que el retículo sea incapaz de retomar el Ca²⁺ y por lo tanto, no permite que el músculo se relaje después de una contracción (Rosso et al. 1996, Hodgson & Wickranaratna 2002).

2.4. Estudio de la bioactividad de los venenos

Existen diferentes preparaciones de órgano aislado con el fin de lograr evaluar experimentalmente diferentes efectos la transmisión neuromuscular, entre ellos se encuentran las preparaciones de rata, ratón, sapo y pollo; siendo las de rata y pollo las más utilizadas (Hodgson & Wickramaratna 2002). El estudio de la contracción muscular en preparaciones neuromusculares consiste en la estimulación mediante un pulso eléctrico aplicado directamente sobre el músculo, o bien, a través del nervio. Durante la contracción el músculo desarrolla tensión o efectúa trabajo, por lo que se han descrito dos tipos de contracciones musculares, la isotónica y la isométrica. El tipo utilizado en éste estudio es isométrico, el cual consiste en que el músculo se contrae bajo una carga constante. La respuesta mecánica del músculo a un solo estímulo eléctrico es denominada « sacudida simple ». Una sacudida simple isométrica muestra una fáse rápida de incremento en la tensión seguida de una fase de relajación más lenta (caida de tensión), tras la cual se reestablece la tensión basal (Aidley 1989).

La preparación de músculo cervical digástrico de pollo es la metodología (MCDP) más adecuada para estimar los efectos neurotóxicos de venenos de serpientes. Las ventajas de esta preparación como experimento de rutina incluyen: bajo costo de los animales

modelo de estudio, facilidad en la disección y montaje del tejido, alta sensibilidad y adquisición rápida de resultados (Harvey et al. 1994; Hodgson & Wickramaratna 2002). Las fibras presentes en el músculo cervical digástrico del pollo son de dos tipos, rápidas y lentas. Las fibras musculares rápidas son focalmente inervadas, mientras que las fibras lentas presentan inervaciones múltiples (Gingsborg & Mackay 1960; Gingsborg & Mackay 1961; Hess 1961; Hess 1970). Las fibras rápidas median la contracción evocada y pueden ser estimuladas eléctricamente (Hodgson & Wickramaratna 2002), mientras que las fibras lentas no responden a un potencial de acción propagado en una sola estimulación nerviosa, y dan origen a una única contracción sostenida después de la aplicación de agentes despolarizantes (Gingsborg 1960; Gingsborg & Mackay 1960; Hodgson & Wickramaratna 2002).

La presencia de fibras musculares tónicas lentas en el músculo cervical digástrico de pollo permite que la preparación pueda ser estimulada exógenamente con agonistas nicotínicos como el carbacol o la acetilcolina (Ashmore et al. 1978), y de esta forma, es posible que los efectos presinápticos de los venenos neurotóxicos se diferencien de los postsinápticos (Harvey et al. 1994; Hodgson & Wickramaratna 2002; Kuruppu et al. 2008).

Las contracciones eléctricas evocadas al nervio en la preparación neuromuscular de pollo provocan la contracción de las fibras musculares rápidas focalmente inervadas presentes en el músculo por medio del mecanísmo acople exitación-contracción (Figura 8). Los procesos que conllevan al acortamiento de los elementos contráctiles del músculo consisten en un deslizamiento de los filamentos delgados sobre los gruesos. El ancho de las bandas A permanece constante mientras las líneas Z (Figura 3) se mueven para acercarse entre sí cuando el músculo se contrae y para separarse cuando se elonga. El mecanismo por el cual la fibra muscular inicia una contracción se llama acople exitación-contracción (Gingsborg & Mackay 1960; Gingsborg & Mackay 1961; Hess 1961; Hess 1970). El potencial de acción único produce una contracción breve seguida por una relajación. En la Figura 7 se ilustra una contracción muscular evocada eléctricamente al nervio de la preparación de pollo. La contracción inicia cerca de 2mseg después del inicio de la despolarización de la membrana, antes de completarse la repolarización. El potencial de membrana en reposo del mpusculo es de -90 mV, su potencial de acción dura aproximadamente 2 a 4 milisegundos y se conduce a lo largo de la fibra a una velocidad de 5 m/seg (Ganong 1999)

Figura 6: Contracción muscular generada en la preparación *in vitro* del músculo cervical digástrico de pollo Modificado de: (Marieb & Hohen 2007).

2.4.1. Acción de las neurotoxinas in vitro

En la preparación *in vitro* de pollo, las neurotoxinas que utilizan como blanco de acción la membrana presináptica inhiben las contracciones evocadas en el nervio, sin afectar las respuestas a agonistas del receptor nicotínico. Estas neurotoxinas presentan un efecto trifásico característico en las preparaciones *in vitro*: primero se presenta un decrecimiento seguido por un incremento transitorio, terminando en el bloqueo completo (Su & Chang 1984; Chang 1985; Harris 1997; Montecucco & Rossetto 2000).

La secuencia específica de eventos que causan el bloqueo presináptico varía entre especies. En general, existe un periodo de 5 a 20 minutos antes de observarse algún efecto en la transmisión del estímulo, este es el tiempo en el cual ha sido reportado que las toxinas pueden unirse a la membrana presináptica y actuar en ella, lo cual se basa en que los lavados realizados en la preparación *in vitro* durante este tiempo tienen muy poco efecto medible (Hodgson & Wickramaratna 2002; Lewis & Guttman 2004).

La actividad enzimática de las β -NT es dependiente del Ca²⁺ y puede ser inhibida remplazando el Ca²⁺ con estroncio (Sr²⁺) en la solución que baña el tejido de la preparación *in vitro* (Yu et al. 1993; Montecucco & Rossetto 2000). Los iones de Ca²⁺ juegan un papel muy importante en la despolarización de la terminal nerviosa de la placa motora, y en la liberación de acetilcolina. En la ausencia de estos iones, el potencial de acción en el nervio invade la terminal nerviosa, pero falla en inducir la liberación del neurotransmisor hacia el espacio sináptico (Katz & Miledi 1965; Dodge & Rahamimof 1967). Ha sido demostrado que los iones de Sr²⁺, tienen propiedades similares a los iones de Ca²⁺ y permiten que la liberación del neurotransmisor sea posible (Dodge et al. 1969; Meiri & Rahamimoff 1971; Mellow et al. 1982).

Las neurotoxinas que utilizan como blanco de acción la membrana postsináptica, pueden inhibir la transmisión neuromuscular bloqueando la contractibilidad muscular por su unión con el receptor de ACh. Estos estudios se basan en la inhibición de las contracciones frente a los agonistas nicotínicos, teniendo en cuenta que las neurotoxinas postsinápticas, bloquearán la respuesta a agonistas como la ACh en el receptor colinérgico, pero no afectarán la respuesta al KCI (Harvey et al. 1994; Hodgson & Wickramaratna 2002).

La estimulación de las fibras musculares tónicas lentas presentes en el músculo cervical digástrico de pollo, por el agonista nicotínico ACh, es la base para evidenciar el efecto de las α -NT (Harvey et al. 1994; Hodgson & Wickramaratna 2002; Kuruppu et al. 2008). La adición de ACh a la preparación, en ausencia de un estímulo eléctrico, activa las dos subunidades α del receptor nicotínico, de modo que al causar su apertura permite la entrada de Na⁺ y la consecuente despolarización de las fibras musculares tónicas lentas causando una contracción sostenida (Ebashi 1972; Brenner 1987; Holmes & Geeves 2000; Herzog et al. 2008) dada por la falta de relajación en el acople excitación - contracción del músculo, de modo que se produce una inhibición del Ca²⁺ hacia el retículo sarcoplásmico y aunque la adición de ACh causa más potenciales de acción, la contracción resultante es sostenida. Con base en lo anterior, las neurotoxinas de acción postsináptica inhiben la respuesta a la ACh, mientras que las presinápticas no la inhiben (Harvey et al. 1994; Hodgson & Wickramaratna 2002; Kuruppu et al. 2008).

2.4.1.1. Neurotoxicidad de los venenos

La determinación de la letalidad de los venenos en animales completos por lo general ha sido estudiada con base en la dosis letal 50 murina (DL_{50}), la cual tiene como propósito determinar que concentración de veneno mata el 50% de los ratones bajo estudio en un periodo de 24 – 48 horas, y pretende determinar los rangos de letalidad de los venenos de las serpientes. Debido a razones éticas y a que el porcentaje de error es alto debido a que se toman en cuenta no solo los efectos de las neurotoxinas de los venenos sino también de las cardiotoxinas, miotoxinas, factores hemolíticos y factores anticoagulantes, este tipo de estudios se está reemplazando por estudios *in vitro* (Kuruppu et al. 2008). Un método para comparar la neurotoxicidad de los venenos en preparaciones neuromusculares es por medio de la toma del tiempo que el veneno tarda en causar el 50% o 90% del bloqueo de las contracciones (t_{50} y t_{90} respectivamente). La decisión acerca del valor a utilizar se toma dependiendo de la velocidad de bloqueo que cause el

veneno, de modo que si el bloqueo es lento, se calcula el valor t_{50} y si es rápido se calcula el t_{90} . Las DL₅₀ y los valores t_{90} o t_{50} miden diferentes parámetros de toxicidad, mientras que las DL₅₀ se basan en "cantidad", los valores t_{90} se basan en la velocidad de un veneno para actuar, de esta forma, es posible tener un veneno extremadamente letal (según la DL₅₀) que se tome una cantidad considerable de tiempo para actuar (Hodgson & Wickramaratna 2002; Kuruppu et al. 2008).

2.4.1.2. Reversión del efecto de un veneno neurotóxico

La manera más específica y eficiente para revertir el efecto neurotóxico de un veneno es la aplicación de un suero antiofídico. La farmacocinética de los venenos y antivenenos juegan un rol de alta importancia para el éxito de la neutralización. Ya que el secuestro de la toxina por anticuerpos debe darse idealmente antes de que las toxinas desarrollen su función (Gutierrez et al. 2003).

La base molecular de la neutralización de toxinas por anticuerpos o sus fragmentos, está dada por el bloqueo de las regiones moleculares de la toxina que estén involucradas en la interacción con su blanco de acción, excluyendo su acción farmacológica. Un epítope, también conocido como determinante antigénico, es la parte de una macromolécula que es reconocida por el sistema inmune, específicamente por anticuerpos, células B o T. La parte del anticuerpo que reconoce el epítope es llamado paratopo. El bloqueo de las reigiones moleculares de la toxina puede ocurrir por varios mecanismos directos o indirectos: (i) el "sitio farmacológico" de la toxina puede ser un epítope reconocido por parátopos de anticuerpos. (ii) Los anticuerpos pueden unirse a epítopos localizados cerca del "sitio farmacológico" de la toxina, de modo que la neutralización es lograda por el obstáculo estérico de dicha región molecular. (iii) Los anticuerpos pueden reconocer un epítope lejos del "sitio farmacológico" de las toxinas, induciendo cambios conformacionales en la molécula que decrecen la afinidad por sus blancos celulares (Gutierrez et al. 2003).

Teniendo en cuenta que en la mayoría de los casos no se cuenta con un antiveneno para las mordeduras casadas por serpientes coral, algo frecuente en Colombia (de Roodt et al. 2004), existen terapéuticos alternativos que pueden ser utilizados con el fin de revertir los efectos neurotóxicos cuando se presentan envenenamientos (Kuruppu et al. 2008). La adición de una droga anticolinesterásica como la neostigmina en los casos de envenenamiento causa la reversión de un veneno de acción postsináptica, con presencia de α -NT (Wickramaratna et al. 2003; Kuruppu et al. 2005). La droga inhibe la enzima acetilcolinesterasa del espacio sináptico permitiendo que la concentración de neurotransmisor aumente y desplace competitivamente la toxina unida al receptor

nicotínico (Gold 1996). Uno de los primeros reportes acerca del uso clínico de la neostigmina fue en el tratamiento de un paciente por envenenamiento de la cobra *Naja naja philippinensis* (Familia Elapidae) (Watt et al. 1988). La administración de neostigmina (0,5 Mm). En los últimos años se ha demostrado que en el envenenamiento causado por otras especies de cobras, es posible causar una reversión dramática de los efectos neurotóxicos (Gold 1996). Si bien la mayoría de los efectos neurotóxicos de los venenos pueden ser revertidos por medio de una droga anticolinesterásica, existen reportes acerca de algunos venenos de serpientes coral que no presentan esta característica (Serafim et al. 2002). La importancia acerca de la evaluación de la reversión de la acción de un veneno neurotóxico en preparaciones *in Vitro* recae en aportar información que pueda ser utilizada en el momento en que se presenten casos por envenenamiento de las especies bajo estudio.

2.4.2. Acción de las miotoxinas in vitro

Aunque la Miotoxicidad es un factor difícil de probar sin ayuda de cortes histológicos, factores como la adición de KCI y el monitoreo de la tensión de la línea de base perrmiten realizar una aproximación a este tipo de efecto con el uso de la preparación neuromuscular in vitro de pollo (Harvey et al. 1994). La estimulación de las fibras musculares tónicas lentas presentes en el músculo cervical digástrico de pollo, por el agonista KCI, es uno de los factores que permiten aproximarse al efecto miotóxico (Harvey et al. 1994; Hodgson & Wickramaratna 2002; Kuruppu et al. 2008). La señal para la que pueda darse la contracción muscular involucra la propagación de un potencial de acción a lo largo de las fibras. El incremento en la concentración extracelular de K⁺, genera un cambio en las cargas presentes en la membrana y tiende a despolarizar el potencial de reposo transmembranal (Fortune & Lowery 2007). Por otra parte, el incremento en la tensión de base de las contracciones musculares implica un daño a la maquinaria contráctil, Una mayor tensión en el músculo implica el daño directo al mecanismo de acople exitacion-contracción, especialmente al proceso de relajación, en donde el Ca²⁺ no es retomado completamente por el retículo sarcoplásmico y no logra una relajación completa de las fibras (Ebashi 1972; Eisenberg & Hill 1985).

3. FORMULACIÓN DEL PROBLEMA Y JUSTIFICACIÓN

3.1. Formulación del Problema

Los venenos de serpientes son el resultado de la selección en la habilidad de digerir y capturar las presas disponibles en su hábitat. La gran diversidad existente en las toxinas de los venenos de serpientes se debe a su modo de evolución, sujeto a la duplicación frecuente de genes codificantes para toxinas, lo cual en la mayoría de los casos se encuentra seguido por una diversificación funcional y estructural (Slowinski et al. 1997; Afifiyan et al. 1999; Chang et al. 1999; Fry et al. 2003), (muy evidente cuando los hábitats y sus condiciones difieren) (Daltry et al. 1996).

Las especies de serpientes coral *M. dissoleucus* (Figura 5a) y *M. mipartitus* (Figura 5b) objeto de este estudio presentan diferencias considerables en cuanto a las características de sus hábitats particulares y a su vez, presentan una alta relación evolutiva (ver Anexo 1) (*Com. Pers.* Erick Smith). Los individuos utilizados en este estudio de la especie *M. dissoleucus* pertenecen a Santa Marta, Departamento del Magdalena en el norte de Colombia, y los individuos de la especie *M. mipartitus* presentan una distribución desde los Andes del oeste y centro de Colombia y la zona sur de la cordillera oriental adyacente al oeste de Ecuador, hasta el norte de Perú (también han sido reportados en la Isla de Gorgona en Colombia) (Campbell & Lamar 2004).

M. dissoleucus presenta una distribución principalmente en ecosistema de bosque seco tropical y se alimenta de lagartos diurnos, gekos y colúbridos (Com. pers. Juan Manuel Renjifo). *M. mipartitus* presenta una distribución más amplia, en donde incluye un rango desde el ecosistema de bosque húmedo bajo tropical hasta bosque húmedo tropical, y se alimenta principalmente de lagartos, anfisbénidos, gekos, colúbridos y algunos anfibios (Roze 1996).

Figura 7: Serpientes coral (género *Micrurus*) utilizadas en el estudio **A.** *M. dissoleucus* (Santa Marta, Magdalena - Colombia). **B.** *M. mipártitus* (Melgar, Tolima - Colombia).

La variación en los componentes presentes en los venenos de las serpientes coral, originadas por la especialización de las serpientes en diferentes hábitats y condiciones, hace que la neurotoxicidad de sus venenos sea particularmente susceptible, teniendo en cuenta que su efecto en la inhibición de la transmisión en la unión neuromuscular puede afectar las características del bloqueo que se produce en la transmisión neuromuscular.

3.2. Pregunta de investigación

¿Existen diferencias en la actividad neurotóxica del veneno de las serpientes coral *Micrurus dissoleucus* y *Micrurus mipartitus*, en una preparación *in Vitro* de órgano aislado (músculo cervical digástrico de pollo)?

3.3. Justificación de la investigación

M. dissoleucus y *M. mipartitus* son especies que presentan una alta relación evolutiva (ver Anexo 1) (*Com. Pers.* Erick Smith), lo cual podría suponer, a pesar del modo de evolución que presentan las toxinas, componentes neurotóxicos similares y por lo tanto, efectos similares. Teniendo en cuenta que estas especies presentan diferencias ecológicas significativas, el estudio del efecto neurotóxico que presentan sus venenos permitirá dar a conocer el efecto que tiene especialización de las serpientes en condiciones ecológicas particulares, en cuanto al modo de acción de las neurotoxinas presentes en sus venenos, en inhibición de la transmisión neuromuscular.

Por otra parte, teniendo en cuenta la problemática actual que se sufre en Colombia por la falta de tratamientos que pueda ser utilizados en caso de envenenamientos causados por serpientes coral, el estudio del veneno de *Micrurus dissoleucus* y *Micrurus mipartitus* brinda una oportunidad para realizar aproximaciones importantes acerca de las características necesarias a tomar en cuenta para producir un antiveneno en casos futuros, de forma que pueda tomarse una decisión acerca de realizar los antivenenos basándose en la cercanía evolutiva de las serpientes. Asimismo, el conocimiento acerca de las características y el comportamiento del bloqueo neuromuscular producido por estas serpientes, permitirá realizar aproximaciones a terapéuticos que puedan ajustarse a las características particulares del bloqueo producido por el veneno de cada especie.

4. OBJETIVOS

4.1 Objetivo general

Caracterizar la actividad neuromuscular del veneno de las serpientes coral *Micrurus dissoleucus* y *Micrurus mipartitus,* en una preparación *in vitro* de órgano aislado (músculo cervical digástrico de pollo).

4.2 Objetivos específicos

- **4.2.1** Cuantificar la neurotoxicidad del veneno de *M. dissoleucus* y *M. mipartitus* por medio de los valores t₅₀ o t_{90.}
- **4.2.2** Establecer el tipo de bloqueo neuromuscular (neurotóxico pre o post-sináptico, y miotóxico) que se produce por el veneno de *M. dissoleucus* y *M. mipartitus*
- **4.2.3** Comprobar si existe actividad dependiente de la fosfolipasa A2 en el veneno de *M. dissoleucus* y *M. mipartitus*.
- **4.2.4** Evaluar si existe reversión del efecto neurotóxico del veneno de *M. dissoleucus* y *M. mipartitus* por medio un inhibidor de la colinesterasa (neostigmina).

5. MATERIALES Y METODOS

5.1. Diseño de la investigación

Tabla 2: Diseño de la investigación experimental del efecto neurotóxico del veneno o	de
M. dissoleucus y M. mipartitus.	

Factor de diseño No. 1	- Veneno de serpientes coral
Niveles del factor de diseño 1	- Veneno de <i>M. mipartitus</i>
	- Veneno de <i>M. dissoleucus</i>
Factor de diseño No. 2	- Dosis de veneno
Niveles del factor de diseño No. 2	- 3 μg/ml
	- 10 µg/ml
	- 50 μg/ml
Variable de respuesta	- Amplitud de la contracción expresada
	en el porcentaje de respuesta con
	respecto al inicial.
	- Tiempo en causar el 50% del bloqueo
	neuromuscular
	- Contracción dada por agonistas
	nicotínicos
Unidad de respuesta	- Contracciones evocadas por el nervio
Unidad de muestreo	- Nervio de la preparación in vitro de
	músculo cervical digástrico de pollo

5.1.1. Población de estudio y muestra de la población de estudio

El veneno de las serpientes utilizadas en el estudio fue brindado por PISCILAGO, Melgar en la sección de herpetos con la ayuda del señor Jairo Maldonado, cuidador de los animales presentes en el lugar. En este lugar se cuenta con el seguimiento de cada animal, de modo que se tienen los datos de pesos, edades y localidades de las que fueron colectados los animales.

Los pollos con los que se realizaron las pruebas fueron adquiridos de la Avicola PASABANA, teniendo en cuenta que cumplen con condiciones de alimentación e higiene adecuadas para la realización del estudio. Asimismo, cumplen con ser unidades homogéneas, ya que son mantenidos en condiciones iguales de alimentación y temperatura.

5.1.2. Variables del estudio

 Tabla 3: Variables independientes y dependientes de la investigación experimental del efecto neurotóxico del veneno de *M. dissoleucus* y *M. mipartitus.*

Variables independientes	- Veneno de serpientes coral (Micrurus dissoleucus y
	Micrurus mipartitus)
	- Dosis de bloqueo (3 μg/ml y 10 μg/ml)
Variables dependientes	- Amplitud de la contracción expresada en el
	porcentaje de respuesta con respecto al inicial.
	- Tiempo en causar el 90% del bloqueo
	neuromuscular

5.2. METODOS

5.2.1. Extracción del veneno

La extracción del veneno de las dos especies se realizó con ayuda de tubos capilares que fueron introducidos en cada colmillo inoculador de veneno de las serpientes. Con el fin de obtener el veneno, se realizó una estimulación directa a la glándula de veneno y posteriormente, el veneno recolectado se introdujo en un vial y posteriormente se preservó en nitrógeno líquido para evitar la degradación del mismo.

5.2.2. Liofilización del veneno

El veneno preservado en nitrógeno líquido se llevó al Instituto Nacional de Salud o INS, en donde se llevó a cabo la liofilización de éste. Posterior a la liofilización, el veneno fue preservado en una nevera para ser utilizado en los experimentos.

5.2.3. Disección y montaje de la preparación

Las preparaciones neuromusculares de digástrico se realizaron siguiendo el protocolo de Gingsborg & Warriner (1960). Los tejidos utilizados en el estudio fueron aislados de pollos de edades entre 4 – 14 días (50 – 250g). Para la disección, se realizó una incisión en la línea media de la parte posterior del cuello, desde el cráneo hasta la base del cuello, exponiendo los dos músculos digástricos inmediatamente por debajo de la piel. Se ató un hilo alrededor del extremo superior de uno de los nervios (Figura 8A) y fue posteriormente cortado de su adherencia al cráneo. El músculo y nervio motor fueron cuidadosamente removidos, junto con el tendón proximal que adhiere el músculo al ligamento supraespinoso. Los electrodos fueron ubicados como lo indica la Figura 8B y posteriormente montados sobre un soporte como lo indica la Figura 8A. Las preparaciones de los músculos digástricos fueron montadas en una cámara de 15 ml para órgano aislado (Figura 8B), y bañados con una solución fisiológica Krebs-Hensleit de composición: (mM) NaCl, 118.4; KCl, 4.7; MgSO₄, 1.2; KH₂PO₄, 1.2; CaCl₂, 2.5; NaHCO₃, 25; y glucosa 11.1. La solución fue mantenida con carbógeno (95 % O2 y 5% CO₂) a 34°C con un pH de 7.

Figura 8: Preparación *in vitro* del músculo cervical digástrico de pollo. A. Vista superior de la parte ventral del cuello, mostrando el músculo cervical digástrico de pollo. B.
 Organización del montaje del electrodo alrededor de la preparación *in vitro* de músculo digástrico de pollo.

Figura 9: Organización y montaje de la preparación *in vitro* de musculo cervical digástrico de pollo. **A.** Organización de los electrodos alrededor del músculo **B.** Cámara para aislar órganos *in vitro* (modificado de: ADInstruments.com).

5.2.4. Experimentos

Las contracciones fueron dadas por la estimulación eléctrica al nervio motor (estímulo indirecto) cada 10 segundos con pulsos de 0.2 milisegundos de duración y a un voltaje supramáximo utilizando un estimulador PowerLab. Los tejidos se dejaron en estabilización por 30 minutos antes del comienzo del experimento (Crachi et al. 1999; Wickramaratna & Hodgson 2001; Serafim et al. 2002; Lumsden et al. 2004; Lumsden et al. 2005; Kuruppu et al. 2007). Posterior a la estabilización, el veneno, en dosis de 3, 10 y/o 50 µg/ml se dejó en contacto con la preparación hasta que la respuesta a la estimulación fuera inhibida, o hasta que se cumplieran 3 horas sin que ocurriera un bloqueo (para el caso de los controles, se utilizó el mismo tiempo sin adición de veneno).

A continuación será explicado en detalle la metodología utilizada para evaluar cada uno de los objetivos específicos.

5.2.4.1. Objetivo específico No. 1

Con el fin de cuantificar la neurotoxicidad del veneno de *M. dissoleucus* y *M. mipartitus* por medio del valor t50 o t90. Posterior a la estabilización, el veneno se dejó en contacto con la preparación hasta que la respuesta a la estimulación fuera inhibida, o hasta que se cumplieran 3 horas sin que ocurriera un bloqueo (para el caso de los controles, se utilizó el mismo tiempo sin adición de veneno). En la conclusión del experimento se adicionaron los agonistas nicotínicos acetilcolina (ACh 1 mM por 30 segundos) y KCl (40 mM por 30 segundos) en ausencia de estimulación eléctrica.

5.2.4.2. Objetivo específico No. 2

Con el fin de establecer la actividad neurotóxica presináptica que se produce por el veneno de *M. dissoleucus* y *M. mipartitus* se observó el comportamiento de bloqueo en la dosis más baja de veneno (3µg/ml), con el fin de evaluar la presencia de una curva trifásica característica del mecanismo de acción presináptico

Con el fin de establecer la actividad neurotóxica postsináptica que se produce por el veneno de *M. dissoleucus* y *M. mipartitus* se evaluó la respuesta de la preparación *in vitro* (después que la preparación estuviera en contacto durante tres horas con el veneno), a la adición de acetilcolina (ACh) 1 mM en ausencia de estimulación eléctrica

Con el fin de establecer la actividad miotóxica que se produce por el veneno de *M. dissoleucus* y *M. mipartitus* se evaluó la respuesta de la preparación *in vitro* (después que la preparación estuviera en contacto durante tres horas con el veneno), a la adición de KCl 40 mM en ausencia de estimulación eléctrica. Adicionalmente, se evalúo el incremento en la tensión de base en el bloqueo de las contracciones musculares.

5.2.4.3. Objetivo específico No. 3

Con el fin de comprobar si existe actividad dependiente de la fosfolipasa A2 en el veneno de *M. dissoleucus* y *M. mipartitus*, los tejidos fueron bañados en solución fisiológica Krebs normal y después de 30 min, fueron bañados con solución fisiológica libre de Ca²⁺. Posteriormente, los tejidos fueron sumergidos en la cámara de órgano bañados con solución fisiológica con Sr²⁺ (10 mM) reemplazando el Ca²⁺. Se siguió el protocolo de 30 minutos de estabilización y posterior adición de veneno como fue mencionado anteriormente.

2.1.1.1. Objetivo específico No. 4

Con el fin de evaluar si hay reversión del efecto neurotóxico del veneno de *M. dissoleucus* y *M. mipartitus,* en casos en donde se observó una inhibición completa de las contracciones evocadas al nervio, se realizó una prueba de reversibilidad con

Neostigmina (5 μ M), en donde ésta fue adicionada en el t₅₀ (tiempo en el que el veneno causa el 50% de la inhibición a las contracciones)

5.3. Recolección de la información

La fuerza de contracción generada durante los experimentos por el tejido, fue obtenida por medio de un transductor de tensión Grass FT 03C. La señal fue acondicionada y digitalizada a través de un polígrafo digital ADInstruments® PowerLab/45T para su registro y tabulación con el programa Chart 5.1® el cual permite observar el comportamiento de las contracciones musculares evocadas al nervio, y a su vez, calcula el valor de amplitud y tensión para cada una de las contracciones (Figura 10).

Figura 10: Registro de las contracciones musculares evocadas al nervio.

El programa arroja un valor cada 10 segundos, durante 210 minutos, los cuales consisten de 30 minutos de estabilización y tres horas de experimento desde la adición del veneno o sin adición de éste (control) (Figura 11).

-			1 4	-	`	L	2 1		-					_)			
М.	mipa	rtitus -	3 Mi	crog	- No	.1 (1	9-07	-08):	Vista	Cha	rt*																
al	*		ō	Co	me	ntari	D													Agrega	arr						
	60	0 -																				→ Sin mu Fuerza	estreo 🧃				
														1	🖾 м.	mipartitus -	3 Microa- I	lo. 1 (19-07-08)	: Hoia de dato	IS*							
	40													Ľ		200 nuntr	ns desde ta										
	τu	0 -												lr	ĸн	Loo balle		10 0 0 10/00									_
		-														M1 A	в	С	D	E	F	G	н	I	J	K	
	20	0 -			-											Fecha	Hora	Inicio de selección	Número de bloque	Hora de inicio bloque	Fuerza Máx - Mín µV	Fuerza Hora al máx	Fuerza RMC µV	Pendiente máxima µV/s	Integral desde mín µV.s	Int línea base µV.s	Ho com
										1					1	19/07/2008	0:00:40,0	0:00:40,0	1108	11:24:46,599	2,4688	0:00:40,81	99,9848	81,25	1,3605	-0,1239	
									1						5	19/07/2008	0:00:00,0	0:00:00,0	1	8:05:33,531 a	4,125	0:00:00,765	1,2411	118,75	2,0955	0,1892	
			_	1	_	6		_	1	_\\	·	4	~\\	14	6	19/07/2008	0:00:00,0	0:00:00,0	2	8:05:43,685 a	212,5938	0:00:00,065	45,6029	8268,75	19,2478	17,4353	
		0 -												14	7	19/07/2008	0:00:00,0	0:00:00,0	3	8:05:53,68 a.	209,5	0:00:00,065	42,087	8243,75	17,0284	15,2003	
															8	19/07/2008	0:00:00,0	0:00:00,0	4	8:06:03,674	203,7	0:00:00,065	41,2481	8037,5	18,3956	16,6612	
															9	19/07/2008	0:00:00,0	0:00:00,0	5	8:06:13,669 8	207,562	0:00:00,065	41,081	8068,75	18,9348	18,138	
														I H	11	19/07/2008	0:00:00,0	0:00:00,0	7	8:06:23,663 8	198,156	0:00:00,065	38,7812	7725,0	16,9045	15,2014	
														1H	12	10/07/2008	0.00.00,0	0:00:00,0	,	0.00.33,707 0	102,012	0.00.00,065	27 9246	7/00,73	17 0714	14 7002	
	-20	U -												11	13	19/07/2008	0.00.00,0	0:00:00,0	0	8-06-53 676 :	201 3439	0.00.00,005	38 0177	7718 75	17 2841	16 8778	
														1h	14	19/07/2008	0:00:00.0	0:00:00.0	10	8:07:03.67 a	192,156	0:00:00.065	37,1777	7343.75	16,8041	14,8353	
														11	15	19/07/2008	0:00:00.0	0:00:00.0	11	8:07:13.665 a	197.62	0:00:00.065	38,1167	7406.25	17,3923	13,7361	
														11	16	19/07/2008	0:00:00.0	0:00:00.0	12	8:07:23.769	187,406	0:00:00.065	36,8898	7118.75	16,1475	14,4444	
			-	1		:	1			1				11	17	19/07/2008	0:00:00.0	0:00:00.0	13	8:07:33,684 a	191.12	0:00:00.065	37,1204	7081.25	16.533	14,4392	
														10	18	19/07/2008	0:00:00,0	0:00:00,0	14	8:07:43,678 a	188,2	0:00:00,065	36,7258	7118,75	15,7442	13,6036	
		-												10	19	19/07/2008	0:00:00,0	0:00:00,0	15	8:07:53,672 a	188,0	0:00:00,065	36,8771	7006,25	16,4605	14,0698	
														10	20	19/07/2008	0:00:00,0	0:00:00,0	16	8:08:03,667 a	189,312	0:00:00,065	36,5203	7062,5	16,6708	14,0145	
		5 -												10	21	19/07/2008	0:00:00,0	0:00:00,0	17	8:08:13,661 a	184,562	0:00:00,065	36,0066	6962,5	15,658	13,9392	
	-1	• -		<u> </u>	<u> </u>									44	22	19/07/2008	0:00:00,0	0:00:00,0	18	8:08:23,696 a	189,6563	0:00:00,065	36,8296	7143,75	15,588	14,0567	
	м		ó		ó		ó	ó		ó	Ċ	1 Å	ó		23	19/07/2008	0:00:00,0	0:00:00,0	19	8:08:33,76 a.	183,0	0:00:00,065	35,8913	6850,0	15,4169	13,4169	
	¥													1L	24	19/07/2008	0:00:00,0	0:00:00,0	20	8:08:43,674 a	185,437	0:00:00,065	36,1217	6806,25	15,8314	13,0502	
	_	_	_	_	_	_		_	_	_	_	_	_		25	19/07/2008	0:00:00,0	0:00:00,0	21	8:08:53,669 a	183,0	0:00:00,065	35,7144	6806,25	15,9183	13,6058	
															26	10/07/2008	0.00.00	0.00.00	22	8-00-03 663 :	197 0379	0.00.00	25 8142	6800.0	15 0037	13 2656	

Figura 11: Registro de los datos de las contracciones musculares evocadas al nervio en el software CHART 5.1®.

Con los datos obtenidos por el software, se realizó un promedio de los últimos quince minutos de la estabilización (Ecuación 1). En donde Y_n = Amplitud o tensión de base generada en una contracción muscular

$$\frac{y_1 + y_2 + \dots + y_{37}}{37} = \bar{Y}$$
(Ecuación 1)

Se realizó el promedio de las contracciones musculares generadas cada cinco minutos después de la estabilización de la preparación (Ecuación 2). En donde Z_n = Promedio de amplitud o tensión de base generada en cinco minutos

$$\frac{z_1 + z_2 \dots + z_{90}}{90} = \bar{Z}_{\text{(Ecuación 2)}}$$

Se utilizaron los datos generados en las ecuaciones 1 y 2 con el fin de expresar los datos obtenidos como el porcentaje del inicial (*Ai*) (estabilización) (Ecuación 3)

$$\begin{pmatrix} \overline{Y} \\ \overline{\overline{Z}} \cdot 100 \end{pmatrix} = A_i$$
(Ecuación 3)

Se calculó el promedio (A_t) y error estándar de la media de las repeticiones generadas en cada una de las muestras (Ecuación 4).

5.4. Análisis de la información

Con el fin de evaluar los efectos de los venenos, fueron realizados diferentes pruebas que incluyen: Neurotoxicidad: Respuesta al agonista ACh, inhibición de PLA2, reversión del efecto neurotóxico y miotoxicidad: tensión de base y respuesta al KCI (Figura 10).

Figura 12. Experimentos realizados en la evaluación del modo de acción del veneno de *M. mipartitus* y *M. dissoleucus*

Con los datos obtenidos con el veneno de cada especie, se realizaron las siguientes pruebas estadísticas con ayuda del programa R.2.8.0 ®.

5.4.1. Neurotoxicidad

Los datos de amplitud de las contracciones obtenidos para las dosis de 3 y 10 μ g/ml de veneno, fueron comparados con el control. Siguiendo el supuesto de homogeneidad de varianzas, se realizó un ANOVA de una vía utilizando como punto de comparación, los valores de amplitud obtenidos en el tiempo 180 (t₁₈₀). Cuando se encontraron diferencias significativas, se realizó una prueba de comparación múltiple de Dunnett, con el fin de comparar los tratamientos con el control.

El valor de neurotoxicidad t_{50} fue calculado únicamente para el veneno que haya logrado inhibir por completo las contracciones evocadas al nervio. La comparación de la neurotoxicidad del veneno de *M. dissoleucus* y *M. mipartitus* se realizó utilizando el valor de amplitud de la contracción en el t_{50} del veneno de la especie que haya logrado inhibir por completo las contracciones evocadas al nervio, en cada dosis respectiva. Cumpliendo con el supuesto de homogeneidad de varianzas, se realizó un ANOVA factorial en donde se evaluó el efecto de las variables especie y dosis y su respectiva interacción, en la amplitud de la contracción del t_{50} .

5.4.1.1. Respuesta al agonista ACh

Para evaluar la respuesta al agonista ACh se comparó la respuesta obtenida en las dosis de veneno de 3 y 10 µg/ml, con la respuesta generada en los respectivos controles. Siguiendo el supuesto de homogeneidad de varianzas, se realizó un ANOVA de una vía. Cuando se encontraron diferencias significativas, se realizó una prueba de comparación múltiple de Dunnett, con el fin de comparar los tratamientos con el control.

La comparación de la respuesta al agonista ACh por parte del veneno de *M. dissoleucus* y *M. mipartitus* se realizó utilizando el valor de amplitud de la contracción generada, en cada dosis respectiva. Cumpliendo con el supuesto de homogeneidad de varianzas, se realizó un ANOVA factorial en donde se evaluó el efecto de las variables especie y dosis y su respectiva interacción, en la amplitud de la contracción del agonista ACh.

5.4.2. Inhibición de fosfolipasa A2

Con el fin de comprobar si existe actividad dependiente de la PLA2, se comparó la respuesta generada en el t_{50} de *M. mipartitus* por cada veneno y en el t_{180} (tiempo final

de los experimentos) para la dosis de 3 μ g/ml, tanto en el baño de órgano regular (con Ca²⁺) como en un baño que reemplazó el Ca²⁺ por Sr²⁺, Siguiendo el supuesto de homogeneidad de varianzas, la comparación entre las dos muestras fue realizada por medio de la prueba t de Student no pareada.

5.4.3. Reversión del efecto neurotóxico

En los experimentos de reversión del efecto neurotóxico se utilizó el veneno de la serpiente que bloqueó completamente las contracciones evocadas al nervio. Se comparó la respuesta generada por el veneno (10 μ g/ml) en presencia de neostigmina adicionada en el t₅₀, con la respuesta generada por el veneno (10 μ g/ml) en su ausencia (control). Cumpliendo con el supuesto de normalidad y homogeneidad de varianzas, la comparación entre las dos muestras fue realizada por medio de la prueba t de student no pareada

5.4.4. Miotoxicidad

5.4.4.1. Incremento en la tensión de la línea de base

Los datos de tensión en la línea de base obtenidos para las dosis de 3 y 10 μ g/ml de veneno, fueron comparados con el control. Siguiendo el supuesto de homogeneidad de varianzas, se realizó un ANOVA de una vía utilizando como punto de comparación, los valores de tensión obtenidos en el tiempo 180 (t₁₈₀). Cuando se encontraron diferencias significativas, se llevó a cabo una prueba de comparación múltiple de Dunnett, con el fin de confrontar los tratamientos con el control

5.4.4.2. Respuesta al KCI

Para evaluar la respuesta al KCI se comparó la respuesta obtenida en las dosis de veneno de 3 y 10 µg/ml, con la respuesta generada en los respectivos controles. Siguiendo el supuesto de homogeneidad de varianzas, se realizó un ANOVA de una vía. Cuando se encontraron diferencias significativas, se realizó una prueba de comparación múltiple de Dunnett, con el fin de comparar los tratamientos con el control.

La comparación de la respuesta al KCI por parte del veneno de *M. dissoleucus* y *M. mipartitus* se realizó utilizando el valor de amplitud de la contracción generada, en cada dosis respectiva. Cumpliendo con el supuesto de homogeneidad de varianzas, se realizó un ANOVA factorial en donde se evaluó el efecto de las variables especie y dosis y su respectiva interacción, en la amplitud de la contracción del agonista KCI.

6. **RESULTADOS**

6.1. Neurotoxicidad

El veneno de *M. mipartitus* causó una inhibición dosis-dependiente de las contracciones evocadas al nervio (Voltaje supramáximo, 0,2 ms de duración y 0.1 Hz), significativamente diferentes con respecto al control (P= 9,03E-8; F= 183,54; gl= 2. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8), en la preparación neuromuscular de pollo (Figura 13) Presentó un t₅₀ de 83,5 ± 9,54 minutos para la dosis de 3 µg/ml y de 43,9 ± 8,99 minutos para la dosis de 10 µg/ml.

Figura 13: Efecto del veneno de *M. mipartitus* en dosis de 3 μg/ml (n=5) y 10 μg/ml (n=6), y control (n=6) en las contracciones evocadas al nervio (Voltaje supramáximo, 0,2 ms de duración y 0,1 Hz) en la preparación neuromuscular de pollo. *Estadísticamente diferentes con respecto al control (P= 9,03E-8; F= 183,54; gl= 2 .ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett. ver anexo 3 y 4, ver anexo 7 y 8)

El veneno de *M. dissoleucus* no causó una inhibición completa de las contracciones evocadas al nervio (Voltaje supramáximo, 0,2 ms de duración y 0,1 Hz). Las dosis de 10 y 50 µg/ml fueron significativamente diferentes con respecto al control (P= 6,38E-5; F= 14,399; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8) (Figura 14).

Figura 14: Efecto del veneno de *M. dissoleucus* 3 μg/ml (n=5), 10 μg/ml (n=5), 50 μg/ml (n=5) y control (n=6) en las contracciones evocadas al nervio (Voltaje supramáximo, 0,2 ms, 0,1 Hz) en la preparación neuromuscular de pollo. *Estadísticamente diferentes con respecto al control (P= 6,38E-5; F= 14,399; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8)

Comparación del veneno de M. mipartitus y M. dissoleucus

La Figura 15 muestra la comparación de la inhibición de las contracciones evocadas al nervio, por los venenos de *M. mipartitus* y *M. dissoleucus* en la dosis de 3 μ g/ml (Figura 15A) y 10 μ g/ml (Figura 15B).

Figura 15: Comparación de la inhibición de las contracciones con el veneno de *M. mipartitus* y *M. dissoleucus*. A. Inhibición de las contracciones para el veneno de *M. mipartitus* (n=5) y *M. dissoleucus* (n=5) en la dosis de 3 μg/ml. B. Inhibición de las contracciones para el veneno de *M. mipartitus* (n=6) y *M. dissoleucus* (n=5) en la dosis de 10 μg/ml.

La comparación entre los venenos de *M. mipartitus* y *M. dissoleucus* mostró que el mayor efecto en la amplitud de las contracciones en el t_{50} está dado por el factor especie (P= 0,000119; F= 24,5917; gl= 1. ANOVA factorial ver Anexo 7), lo cual significa que existen diferencias consistentes entre el veneno de *M. mipartitus* y *M. dissoleucus* (niveles del factor especie). Por el contrario, el factor dosis no fue responsable de causar un efecto significativo (P= 0,95682; F= 0,003; gl= 1. ANOVA factorial. ver Anexo 7). Las diferencias mencionadas entre las especies no se deben la dosis que sea utilizada, teniendo en cuenta que la prueba no arrojó un efecto de interacción entre los factores (P= 0,954904; F= 0,003; gl= 1. ANOVA factorial ver Anexo 7) (Figura 16).

Figura 16: Interacción de variables (especie y dosis) en la amplitud de la contracción en el t₅₀ (P= 0,954904; F= 0,0033; gl= 1. ANOVA factorial ver Anexo 7) **A.** Efecto del factor especie (veneno de *M. mipartitus* y *M. dissoleucus*) en la amplitud de la contracción en el t₅₀ (P= 0,000119; F= 24,5917; gl= 1. ANOVA factorial ver Anexo 7). **B.** Efecto del factor dosis (3 y 10 µg/ml) en la amplitud de la contracción en el t₅₀. (P= 0,954904; F= 0,0033; gl= 1. ANOVA factorial ver Anexo 7).

6.1.1. Respuesta al agonista ACh

El veneno de *M. mipartitus* inhibió significativamente la respuesta a ACh (1 mM) exógena en las dos dosis de veneno, con respecto al control (P= 1,557E-5; F= 27,034; gl= 2. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8) (Figura 17).

Figura 17: Respuesta del veneno de *M. mipartitus* 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) frente al agonista ACh (1mM) en la preparación neuromuscular de pollo.
*Estadísticamente diferente con respecto al control (P= 1,557E-5; F= 27,034; gl= 2.
ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8).

El veneno de *M. dissoleucus* inhibió significativamente la respuesta al agonista ACh (1 mM) (P= 0,000982; F= 8,7594; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver Anexo 3 y 4) en las dosis de 3, 10 y 50 μ g/ml (Figura 18).

Figura 18: Respuesta del veneno de *M.dissoleucus* 3 μg/ml (n=5), 10 μg/ml (n=5) y 50 μg/ml (n=6) y control (n=6), frente al agonista ACh (1mM) en la preparación neuromuscular de pollo. *Estadísticamente diferente con respecto al control (P= 1,557E-5; F= 27,034; gl= 2. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8).

Comparación de la respuesta a ACh por el veneno de *M. mipartitus* y *M. dissoleucus*

La Figura 19 muestra la comparación de la respuesta generada por el agonista ACh en presencia de los venenos de *M. mipartitus* y *M. dissoleucus* en las dosis de 3 y 10 μ g/ml.

Figura 19: Comparación de la amplitud de la contracción generada por el agonista acetilcolina (ACh) en presencia del veneno de *M. mipartitus* y *M. dissoleucus*.

La comparación entre la respuesta generada por la ACh en presencia de los venenos de *M. mipartitus* y *M. dissoleucus* mostró que el mayor efecto en la amplitud del agonista está dado por el factor especie (P= 7,21 E-11; F= 202,167; gl= 1. ANOVA factorial ver Anexo 7), lo cual significa que existen diferencias consistentes entre el veneno de *M. mipartitus* y *M. dissoleucus* (niveles del factor especie). Por el contrario, el factor dosis no fue responsable de causar un efecto significativo (P= 0,7784; F= 0,0818; gl= 1. ANOVA factorial ver Anexo 7). Las diferencias mencionadas entre las especies no se deben la dosis que sea utilizada, teniendo en cuenta que la prueba no arrojó un efecto de interacción entre los factores (P= 4,96 E-01; F= 0,4837; gl= 1. ANOVA factorial ver Anexo 7) (Figura 20).

Figura 20: Interacción de variables (especie y dosis) en la amplitud de la contracción generada por el agonista ACh (P= 4,96 E-01; F= 0,4837; gl= 1. ANOVA factorial ver Anexo 7) A. Efecto del factor especie (veneno de *M. mipartitus* y *M. dissoleucus*) en la amplitud de la contracción generada por el agonista ACh (P= 7,21 E-11; F= 202,167; gl= 1. ANOVA factorial ver Anexo 7). B. Efecto del factor dosis (3 y 10 µg/ml) en la amplitud de la contracción generada por el agonista ACh (P= 0,7784; F= 0,0818; gl= 1. ANOVA factorial ver Anexo 7).

2.1. Inhibición de fosfolipasa A2 (PLA2)

La comparación de la amplitud generada en el t₅₀ para la dosis de 3 µg/ml de veneno de *M. mipartitus* con Sr²⁺ y con Ca²⁺ (Figura 21) no mostró diferencias significativas (P= 0,06244; t= -2,2842; gl= 6. Prueba t de Student no pareada, ver anexo 7). Igualmente, la comparación de la amplitud generada en el t₁₈₀ en las mismas condiciones no mostró diferencias significativas (P= 0,1644; F= 1,5833; gl=6. Prueba t de Student no pareada, ver anexo 7)

Figura 21: Efecto del veneno de *M. mipartitus* (3 μg/ml) con Sr²⁺ y con Ca ²⁺ en las contracciones evocadas al nervio (Voltaje supramáximo, 0.2 ms de duración y 0.1 Hz) en la preparación neuromuscular de pollo. No existen diferencias significativas en el t₅₀ (P= 0,06244; t= -2,2842; gl= 6. Prueba t de Student no pareada, ver anexo 7) ni en el t₁₈₀ (P= 0,1644; F= 1,5833; gl=6. Prueba t de Student no pareada, ver anexo 7).

La comparación de la amplitud generada en el t₅₀ para la dosis de 3 µg/ml de veneno de *M. dissoleucus* con Sr²⁺ y con Ca²⁺ (Figura 22) mostró diferencias significativas (P= 0,06244; t= -2,2842; gl= 6. Prueba t de Student no pareada, ver anexo 7). Igualmente, la comparación de la amplitud generada en el t₁₈₀ en las mismas condiciones mostró diferencias significativas (P= 0,00015; F= 0,787; gl=6. Prueba t de Student no pareada, ver anexo 7)

Figura 22: Efecto del veneno de *M. dissoleucus* (3 μg/ml) con Sr²⁺ y con Ca ²⁺ en las contracciones evocadas al nervio (Voltaje supramáximo, 0.2 ms de duración y 0.1 Hz) en la preparación neuromuscular de pollo. *Existen diferencias significativas en el t₅₀ (P= 0,000382; t= -7,1326; gl= 6. Prueba t de Student no pareada, ver anexo 7) y en el t₁₈₀ (P= 0,00015; F= 0,787; gl=6. Prueba t de Student no pareada, ver anexo 7)

2.2. Reversión del efecto neurotóxico

El efecto de la adición de neostigmina (5 μ M) en amplitud de las contracciones para el tiempo t₅₀ en la dosis de 10 μ g/ml de veneno de *M. mipartitus* (Figura 23) no mostró un efecto estadísticamente significativo (P= 0.467, F=-0.735, gl=72. Prueba t de student no pareada, ver Anexo 7), demostrando que no fue posible revertir el efecto neurotóxico del veneno de esta especie.

Figura 23: Efecto del veneno de *M. mipartitus* (10 μg/ml, n=6) solo y con adición de neostigmina 5 μM (10 μg/ml, n=5) en el t₅₀ de inhibición de las contracciones en la preparación neuromuscular de pollo (P= 0.467, F=-0.735, gl=72. Prueba t de student no pareada, ver Anexo 7)

Para el veneno de *M. dissoleucus*, no se realizaron pruebas de reversión del efecto neurotóxico teniendo en cuenta que no causó un bloqueo completo de las contracciones evocadas al nervio en la preparación neuromuscular de pollo.

2.3. Miotoxicidad

2.3.1. Tensión de línea de base

El veneno de *M. mipartitus* causó un incremento en la tensión de la línea de base significativamente diferente del control para la dosis de 3 μ g/ml (P= 0,01548; F= 5,6972 gl= 2. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8) (Figura 24).

Figura 24: Efecto del veneno de *M. mipartitus* 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) en la tensión de la línea de base de la preparación neuromuscular de pollo.
*Estadísticamente diferente con respecto al control (P= 0,01548; F= 5,6972 gl= 2.
ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8)

El veneno de *M. dissoleucus* causó un incremento en la tensión de la línea de base significativamente diferente del control para las dosis de 3 y 10 μ g/ml (P= 0,000382; F= 15,313; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8) (Figura 25).

Figura 25: Efecto del veneno de *M. dissoleucus* 3 μg/ml (n=5) y 10 μg/ml (n=6) y control (n=6) en la tensión de la línea de base en la preparación neuromuscular de pollo.* Estadísticamente diferente con respecto al control (P= 0,000382; F= 15,313; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8)

Comparación de la tensión de base generada por el veneno de *M. mipartitus* y *M. dissoleucus*

La Figura 26 muestra la comparación en la tensión de la línea de base de las contracciones para los venenos de *M. mipartitus* y *M. dissoleucus* en las dosis de 3 μ g/ml (figura 26A) y 10 μ g/ml (Figura 26B).

Figura 26: Comparación del incremento en la tensión de la línea de base con el veneno de *M. mipartitus* y *M. dissoleucus*. A. Tensión de la línea de base para el veneno de *M. mipartitus* (n=5) y *M. dissoleucus* (n=5) en la dosis de 3 μg/ml. B. Tensión de la línea de base para el veneno de *M. mipartitus* (n=6) y *M. dissoleucus* (n=5) en la dosis de 10 μg/ml.

La comparación entre los venenos de *M. mipartitus* y *M. dissoleucus* mostró que el efecto en la tensión de la línea de base en el t₁₈₀ está dado por el factor especie (P= 5,74E-05; F= 28,2082; gl= 1. ANOVA factorial ver Anexo 7), y por el factor dosis (P= 0,000554; F= 17,9617; gl= 1. ANOVA factorial ver Anexo 7). Las diferencias mencionadas entre las especies y entre las dosis no son dependientes, teniendo en cuenta que la prueba no arrojó un efecto de interacción entre los factores (P= 5,49 E-01; F= 0,3729; gl= 1. ANOVA factorial ver Anexo 7) (Figura 27).

F= 28,2082; gl= 1. ANOVA factorial ver Anexo 7). **B.** Efecto del factor dosis (3 y 10 μ g/ml) en la tensión de base en el t₅₀. (P= 0,000554; F= 17,9617; gl= 1. ANOVA factorial ver Anexo 7).

2.1.1. Respuesta al KCI

El veneno de *M. mipartitus* no inhibió significativamente la respuesta al KCI (40 mM) (P= 0,6261; F= 0,4843; gl= 2. ANOVA de una vía, ver anexo 7) (Figura 28).

Figura 28: Respuesta del veneno de *M. mipartitus* 3 μ g/ml (n=5) y 10 μ g/ml (n=6) y control (n=6) frente al agonista KCI (40mM) en la preparación neuromuscular de pollo.

No es estadísticamente diferente con respecto al control (P= 0,6261; F= 0,4843; gl= 2. ANOVA de una vía, ver anexo 7).

El veneno de *M. dissoleucus* inhibió significativamente la respuesta al agonista KCI (40 mM) (P= 0,001105; F= 8,7594; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8) en las dosis de 3, 10 y 50 μg/ml (Figura 29).

Figura 29: Respuesta del veneno de *M. dissoleucus* 3 μg/ml (n=5), 10 μg/ml (n=5) y 50 μg/ml (n=6) y control (n=6), frente al agonista KCI (40mM) en la preparación neuromuscular de pollo. *Estadísticamente diferente con respecto al control (P= 0,001105; F= 8,7594; gl= 3. ANOVA de una vía seguido por la prueba de comparación múltiple de Dunnett, ver anexo 7 y 8).

Comparación de la respuesta generada por el KCI para el veneno de *M. mipartitus* y *M. dissoleucus*

La Figura 30 muestra la comparación de la respuesta generada por el KCI en presencia de los venenos de *M. mipartitus* y *M. dissoleucus* en las dosis de 3 y 10 µg/ml

Figura 30: Comparación de la amplitud de la contracción generada por el KCl en presencia del veneno de *M. mipartitus* y *M. dissoleucus.*

La comparación entre la respuesta generada por el KCI en presencia de los venenos de *M. mipartitus* y *M. dissoleucus* mostró que el mayor efecto en la amplitud del agonista está dado por el factor especie (P= 0,004375; F= 10,787; gl= 1. ANOVA factorial ver Anexo 7), lo cual significa que existen diferencias consistentes entre el veneno de *M. mipartitus* y *M. dissoleucus* (niveles del factor especie). Por el contrario, el factor dosis no fue responsable de causar un efecto significativo (P= 0,93375; F= 10,787; gl= 1. ANOVA factorial ver Anexo 7). Las diferencias mencionadas entre las especies no se deben la dosis que sea utilizada, teniendo en cuenta que la prueba no arrojó un efecto de interacción entre los factores (P= 0,8164; F= 0,556; gl= 1. ANOVA factorial ver Anexo 7) (Figura 31).

Figura 31: Interacción de variables (especie y dosis) en la amplitud de la contracción generada por el KCl (P= 0,8164; F= 0,556; gl= 1. ANOVA factorial ver Anexo 7) A. Efecto del factor especie (veneno de *M. mipartitus* y *M. dissoleucus*) en la amplitud de la contracción generada por el agonista KCl (P= 0,004375; F= 10,787; gl= 1. ANOVA factorial ver Anexo 7). B. Efecto del factor dosis (3 y 10 µg/ml) en la amplitud de la contracción generada por el agonista KCl (P= 0,8164; F= 0,556; gl= 1. ANOVA factorial ver Anexo 7).

7. DISCUSION

Tradicionalmente, los venenos del género *Micrurus* sp. han sido clasificados como neurotóxicos debido a que su modo de acción es el resultado de un bloqueo progresivo en la unión neuromuscular. Estudios experimentales sugieren un amplio espectro de actividades farmacológicas que incluyen efectos presinápticos, postsinápticos y miotóxicos (Goularte et al. 1995; de Roodt et al. 2004; Cecchini et al. 2005). El presente estudio demuestra que a pesar de la alta cercanía evolutiva entre las serpientes coral *M. mipartitus* y *M. dissoleucus* (Anexo 1) existen diferencias sustanciales en cuanto a la actividad de sus venenos.

Al contrario del veneno de *M. dissoleucus* (Figura 14), el veneno de *M. mipartitus* causó una inhibición completa de las contracciones musculares evocadas al nervio (Figura 13) y por lo tanto, fue posible cuantificar su neurotoxicidad. Para la dosis de 3 μ g/ml el valor t_{50} fue de 83,5 ± 9,54 minutos y para la dosis de 10 μ g/ml fue de 43,9 ± 8,99 minutos. Comparado con estudios anteriores, puede decirse que el bloqueo causado por *M. mipartitus* es lento, ya que venenos como el de *M. lemniscatus carvalhoi* y *M. dumerilii carinicauda* (5 μ g/ml) presentan el 50% de inhibición de las contracciones alrededor de los 30 minutos (Serafim et al. 2002; Cecchini et al. 2005). De acuerdo a la DL₅₀ reportada para *M. mipartitus* (2 μ g/kg) (Corredor 1984), puede decirse que es un veneno altamente letal, pero a su vez, se toma un tiempo considerable para actuar. Debido a la falta de inhibición de las contracciones evocadas al nervio y a la falta de información para el veneno de *M. dissoleucus*, no se cuenta con el valor neurotoxicidad, ni con el valor de la DL₅₀ para realizar una aproximación de su letalidad.

La comparación de la inhibición de las contracciones (Figura 15) mostró que existen diferencias significativas entre el modo de acción del veneno de las especies bajo estudio y que son independientes a la dosis utilizada (ver sección 6.1.1 de resultados) (Figura 16A y B). Lo anterior corrobora la presencia de un amplio espectro de actividades farmacológicas presentes en éstas toxinas que redunda en la heterogeneidad de la respuesta (de Roodt et al. 2004; Cecchini et al. 2005). Los

aspectos relacionados con el modo de acción específico del veneno de las dos serpientes serán discutidos a continuación.

7.1. Actividad neurotóxica postsináptica del veneno de *M. mipartitus* y *M. dissoleucus*

El veneno de M. mipartitus inhibió significativamente la respuesta al agonista ACh (1 mM) en las dosis de 3 y 10 µg/ml (Figura 17). Esta respuesta indica un modo de acción postsináptico que se debe al antagonismo de las α-NT con el receptor nicotínico, lo cual le impide al músculo producir una respuesta contráctil en presencia del agonista (Changeuxt et al. 1970). Igualmente, la poca variabilidad presente en la amplitud de las contracciones al finalizar el tiempo de bloqueo para las dos dosis (aprox. 40 minutos) (Figura 13) corrobora la falta de disponibilidad de receptores para causar una despolarización y también sugiere la presencia de α-NT muy afines al receptor (cadena larga). El veneno de *M. mipartitus* no presentó un efecto importante frente a la adición del fármaco neostigmina (Figura 23), lo cual puede corroborar lo anteriormente planteado acerca de la presencia de α -NT de cadena larga unidas con una alta afinidad al receptor nicotínico, resultando así en la incapacidad del fármaco para desplazarlas del receptor. Teniendo en cuenta que el veneno de M. dissoleucus no presentó un bloqueo completo de las contracciones musculares evocadas al nervio, e igualmente su actividad predominante no fue neurotóxica, no se evaluó su respuesta frente a un agente anticolinesterásico.

Al igual que el veneno de *M. mipartitus*, el veneno de *M. dissoleucus* inhibió significativamente la respuesta al agonista ACh (1 mM) (Figura 18); sin embargo, una contracción leve generada aun después del bloqueo, puede indicar que algunos receptores presentes en la membrana postsináptica no se encuentran ocupados por las α -NT y el neurotransmisor puede despolarizar la fibra muscular levemente. La disponibilidad de receptores puede evidenciarse en la variabilidad de amplitud en las contracciones al finalizar las tres horas de actividad del veneno (Figura 14). Puede proponerse que en el veneno de *M. dissoleucus* existen α -NT de cadena corta y larga, teniendo en cuenta que la acción competitiva de la ACh podría resultar en el desplazamiento de las de cadena corta, ya que éstas tienden a disociarse cinco a nueve veces más rápido del receptor que las de cadena larga (Dufton & Harvey 1989; Servent et al. 1997).

Las α-NT, han sido aisladas únicamente de venenos de la familia Elapidae (Endo & Tamiya 1999) y recientemente de la familia Colubridae (Fry et al. 2003; Lumsden et al. 2005). Estudios moleculares demuestran que existen transcritos de mRNAs en genes

diferentes para las α -NT, lo cual sugiere la presencia de una gran variedad de isoformas tóxicas capaces de interactuar con el receptor (Afifiyan et al. 1999). Se ha sugerido que las secuencias conservadas de las α -NT intervienen en la interacción con el receptor, mientras que las no conservadas permiten una especialización hacia las diferentes presas (Trémeau et al. 1995). De acuerdo a lo anterior, es posible decir que teniendo en cuenta las diferencias significativas de hábitat y por lo tanto, dieta que presentan las serpientes *M. dissoleucus* y *M. mipartitus* es posible sugerir la existencia de α -NT de los dos tipos de cadena en sus venenos.

La comparación de la respuesta generada por el agonista ACh en presencia de los dos venenos (Figura 19) mostró diferencias en la forma de responder frente al agonista, las cuales nuevamente son independientes de la dosis de veneno utilizada (ver sección 6.2.1 de resultados) (Figura 20A y B). Lo anterior podría deberse a que existe una acción postsináptica predominante en el veneno de *M. mipartitus*, que para el caso del veneno de *M. dissoleucus* parece ser secundaria.

7.2. Actividad neurotóxica presináptica del veneno de *M. mipartitus* y *M. dissoleucus*

La dosis más baja de veneno (3 µg/ml) para el caso de las dos especies mostró un comportamiento característico de las neurotoxinas presinápticas (Figura 15A), el cual consiste de tres fases: A. un leve decrecimiento, B. un leve incremento y C. un decrecimiento que termina en el bloqueo final de las contracciones. Para el veneno de *M. mipartitus*, el bloqueo de las contracciones presentó las fases A, B y C, mientras que el veneno de *M. dissoleucus* sólo presentó las fases B y C sin terminar en la inhibición completa de las contracciones. Las dosis más altas para los dos venenos no mostraron indicios del efecto trifásico (Figura 15B), pudiendo ser explicado por la rápida acción de las neurotoxinas postsinápticas, la cual enmascara la acción más lenta de las presinápticas (Hodgson & Wickramaratna 2002; Kuruppu et al. 2005; Hodgson 2007).

A diferencia de las α -NT, las neurotoxinas presinápticas o β -NT actúan en la unión neuromuscular inhibiendo la exocitosis del neurotransmisor y son dependientes de la actividad de la PLA2 (Gelb et al. 1994; Montecucco & Rossetto 2000). Teniendo en cuenta que el Ca²⁺ es indispensable para la actividad catalítica de esta enzima, su reemplazo por otro ion divalente con propiedades fisiológicas similares pero sin acción sobre la PLA2 (caso específico del Sr²⁺), permite evaluar la respuesta del veneno en ausencia de actividad (Meiri & Rahamimoff 1971; Yu et al. 1993; Gelb et al. 1994; Montecucco & Rossetto 2000).

En los experimentos en los que se reemplazó el Ca²⁺ por Sr²⁺, la presencia de la fase A para los dos venenos (Figuras 21 y 22), corrobora la independencia de la actividad enzimática en el leve decrecimiento característico de esta fase (Caratsch et al. 1981; Su & Chang 1984; Harvey 1990; Prijatelj et al. 2006). Para el veneno de M. mipartitus la fase A se ve prolongada con Sr^{2+} (Figura 21) y presenta una gran similitud con la curva de inhibición generada para la dosis de 10 μ g/ml en presencia de Ca²⁺ (Figura 13). Por el contrario, la misma fase para el veneno de M. dissoleucus, se hace evidente en presencia de Sr²⁺ (Figura 22). De acuerdo a lo anterior, se puede sugerir que el decrecimiento inicial está dado por la rápida acción de las α-NT presentes en los venenos, ya que para una concentración de 3 µg/ml sin actividad enzimática, su mecanismo de acción está dado principalmente por el bloqueo al receptor nicotínico. La rápida acción de las neurotoxinas postsinápticas presentes en el veneno de M. dissoleucus está de acuerdo con el hecho que en la dosis más alta de veneno (50 µg/ml) en presencia de Ca²⁺, se logra llegar a un 30,7% de la respuesta muscular máxima (Figura 14), por el contrario, cuando en el veneno no existe actividad enzimática a causa del Sr²⁺, los componentes más abundantes podrían ser las α-NT, logrando así llegar al 15,7% de la respuesta muscular máxima gracias a su rápida acción de bloqueo (Figura 22).

La inhibición de la actividad de la PLA2 por el Sr²⁺ para la dosis de 3 µg/ml de veneno de *M. mipartitus* y *M. dissoleucus* mostró que la fase B desaparece por completo (Figura 21 y 22) y corrobora la dependencia de actividad enzimática esta (Strong et al. 1976; Montecucco & Rossetto 2000; Pungercar & Krizaj 2007; Kuruppu et al. 2008). Ha sido propuesto que el incremento característico de la fase B se debe a la hidrólisis de la cara externa de la membrana de la terminal nerviosa y posteriormente, de la membrana vesicular (Su & Chang 1984). La acción enzimática produce AG cónicos y LisoFL de forma cónica invertida con una alta capacidad de realizar dobleces en las monocapas (Montecucco & Rossetto 2000; Pungercar & Krizaj 2007). Cuando las membranas se tornan fusogénicas por el cambio en su estructura fosfolipídica, las vesículas pueden fundirse en cualquier lugar de la terminal, causando un incremento de la concentración del neurotransmisor en el espacio sináptico. Lo anterior permite una activación muscular aumentada, y por ende, un incremento en la amplitud de las contracciones, característico de la fase B (Dreyer & Penner 1987; Rowan & Harvey 1988).

Vale la pena mencionar que ha sido propuesto por otros estudios que el mecanismo que permite un incremento en la amplitud de la fase B involucra el bloqueo directo de las corrientes de K^+ dirigidas hacia el exterior de la terminal nerviosa (Hodgson 2007; Kuruppu et al. 2008), y ha sido demostrado para el caso de las β -bungarotoxinas (Strong et al. 1976; Rowan & Harvey 1988; Pungercar & Krizaj 2007), pertenecientes a

serpientes del género *Bungarus* (familia Elapidae). Para el caso de los venenos de *M. mipartitus* y *M. dissoleucus* la dependencia de la PLA2 para esta fase podría excluir la posibilidad del bloqueo directo a canales de K⁺ presinápticos, a menos que ocurriera de manera simultánea con la hidrólisis de la membrana de la terminal nerviosa, lo cual no ha sido demostrado aún.

La inhibición de la actividad de la PLA2 por el Sr^{2+} para la dosis de 3 µg/ml de veneno de *M. mipartitus* y *M. dissoleucus* mostró que la fase C desaparece por completo (Figura 21 y 22), lo cual, al igual que para la fase B, sugiere la dependencia de actividad enzimática en esta. La propiedad fusogénica de las vesículas, producto de la acción de la PLA2 es el factor responsable de causar el decrecimiento final de las contracciones, ya que las membranas ricas en AG y LisoFL, no permiten que exista un gradiente de pH, del cual depende la endocitocis de las vesículas. Cuando el neurotransmisor no realiza su proceso normal de reciclaje, la placa se satura y causa un decrecimiento en las contracciones, característico de la fase C (Montecucco & Rossetto 2000).

La respuesta generada en presencia de Sr^{2+} para el veneno de *M. dissoleucus*, fue significativamente diferente a la que se obtuvo en presencia de Ca^{2+} , tanto en el t_{50} como en el t_{180} de las contracciones musculares evocadas al nervio (Figura 22). Lo anterior sugiere que la actividad de la PLA2 para este veneno es esencial para su actividad neurotóxica. Por el contrario del veneno de *M. dissoleucus* (Figura 21), la respuesta generada en presencia de Sr^{2+} por el veneno de *M. mipartitus*, no fue significativamente diferente con la que se obtuvo en presencia de Ca^{2+} , y sugiere que si bien se logra inhibir el efecto trifásico, la actividad presináptica en su veneno posee un papel secundario, y confirma lo anteriormente propuesto acerca de su mecanismo de acción postsináptico primario.

7.3. Actividad miotóxica de los venenos de *M. mipartitus* y *M. dissoleucus*

El veneno de *M. mipartitus* no inhibió la respuesta a la adición de KCI (Figura 28) por el contrario, el veneno de *M. dissoleucus* inhibió significativamente la contracción sostenida característica del este (Figura 29). La comparación de la respuesta generada por el KCI en presencia de los dos venenos (Figura 30) mostró diferencias en la forma de responder frente a este que no se deben a la dosis de veneno utilizada (ver sección 6.2.1 de resultados) (Figura 31A y B). La respuesta obtenida por el veneno de *M. dissoleucus* sugiere la presencia de un daño físico al músculo, indicado por la pérdida de la capacidad despolarizante de la membrana muscular.

El daño físico a un músculo por la acción de un veneno se encuentra directamente relacionado con la actividad enzimática dada por la PLA2. Las PLA2 son enzimas versátiles con respecto a su localización, regulación, mecanismo de acción, estructura y dependencia de iones divalentes (Rosenberg et al. 1989; Arni & Ward 1996; Balsinde et al. 1999; Six & Dennis 2000). Se ha demostrado que las PLA2 de venenos de serpientes tienen varios efectos biológicos que incluyen cardiotoxicidad, agregación plaquetaria, inducción de edema, hemólisis, anti coagulación, convulsión, hipertensión y por supuesto, miotoxicidad (Rosenberg et al. 1989).

El efecto miotóxico de las PLA2 se basa, al igual que en el efecto neurotóxico, en la hidrólisis de fosfolípidos, pero esta vez, de la membrana del retículo sarcoplásmico. Esta actividad enzimática destruye la integridad del músculo, tornándolo incapaz de realizar una respuesta contráctil (Mebs & Ownby 1990; Arni & Ward 1996)

El veneno de *M. mipartitus* y *M. dissoleucus* causó un incremento en la tensión de la línea de base para las dosis más bajas (3 µg/ml en el caso de *M. mipartitus*, 3 y 10 µg/ml en el caso de *M. dissoleucus*) (Figuras 24 y 25). Estudios han demostrado que el incremento en la tensión esta dado por el bloqueo directo a la ATPasa de Ca²⁺ del retículo sarcoplásmico. Lo anterior es evidente en moléculas como la miotoxina I la cual ha sido aislada en el veneno de *Bothrops asper* (familia Viperidae) (Volpe et al. 1986; Maurer et al. 1987), en donde el ion no es retomado completamente por el organelo y no se logra una relajación completa de las fibras (Ebashi 1972; Eisenberg & Hill 1985) La comparación de la tensión muscular generada (Figura 26) mostró que tanto el veneno como la dosis son factores determinantes en el incremento de la línea base, pero no dependientes (ver sección 6.2.1 de resultados) (Figura 27A y B). La tensión de base generada siempre es mayor para el veneno de *M. dissoleucus* y es más evidente, para los dos venenos, en la dosis más baja.

Varios estudios han demostrado que algunos componentes de las PLA2 de venenos de la familia Elapidae, como la notexina y notechis-II-5 presentan una actividad miotóxica y presináptica (Harris & Johnson 1978; Dixon & Harris 1996). De acuerdo a lo anterior, puede sugerirse que la respuesta generada en la tensión del músculo (inversamente proporcional a la dosis de veneno utilizada) es consistente con la actividad presináptica de la PLA2 anteriormente descrita para los venenos, la cual igualmente es evidente en dosis más bajas (Figura 15A),

Si bien existe actividad de PLA2 dependiente de Ca^{2+} para la dosis más baja del veneno de *M. mipartitus* (Figura 21), y esta logra causar un incremento en la tensión (Figura 24), debe recordarse que este veneno mostró ser más dependiente de la acción postsináptica de las α -NT. De acuerdo a lo anterior, puede sugerirse que su acción enzimática no

causa un efecto importante en la contractibilidad muscular. Este comportamiento ha sido demostrado para el caso del veneno de *M. dumerilii carinicauda*, en donde cortes histológicos demuestran un daño leve a las fibras, pero la respuesta al KCI no se ve afectada (Serafim et al. 2002). Lo anterior soporta, los resultados previamente obtenidos por Gutiérrez y colaboradores (1983) para el veneno de *M. mipartitus*, en donde los niveles de creatinkinasa en el plasma de ratones tres horas después de la adición del veneno se mostraron dentro de los rangos normales, sugiriendo que el efecto miotóxico de este veneno no juega un rol principal.

La respuesta generada por el veneno de *M.* dissoleucus a la adición del KCI (Figura 29), sumado al incremento en la tensión de base para las dosis más bajas, sugiere que la actividad de la PLA2 logra causar un efecto en el potencial de reposo de la membrana muscular, viéndose reflejado en que el músculo pierde su capacidad de contraerse por un potencial de acción propio. (Harvey et al. 1994; Hodgson & Wickramaratna 2002; Fortune & Lowery 2007).

Por otra parte, el bloqueo incompleto del veneno de M. dissoleucus podría explicarse con base en que las cantidades necesarias para producir una inhibición in vitro por una miotoxina, son mucho mayores que las de las neurotoxinas (Harvey et al. 1994). Dicho factor, aunque no pudo corroborarse con el uso de dosis más altas en la preparación, debido a la poca cantidad de veneno de M. dissoleucus disponible, puede tenerse en cuenta ya que el decrecimiento en la amplitud de las contracciones es dosis-dependiente (Figura 14). Presumiblemente, algunos de los efecto in vivo de las miotoxinas pueden estar mediados por la alteración del suministro sanguíneo hacia el músculo esquelético, por lo cual el efecto in vitro no muestra la totalidad de su acción (Gutiérrez et al. 1983). En estudios anteriores, se han utilizado los valores de la DL₅₀ como criterio para clasificar a las PLA2 miotóxicas y se ha visto que aquellas menos letales (con DL_{50} de menos de 1 mg/kg), son altamente miotóxicas y por ello aunque no causan síntomas neurotóxicos principales, tienen un efecto igualmente adverso al producir mioglobinuria, la cual puede causar falla renal. Los ratones inyectados con este tipo de toxinas generalmente mueren después de varios días en un estado de emaciación severa (Fohlman et al. 1976; Mebs & Samejima 1980).

El veneno de serpientes como *Bothrops asper*, *Crotalus atrox*, *Echis carinatus* y *Trimeresorus flavoviridis* (Familia Viperidae) presentan efectos similares al obtenido para *M. dissoleucus*, ya que no presentan un bloqueo de las contracciones musculares evocadas al nervio, e inhiben la respuesta al agonista KCI en la preparación *in vitro* del músculo cervical digástrico de pollo (Harvey et al. 1994). Estudios experimentales demuestran que aunque existe actividad miotóxica para el veneno de algunas especies

de serpientes coral, siendo muy evidente para el caso de *Micrurus nigrocinctus* (Gutierrez et al.1980, 1983), su mecanismo de acción principal está dado por el bloqueo de tipo postsináptico (Goularte 1995). Como se mencionó anteriormente, la necrosis muscular es un efecto importante inducido por varios venenos de serpientes generalmente de la familia Viperidae y en algunos casos para la familia Elapidae. La actividad propuesta para el caso del veneno de *M. dissoleucus* no había sido reportada previamente en el veneno de una serpiente coral.

7.4. Modelo del efecto neuromuscular del veneno de *M. mipartitus* y *M. dissoleucus*

De acuerdo a los factores mencionados acerca del modo de acción de los venenos de *M. mipartitus* y *M. dissoleucus* puede sugerirse que presentan actividades características de las α -NT, β -NT y PLA2, pero difieren significativamente su mecanismo de acción. Se sugiere que el mecanismo de acción más importante en el veneno de *M. mipartitus* se debe a la neurotoxicidad postsináptica causada por las α -NT, mientras que el veneno de *M. dissoleucus* parece presentar una acción miotóxica predominante. Un modelo que representa los posibles blancos de acción y la operación sináptica de los venenos de *M. mipartitus* y *M. dissoleucus* puede apreciarse en la figura 32.

músculo Bloqueo de ATPasa de Ca²⁺del (postsináptico) 3 reticulo sarcoplásmico reticulo sarcoplásmico miotoxina axón Hidrólisis de fosfolipidos de membrana del retículo sarcoplásmico (1)(2) PLA2 unión neuromuscula Bloqueadores de canales de K⁺ e hidrólisis de fosfolípidos de membrana 2 Bloqueo de receptor nicotínico a neurotoxinas β neurotoxinas Micrurus dissoleucus s on w cm Micrurus mipartitus

Figura 32: Modelo del mecanísmo de acción del veneno de *M.mipartitus* y *M. dissoleucus*

8. PERSPECTIVAS

8.1. Perspectivas médicas

Previamente ha sido reportado que los signos y síntomas del envenenamiento causado por *Micrurus* sp. son el resultado de un bloqueo progresivo de la unión neuromuscular. La actividad biológica más importante presente en los venenos de serpientes coral descrita hasta el momento es el bloqueo postsináptico, responsable de causar una parálisis flácida que conlleva a la muerte por falla respiratoria (Chang 1979; Russell et al. 1997). Estudios experimentales del veneno de las serpientes del género *Micrurus* sp. sugiere un amplio espectro de actividades (Cecchini et al. 2005), que puede corroborarse con el modo de acción anteriormente planteado para el veneno de *M. mipartitus* y *M. dissoleucus*.

Teniendo en cuenta la problemática actual que existe con la consecución y la implementación del suero antiofídico anticorálico, existen tratamientos de soporte como la ventilación asistida y la aplicación de drogas que actúan según el efecto específico de acción de la neurotoxina. Si bien la mayoría de los efectos neurotóxicos de los venenos de serpientes coral se deben a un bloqueo postsináptico (como ocurre con el veneno de *M. mipartitus*), no todos pueden ser revertidos por medio de una droga anticolinesterásica, como ocurrió para el caso del veneno de *M. mipartitus* (Serafim et al. 2002). La neostigmina inhibe la enzima acetilcolinesterasa del espacio sináptico permitiendo que la concentración de neurotransmisor aumente y desplace competitivamente la toxina unida al receptor nicotínico (Gold 1996), su falta de efectividad permite sugerir que el uso de un fármaco de este tipo no debe ser usado en casos de envenenamientos por esta serpiente.

Las diferencias en mecanismo de acción de los dos venenos, sugiere que el tratamiento más importante para casos de envenenamiento por los venenos *M. mipartitus* y *M. dissoleucus*, es el suero antiofídico. La efectividad de la inmunoterapia en envenenamientos depende de la habilidad de los anticuerpos o sus fragmentos para unirse, redistribuir y eliminar toxinas presentes en diferentes partes del organismo afectado. Así, dependiendo de la naturaleza y sitio de acción de la toxina, los anticuerpos tienen diferentes probabilidades de unirse y causar la neutralización (Scherrmann 1994).
De acuerdo con la heterogeneidad de la respuesta que caracteriza a dos especímenes cercanos evolutivamente y que ha sido puesta de manifiesto en el presente estudio, se sugiere que se debe reconsiderar la utilización del suero antiofídico polivalente, a menos por supuesto, que en los inóculos de inmunización sean incluidos estos venenos.

8.2. Perspectivas ecológicas

El veneno de una serpiente cumple un rol principal en la captura y digestión de las presas. Dado que de acuerdo a los resultados obtenidos en el presente estudio, el efecto del veneno de *M. mipartitus* y *M. dissoleucus* difiere significativamente, se puede sugerir una especialización hacia los hábitats en dónde se encuentran las presas que consumen. Ha sido reportado previamente que la diversidad existente en los efectos de venenos de serpientes se debe a su modo de evolución, sujeto a la duplicación frecuente de genes codificantes para toxinas, lo cual en la mayoría de los casos se encuentra seguido por una diversificación funcional y estructural (Slowinski et al. 1997; Afifiyan et al. 1999; Chang et al. 1999; Fry et al. 2003), muy evidente cuando los hábitats y sus condiciones difieren (Daltry et al. 1996).

A pesar de que no es muy claro el conocimiento acerca de las presas específicas que consumen las serpientes *M. mipartitus* y *M. dissoleucus*, es posible inferir que sus hábitos alimenticios dependen de las condiciones que caracterizan los hábitats de cada serpiente. Las serpientes *M. mipartitus* y *M. dissoleucus* a pesar de ser especies altamente relacionadas filogenéticamente (ver Anexo 2), presentan diferencias sustanciales en cuanto al hábitat en el que se encuentran. Las condiciones del hábitat en el que se encuentra *M. mipartitus* y por lo tanto, una mayor disponibilidad de presas para la serpiente, por el contrario, el hábitat de *M. dissoleucus* se caracteriza por su baja diversidad, en consecuencia a las condiciones hostiles de temperatura y humedad que se presentan allí (com. Pers. Juan Manuel Renjifo).

Las condiciones en el hábitat de una serpiente también pueden verse reflejadas en el mecanismo de digestión de sus presas (Daltry et al. 1996; da Silva Jr. 2001). El sistema digestivo de las serpientes se ha adaptado a pasar de largos periodos inactivos de tiempo, a fases de alto consumo alimentario que se suelen acompañar de tiempos considerables de digestión. La actividad miotóxica predominante del veneno de *M. dissoleucus* es un factor interesante a analizar en términos evolutivos y ecológicos. Teniendo en cuenta que el costo energético que involucra la digestión es significativamente alto para las serpientes, (estudios experimentales demuestran que el

consumo de O₂ de las serpientes en fase de digestión presenta un pico ocho veces más alto que cuando la serpiente se encuentra en ayuno y representa alrededor del 26% de la energía asimilada de una presa de un peso promedio de 35g (Secor et al. 1994),

Puede sugerirse que el efecto miotóxico predominante de veneno de *M. dissoleucus*, es un mecanismo evolutivo eficiente teniendo en cuenta las condiciones hostiles del hábitat en el que se encuentra (bosque seco). La actividad miotóxica de un veneno involucra la pre digestión de las presas, lo cual en términos energéticos, disminuye la energía necesaria que se requiere en la digestión y la deriva hacia otras actividades. Por el contrario, la actividad neurotóxica postsináptica predominante del veneno de *M. mipartitus* es consistente con que su hábitat y condiciones no presentan características selectivas hacia el ahorro energético en la digestión. La parálisis flácida causada por el efecto de su veneno en las presas es un mecanismo eficiente para que la serpiente pueda alimentarse.

Los venenos de *Micrurus* sp. han sido reportados previamente por presentar una mayor toxicidad frente sus presas naturales (da Silva Jr. 2001), lo que permite sugerir que el efecto y los mecanismos de acción de los venenos de *M. mipartitus* y *M. dissoleucus* (y el género *Micrurus* sp en general) han evolucionado dependiendo del hábitat donde se encuentran para el consumo de sus presas, más que por una afinidad filogenética como tal.

9. CONCLUSIONES

De acuerdo con los resultados obtenidos en el presente estudio, puede concluirse que las serpientes *M. mipartitus* y *M. dissoleucus,* presentan diferencias en el mecanismo de acción de sus venenos. El efecto del veneno de *M. mipartitus* presentó características de acción enzimática que incluyen un efecto presináptico y miotóxico dado por la posible acción de la actividad de la PLA2 presente en su veneno, pero se sugiere que la rápida interacción de sus α -NT con el receptor nicotínico enmascara los efectos anteriormente mencionados y le brinda un componente neurotóxico postsináptico predominante. La neurotoxicidad de este veneno, aunque de acción lenta, parece ser bastante letal, lo cual va de la mano con la falta de reversión del efecto neurotóxico por la adición de neostigmina. Si bien existen indicadores que permiten sugerir la presencia de α -NT de acción postsináptica en el veneno de *M. dissoleucus*, la falta de bloqueo en dosis altas, sumado a la inhibición de la respuesta contráctil del músculo en presencia del veneno sugirió un modo de acción miotóxico predominante que involucra el daño físico a las fibras musculares posiblemente causado por la acción enzimática de la PLA2.

De acuerdo a lo anterior, se sugiere que la variación en el mecanismo de acción presente en los venenos estudiados, puede estar relacionado con la especialización de las serpientes en diferentes hábitats y sus respectivas condiciones. A pesar que no fue realizado un análisis que permita concluir que dicha variación se debe a diferencias causadas por las dietas que consumen las serpientes en los diferentes hábitats en los que se encuentran, se propone que la actividad neurotóxica del veneno de *M. mipartitus* puede brindarle un mecanismo para la consecución de presas eficiente y consistente con que su hábitat y condiciones no presentan características selectivas hacia el ahorro energético en procesos como el de la digestión. Por el contrario, para el veneno de *M. dissoleucus* se sugiere que el efecto miotóxico de su veneno le brinda un mecanismo que involucra la pre digestión de las presas, lo cual es un factor eficiente para el decrecimiento de la energía necesaria característica de este proceso.

De acuerdo a los resultados obtenidos, se concluye que las diferencias en el mecanismo de acción de los venenos presentan una alta importancia médica, especialmente en el tratamiento de los envenenamientos causados por estas serpientes. La producción de suero antiofídico basada en filogenia puede no tener buenos resultados y se propone que debe tenerse en cuenta las características específicas de cada serpiente (incluyendo hábitat y por lo tanto, dieta) para realizar aproximaciones acerca de patrones de neutralización.

10. RECOMENDACIONES

Teniendo en cuenta la problemática nacional que se sufre actualmente por la falta de tratamiento en casos de envenenamiento por el género *Micrurus,* es de alta importancia realizar estudios que permitan elucidar el mecanismo de acción del veneno completo de las diferentes especies de serpientes coral que se encuentran en el país, involucrando un análisis de las características particulares de cada una. Asimismo, se recomienda realizar análisis que involucren el estudio de contenidos estomacales en las serpientes y con el fin de evaluar el efecto específico de la dieta en el mecanismo de acción de las toxinas.

11. REFERENCIAS

Afifiyan, F., Armugam, A., Tan, C.H., Gopalakrishnakone, P., Jeyaseelan, K. 1999. Postsynaptic a-Neurotoxin Gene of the Spitting Cobra, Naja naja sputatrix: Structure, Organization, and Phylogenetic Analysis. Genome Research 9: 259 - 266. Aidley, D.J., 1989. The physiology of exitable cells. Cambridge University Press, England.

Arni, R.K., Ward, R.J. 1996. Phospholipase A2--a structural review. Toxicon 34: 827-841.

Ashmore, C.R., Kikuchi, T., Doerr, L. 1978. Some observations on the innervation patterns of different fiber types of chick muscle. Expl Neurol. 58: 272-284.

Augustine, G.J., Burns, M.E., DeBello, W.M., Hilfiker, S., Morgan, J.R., Schweizer, F.E., Tokumaru, H., Umayahara, K. 1999. Proteins involved in synaptic vesicle trafficking. J Physiol (Lond) 520: 33–41.

Balsinde, J., Balboa, M.A., Insel, P.A., Dennis, E.A. 1999. Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol 39: 175-189.

Bowman, W.C. 1993. Physiology and pharmacology of neuromuscular transmission, with special reference to the possible consequences of prolonged blockade. Intens. Care Med. 19: S45–53.

Brenner, B. 1987. Mechanical and structutal approaches to correlation of cross-bridge action in muscle with actomyosin ATPase in solution. Ann. Rev. Physiol. 49: 655 - 672.

Brewer, M., 2002. The slifing-filament model of muscular contraction. In: **Rose, N.** (Ed.) Chapter 38: How does skeletal muscle work?, vol. 2008. Wadsworth, U.S.A,

Campbell, J.A., Lamar, W.W., 1989. The venomous reptiles of Latin America. Cornell University Press, Comstock, Ithaca.

Campbell, J.A., Lamar, W.W., 2004. Venomous Reptiles of the Western Hemisphere. Cornell University press., New York.

Caratsch, C.G., Maranda, B., Miledi, R., Strong, P.N. 1981. A further study of the phospholipase-independent action of beta-bungarotoxin at frog end-plates. J physiol 319: 179-191.

Cecchini, A.L., Marcussi, S., Silveira, L.B., Borja-Oliveirad, C.R., Rodrigues-Simioni, L., Amarab, S., Stabeli, R.G., Giglio, J.R., Arantes, E.C., Soaresc, A.M. 2005. Biological and enzymatic activities of Micrurus sp. (Coral) snake venoms. Comparative Biochemistry and Physiology, Part A 140: 125 - 134.

Connolly, S., Trevett, A.J., Nwokolo, N.C. 1995. Neuromuscular effects of the Papuan Taipan snake venom Ann. Neurol 38: 916 - 920.

Corredor, V., 1984. Producción y características de antivenenos experimentales producidos a partir de los venenos de las serpientes Micrurus mipartitus descusatus, M. dumerilii cainicauda y Micrurus isozonus. In: Biología, vol. Pregrado. Universidad Nacional de Colombia, Bogotá, p. 55

Crachi, M.T., Hammer, L.W., C., H.W. 1999. A pharmacological examination of venom from the Papuan taipan (Oxyuranus scutellatus canni). Toxicon 37: 1721-1734.

Chang, C.C., 1979. The action of snake venom on nerve and muscle. Springer-Verlag, Berlin, Alemania.

Chang, C.C. 1985. Neurotoxins with phospholipase A2 activity in snake venoms. Proc. Natl Sci. Council ROC 9: 126–142.

Chang, L., Lin, S., Huang, H., Hsiao, M. 1999. Genetic organization of alphabungarotoxins from Bungarus multicinctus (Taiwan banded krait): a-bungarotoxin isotoxins is not derived from edited mRNAs. Nucleic Acids Res 27: 3970–3975.

Changeuxt, J., Kasait, M., Leet, C. 1970. Use of a Snake Venom Toxin to Characterize the Cholinergic Receptor Protein. Proceedings of the National Academy of Science 67: 1241-1247.

Chernomordik, L., Kozlov, M.M., Zimmerberg, J. 1995. Lipids in biological membrane fusion. J Membr Biol 146: 1-14.

da Silva Jr., N.J., Aird, S. D. 2001. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comparative Biochemistry and Physiology Part C 128.

Daltry, J.C., Wuster, W., Thorpe, R. 1996. Diet and Snake venom evolution. Nature 379: 537 - 539.

de Roodt, A.R., Paniagua-Solis, J.F., Dolab, J.A., Estevez-Ramirez, J., Ramos-Cerrillo, B., Litwin, S., Dokmetjian, J.C., Alagon, A. 2004. Effectiveness of Two Common Antivenoms for North, Central, and South American Micrurus Envenomations. Journal of Toxicology- Clinical Toxicology 42: 171–178.

Dixon, R., Harris, J.B. 1999. Neurotoxic activity of the toxic phospholipase A2, β -bungarotoxin: its clinical significance . Am. J. Pathol. 154: 447 – 455.

Dixon, R.W., Harris, J.B. 1996. Myotoxic activity of the toxic phospholipase, notexin, from the venom of the Australian tiger snake. J Neuropathol Exp Neurol. 55: 1230-1237.

Dodge, F.A., Miledi, R., Rahamimoff, R. 1969. Strontium and Quantal release of transmitter at the Neuromuscular Junction. Journal of Physiology 200: 267-283.

Dodge, F.A., Rahamimof, R. 1967. Co-operative action of calcium ions in transmitter release at the Neuromuscular Junction. J. Phisiol 193: 419 - 432.

Dreyer, F., Penner, R. 1987. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J physiol 386: 455-463.

Dufton, M.J., Harvey, A.L. 1989. The long and the short of snake toxins. Trends Pharmacol. Sci. 10: 23–27.

Ebashi, S. 1972. Calcium ions and muscle contraction. Nature 240: 217 - 218.

Eckert, R., 1994. Músculo y movimiento. In: Graw-Hill, I.-M. (Ed.) Fisiología animal, mecanismos y adaptaciones, España, pp. 329 - 367

Eisenberg, E., Hill, T. 1985. Muscle contraction and free energy transduction in biological systems. Science 227: 999 - 1006.

Endo, T., Tamiya, N. 1991 Structure–function relationships of postsynaptic neurotoxins from snake venoms. In: Harvey AL (ed.). *Snake Toxins*. Pergamon Press, New York. 165–222.

Faelli, M., Harvey, A.L., Rowan, E.G. 1998. Characterization of the effects of depolarizing toxins on nerve terminal action potentials: apparent block of presynaptic potassium currents. Toxicon 15: 410 – 411.

Fohlman, J., Eaker, D., Karlsoon, E., Thesleff, S. 1976. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur J Biochem 68: 457-469.

Fortune, E., Lowery, M.M. 2007. The effect of extracellular potassium concentration on muscle fiber conduction velocity examined using model simulation. Conf Proc IEEE Eng Med Biol Soc 2007: 2726-2729.

Fry, B.G., Wuster, W., Kini, R.M., Brusic, V., Khan, A., Venkataraman, D., Rooney, A.P.2003. Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins.J. Mol. Evol. 57: 110 - 129.

Ganong, W.F., 1999. Review of medical physiology. Appleton & Lange, New York.

Gelb, M.H., Jain, M.K., Berg, O.G. 1994. Inhibition of Phospholipase A2. The FASEB Journal 8: 916 - 924.

Geppert, M., Bolshakov, V.Y., Siegelbaum, S.A., Takei, K., De Camilli, P., Hammer, R.E., Sudhof, T.C. 1994. The role of Rab3A in neurotransmitter release Nature 369: 493–497.

Gingsborg, B.L. 1960. Some properties of avian skeletal muscle fibers with multiple neuromuscular junctions. J. Physiol. Lond. 154: 581-598.

Gingsborg, B.L., Mackay, B. 1960. The latissimus dorsi muscles of the chick. J. Phisiol 153: 19 - 20P.

Gingsborg, B.L., Mackay, B. 1961. A histochemical demonstration of two types of motor innervation in avian skeletal muscle. Biblphie. anat. 2: 174-181.

Gingsborg, B.L., Warriner, J. 1960. The isolated chick biventer cervicis nerve - mucsle preparation Brit. J. Pharmacol. 15: 410.

Gold, B.S. 1996. Neostigmine for the treatment of neurotoxicity following envenomation by the Asiatic cobra. Ann. Emerg. Med 28.

Goularte, F.C., Cruz-Hofling, M.A., Rodrigues-Simioni, L. 1995. Effects of *Micrurus nigrocinctus* snake venom on mouse and chick neuromuscular preparations. Toxicon 31: 135-136

Grosman, C., Zhou, M., Auerb. 2000. Ach, A: Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403: 773–776.

Gutierrez, J. M., Chavez, F., Rojas, E. and Bolaños, R. 1980. Efectos locales inducidos por el veneno de la serpiente coral *Microns nigroclnctus* en ratón blanco. Toxicon 18, 633.

Gutierrez, J.M., Lomonte, B., Portilla, E., Cerdas, L., Rojas, E. 1983. Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon 21: 777-783.

Gutierrez, J.M. 2002. Comprendiendo los venenos de serpientes: 50 años de investigaciones en América Latina. Rev Biol Trop 50: 377–394.

Gutierrez, J.M., Leon, G., Lomonte, B. 2003. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42: 721-741.

Hall, Z.W., Sanes, J.R. 1993. Synaptic structure and development: The neuromuscular junction. Cell 72 (supl): 99 - 121.

Harris, J.B. 1985. Phospholipases in snake venoms and their effects on nerve and muscle. Pharmacol Ther 31: 79 – 102.

Harris, J.B. 1997. Toxic phospholipases in snake venom: An introductory review. Symp. Zool. Soc. Lond 70: 235–250.

Harris, J.B., Johnson, M.A. 1978. Further observations on the pathological responses of rat skeletal muscle to toxins isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin Exp Pharmacol Physiol 5: 587-600.

Harvey, A.L. 1990. Presynaptic effects of toxins. Int. Rev. Neurobiol. 32: 201–239.

Harvey, A.L., Barfaraz, A., Thomson, E., Faiz, A., Preston, S., Harris, B. 1994. Screening of snake venoms for neurotoxic ans myotoxic effects using simple in vitro preparations from rodents and chicks. Toxicon 32: 257-265.

Herzog, W., Leonard, T.R., Joumaa, V., Mehta, A. 2008. Mysteries of muscle contraction. J Appl Biomech 24: 1-13.

Hess, A. 1961. Structural differences of fast and slow extrafusal muscle fibres and their nerve endings in chickens. J physiol 157: 221-231.

Hess, A. 1970. Vertebrate slow muscle fibers. Physiol. Rev. 50: 40-62.

Hodgson, W.C., Dal Belo, C. A. Rowan, E. G 2007. The neuromuscular activity of paradoxin: A presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus). Neuropharmacology 52: 1229 - 1236.

Hodgson, W.C., Wickramaratna, J.C. 2002. In vitro Neuromuscular activity of Snake venoms. Clinical and Experimental Pharmacology and Physiology 29: 807–814.

Holmes, K.C., Geeves, M.A. 2000. The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci 355: 419-431.

Hucho, F. 1986. The nicotinic Acetilcholine receptor is an ion channel. Eur. J. Biochem. 158: 211 - 226.

Huxley, A.F. 1969. The mechanism of muscle contraction. Science 164: 1356 - 1366.

Huxley, H., Hanson, J. 1954. Changes in the cross - strations of muscle during contraction and stretch and their structural interpretation. Nature 173: 973 - 976.

Kamp, F., Hamilton, J.A., Westerhoff, H.V. 1993. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32: 11074-11086.

Katz, B., Miledi, R. 1965. The effect of calcium on acetylcholine release from motor nerve terminals. Proceedings of the Royal Society of London. Seris B. Biological sciences 161: 496 - 503.

Kernell, D. 2003. Principles of force gradation in skeletal muscles. Neural Plast 10: 69-76.

Kini, M. 2002. Molecular moulds with multiple missions: functional sites of the three finger toxins. Clinical and Experimental Pharmacology and Physiology 29: 815–822.

Kocholaty, W.F., Boyles-Ledford, E., Daly, J., Billings, T.A. 1971. Oxicity and some enzymatic activities in the venoms of Crotalidae, Elapidae and Viperidae. . Toxicon 9: 131-138.

Kumar, V., Rejent, T. A., Elliot, W. B. . 1973. Anticholinesterase activity of elapid venoms. Toxicon 11: 131 – 138.

Kuruppu, S., Fry, B.G., Hodgson, W.C. 2005. Presynaptic neuromuscular activity of venom from the brown-headed snake (Glyphodon tristis). Toxicon 45: 383–388.

Kuruppu, S., Robinson, S., Hodgson, C.W., Fry, B.G. 2007. The in vitro Neurotoxic and Myotoxic Effects of the Venom from the Suta Genus (Curl Snakes) of Elapid Snakes. Basic & Clinical Pharmacology & Toxicology 101: 407–410.

Kuruppu, S., Smith, A.I., Isbister, G.K., Hodgson, W.C. 2008. Neurotoxins From Australo-Papuan Elapids: A Biochemical and Pharmacological Perspective Critical Reviews in Toxicology 38: 73 — 86.

Lalloo, D.G., Trevett, A.J., Black, J. 1996. Neurotoxicity, anticoagulant activity and evidence of rhabdomyolysis in patients bitten by death adders (Acanthophis sp.) in southern Papua New Guinea. . Q. J. Med 89: 25–35.

Lewis, R.L., Guttman, L.M. 2004. Snakes and Neuromuscular Junction. Seminars in Neurology 24: 175 - 179.

Lumsden, N.G., Fry, B.G., Kini, R.N., Hodgson, W.C. 2004. In vitro neuromuscular activity of 'colubrid' venoms: clinical and evolutionary implications. Toxicon 43: 819–827.

Lumsden, N.G., Fry, B.G., Ventura, S., Kini, R.M., Hodgson, W.C. 2005. Pharmacological characterisation of a neurotoxin from the venom of Boiga dendrophila (Mangrove catsnake). Toxicon 45: 329–334.

Lynch, V.J. 2007. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evolutionary Biology 7: 1 - 14.

Llinas, R., Gruner, J.A., Sugimori, M., McGuinness, T.L., Greengard, P. 1991. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse J Physiol (Lond) 436: 257–282.

Mallet, J., Houhou, L., Pajak, F., Oda, Y., Cervini, R., Bejanin, S., Berrad, S. 1998. The cholinergic locus: ChAT and VAChT genes J. Physiol. (Paris) 92: 145–147.

Marieb, E., Hohen, K., 2007. Human Anatomy and Physiology. Pearson education, New York.

Maurer, A., Tu, A.T., Volpe, P. 1987. Crystallization of the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Inhibition by myotoxin a. FEBS Lett 224: 89-96.

McMahan, U.J., Sanes, J.R., Marshall, L.M. 1978. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271: 172–174.

Mebs, D., Ownby, C.L. 1990. Myotoxic components of snake venoms: their biochemical and biological activities. Pharmacol Ther 48: 223-236.

Mebs, D., Samejima, Y. 1980. Purification, from Australian elapid venoms, and properties of phospholipases A which cause myoglobinuria in mice. Toxicon 18: 443-454.

Meers, P., Hong, K., Papahadjopoulos, D. 1988. Free fatty acid enhancement of cationinduced fusion of liposomes: synergism with synexin and other promoters of vesicle aggregation. Biochemistry 27: 6784-6794.

Meiri, U., Rahamimoff, R. 1971. Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J physiol 215: 709 - 726.

Mellow, A.M., Perry, B.D., Silinsky, E.M. 1982. Effects of calcium and strontium in the process of acetylcholine release from motor nerve endings. J physiol 328: 547 - 562.

Menez, A. 1998. Functional architectures of animal toxins: a clue to drug design? Toxicon 36: 1557-1572.

Montecucco, C., Rossetto, O. 2000. How do presynaptic PLA2 neurotoxins block nerve terminals? . Trends Biochem. Sci 25: 266–270.

Moraes, F.V., Sousa-e-Silva, M.C., Barbaro, K.C., Leitao, M.A., Furtado, M.F. 2003. Biological and immunochemical characterization of Micrurus altirrostris venom and serum neutralization of its toxic activities. Toxicon 41: 71–79.

Naguib, M.B., Flood, P., McArdle, J.J., Brenner, H.R. 2002. Advances in Neurobiology of the Neuromuscular Junction. Anesthesiology 96: 202–231.

Nirthanan, S., Gopalakrishnakone, P., Gwee, M.C., Khoo, H.E., Kini, R.M. 2003. Nonconventional toxins from Elapid venoms. Toxicon 41: 397-407.

Pedersen, S.E., Cohen, J.B. 1990. d-Tubocurarine binding sites are located at alphagamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. . Proc Natl Acad Sci USA 87: 2785–2789.

Pineda, D., Renjifo, J.M., 2002. Accidente ofídico. In: Pineda, D. (Ed.) Accidentes por animales venenosos, Instituto Nacional de Salud, Bogotá. D. C, p. 193

Piomelli, D., Astarita, G., Rapaka, R. 2007. A neuroscientist's guide to lipidomics. Nat Rev Neurosci 8: 743-754.

Prijatelj, P., Vardjan, N., Rowan, E.G., Krizaj, I., Pungercar, J. 2006. Binding to the highaffinity M-type receptor for secreted phospholipases A(2) is not obligatory for the presynaptic neurotoxicity of ammodytoxin A. Biochimie 88: 1425-1433.

Pungercar, J., Krizaj, I. 2007. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 50: 871-892.

Rand, J.B., 2007. Acetylcholine. In: Jorgensen, E.M., Kaplan, J.M. (Eds.), WormBook, The C. elegans Research Community,

Robitaille, R., Adler, E.M., Charlton, M.P. 1990. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5: 773–779.

Rosahl, T.W., Spillane, D., Missler, M., Herz, J., Selig, D.K., Wolff, J.R., Hammer, R.E., Malenka, R.C., Sudhof, T.C. 1995. Essential functions of synapsins I and II in synaptic vesicle regulation Nature 375: 488–493.

Rosenberg, P., Ghassemi, A., Condrea, E., Dhillon, D., Yang, C.C. 1989. Do chemical modifications dissociate between the enzymatic and pharmacological activities of bungarotoxin and notexin? Toxicon 27: 137–159.

Rossi, S.G., Vazquez, A.E., Rotundo, R.L. 2000. Local control of acetylcholinesterase gene expression in multinucleated skeletal muscle fibers: Individual nuclei respond to signals from the overlying plasma membrane. J Neurosci 20: 919–928.

Rosso, J., Vargas-Rosso, O., Gutiérrez, J.M., Rochat, H., Bougis, P.E. 1996. Characterization of a-neurotoxin and phospholipase A2 activities from Micrurus venoms. Determination of the aminoacid sequence and receptor-binding ability of the major aneurotoxin from Micrurus nigrocinctus nigrocinctus. Eur. J. Biochem 238: 231 - 239.

Rowan, E.G., Harvey, A.L. 1988. Potassium channel blocking actions of betabungarotoxin and related toxins on mouse and frog motor nerve terminals. Br J Pharmacol 94: 839-847.

Roze, J.A., 1996. Coral snakes of the Americas: Biology, identification and venoms. Malabar, Florida.

Russell, F.E., Walter, F.G., Bey, T.A., Fernandez, M.C. 1997. Snakes and snakebite in Central America. Toxicon 35: 1469–1522.

Sánchez, P.E., 2002. Efecto de la glibenclamida sobre la sacudida única y el tetanos en las fibras musculares rápidas y lentas de pollo. In: Centro universitario de investigaciones biomédicas, vol. Maestría. Universidad de Colima, Colima, Colima., p. 56

Scherrmann, J.M. 1994. Antibody treatment of toxin poisoning--recent advances. J Toxicol Clin Toxicol 32: 363-375.

Schmidt, R., Zimmermann, H., Whittaker, V.P. 1980. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release. Neuroscience 5: 625-638.

Secor, S.M., Stein, E.D., Diamond, J. 1994. Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266: G695-705.

Serafim, F.G., Reali, M., Cruz-Hofling, M.A., Fontana, M.D. 2002. Action of Micrurus dumerilii carinicauda venom on the mammalian neuromuscular junction. Toxicon 40: 167 - 172.

Servent, D., Winckler-Dietrich, V., Hu, H.Y., Kessler, P., Drevet, P., Bertrand, D., Menez, A. 1997. Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J Biol Chem 272: 24279-24286.

Sha, D., Jin, H., Kopke, R.D., Wu, J. 2004. Choline Acetyltransferase: Regulation and Coupling with Protein Kinase and Vesicular Acetylcholine Transporter on Synaptic Vesicles. Neurochemical Research 29: 199-207.

Silva-Haad, J., Rodriguez, R.A. 1985. Las serpientes Micrurus de la amazonía Colombiana. Amazonia 85 26 – 28.

Six, D.A., Dennis, E.A. 2000. The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochimica et Biophysica 1488.

Slowinski, J.B., Knight, A., Rooney, A.P. 1997. Inferring Species Trees from Gene Trees: A Phylogenetic Analysis of the Elapidae (Serpentes) Based on the Amino Acid Sequences of Venom Proteins. Molecular Phylogenetics and evolution 8: 349 - 362.

Squire, J.M. 1975. Muscle filament structure and muscle contraction. Annu Rev Biophys Bioeng 4: 137-163.

Strong, P.N., Goerke, J., Oberg, S.G., Kelly, R.B. 1976. b-Bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci USA 73: 178 - 182.

Su, M.J., Chang, C.C. 1984. Presynaptic effects of snake venom toxins which have phospholipase A2 activity (-bungarotoxin, taipoxin, crotoxin). Toxicon 22: 631–640.

Sudhof, T.C. 1995. The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 375: 645–653.

Trémeau, O., Lemaire, C., Drevet, P. 1995. Genetic engineering of snake toxins: The functional site of erabutoxin A, as delineated by site directed mutagenesis, includes variant residues. J. Biol. Chem. 270: 9362–9369.

Tu, T.A. 1973. Neurotoxins of Animal Venoms: Snakes. Annu. Rev. Biochem. 42: 235 - 258.

Verheij, H.M., Slotboom, A.J., de Haas, G.H. 1981. The structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol 91: 91 - 203.

Vital Brazil, O. 1965. Acao neuromuscular da peconha de Micrurus. O Hospital 68 183 – 244.

Vital Brazil, O., Fontana, M. D., Pellegrini, F. A. 1976/77. Physiologié et thérapeutique de l'envenomation causeé par le venin de Micrurus frontalis. Mem. Inst. Butantan 40/41: 221 - 240.

Vital Brazil, O., Fontana, M.D. 1983/84. Acoes pre-juncionais e pos-juncionais da peconha da cobra coral Micrurus corallinus na juncao neuromuscular. Mem. Ins. Butantan 47/48: 13 – 26.

Volpe, P., Damiani, E., Maurer, A., Tu, A.T. 1986. Interaction of myotoxin a with the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys 246: 90-97.

Watt, G., Padre, L., Tuazon, L., Theakston, R.D., Laughlin, L. 1988. Bites by the Philippine cobra (Naja naja philippinensis): Prominent neurotoxicity with minimal local signs. Am. J. Trop. Med. Hyg 39: 306–311.

Wickramaratna, J.C., Fry, B.G., Aguilar, M.I., Kini, M., Hodgson, W.C. 2003. Isolation and pharmacological characterization of a phospholipase A2 myotoxin from the venom of the Irian Jayan death adder (Acanthophis rugosus). British Journal of Pharmacology 138: 333 - 342.

Wickramaratna, J.C., Hodgson, W.C. 2001. A pharmacological examination of venoms from three species of death adder (Acanthophis antarcticus, Acanthophis praelongus and Acanthophis pyrrhus). 39 209 - 216.

Wilschut, J., Scholma, J., Eastman, S.J., Hope, M.J., Cullis, P.R. 1992. Ca(2+)-induced fusion of phospholipid vesicles containing free fatty acids: modulation by transmembrane pH gradients. Biochemistry 31: 2629-2636.

Yu, B., Berg, O.G., Jain, M.K. 1993. The Divalent Cation Is Obligatory for the Binding of Ligands to the Catalytic Site of Secreted Phospholipase A 2 t. Biochemistry 32: 6485-6492.

Zhou, H.X., Wlodek, S.T., McCammon, J.A. 1998. Conformation gating as a mechanism for enzyme specificity. Proc Natl Acad Sci USA 95: 9280–9283.

12. ANEXOS

ANEXO 1: Filogenia de serpientes coral

0.1

Cyt-b, ND4

ANEXO 2: Datos brutos Amplitud

2.1. Datos amplitud de los experimentos control

					Controles				
Tiempo		% de respue	sta con respe	cto al inicial				SD	SEM
	1	2	3	4	5	6	TROMEDIO	00	0Em
0	100	100	100	100	100	100	100	0	0
5	100,2111553	106,0348164	100,255347	100,3563623	99,85886673	99,83968172	101,0927049	2,629320625	1,17586793
10	100,0643684	108,5549517	100,0105292	100,1112979	100,071215	99,94747045	101,4599721	3,797280808	1,698195603
15	99,79361659	108,7904702	99,82224781	99,92282678	100,0961117	99,94687217	101,3953575	3,973811267	1,777142425
20	99,87536081	107,0442341	99,87007026	99,97069741	99,84237266	99,95963532	101,0937284	3,200005215	1,431085838
25	99,92951117	107,3005233	99,91052742	100,0111953	100,0004668	100,0415986	101,1989704	3,281763177	1,46764911
30	100,4859528	109,1146578	100,4974675	100,5987268	100,1520256	99,84476703	101,7822663	3,885961	1,737854591
35	100,0425838	109,4662027	100,0864642	100,1873094	99,67940289	99,99293914	101,575817	4,238230808	1,895394438
40	100,1381249	108,0058551	100,0625011	100,1633222	100,0509864	100,0276389	101,4080714	3,53426212	1,58057007
45	99,70046137	105,8478801	99,74838755	99,8488921	99,71166489	99,98446362	100,8069583	2,726630671	1,219386306
50	100,1269214	103,9903058	100,1315895	100,2324802	100,6983011	99,79909891	100,8297828	1,668231803	0,746055943
55	100,0762981	102,3035905	100,0476668	100,1484729	100,0022303	99,98376563	100,4270041	1,000898139	0,447615256
60	99,69423719	101,1187372	99,70201741	99,80247524	99,93293447	99,9718999	100,0370502	0,605151044	0,270631774
65	98,92513609	100,4080478	98,9880003	99,0877387	99,91509182	100,0400032	99,56066965	0,66204784	0,296076795
70	99,04256561	100,659426	99,02607153	99,12584829	100,0679992	99,85673248	99,62977384	0,742484659	0,332049234
75	98,54971434	100,9168297	98,56091786	98,66022594	100,0699701	99,98994778	99,4579343	1,085379745	0,485396578
80	97,5583063	101,5695618	97,66287251	97,76127574	99,44361023	99,95265547	98,99138035	1,731943516	0,774548687
85	96,93754814	102,5881341	96,89989185	96,99752632	98,89816465	100,209414	98,75511317	2,455810215	1,098271716
90	95,1516236	104,8033986	95,19083593	95,28674838	98,91756334	98,76558351	98,01929223	4,195535845	1,876300671
95	94,21177252	106,1980849	94,32287412	94,41791203	98,17937566	96,67252787	97,33375785	5,160384897	2,307794284
100	93,33986872	109,3527453	93,32119618	93,41522482	97,37904993	95,72825475	97,08938995	6,925693693	3,097264378
105	92,24264963	111,5556124	92,22242105	92,31534258	96,3879531	94,7307354	96,5757857	8,361053698	3,739176886
110	91,63539449	113,8631354	91,64317471	91,73551261	94,8639282	93,69733633	96,23974695	9,666961669	4,323196685
115	90,5090082	116,6071562	90,6026821	90,69397162	94,13397027	91,10709978	95,60898136	11,33882373	5,070876131
120	89,79312384	118,5447987	89,72185698	89,812259	92,80811633	86,58256578	94,54378677	12,59555553	5,632903677
125	89,37568887	120,0338506	89,4600265	89,5501647	92,05333084	84,11788333	94,0984908	13,42954336	6,005874373
130	88,76239973	121,5576339	88,81561647	88,90510537	91,0619228	82,07159263	93,52904516	14,42005527	6,448844764
135	88,2847977	122,9594684	88,21384206	88,30272462	90,26719883	78,96875305	92,83279745	15,3158159	6,849441096
140	88,07400549	123,6149892	88,08552022	88,1742735	89,687624	76,22736965	92,31063034	15,71638303	7,028580163
145	87,87701022	123,425035	87,88105593	87,96960319	89,14612039	74,38648578	91,78088508	15,75401504	7,04540971
150	87,11683044	123,8687131	87,20023444	87,28809572	88,50295519	71,88161936	90,97640804	16,26237207	7,272753886
155	87,14390562	123,5879658	87,1258555	87,21364183	88,23313701	70,03983808	90,55739065	16,17741503	7,234759943
160	87,27679185	123,3899712	87,19930082	87,28716115	88,1391519	70,02188991	90,5523778	16,06599857	7,184932987
165	87,45895283	122,6011077	87,47793658	87,56607766	87,72721497	69,99955441	90,47180736	15,67231573	7,008872665
170	87,56901707	121,0672732	87,56217048	87,65039643	86,95624661	69,9919763	90,13284668	15,04362622	6,72771417
175	87,85885636	119,144036	87,84703042	87,93554339	87,18073202	70,0267758	89,99882 <u>9</u>	14,06302821	6,289177408
180	87,82293167	117,1907271	87,84883117	87,59989783	87,30756962	70,03083331	89,63346511	1 3,21512568	5,909983868

Tioman	L			3 u	.g/ml								10 ug/ml				!
(min)		% de respur	esta con respe	cto al inicial		PROMEDIO		SEM		% de	respuesta cor	n respecto al i	nicial		PROMEDIO	SD	SEM
()	2	3	4	5	6	TROMEDIO		UEIN	1	2	3	4	5	6	TROMEDIO	00	OEM
0	100	100	100	100	100	100	0	0	100	100	100	100	100	100	100	0	0
5	93,44715391	98,11860403	97,63595533	93,6902299	99,97633265	96,57365516	2,880221957	1,288074417	94,22802897	98,46832277	101,2487558	93,35564231	84,72831203	95,70077786	94,62163996	5,64828804	2,305903936
10	87,27332573	91,00159833	91,82651334	86,75104725	94,38485594	90,24746812	3,211329786	1,43615034	89,30055218	96,56689683	90,1147765	83,6019524	82,83825937	93,07768894	89,25002104	5,328216125	2,175235124
15	81,8893294	87,60555629	89,15530503	83,8280899	91,90686896	86,87702991	4,037132664	1,805460614	83,5794932	96,02372116	87,14539029	80,09375604	81,48239647	88,82131542	86,1910121	5,842587172	2,385226225
20	83,51375771	86,82631946	89,91484423	86,23610292	93,39084263	87,97637339	3,78616727	1,693225478	73,74381993	96,5037441	86,53566657	78,34519865	80,01737849	82,65723136	82,96717318	7,889273019	3,220782223
25	89,08379044	85,90277286	90,82494084	88,92536787	95,77443357	90,10226112	3,631592907	1,624097721	71,92739298	96,95219068	81,60180467	75,8203471	77,00135876	74,52101722	79,6373519	9,064226932	3,700455149
30	91,6740808	83,73381317	90,59150854	90,84957553	98,32786448	91,0353685	5,175246179	2,314440451	71,76795971	96,68900247	72,83114473	71,95520707	71,12163664	65,09786102	74,91046861	11,02614686	4,501405608
35	93,10641631	82,94577039	88,93320673	91,16597142	100,5202336	91,33431969	6,396928654	2,860793464	66,97952356	95,42874781	58,94134099	65,98835705	62,19908877	55,73726207	67,54572004	14,29874596	5,837438594
40	93,88334543	80,57355496	85,53083443	91,44411945	101,7539424	90,63715933	8,095098223	3,620237982	66,87830197	93,71942437	43,44787366	58,57652673	51,67045046	46,4945653	60,13119042	18,5039708	7,554214447
45	94,00447317	77,8776759	81,8785513	90,23530693	102,246211	89,24844366	9,697233427	4,336734627	60,34363895	90,61980765	26,94096311	51,50049758	40,15521376	37,31358622	51,14561788	22,5429394	9,203116473
50	92,46141111	76,25019235	76,38622034	89,14864724	102,3123004	87,31175428	11,14265418	4,983146439	58,50323521	86,87326436	12,43351241	43,54464894	28,97312155	28,76035682	43,18135655	26,45427697	10,79991335
55	89,62991855	73,9250618	70,7205032	88,08691876	101,9268195	84,85784437	12,68798326	5,674238613	55,02066878	81,84717837	2,177915571	35,44488552	19,11826885	21,7475753	35,89274873	28,6218329	11,68481435
60	86,67124187	70,91791932	62,63726658	86,41122204	101,1174677	81,5510235	15,02894716	6,721149494	53,76683116	76,83229189	0,721502338	26,51487812	12,09440609	15,69453327	30,93740714	28,80099514	11,75795703
65	84,73095982	68,58542053	54,36143222	84,06608769	99,83516381	78,31581282	17,3622804	7,764647845	51,00628734	70,28976272	0,663967432	17,82910301	7,571114793	10,71778749	26,34633713	27,81375819	11,35491923
70	80,68450338	63,61904377	46,13953488	81,70973931	98,0016697	74,03089821	19,77478072	8,843550784	48,08878209	60,1385063	0,234527876	10,94933456	4,868021451	6,912040452	21,86520212	25,50319739	10,41163674
75	78,02719779	57,94747205	38,62227514	78,45076152	95,2158326	69,65270782	21,79972176	9,749131951	44,86946594	53,88700853	0	6,451815156	3,247846501	3,92740774	18,73059065	23,99861439	9,7973933
80	74,51120185	51,40680687	31,665687	74,95208379	91,69523718	64,84620334	23,44128664	10,48326208	41,93712968	47,08346883	0	4,09464548	2,43457865	2,020214054	16,26167278	21,98043872	8,973476533
85	70,33045161	44,26392244	25,63945199	72,39628585	86,84763036	59,89554845	24,54281074	10,97587863	39,55724825	40,38399113	0	2,807431952	1,872106247	0,965359787	14,26435623	19,9355454	8,13865233
90	65,29891067	34,62913355	20,63183067	67,55973412	81,10854595	53,84563099	25,17414883	11,25822161	36,60674401	35,88941468	0	2,273474551	1,818721346	0,436258786	12,83743556	18,15473513	7,41163958
95	59,40578286	27,64026341	16,89112622	62,12863846	74,55804441	48,12477107	24,58273323	10,99373252	33,79181985	30,36479547	0	2,050384757	1,642551174	0,246439517	11,34933179	16,11227286	6,577807852
100	52,70386407	17,52078777	13,74493461	56,27951975	67,02069735	41,45396071	24,18988654	10,81804613	31,18947339	23,97797043	0	1,897429729	1,65731721	0,170882467	9,815512204	13,97166259	5,703907368
105	46,32069556	10,82323288	10,86762423	50,67280435	59,18193901	35,57325921	23,04238278	10,30486685	28,35650484	18,1142553	0	1,976313113	1,707180979	0	8,359042372	11,99830285	4,898286626
110	40,31896971	4,386202362	8,662811631	45,11962259	52,04163438	30,10584814	21,97842116	9,829048752	25,7894644	13,19505712	0	2,029558183	1,729803304	0	7,123980501	10,40971415	4,249748005
115	33,28050452	1,910352272	6,354358518	38,47133726	43,48753554	24,70081762	19,18447863	8,579559666	22,4342386	8,503841321	0	1,951087927	1,7935055	0	5,780445559	8,742453659	3,569091761
120	27,69296093	1,356475912	. 4,667681502	31,43703559	35,87085693	20,20500217	16,00251841	7,156543797	19,6199324	5,487754194	0	2,103168094	1,653000984	0	4,810642613	7,528070507	3,073321915
125	22,27012473	1,662707358	3,488382141	25,10351077	29,22474449	16,3498939	12,83129623	5,738330124	16,84752378	3,442290259	0	2,004162885	1,874377945	0	4,028059145	6,416647388	2,619585327
130	17,68807303	0	2,612367933	19,99391739	23,27135556	12,71314278	10,64054885	4,758598108	14,09204722	1,912314344	0	2,12853909	1,786576821	0	3,319912913	5,363475477	2,189629695
135	14,08913092	0	1,829678418	15,28562614	18,00461578	9,841810252	8,297013679	3,710537319	11,60723645	0,835918113	0	2,154055896	1,941393034	0	2,756433915	4,432789036	1,809678546
140	10,89991656	0	1,298105473	11,56416967	13,79457701	7,511353742	6,372037717	2,849661898	9,356508319	0,121483447	0	2,174469342	1,915382092	0	2,2613072	3,613168972	1,475070056
145	8,242084319	0	0,93638186	8,618083377	10,43969098	5,647248107	4,811710139	2,151862192	7,240865899	0	0	2,275515895	1,990688878	0	1,917845112	2,810771229	1,147492549
150	6,44820884	0	0,26068215	6,330521064	8,009934666	4,209869344	3,783744946	1,692142182	5,722294897	0	0	2,212234215	1,970357182	0	1,650814382	2,243649606	0,915966116
155	5,05194833	0	<i>i</i> 0	4,77427381	6,105613155	3,186367059	2,950835016	1,319653537	4,508748167	0	0	2,220982834	2,005454915	0	1,455864319	1,820229584	0,743105616
160	3,874902695	0	<i>i</i> 0	3,752995936	4,528215355	2,431222797	2,238881542	1,001258265	3,546586919	0	0	0,41555942	2,039530383	0	1,000279454	1,476976552	0,602973152
165	3,031353323	0	<i>i</i> 0	3,080254168	3,439320063	1,910185511	1,750853205	0,783005357	2,904898904	0	0	0	1,945595675	0	0,808415763	1,288608854	0,526072362
170	2,307220102	C	0	2,485710245	2,631183113	1,484822692	1,360298907	0,608344165	2,452058979	0	0	0	2,038508119	C	0,74842785	1,166811305	0,476348721
175	1,912764988	C	0	2,321805159	2,019006009	1,250715231	1,151563221	0,514994729	2,257896446	0	0	0	2,114609999	0	0,728751074	1,129885219	0,461273709
180	1.38055239	C	0 1	2.223451324	1.584406712	1.037682085	0,997006115	0,445874689	2,0486177	0	0	0	1,65239811	0,001372928	0,61706479	0,963601801	0,393388788

2.2. Datos amplitud de los experimentos con veneno de *M. mipartitus*

2.3 Datos amplitud experimentos con veneno de *M. dissoleucus*

Tiampa				3 µg	g/ml							10 µ	g/ml							50 µ	g/ml			
(min)		% de respue	esta con respe	cto al inicial			SD.	SEM		% de respue	sta con respe	cto al inicial			SD.	SEM		% de respue	esta con respe	cto al inicial			SD	SEM
()	1	2	3	4	5	TROMEDIO	30		1	2	3	4	5	TROMEDIO	30		1	2	3	4	5		50	JEM.
(100) 100	100	100	100	100	7,10543E-15	3,17764E-15	100	100	100	100	100	100	7,10543E-15	3,17764E-15	100	100	100	100	100	100	7,10543E-15	3,17764E-15
5	95,54709574	95,69006481	103,9204664	103,0255236	103,8903749	100,4147051	4,393257996	1,964724704	93,47445937	98,68009273	99,26788907	102,3180492	105,057118	99,75952168	4,345096879	1,943186398	102,5836565	101,1836619	104,053537	87,53416769	101,093384	99,28968143	6,681639026	2,988119813
10	93,84093567	93,75162183	105,6858358	104,1208627	105,7140929	100,6226698	6,264958294	2,801774524	90,18318414	97,77482857	97,25390768	102,2208794	107,9684814	99,08025625	6,577644788	2,941612176	104,3166997	100,4981677	106,0713082	84,64642696	100,3379003	99,17410057	8,487913215	3,795910187
15	91,87720983	91,98130306	106,965298	103,8993753	107,0952345	100,3636842	7,805138487	3,490564046	87,62251252	96,11594116	94,26493227	100,0516978	109,4413087	97,49927848	8,047547038	3,598972446	106,6617339	99,92274296	107,5129364	83,61178478	98,83721894	99,30928339	9,596471891	4,291672699
20	90,34482138	90,89059862	108,0894034	103,552616	108,178855	100,2112589	8,957311445	4,005831457	87,01720259	95,02490543	90,72496547	98,79825607	110,0416291	96,32139173	8,859296934	3,961998035	108,7155709	96,52292486	109,4436827	81,08493053	96,11588054	98,37659789	11,58580419	5,181329148
25	89,37575146	89,78123768	108,9825925	103,2795726	109,1147994	100,1067907	9,8965003	4,425849482	86,34880704	94,17896906	88,01815951	96,58395636	110,2605962	95,07809763	9,481924178	4,240445404	110,1598831	94,53069461	111,2107014	77,15400401	93,29885475	97,27082758	14,03940279	6,278611801
30	88,21350721	88,73237557	109,5601088	103,0302722	109,7584646	99,85894567	10,74228969	4,804097997	86,04839469	93,61443881	86,33824081	93,83702939	108,2608614	93,61979303	9,010482509	4,02961028	112,2163509	89,4372707	113,5170206	73,94333639	88,26044699	95,47488511	17,01399296	7,608888964
35	87,60466691	88,54678111	110,1336577	102,1457927	110,3466382	99,75550734	11,16769884	4,994346752	85,24875765	92,88166046	85,38707277	91,40807718	106,84115	92,35334361	8,804448471	3,937469057	114,1052692	83,74456462	115,3289811	69,89507039	81,83477516	92,9817321	20,54371692	9,187429507
40	87,61745992	88,66454355	110,3773777	101,247972	110,617227	99,70491603	11,21781408	5,016758968	85,40876306	92,19961997	84,15660436	89,01389125	104,7429679	91,10436932	8,250642603	3,689799544	116,0492701	78,09686232	116,4914308	65,46580257	77,26736047	90,67414523	23,89466287	10,68601809
45	87,87065475	5 89,35095187	110,5455382	100,6675146	110,7540579	99,83774345	11,0419124	4,938093344	85,13691962	92,02324006	83,37321612	86,82468968	101,6713247	89,80587804	7,378538406	3,29978269	118,4084449	74,07404019	117,7270893	58,3899618	72,5398352	88,22787428	27,91870852	12,48562602
50	88,37448582	89,69658245	110,6124417	98,95542553	110,8851045	99,704808	10,87517651	4,863526789	84,7623061	91,98762048	83,10239831	83,88303245	98,93275848	88,53362316	6,808471607	3,044841067	119,7710377	67,36590261	118,2412986	52,86840946	65,79340085	84,80800985	31,72585164	14,18823218
55	89,00752622	90,22532715	110,7548145	96,50391475	110,9800908	99,49433469	10,76512034	4,814308173	85,46297574	92,00525847	82,88584385	80,42251776	96,54441111	87,46420139	6,663763543	2,980125653	121,020177	62,43609181	118,1985802	47,87147813	61,2687545	82,15901633	34,67734146	15,50817856
60	89,35912056	90,76054231	110,9629188	94,30238277	111,1726842	99,31152972	10,88236233	4,866740386	86,61821286	91,86999569	82,52184276	76,33620997	93,96391748	86,26203575	7,131025874	3,189091721	122,3684649	58,12562508	118,0967864	43,62076098	57,47861372	79,93805022	37,26789139	16,6667077
65	89,91966728	90,92446071	111,1237757	92,3068487	111,4223056	99,1394116	11,10931464	4,968236545	87,45733936	92,02759229	81,94353258	73,47023778	91,21788149	85,2233167	7,683028025	3,435954587	122,549826	55,42688984	116,4877782	40,41777179	54,29440281	77,83533374	38,56742478	17,2478767
70	89,87691733	91,07597739	110,9921327	90,54082931	111,2974045	98,75665225	11,31723966	5,06122344	88,57718223	91,73667997	81,39952683	70,20455099	87,53118985	83,88982597	8,51898319	3,809805102	122,4503487	51,64345524	114,2792827	37,91968464	51,26069314	75,51069288	39,61415865	17,71599032
75	90,07531547	91,20678859	110,469077	88,54518217	110,7709584	98,21346432	11,36540089	5,082761796	89,03418732	91,64505404	80,12614671	66,99833798	83,12859913	82,18646504	9,645827313	4,313745114	121,6563387	50,32194387	111,270412	35,64935504	49,86774467	73,75315885	39,60332572	17,71114569
80	90,17200924	91,04060553	109,82619	86,58447101	110,1826943	97,56119403	11,48193114	5,13487571	89,42362158	91,14970137	78,82619626	64,06283322	79,8987766	80,67222581	10,79632337	4,828262592	119,9581538	47,18672626	107,7898916	34,08663114	46,03375281	71,01103111	39,69690995	17,75299783
85	89,80751529	90,54831111	108,9733955	84,56575935	109,3590885	96,65081396	11,6561795	5,212801943	89,84698751	90,77598212	77,64487673	60,59938878	76,39129308	79,05170565	12,28354315	5,4933675	116,9256571	44,21783283	105,1978829	32,86878797	43,78083596	68,59819937	39,24912308	17,55274145
90	89,2408919	89,83731503	107,7254014	82,56977303	108,1355644	95,50178915	11,69990508	5,232356619	89,96058063	90,10058451	76,36925123	56,82656349	72,9374522	77,23888641	13,81291344	6,177322682	113,8931605	42,74463706	100,9698693	31,78623667	42,31764456	66,34230962	38,04046586	17,01221351
95	88,50113654	89,20547428	106,3753388	80,81958224	106,8354909	94,34740456	11,66451646	5,216530346	89,90997563	89,55426492	74,59278118	53,88656646	69,83341611	75,55540086	15,04350476	6,727659854	110,3543983	41,05333565	95,42345991	30,65296444	40,45640988	63,58811363	36,49722812	16,32205661
100	87,88174202	88,53394803	104,6152892	78,61567597	105,1065785	92,95064676	11,55987642	5,169733899	89,74099977	88,86340543	73,12218182	51,40341401	66,17102015	73,86020424	16,13436836	7,215508885	107,5389431	39,11654681	91,46128518	29,97563989	38,76300031	61,37108306	35,45756339	15,85710441
105	87,27865857	87,79771714	102,8338702	76,53218011	103,3318449	91,5548542	11,44548359	5,118575869	89,55125539	87,94474098	71,36117995	48,89272197	62,0318771	71,95635508	17,29154179	7,733012574	102,2028474	37,17447137	87,50816231	29,525424	36,57586008	58,59735304	33,63902905	15,04383113
110	86,59281151	87,0748226	100,9755543	74,49975032	101,4955797	90,12770367	11,32423219	5,064350594	89,27898943	86,93487055	69,62633259	46,62335937	59,01599162	70,29590871	18,20224477	8,14029133	97,52587815	37,02701172	84,29970067	29,15092903	36,90686355	56,98207662	31,48747369	14,08162632
115	85,56098481	86,01715347	98,52111769	72,42341502	99,06975496	88,31848519	11,01404448	4,925630434	88,63812274	84,37556752	67,95244316	44,22984077	55,95011467	68,22921777	18,73533484	8,378696455	93,01278613	37,20185319	79,69370563	28,66316811	37,02668707	55,11964002	29,1037891	13,01561017
120	84,7133418	85,23347252	96,41059107	70,45060629	96,91905297	86,74541293	10,82652553	4,84176941	87,55162652	83,74529567	66,12046231	42,24513525	53,33470099	66,59944415	19,3796889	8,666860351	89,22475506	35,51814278	75,15856391	28,26691757	34,76375485	52,58642683	27,62372601	12,35370583
125	83,70354749	83,90206684	94,19646316	69,04287854	94,73581526	85,11615426	10,44999457	4,673379644	86,54586429	82,93704046	64,53771869	40,38142812	50,55869307	64,99214892	20,00500257	8,946509129	85,28726135	34,32933832	71,50764619	28,04262073	34,58090668	50,74955465	25,83798115	11,55509645
130	82,49823347	82,77760815	91,99631106	67,30670737	92,48985589	83,41374319	10,20680804	4,564623324	85,37853657	82,09018783	63,40766868	38,81030464	48,18359835	63,57405921	20,42314718	9,133509083	80,69403938	33,42628069	67,47734429	27,51518789	32,94231096	48,41103264	24,01133708	10,73819639
135	81,38950661	81,68841349	89,51213458	65,0682043	90,0744396	81,54653971	10,09648582	4,515285724	84,02750977	81,11998379	61,83640144	37,41291492	46,01075195	62,08151237	20,68187199	9,249214334	76,09637792	32,840825	64,39224736	27,11136706	32,94853673	46,67787081	22,03437211	9,854070775
140	80,12737033	80,34794917	87,07727915	63,25549055	87,59512676	79,68064319	9,846062353	4,403292946	81,98683136	79,93411523	60,52647151	35,90429262	43,92035465	60,45441308	20,73157331	9,271441441	72,18700094	32,26973797	60,97953654	26,86208826	31,7977166	44,81921606	20,36945565	9,109497502
145	79,03580741	79,57181709	84,65252236	61,24311032	85,17311295	77,93527403	9,747121545	4,359045272	80,15422825	79,01808503	59,59463869	34,42682326	42,13706594	59,06616823	20,8372045	9,318681144	68,66846301	28,98310706	57,69847473	26,38645783	27,57745628	41,86279179	19,86697552	8,884781556
150	78,4944502	79,58810109	82,22190476	59,91803047	82,76339041	76,59717539	9,492088176	4,244990882	78,53174803	77,76991083	58,54991313	32,82845318	40,68801205	57,67360744	20,88949193	9,342064792	65,26009006	27,8730592	54,96735325	25,91255776	28,27880286	40,45837263	18,32995138	8,197403462
155	78,60127177	78,8705267	79,63295483	58,25704514	80,14453545	75,10126678	9,436046755	4,219928397	76,82843631	76,54464312	57,52003203	31,35420653	39,0397568	56,25741496	20,93412459	9,362025129	61,88361563	26,53026593	51,99405475	25,46807366	26,0959936	38,39440071	17,29011459	7,732374313
160	77,28135377	77,18529452	77,1849351	55,78778371	77,66233055	73,02033953	9,635299804	4,309037069	75,02976487	75,36679183	56,16008002	30,26902975	37,45839482	54,85681226	20,83608507	9,31818052	58,43117669	25,43838224	50,06886661	25,34056837	25,10731418	36,87726162	16,13276644	7,214792486
165	75,88926191	76,26789066	74,77730995	54,28497131	75,28731279	71,30134932	9,529464865	4,261706245	72,94832945	75,22431351	55,05210959	29,17662627	35,64965	53,61020576	20,99281507	9,388272308	55,6369324	23,92655371	48,04236113	25,00131128	23,28153932	35,17773957	15,45756704	6,912834134
170	74,94023436	5 75,42759316	71,887204	53,6393906	72,44956468	69,66879736	9,090484765	4,065388377	70,78567252	73,8092656	53,85781675	28,24633523	34,1290778	52,16563358	20,70909413	9,261388446	52,98540931	20,8549107	46,28423542	24,75852131	20,42255725	33,0611268	15,40686571	6,890159811
175	74,33523196	5 74,8007131	69,25912182	51,61694791	69,78335216	67,95907339	9,480857243	4,239968256	69,03273084	72,55284507	53,02677655	27,5362632	32,90245662	51,01021446	20,44431361	9,142974995	50,94439751	21,09619599	44,55977628	23,38883977	21,25017869	32,24787765	14,36083773	6,422361876
180	73,62412145	5 74,21596571	66,67519347	50,79326067	67,15597395	66,49290305	9,453195709	4,227597642	67,43459682	72,59942452	51,88483754	26,48963132	31,70147104	50,02199225	20,65080475	9,235320642	49,09686376	21,01183998	43,21369965	19,84450544	20,63446249	30,76027426	14,2129902	6,356242452

Tiompo		М.	mipartitus si	n PLA2 (3 ug/r	nl)			М. с	lissoleucus s	in PLA2 (3 ug/	ml)	
(min)	% de respue	sta con respe	cto al inicial		80	SEM	% de respue	sta con respe	cto al inicial	PROMEDIO	SD	SEM
()	1	2	3	FROMEDIO	30	3LM	1	2	3	PROMIEDIO	30	3LM
0	100	100	100	100	1,00486E-14	5,0243E-15	100	100	100	100	0	0
5	81,01342242	99,6367708	101,5842523	94,0781485	11,35620852	5,678104258	70,1384694	50,0653876	107,671255	75,9583707	29,2405955	14,6202978
10	70,5702265	95,95242538	98,55853964	88,36039717	15,46174594	7,730872968	57,5453433	43,2428055	101,186462	67,3248702	30,1843698	15,0921849
15	61,25910895	93,56911631	96,36528262	83,73116929	19,51152887	9,755764433	47,4682093	44,7528558	84,6920296	58,9710316	22,316375	11,1581875
20	52,75097436	90,34479155	93,64786592	78,91454394	22,71842545	11,35921273	39,5088518	48,4476642	69,8404875	52,5990012	15,586123	7,79306149
25	45,67873626	84,81439182	87,64610736	72,71307848	23,4551998	11,7275999	35,5039264	50,9444995	57,5454469	47,9979576	11,3123268	5,65616342
30	39,22640494	81,46963759	76,73786111	65,81130121	23,14443691	11,57221845	32,078435	52,2910704	47,9769629	44,1154894	10,6452285	5,32261426
35	34,47280469	79,06562659	61,5416424	58,36002456	22,4660179	11,23300895	29,9290615	50,4477149	39,069296	39,8153575	10,2796517	5,13982585
40	31,02576963	75,59845233	47,32212791	51,31544996	22,55307022	11,27653511	29,0754767	48,2666771	32,0950222	36,4790586	10,3194174	5,15970868
45	28,02759027	69,70417646	35,72646654	44,48607776	22,17617079	11,08808539	29,3480786	44,7670809	26,4736843	33,5296146	9,83748048	4,91874024
50	26,1408748	61,89218577	28,58542715	38,87282924	19,97278249	9,986391245	30,2227282	44,8001269	21,709395	32,2440834	11,6773235	5,83866173
55	25,42992075	52,95572227	23,54905918	33,97823407	16,46187121	8,230935606	31,065316	44,5685859	19,1400798	31,5913273	12,7224112	6,36120559
60	25,95804402	45,25301385	19,34559941	30,18555243	13,46114413	6,730572063	31,5756703	44,9857099	17,8371171	31,4661658	13,5746277	6,78731384
65	26,15142745	39,14435362	16,89767297	27,39781801	11,17559024	5,587795119	32,16796	44,4976792	17,766093	31,477244	13,3791719	6,68958597
70	25,22770254	36,27514649	14,71640838	25,40641914	10,78048014	5,390240068	32,3586265	44,4834541	17,7206961	31,5209256	13,4010302	6,7005151
75	24,31207619	33,70810784	12,74727404	23,58915269	10,49910007	5,249550033	32,9744591	44,7725521	17,0860555	31,6110222	13,8935144	6,94675722
80	22,60500116	31,48862265	10,98144532	21,69168971	10,28404997	5,142024987	33,2915137	44,2363748	17,9055784	31,8111557	13,2276719	6,61383596
85	21,07977527	29,25779121	9,483749232	19,94043857	9,936133562	4,968066781	32,6299893	44,889198	17,4796169	31,6662681	13,7301804	6,86509019
90	19,59062471	27,129076	8,416083574	18,37859476	9,415188997	4,707594499	31,8629865	44,575589	17,6895773	31,376051	13,4496184	6,72480922
95	17,92895061	24,94402767	7,581478343	16,81815221	8,734410947	4,367205474	30,6121153	44,1133823	17,5122001	30,7458993	13,3010957	6,65054786
100	16,62533035	23,03626569	6,753774416	15,47179015	8,202308929	4,101154465	30,0333008	40,7599766	17,5705936	29,4546237	11,6055168	5,8027584
105	15,43582594	20,95651849	6,117836229	14,17006022	7,499882997	3,749941499	28,0205381	37,3960661	17,6608382	27,6924808	9,87170305	4,93585153
110	14,36673625	18,95155036	5,588264861	12,96885049	6,790428065	3,395214032	26,544099	33,8539405	17,4213454	25,939795	8,232948	4,116474
115	12,85852548	17,01061222	5,080717325	11,64995168	6,056078439	3,028039219	25,933894	30,9582185	17,7752456	24,8891194	6,6532969	3,32664845
120	11,4910985	15,26249393	4,588122616	10,44723835	5,413204576	2,706602288	25,1698341	28,0114321	17,3944978	23,5252547	5,49620819	2,74810409
125	10,50062196	13,14651837	4,262516833	9,303219055	4,561436299	2,28071815	24,7380078	25,7730561	18,3465502	22,9525381	4,02233441	2,01116721
130	8,945210585	11,60004479	3,988048582	8,177767985	3,863592586	1,931796293	22,7498722	23,3079538	19,2687652	21,7755304	2,1887822	1,0943911
135	7,743190244	9,940108735	3,790626035	7,157975005	3,116230419	1,55811521	21,2598547	21,1665275	20,1525394	20,8596405	0,61414293	0,30707146
140	6,552458783	8,681670586	3,571933896	6,268687755	2,566660624	1,283330312	25,2441801	19,2984421	20,4324256	21,6583493	3,1567573	1,57837865
145	5,871444808	7,587653492	3,289885524	5,582994608	2,163355037	1,081677518	25,8798383	18,0713622	20,0216573	21,3242859	4,06395199	2,031976
150	5,387250007	6,664626333	2,624418807	4,892098382	2,065115145	1,032557572	25,3795518	16,2555815	19,3870167	20,3407166	4,63614776	2,31807388
155	4,579604245	5,49237985	2,200497728	4,090827275	1,699499683	0,849749841	24,8619178	15,0409758	18,4748696	19,4592544	4,9839227	2,49196135
160	4,157007465	4,637828288	2,0294359	3,608090551	1,388131855	0,694065928	23,0046621	13,9603051	17,9861212	18,3170295	4,53124968	2,26562484
165	3,786192288	3,977556327	1,595106297	3,119618304	1,323728709	0,661864354	21,437046	12,8535915	16,8149558	17,0351977	4,29596354	2,14798177
170	3,563605018	3,49484318	1,317017689	2,791821963	1,277680626	0,638840313	20,7793938	12,3005629	16,5956597	16,5585388	4,23953731	2,11976866
175	3,649253262	2,922355342	1,356502199	2,642703601	1,171678574	0,585839287	20,7038087	11,3494501	15,8484423	15,9672337	4,67831055	2,33915528
180	3,659239579	1,821509062	1,361105969	2,280618203	1,215911356	0,607955678	20,7101114	10,868978	15,5274961	15,7021952	4,92289207	2,46144603

ANEXO 3: Datos amplitud en pruebas de inhibición PLA2 para 3 µg/ml del veneno *M. mipartitus* y *M. dissoleucus*

Tiempo		10) µg/mi <i>M. mip</i>	artitus en pre	sencia de Ne	ostigmina (5µl	VI)	
(min)	4	% de respue	sta con respe	cto al inicial	F	PROMEDIO	SD	SEM
	1	2	3	4	5	100		4 400075 45
0	100	100	100	100	100	100	1,00486E-14	4,49387E-15
5	102,2220677	97,75000724	96,22193106	100,0402566	95,46522556	96,74349776	2,555502199	1,132927165
10	95,26704706	83,84264091	91,06622903	95,87549584	96,04853265	92,4199891	5,210953906	2,330409432
15	87,4605718	74,53934289	87,78952851	91,77152081	96,59152561	87,63049793	8,198789444	3,666610106
20	83,00142046	67,66193414	85,40267455	90,4120923	90,38151884	83,37192806	9,35098112	4,181885888
25	80,44919654	61,79043948	82,5188428	89,25099086	98,55840627	82,51357519	13,56962983	6,068522946
30	77,82463893	50,3530926	79,57378476	88,67377026	104,2576106	80,13657943	19,66866586	8,796094778
35	74,25688985	37,36537766	75,27020738	87,69894404	95,86575761	74,09143531	22,41375467	10,02373582
40	70,83708957	23,84628438	70,88122902	89,08459063	82,40379794	67,41059831	25,57436972	11,43720584
45	68,05445358	14,53953585	67,69114428	94,69716236	92,28688202	67,45383562	32,24600449	14,42085161
50	113,2336248	14,57567539	112,4294709	182,7427559	151,5739322	114,9110919	63,28796617	28,3032389
55	101,0787102	7,305816661	92,8273356	81,40671092	115,4467809	79,61307084	42,28179688	18,90899441
60	79,50457837	2,672873042	49,33272897	47,04474748	91,03234019	53,91745361	34,37468758	15,37282763
65	66,34783485	1,015902419	28,59657075	59,43331817	73,44880821	45,76848688	30,30720164	13,55379262
70	52,48473208	0,406978427	17,03731206	62,21328024	64,73524742	39,37551004	28,95718078	12,95004493
75	39,36080266	0,25352159	9,304332839	55,45609909	54,13113505	31,70117825	25,57656577	11,43818794
80	28,04521569	0,156180922	4,358608165	54,11020249	39,22307029	25,17865551	22,92430899	10,25206265
85	19,15088157	0,317083594	1,877242174	50,21533777	34,83212449	21,27853392	21,45552295	9,595201562
90	11,93006672	0,280762449	0,647370967	47,55451996	24,53164975	16,98887397	19,76707757	8,840105833
95	6,387764619	0,197405422	0,268350997	42,4001303	13,36252451	12,52323517	17,55765882	7,85202373
100	3,177403923	-0,01979502	0,260090306	35,52591926	9,044747979	9,597673289	14,94561539	6,683882393
105	1,649550723	-0,02506159	0,256567364	25,70661455	5,845246636	6,686583536	10,888439	4,869457954
110	0,91724931	-0,03828854	0,247719515	17,37335334	3,892404071	4,47848754	7,375705728	3,298515878
115	0,600212757	-0,00799065	0,267986555	8,975568887	2,458230539	2,458801617	3,768532316	1,685338887
120	0,370228691	-0,02451677	0,256931806	1,923540075	1,684670465	0,842170853	0,89380459	0,399721564
125	0,256235348	0,018342178	0,285601265	1,377612021	1,203787447	0,628315652	0,616558468	0,275733329
130	-0,03595284	0,003268903	0,275518362	2,796031212	1,000078687	0,807788864	1,186649415	0,530685751
135	-0,05421461	-0,01997663	0,259968825	0,490108919	0,776522393	0,29048178	0,350791083	0,156878541
140	-0,03809289	0,000544817	0,273696151	0,249283182	0,726064236	0,242299098	0,305011501	0,13640529
145	-0,04879315	-0,01307561	0,264585094	0,268312433	0,604016719	0,215009097	0,263742399	0,117949187
150	-0,03238609	0,007809046	0,278555381	0,280470009	0,567678946	0,220425458	0,243253387	0,108786222
155	-0,03966226	-0,00145285	0,272359862	0,275078388	0,503989101	0,202062448	0,224322351	0,100320005
160	-0,04265833	-0,00526657	0,269808767	0,272858309	0,448001284	0,188548692	0,207393347	0,092749125
165	-0,07461642	-0,04594625	0,242597076	0,249177464	0,499348136	0,174112002	0,237904935	0,106394321
170	-0,08545934	-0,05974828	0,233364539	0,241142892	0,491843596	0,164228681	0,240071283	0,107363141
175	-0,0356675	0,003632114	0,275761324	0,278038494	0,526305233	0,209613932	0,230185941	0,102942282
180	-0,02986193	0,01102207	0,280704656	0,282340406	0,530323352	0,214905711	0,229044191	0,102431676

ANEXO 4: Datos amplitud en pruebas de reversión con neostigmina (5µM) para 10 µg/ml del veneno de *M. mipartitus*

ANEXO 5: Datos brutos línea de base

5.1. Datos línea de base de los experimentos control

					Controles				
Tiempo		% de respue	sta con respe	cto al inicial			PROMEDIO	SD	SEM
	1	2	3	4	5	6	TROMEDIO	66	0EM
0	0	0	0	0	0	0	0	0	
5	-0,03511428	-0,03655691	-0,15187635	-0,00809904	-0,03628403	0,024073911	-0,04064278	0,056259684	0,024280657
10	-0,05033035	-0,05250861	-0,22594064	-0,01721076	-0,05181452	0,033020104	-0,06079746	0,083172533	0,035699096
15	-0,05746504	-0,06292388	-0,28277594	-0,02865824	-0,06122726	0,044038096	-0,07483538	0,103892033	0,044770266
20	-0,0627371	-0,06788149	-0,32393835	-0,03816003	-0,06616114	0,05214929	-0,0844548	0,119210351	0,05139301
25	-0,0658784	-0,07095158	-0,3550741	-0,0544413	-0,06916596	0,061762316	-0,0922915	0,129835136	0,056541355
30	-0,07255766	-0,0778029	-0,35985494	-0,07496652	-0,07639695	0,072019799	-0,09825986	0,127213018	0,057598265
35	-0,07512738	-0,08149386	-0,35556704	-0,0962229	-0,07917432	0,080187481	-0,101233	0,12215354	0,057498411
40	-0,07541224	-0,08254391	-0,34957549	-0,12402769	-0,08038459	0,089239993	-0,10378399	0,11744706	0,057701865
45	-0,07389311	-0,08103078	-0,33988754	-0,14484944	-0,07860446	0,097100778	-0,10352742	0,113499698	0,057686144
50	-0,07380124	-0,07985918	-0,32082431	-0,16288066	-0,07775324	0,106624968	-0,10141561	0,106123858	0,056858348
55	-0,07393249	-0,08188883	-0,29659758	-0,1777655	-0,07951591	0,114579405	-0,09918682	0,096605336	0,055427298
60	-0,06837675	-0,07713984	-0,27157213	-0,18298287	-0,07423301	0,123896177	-0,09173474	0,090046223	0,054230778
65	-0,06850479	-0,07515598	-0,23872863	-0,18548967	-0,07275341	0,131207206	-0,08490421	0,078978112	0,051959966
70	-0,06393608	-0,07269321	-0,21506975	-0,18044636	-0,06990503	0,139121746	-0,07715478	0,071731756	0,050567586
75	-0,06114221	-0,06886714	-0,19195785	-0,17476355	-0,06650018	0,146151285	-0,06951327	0,0648992	0,049214181
80	-0,06063811	-0,06953764	-0,18415703	-0,16457782	-0,06645285	0,152783433	-0,06543	0,060091301	0,048848194
85	-0,05666484	-0,06537451	-0,1776923	-0,14225608	-0,06255076	0,15928978	-0,05754145	0,055445594	0,047859445
90	-0,05676241	-0,06491449	-0,18016868	-0,1164652	-0,06217376	0,18658163	-0,04898382	0,052804489	0,050905976
95	-0,05461211	-0,06286502	-0,16957074	-0,13081258	-0,06019549	0,237542741	-0,04008553	0,051760652	0,058654244
100	-0,04948775	-0,05894487	-0,16076256	-0,13881636	-0,05573553	0,307251828	-0,02608254	0,052754853	0,069394154
105	-0,04378361	-0,05431454	-0,15971517	-0,14169616	-0,05101616	0,383395815	-0,0111883	0,055816192	0,081506184
110	-0,03760393	-0,04714808	-0,15752498	-0,13786869	-0,0438606	0,443397142	0,003231811	0,057936128	0,09053931
115	-0,03121773	-0,04036051	-0,17159629	-0,13051858	-0,03738252	0,496217258	0,014190271	0,064584673	0,099247962
120	-0,02575677	-0,03493512	-0,16844289	-0,12093459	-0,03188594	0,517612195	0,022609482	0,064654461	0,101776556
125	-0,02096653	-0,03108807	-0,17071802	-0,08468543	-0,02778381	0,533721373	0,033079919	0,063278844	0,102759766
130	-0,01260228	-0,0234654	-0,18271338	-0,08248488	-0,01992381	0,550918774	0,038288169	0,071871001	0,105831616
135	-0,00226994	-0,01444999	-0,1886117	-0,09622575	-0,01031519	0,561417162	0,041590765	0,080158008	0,108006883
140	0,011153841	-0,0018983	-0,20576292	-0,10605644	0,002052588	0,563723891	0,043868776	0,094415534	0,109537875
145	0,019998335	0,008897941	-0,21658984	-0,10982398	0,012783584	0,565277661	0,046757284	0,104163701	0,110459097
150	0,028498148	0,016389267	-0,23075728	-0,11092855	0,020375749	0,572822368	0,049399951	0,11376301	0,112625237
155	0,036365369	0,024843755	-0,24276321	-0,10656734	0,028610771	0,572740183	0,052204922	0,122044711	0,113244278
160	0,046795765	0,035179272	-0,244049	-0,10012928	0,039011515	0,575025645	0,058638987	0,127055303	0,113219318
165	0,055753209	0,044884126	-0,24640457	-0,10172552	0,048710465	0,579100738	0,063386408	0,132906103	0,113989715
170	0,063369609	0,053277741	-0,24721184	-0,09645817	0,056481162	0,583917179	0,068895948	0,136606494	0,114446724
175	0,064148791	0,055836531	-0,24669969	-0,08878568	0,058339943	0,587573488	0,071735564	0,136418574	0,114563902
180	0,0691782	0,059282068	-0,24248489	-0,05061264	0,062942284	0,591600388	0,081650902	0,133747809	0,113079925

Tiemme				3 u	g/ml								10 ug/ml				
(min)		9	6 de respuesta	a		PROMEDIO	90	SEM		% de	respuesta co	n respecto al	inicial		PROMEDIO	SD	SEM
()	2	3	4	5	6	TROMEDIO	35	JEW	1	2	3	4	5	6	TROMEDIO	00	0EM
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0,03942737	0,012478054	-0,01743318	0,003669125	0,008544	0,0018145	0,020400323	0,009123302	-0,00766119	0,03574166	0,002204154	0,010229026	0,034749796	-0,02112036	0,009023848	0,022850341	0,009328613
10	0,059549938	0,027475247	-0,02092696	0,00817205	0,008526415	0,016559337	0,029611848	0,013242821	-0,01988731	0,045642884	0,002287542	0,01660657	0,036262777	-0,0120497	0,011477128	0,026190174	0,010692094
15	0,075058713	0,041156804	-0,02465056	0,013370524	0,014887615	0,023964618	0,03696025	0,016529126	-0,03788404	0,053143081	0,012813183	0,019610101	0,027704305	0,009130355	0,014086164	0,029894793	0,012204498
20	0,107385508	0,058202067	-0,03107355	0,022003587	0,02262499	0,035828521	0,051142758	0,022871737	-0,02324742	0,059480514	0,024507473	0,018045719	0,008722809	-0,03203798	0,009245187	0,033449415	0,013655667
25	0,145651365	0,073177797	-0,03178271	0,031278578	0,036604249	0,050985856	0,064999775	0,029068783	-0,00442746	0,066904501	0,057173335	0,017668768	-0,00447977	-0,03528611	0,016258877	0,039384925	0,016078828
30	0,168805736	0,08659727	-0,02798545	0,034897793	0,053565188	0,063176108	0,072299086	0,032333134	-0,04684869	0,073869635	0,070729222	0,019609272	-0,0106013	-0,02950155	0,012876099	0,051042403	0,020837974
35	0,182597105	0,073420574	-0,02757724	0,039607042	0,071005108	0,067810517	0,076012992	0,033994043	-0,04842177	0,079889718	0,089035159	0,023090434	-0,01573371	-0,00958798	0,019711976	0,055128159	0,022505977
40	0,197243804	0,082360344	-0,03027658	0,044263726	0,099746826	0,078667623	0,083022208	0,03712866	-0,05329827	0,083644677	0,093134076	0,027325917	-0,01479661	-0,0194891	0,019420115	0,059319	0,02421688
45	0,181375454	0,094326286	-0,00758501	0,049401585	0,113759337	0,086255531	0,070770149	0,031649373	-0,0239389	0,08740042	0,120832516	0,028038335	-0,01226303	-0,0234573	0,029435339	0,061807025	0,025232612
50	0,180108819	0,094857122	-0,01880599	0,058261322	0,131464168	0,089177089	0,075341172	0,033693596	-0,03626333	0,093863554	0,140423756	0,032270932	-0,00184896	-0,02491969	0,033921044	0,070151588	0,028639266
55	0,183264108	0,098356464	-0,00965915	0,07073027	0,151556047	0,098849547	0,074948096	0,033517807	-0,03834033	0,10403074	0,156641847	0,042740655	0,018005665	-0,02770859	0,042561666	0,075998427	0,031026228
60	0,186423137	0,113919955	-0,00373566	0,083096253	0,174932283	0,110927193	0,077018468	0,034443706	-0,04135087	0,10600935	0,145243158	0,062545715	0,044270949	-0,02897504	0,047957211	0,073424141	0,02997528
65	0,176904357	0,11319864	-0,00132472	0,089535209	0,196380018	0,114938702	0,078482447	0,035098417	-0,0446052	0,101823584	0,1823579	0,086674708	0,06316173	-0,03031917	0,059848925	0,085489026	0,034900749
70	0,168131273	0,138542254	0,004056713	0,100777691	0,217665858	0,125834758	0,080375953	0,035945219	-0,04746379	0,096123496	0,083402272	0,103849526	0,078331437	-0,0327209	0,046920341	0,068162397	0,027827182
75	0,182641462	0,160343091	0,007200542	0,111532757	0,241098063	0,140563183	0,08788835	0,039304865	-0,04940374	0,097256369	0,043471833	0,114479986	0,100452656	-0,03898555	0,044545259	0,07293823	0,029776908
80	0,201120363	0,176182156	0,007995442	0,127632748	0,261635587	0,154913259	0,095270915	0,042606448	-0,05296919	0,098733433	0,049214159	0,118406978	0,12509526	-0,04285951	0,049270188	0,079895839	0,03261734
85	0,217355704	0,185150427	0,015474645	0,137912042	0,28137682	0,167453927	0,099689774	0,044582622	-0,06129356	0,101431143	0,05432045	0,121905668	0,134668585	-0,04696	0,050678713	0,085776172	0,035017976
90	0,233162586	0,203953062	0,026695941	0,154/92/33	0,291595476	0,182039959	0,09996286	0,04470475	-0,06697934	0,097418385	0,059259415	0,124851369	0,147663586	-0,04675505	0,052576394	0,089978911	0,036733737
95	0,248696089	0,198047347	0,045575193	0,170836355	0,30635186	0,193901369	0,097720792	0,043702067	-0,07150282	0,100155953	0,063853815	0,127826247	0,162052169	-0,0389453	0,05724001	0,093466419	0,038157506
100	0,269018944	0,226206752	0,065470924	0,187593863	0,327089918	0,21507608	0,098384195	0,04399875	-0,07189548	0,11228036	0,069268844	0,128495452	0,175232617	-0,0358499	0,062921982	0,097284865	0,03971638
105	0,292549596	0,215359819	0,084481198	0,200458354	0,351795294	0,228928852	0,101246696	0,045278899	-0,06475567	0,125916028	0,07477129	0,13157751	0,184169749	-0,02903039	0,070441419	0,09791918	0,039975338
110	0,314571441	0,230731566	0,100875241	0,214580387	0,37765631	0,247682989	0,105241125	0,047065262	-0,06086099	0,134252937	0,079422413	0,140062885	0,189909462	-0,02369703	0,076514946	0,09914976	0,04047772
115	0,341219259	0,230838372	0,124845595	0,241772048	0,409915068	0,269718069	0,109599571	0,049014418	-0,05376788	0,140469069	0,085735369	0,154062094	0,200075483	-0,01738407	0,08486501	0,100824811	0,041161557
120	0,374366145	0,213738987	0,15680612	0,267954495	0,437195034	0,290012156	0,11491995	0,051393764	-0,04581536	0,156400538	0,09180741	0,153383201	0,208502704	-0,01131203	0,092161077	0,101147948	0,041293477
125	0,408052524	0,307181164	0,179517801	0,292985726	0,460191522	0,329585747	0,109060555	0,048773363	-0,04015307	0,174621494	0,096983274	0,152816638	0,218240444	-0,00613617	0,099395436	0,103202173	0,042132111
130	0,420154126	0,355107714	0,194294795	0,315326328	0,477151556	0,352406904	0,107857101	0,048235162	-0,0305965	0,171127068	0,101016939	0,153154446	0,225062185	-0,0021025	0,102943607	0,100949905	0,041212626
135	0,426796589	0,357306929	0,194429652	0,338507966	0,492295004	0,361867228	0,111612073	0,049914437	-0,01619459	0,17923489	0,103216154	0,156925743	0,229041159	9,67121E-05	0,108720011	0,099203116	0,040499503
140	0,442059492	0,359548356	0,197258346	0,365415828	0,511336569	0,375123718	0,11/26813/	0,052443905	-0,00940306	0,195654501	0,105457581	0,166730892	0,236129192	0,002338139	0,116151207	0,102083728	0,041675507
145	0,457684646	0,361280037	0,206090899	0,388800366	0,530218573	0,388814904	0,121330406	0,054260607	-0,00043986	0,197386183	0,107189262	0,170307446	0,238187215	0,00406982	0,11945001	0,100593783	0,04106724
150	0,477105738	0,36124333	0,209548371	0,405492647	0,54231331	0,399140679	0,126489874	0,056567991	0,009246348	0,197349475	0,107152554	0,169517348	0,234347907	0,004033113	0,120274458	0,097354659	0,039744873
155	0,489220395	0,362246818	0,211459545	0,41923869	0,551710983	0,406775286	0,130470218	0,058348055	0,025424606	0,198352964	0,108156043	0,175764953	0,231246277	0,005036602	0,123996907	0,093627098	0,038223103
160	0,512055271	0,364639061	0,213851788	0,427147971	0,561334702	0,415805759	0,135991475	0,060817236	0,048716334	0,200745207	0,110548286	0,208483252	0,227836733	0,007428844	0,133959776	0,092359671	0,037705678
165	0,529371268	0,368714154	0,217926881	0,436259559	0,568565767	0,424167526	0,139351334	0,062319811	0,051486288	0,2048203	0,114623379	0,226084055	0,231146533	0,011503937	0,139944082	0,094773093	0,038690953
170	0,541235161	0,373530595	0,222743322	0,460344157	0,581995934	0,435969834	0,143494532	0,064172706	0,044622062	0,209636741	0,11943982	0,230900496	0,232273096	0,016320378	0,142198766	0,096347095	0,039333537
175	0,555326396	0,377186904	0,226399631	0,477585441	0,599937095	0,447287093	0,149664468	0,066931985	0,038146114	0,213293049	0,123096129	0,234556805	0,242021941	0,019976687	0,145181788	0,099625079	0,040671768
180	0,579024753	0,381213804	0,230426531	0,503235432	0,609071678	0,46059444	0,155858939	0,069702236	0,024251533	0,21731995	0,127123029	0,238583706	0,251339903	0,024003588	0,147103618	0,104699206	0,042743272

5.2. Datos línea de base de los experimentos con veneno de *M. mipartitus*

				3 µg.	/ml							10 µ	g/ml							50 µ	g/ml			
Tiempo		% de respues	ta con respec	cto al inicial		PROVERIO	0.5	0514		% de respues	sta con respe	cto al inicial		PROVERIO	0.5	0514		% de respue	sta con respe	cto al inicial		DROMEDIO	0.0	0514
ľ	1	2	3	4	5	PROMEDIO	SD	SEM	1	2	3	4	5	PROMEDIO	50	SEM	1	2	3	4	5	PROMEDIO	SD	SEM
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
5	0,0654405	0,06572746	0,06299195	0,10450744	0,06341796	0,07241706	0,01797938	0,00804062	0,02717913	0,02883351	0,01500386	0,1546716	0,15337872	0,07581336	0,00755241	0,03201968	-0,00829553	0,079985292	0,006947059	0,126776083	0,072598832	0,055602347	0,047188318	0,024899182
10	0,09956334	0,09988591	0,09573849	0,1394133	0,09626534	0,10617328	0,01867601	0,00835217	0,03692613	0,0388593	0,02479832	0,22276252	0,22186117	0,10904149	0,00762159	0,04630541	-0,00604097	0,103394324	0,019428862	0,168420979	0,094471395	0,075934918	0,057264001	0,031276407
15	0,13781059	0,13828738	0,13307216	0,17403584	0,13374733	0,14339066	0,01728997	0,00773231	0,04064751	0,05292068	0,03761979	0,2862576	0,28277568	0,14004425	0,00810262	0,0590388	-0,01026892	0,115403016	0,032718955	0,19368242	0,097593571	0,085825809	0,063872328	0,035143189
20	0,18112972	0,18203958	0,1748015	0,19889975	0,17558938	0,18249199	0,00972194	0,00434779	0,04088647	0,05964362	0,05322342	0,33151665	0,32535932	0,1621259	0,00953284	0,06797049	-0,00101872	0,107194482	0,050814146	0,220059054	0,087231629	0,092856117	0,054122526	0,036740866
25	0,23041194	0,23115569	0,22363873	0,22002146	0,2246461	0,22597479	0,00472215	0,00211181	0,04275194	0,06822443	0,06841283	0,36507827	0,35787681	0,18046886	0,01476124	0,07405253	0,013043529	0,096186868	0,078663007	0,250310488	0,075049386	0,102650655	0,043828865	0,039504355
30	0,27846394	0,27935601	0,27182721	0,24023913	0,27270407	0,26851807	0,01615977	0,00722687	0,04126357	0,08069472	0,08465001	0,3970894	0,39156683	0,19905291	0,02398904	0,08008565	0,027156936	0,088410242	0,109855512	0,281241954	0,071431316	0,115619192	0,042916433	0,043579
35	0,32979498	0,33074636	0,32125992	0,25941718	0,32223762	0,31269121	0,03008823	0,01345587	0,0484821	0,09601662	0,10531109	0,43992532	0,43445612	0,22483825	0,03048347	0,08723111	0,04902226	0,085371953	0,144160815	0,316543861	0,07113374	0,133246526	0,048008289	0,048456545
40	0,37731828	0,37794339	0,37106717	0,27925457	0,37180165	0,35547701	0,04272349	0,01910652	0,05465743	0,11926514	0,13374431	0,47621895	0,47025732	0,25082863	0,04210807	0,09177434	0,07832165	0,087050595	0,178769576	0,355358645	0,071228454	0,154145784	0,055645233	0,053953357
45	0,42861515	0,42988687	0,41993179	0,29636387	0,4212061	0,39920076	0,05765475	0,02578399	0,0627792	0,1504932	0,16399353	0,50741721	0,49924887	0,2767864	0,05495505	0,09411466	0,111187001	0,089251929	0,210228967	0,381834941	0,075256892	0,173551946	0,064453991	0,057177271
50	0,48123144	0,48196927	0,47346753	0,31451357	0,47461135	0,44515863	0,07313217	0,0327057	0,07846707	0,18247694	0,19740114	0,52877042	0,52016305	0,30145572	0,06478953	0,09333062	0,145531732	0,094214188	0,246222976	0,399373593	0,080575125	0,193183523	0,077329262	0,059191977
55	0,52484483	0,52539283	0,51937084	0,32720793	0,52018838	0,48340096	0,08735605	0,03906682	0,08992157	0,21087997	0,23306537	0,54691055	0,53699806	0,32355511	0,07704249	0,09244302	0,177796743	0,098722074	0,2800481	0,413853555	0,083819483	0,210847991	0,090909544	0,061563285
60	0,56522901	0,56583632	0,56079316	0,33593144	0,56121917	0,51780182	0,10169416	0,04547901	0,10042475	0,23525285	0,26926721	0,56364271	0,55400907	0,34451932	0,08929667	0,09194705	0,212135887	0,10536336	0,305779498	0,42363912	0,092934463	0,227970466	0,100279714	0,062393279
65	0,60443788	0,60514012	0,59859601	0,34120174	0,5994966	0,54977447	0,11663175	0,0521593	0,11236295	0,25741233	0,30615657	0,57717671	0,56762014	0,36414574	0,10080616	0,09081117	0,247981121	0,112425253	0,32962377	0,432011979	0,099468392	0,244302103	0,10970879	0,063598989
70	0,64788675	0,64854745	0,64253141	0,34275096	0,64326589	0,58499649	0,13544593	0,06057326	0,12410378	0,27725075	0,34047565	0,59204382	0,58321103	0,38341701	0,11125659	0,090499	0,274463846	0,119319383	0,350862199	0,426388963	0,106427807	0,25549244	0,117982052	0,063017574
75	0,68546751	0,68573668	0,68122149	0,34508801	0,68184327	0,61587139	0,15138638	0,06770205	0,14233939	0,29323205	0,38099295	0,6065303	0,59641614	0,40390216	0,12071046	0,08924897	0,30052425	0,127268454	0,367312206	0,418587786	0,114222619	0,265583063	0,123894582	0,062056855
80	0,72218827	0,7228727	0,71746763	0,34461923	0,71818431	0,64506643	0,16797192	0,07511933	0,15870059	0,30404675	0,41019732	0,61611672	0,60664323	0,41914092	0,12625639	0,088066	0,320337828	0,132779392	0,380944463	0,41961992	0,120403895	0,2748171	0,12938137	0,062578414
85	0,75676605	0,75733181	0,75256156	0,34567371	0,75311214	0,67308906	0,18304307	0,08185935	0,17683409	0,31281915	0,44156595	0,62515613	0,61442498	0,43416006	0,13238242	0,0865939	0,336863727	0,137802612	0,3910398	0,412570904	0,125877968	0,280831002	0,133347571	0,062092113
90	0,79386985	0,79448311	0,78756534	0,34794319	0,78844222	0,70246074	0,19820573	0,0886403	0,19383331	0,32547602	0,46436102	0,62913399	0,61880624	0,44632211	0,13528001	0,0842172	0,350196934	0,146259391	0,396097411	0,408451346	0,133901719	0,28698136	0,13298898	0,06078385
95	0,8328358	0,83340158	0,82734402	0,34762572	0,82803697	0,73384882	0,21592257	0,09656351	0,20675672	0,32837377	0,48432598	0,63544875	0,62429052	0,45583915	0,13913812	0,08358721	0,361631185	0,150385188	0,395643442	0,402664277	0,13837155	0,289739128	0,132874199	0,059777899
100	0,86628095	0,86664504	0,86328657	0,34953474	0,86362361	0,76187418	0,23050973	0,10308708	0,22904329	0,31736815	0,50413274	0,64419777	0,63496749	0,46594189	0,14044958	0,08366554	0,369798829	0,159021415	0,395855862	0,396873183	0,149962072	0,294302272	0,129869577	0,057301246
105	0,89268277	0,892946	0,89084527	0,35155489	0,89139585	0,78388496	0,24168143	0,10808322	0,24197891	0,32329174	0,52187933	0,65738251	0,64769547	0,47844559	0,14398672	0,08442146	0,373812245	0,170889207	0,40266341	0,386850865	0,15682302	0,298207749	0,126312727	0,0550837
110	0,91592166	0,91585367	0,91413456	0,35336841	0,91452696	0,80276105	0,25121937	0,11234872	0,25514188	0,32221227	0,53435811	0,66630486	0,65576453	0,48675633	0,14575436	0,08479015	0,371478127	0,174111679	0,408629521	0,380391791	0,162866283	0,29949548	0,126050492	0,053863062
115	0,93927604	0,93943843	0,93906399	0,3569783	0,93905695	0,82276274	0,26038147	0,11644613	0,2716593	0,28900438	0,54550891	0,67564331	0,66602154	0,48956749	0,15334549	0,08848707	0,376222016	0,184445777	0,415460563	0,378131699	0,172200772	0,305292165	0,123616086	0,052340656
120	0,9574381	0,95739879	0,95816329	0,36296131	0,95817404	0,83882711	0,26601733	0,11896657	0,28540178	0,2932493	0,55125463	0,68819934	0,67794873	0,49921076	0,15127573	0,08902441	0,382614361	0,196580569	0,420310554	0,376752721	0,18797802	0,312847245	0,119780828	0,049804611
125	0,97408113	0,97375113	0,97477076	0,36150496	0,97478151	0,8517779	0,27407127	0,1225684	0,29461156	0,30185994	0,55462704	0,69118617	0,68007536	0,50447202	0,14807194	0,08755207	0,391029307	0,210832858	0,426394057	0,374626036	0,201209958	0,320818443	0,115605692	0,047630899
130	0,9862005	0,98638069	0,98637992	0,36139194	0,98642032	0,86135467	0,27948768	0,12499069	0,30302325	0,30846229	0,52286539	0,69325032	0,68321918	0,50216409	0,1253853	0,08570324	0,392025626	0,222074252	0,440542258	0,372703617	0,211146212	0,327698393	0,114721113	0,04671085
135	1,00359813	1,0031317	1,00451914	0,36408942	1,00462481	0,87599264	0,28616328	0,12797611	0,31339714	0,31276157	0,55599544	0,69805973	0,68709134	0,51346104	0,14024802	0,08553922	0,395666375	0,226770927	0,445215233	0,369937542	0,214419216	0,330401858	0,114527054	0,046473638
140	1,0084558	1,0081614	1,01118014	0,35754515	1,01072225	0,87921295	0,29162422	0,13041832	0,3242048	0,32095904	0,55885984	0,69704439	0,68624798	0,51746321	0,13642477	0,08319077	0,403015465	0,233087877	0,463906869	0,367901824	0,223820913	0,33834659	0,119624799	0,047442853
145	1,01531291	1,01510158	1,01695173	0,35581838	1,01675484	0,88398789	0,2952569	0,1320429	0,33324505	0,32315341	0,55930419	0,69178782	0,67863633	0,51722536	0,13352388	0,08056329	0,410513303	0,246150211	0,473332716	0,369437788	0,238330705	0,347552945	0,117312542	0,046084442
150	1,02819079	1,02827013	1,02716006	0,35076293	1,02753861	0,8923845	0,30277602	0,13540555	0,34565424	0,3245226	0,55902426	0,68051536	0,66824185	0,51559166	0,12972043	0,076738	0,418758114	0,254015281	0,475627395	0,366268837	0,246409317	0,352215789	0,115098686	0,045107728
155	1,03975969	1,03980344	1,04135102	0,34979688	1,04117788	0,90237778	0,30890301	0,13814563	0,35697396	0,31469379	0,55571494	0,67408573	0,66266647	0,51282698	0,12869653	0,07544619	0,434076182	0,273735062	0,484194539	0,357489931	0,266372312	0,363173605	0,109935069	0,043055365
160	1,05094946	1,05048303	1,0520781	0,35533321	1,05203545	0,91217585	0,31128526	0,139211	0,36797989	0,31242322	0,56001738	0,67089567	0,65942299	0,51414783	0,12991523	0,0741069	0,442098205	0,288964719	0,492679232	0,34206755	0,27844015	0,368849971	0,10607223	0,042409832
165	1,06857393	1,06862954	1,06808896	0,36511518	1,06822428	0,92772638	0,3145093	0,14065284	0,37995089	0,30431341	0,56282894	0,67287664	0,66107769	0,51620952	0,13291331	0,07455572	0,44844539	0,298159435	0,495372104	0,338608686	0,287089077	0,373534938	0,103021698	0,041731324
170	1,08818548	1,08818176	1,08730305	0,36227304	1,08734347	0,94265736	0,32444499	0,14509621	0,3916072	0,29868908	0,56897431	0,67327949	0,66360433	0,51923088	0,13732381	0,07482498	0,462557607	0,307347956	0,51389211	0,331981752	0,297719095	0,382699704	0,1075374	0,044193117
175	1,09384094	1,0932084	1,09888487	0,38048126	1,09832612	0,95294832	0,32002904	0,14312134	0,40296953	0,30175814	0,5814281	0,67520949	0,66139947	0,52455295	0,14160184	0,07385093	0,467691082	0,319973908	0,537427485	0,319858217	0,308695855	0,39072931	0,111032718	0,047011698
180	1,09822973	1,0977633	1,10063379	0,37299946	1,10065048	0,95405535	0,32482286	0,1452652	0,41505249	0,35485974	0,5939975	0,66364633	0,65076772	0,53566475	0,12438606	0,06335158	0,47446458	0,325964346	0,562389399	0,306094222	0,316080444	0,396998598	0,119498883	0,051581156

5.3. Datos línea de base de los experimentos con veneno de *M. dissoleucus*

ANEXO 6: Datos de amplitud para Agonistas ACh y KCI

6.1. Datos de los experimentos Control

	Cont	roles
	ACh	KCI
1	51,15886796	67,31233892
2	36,61852238	67,44726683
3	122,8130806	128,3220379
4	79,67106204	134,5360473
5	61,78470706	141,3008383
6	57,00923825	76,6106514
PROMEDIO	68,1759	102,5881968
SD	30,2270	35,5968
SEM	12,3401	15,9194

6.2. Datos de experimentos con veneno de *M. mipartitus*

	3 μς	ı/ml	10 µ	g/ml
	ACh	KCI	ACh	KCI
1			0,300383813	48,82618201
2	1,11399958	55,02448758	0,280032311	55,32036068
3	2,785462388	202,4899093	0,943593363	180,237322
4	0,166395059	89,90299362	0,590641483	76,11127191
5	0,189241875	36,45435281	0,500951623	24,47586424
6	0,6999	22,0565	0,449631966	46,26527084
PROMEDIO	0,990991254	81,18564063	0,510872427	71,87271194
SD	1,0774	72,4090	0,2429	55,6205
SEM	0,4398	29,5609	0,0992	22,7070

	3 μ	g/ml	10 µ	g/ml	50 µ	g/ml
	ACh	KCI	ACh	KCI	ACh	KCI
1	25,40969176	10,06598414	29,78681329	11,83926305	40,49495279	4,499439198
2	25,70353463	11,74519521	20,31928386	13,41216502	28,52715574	6,832851675
3	18,06562843	4,423089128	28,40770978	6,433858956	41,44050703	4,374193913
4	26,70369392	14,27794409	23,34653939	8,983495201	27,08085719	1,47961549
5	15,1875	7,5002	17,75912204	8,633432462	40,49480631	3,179626851
PROMEDIO	22,21400522	9,602479163	23,92389367	9,860442937	35,60765581	4,073145425
SD	5,2232	3,8050	5,1432	2,7634	7,1525	1,9630
SEM	2,1324	1,5534	2,0997	1,1282	2,9200	0,8014

6.3. Datos de experimentos con veneno de *M. dissoleucus*

	Variable dependiente	Variable	Norma (Shapiro	lidad - Wilk)	Ho	omogeneid Varianza	lad de Is		Prueba	estadístic	a	
		independiente	Р	W	Prueba	Р	F/k	gl	Prueba	Р	F	gl
	Amplitud de las contracciones en el t180		8,31E-02	0,6872	Levene	0,2014	1,801	2		9,03E-08	183.54	2
	Tensión de la línea de base en el t ₁₈₀	Dosis de veneno	0,3108	0,9394	Bartlett	0,1235	4,1833	2		0,01548	5,6972	2
	Amplitud de la contracción de ACh	Dosis de venerio	0,000155	0,7111	Levene	0,04518	3,8957	2		1,56E-05	27,034	2
M minartitus	Amplitud de la contracción de KCI		0,06248	0,0898	Bartlett	0,3703	1,9871	2		0,6261	0,4843	2
w. mparatus	Amplitud de la contracción en el t50	Inhibicion PLA2	0,2653	0,8959	Bartlett	0,2064	1,5964	1		0,06244	-2,2842	6
	Amplitud de la contracción en el t180		0,4413	0,9214	Bartlett	0,7624	0,0914	1	t de student	0,1644	1,5833	6
	Amplitud de las contracciones	Neostigmina	2,76E-08	0,8125	Levene	0,233	1,4469	1		0,4647	-0,735	72
	Amplitud de las contracciones en el t180		0,2657	0,9444	Bartlett	0,5521	2,0991	3		6,38E-05	14,3999	3
	Tensión de la línea de base en el t ₁₈₀	Docio do vonono	0,1611	0,9188	Bartlett	0,3151	2,3095	2	ANAVA de una vía	0,000382	15,313	3
Veneno de	Amplitud de la contracción de ACh	Dosis de veneno	0,000272	0,7742	Levene	0,1523	19,997	3		0,000982	8,7594	3
ivi. dissoleucus	Amplitud de la contracción de KCI		1,55E-05	0,6797	Levene	1,11E-11	121,47	3	Kruskall - Wallis	0,001105	16,0545	3
0.000100000	Amplitud de la contracción en el t50	Inhibioion DL A2	0,1826	0,8786	Bartlett	0,8327	0,0446	1	t do student	0,000382	-7,1326	6
	Amplitud de la contracción en el t180		5,16E-02	0,8242	Bartlett	3,75E-01	0,787	1		0,00015	0,787	6
		Dosis de veneno								0,956822	0,003	1
	Amplitud de las contracciones en el t50	Especie	0,06929	0,9151	Bartlett	0,1128	5,9759	3		0,000119	24,5917	1
		Interacción								0,954904	0,0033	1
		Dosis de veneno								0,7784	0,0818	1
	Amplitud de la contracción de ACh	Especie	0,000374	0,7837	Levene	0,05646	2,4837	5		7,21E-11	202,167	1
Comparación		Interacción							ANAVA factorial	4,96E-01	0,4837	1
entre venenos		Dosis de veneno								0,93375	0,0071	1
	Amplitud de la contracción de KCl	Especie	3,37E-05	0,707	Levene	0,2071	1,6887	3		0,004375	10,787	1
Т		Interacción								0,8164	0,0556	1
		Dosis de veneno								0,000554	17,9617	1
	Tensión de la línea de base en el t180	Especie	0,03519	0,9001	Levene	0,9578	0,1019	3		5,74E-05	28,2082	1
		Interacción								5,49E-01	0,3729	1

ANEXO 7: Valores pruebas estadísticas

	Variable independiente	Niveles	Variable dependiente	Prueba de comparación múltiple			(Dunnett)
				Intervalo de confianza			Significa
				Lower	Center	Upper	tivo
Veneno de <i>M. mipartitus</i>	Dosis de veneno	3 μg/ml	Amplitud de las contracciones	-104,06	-92,52	-80,98	*
		10 µg/ml		-103,99	-92,94	-81,89	*
		3 μg/ml	Amplitud de la contracción de ACh	-91,94	-67,35	-42,76	*
		10 µg/ml		-92,26	-67,67	-43,07	*
		3 μg/ml	Tensión en la línea de base	0,0875	0,3789	0,6704	*
		10 µg/ml		-0,2124	0,0655	0,3433	
Veneno de <i>M.</i> dissoleucus	Dosis de veneno	3 μg/ml	Amplitud de las contracciones	-47,27	-23,14	0,99	*
		10 µg/ml		-63,74	-39,61	-15,58	*
		50 µg/ml		-83	-58,87	-34,75	*
		3 µg/ml	Amplitud de la contracción de ACh	-72,8	-45,96	-19,12	*
		10 µg/ml		-71,09	-44,25	-17,41	*
		50 µg/ml		-59,41	-32,57	-5,73	*
		3 µg/ml	Amplitud de la contracción de KCI	-123,48	-92,99	-62,49	*
		10 µg/ml		-123,22	-92,73	-62,23	*
		50 µg/ml		-129,01	-98,52	-68,02	*
		3 µg/ml	Tensión en la línea de base	0,5041	0,8724	1,2407	*
		10 µg/ml		0,0858	0,454	0,8223	*
		50 µg/ml		-0,0529	-0,3153	0,6836	

ANEXO 8: Pruebas de comparación mútiple

* Son significativamente diferentes con respecto al control. No contienen al cero en el intervalo de confianza.