This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

A nonlinear inequality and evolution problems

A.G. Ramm

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Ramm, A.G. (2010). A nonlinear inequality and evolution problems. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Ramm, A.G. (2010). A nonlinear inequality and evolution problems. Journal of Inequalities and Special Functions, 1(1), 1-9.

Copyright: Copyright © 2010 Journal of Inequalities and Special Functions

Digital Object Identifier (DOI):

Publisher's Link: http://www.ilirias.com/

JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS ISSN: 2217-4303, URL: http://www.ilirias.com

Volume 1 Issue 1(2010), Pages 1-9.

A NONLINEAR INEQUALITY AND EVOLUTION PROBLEMS

A.G. RAMM

Abstract. Assume that $g(t) \ge 0$, and

$$\dot{g}(t) \le -\gamma(t)g(t) + \alpha(t, g(t)) + \beta(t), \ t \ge 0; \quad g(0) = g_0; \quad \dot{g} := \frac{dg}{dt}$$

on any interval [0,T) on which g exists and has bounded derivative from the right, $\dot{g}(t):=\lim_{s\to+0}\frac{g(t+s)-g(t)}{s}$. It is assumed that $\gamma(t)$, and $\beta(t)$ are nonnegative continuous functions of t defined on $\mathbb{R}_+ := [0, \infty)$, the function $\alpha(t,g)$ is defined for all $t \in \mathbb{R}_+$, locally Lipschitz with respect to g uniformly with respect to t on any compact subsets $[0,T], T < \infty$, and non-decreasing with respect to g, $\alpha(t, g_1) \geq \alpha(t, g_2)$ if $g_1 \geq g_2$. If there exists a function $\mu(t) > 0$, $\mu(t) \in C^1(\mathbb{R}_+)$, such that

$$\alpha\left(t,\frac{1}{\mu(t)}\right)+\beta(t)\leq \frac{1}{\mu(t)}\left(\gamma(t)-\frac{\dot{\mu}(t)}{\mu(t)}\right),\quad \forall t\geq 0;\quad \mu(0)g(0)\leq 1,$$

then q(t) exists on all of \mathbb{R}_+ , that is $T=\infty$, and the following estimate holds:

$$0 \le g(t) \le \frac{1}{\mu(t)}, \quad \forall t \ge 0.$$

If $\mu(0)g(0) < 1$, then $0 \le g(t) < \frac{1}{\mu(t)}$, $\forall t \ge 0$. A discrete version of this result is obtained.

The nonlinear inequality, obtained in this paper, is used in a study of the Lyapunov stability and asymptotic stability of solutions to differential equations in finite and infinite-dimensional spaces.

1. Introduction

The goal of this paper is to give a self-contained proof of an estimate for solutions of a nonlinear inequality

$$\dot{g}(t) \le -\gamma(t)g(t) + \alpha(t, g(t)) + \beta(t), \ t \ge 0; \ g(0) = g_0; \ \dot{g} := \frac{dg}{dt},$$
 (1.1)

and to demonstrate some of its many possible applications.

Denote $\mathbb{R}_+ := [0, \infty)$. It is not assumed a priori that solutions g(t) to inequality (1.1) are defined on all of \mathbb{R}_+ , that is, that these solutions exist globally. We give sufficient conditions for the global existence of q(t). Moreover, under these conditions a bound on g(t) is given, see estimate (1.5) in Theorem 1. This bound yields the relation $\lim_{t\to\infty} g(t) = 0$ if $\lim_{t\to\infty} \mu(t) = \infty$ in (1.5).

²⁰⁰⁰ Mathematics Subject Classification. 26D10, 34G20, 37L05, 44J05, 47J35.

Key words and phrases. nonlinear inequality; Lyapunov stability; evolution problems; differential equations.

^{©2010} Ilirias Publications, Prishtinë, Kosovë.

Submitted August 12, 2010. Published September 15, 2010.

Let us formulate our assumptions.

Assumption A). We assume that the function $g(t) \geq 0$ is defined on some interval [0,T), has a bounded derivative $\dot{g}(t) := \lim_{s \to +0} \frac{g(t+s)-g(t)}{s}$ from the right at any point of this interval, and g(t) satisfies inequality (1.1) at all t at which g(t) is defined. The functions $\gamma(t)$, and $\beta(t)$, are continuous, non-negative, defined on all of \mathbb{R}_+ . The function $\alpha(t,g) \geq 0$ is continuous on $\mathbb{R}_+ \times \mathbb{R}_+$, nondecreasing with respect to g, and locally Lipschitz with respect to g. This means that $\alpha(t,g) \geq \alpha(t,h)$ if $g \geq h$, and

$$|\alpha(t,g) - \alpha(t,h)| \le L(T,M)|g - h|,\tag{1.2}$$

if $t \in [0, T]$, $|g| \le M$ and $|h| \le M$, M = const > 0, where L(T, M) > 0 is a constant independent of g, h, and t.

Assumption B). There exists a $C^1(\mathbb{R}_+)$ function $\mu(t) > 0$, such that

$$\alpha\left(t, \frac{1}{\mu(t)}\right) + \beta(t) \le \frac{1}{\mu(t)} \left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}\right), \quad \forall t \ge 0,$$
 (1.3)

$$\mu(0)g(0) < 1. \tag{1.4}$$

If $\mu(0)g(0) \leq 1$, then the inequality sign $< \frac{1}{\mu(t)}$ in Theorem 1, in formula (1.5), is replaced by $\leq \frac{1}{\mu(t)}$.

Our results are formulated in Theorems 1 and 2, and *Propositions 1,2. Proposition 1* is related to Example 1, and *Proposition 2* is related to Example 2, see below.

Theorem 1. If Assumptions A) and B) hold, then any solution $g(t) \geq 0$ to inequality (1.1) exists on all of \mathbb{R}_+ , i.e., $T = \infty$, and satisfies the following estimate:

$$0 \le g(t) < \frac{1}{\mu(t)} \quad \forall t \in \mathbb{R}_+. \tag{1.5}$$

If $\mu(0)g(0) \le 1$, then $0 \le g(t) \le \frac{1}{\mu(t)} \quad \forall t \in \mathbb{R}_+$.

Remark. If $\lim_{t\to\infty} \mu(t) = \infty$, then $\lim_{t\to\infty} g(t) = 0$.

Let us explain how one applies estimate (1.5) in various problems (see also papers [3], [4], and the monograph [5] for other applications of differential inequalities which are particular cases of inequality (1.1)).

Example 1. Consider the problem

$$\dot{u} = A(t)u + B(t)u, \quad u(0) := u_0,$$
 (1.6)

where A(t) is a linear bounded operator in a Hilbert space H and B(t) is a bounded linear operator such that

$$\int_0^\infty \|B(t)\|dt := C < \infty.$$

Assume that

$$\operatorname{Re}(A(t)u, u) \le 0 \quad \forall u \in H, \ \forall t \ge 0.$$
 (1.7)

Operators satisfying inequality (1.7) are called *dissipative*. They arise in many applications, for example in a study of passive linear and nonlinear networks (e.g., see [6], and [7], Chapter 3).

One may consider some classes of unbounded linear operator using the scheme developed in the proofs of *Propositions 1,2*. For example, in *Proposition 1* the

operator A(t) can be a generator of C_0 semigroup T(t) such that $\sup_{t\geq 0} ||T(t)|| \leq m$, where m>0 is a constant.

Let A(t) be a linear closed, densely defined in H, dissipative operator, with domain of definition D(A(t)) independent of t, and I be the identity operator in H. Assume that the Cauchy problem

$$\dot{U}(t) = A(t)U(t), \quad U(0) = I,$$

for the operator-valued function U(t) has a unique global solution and

$$\sup_{t \ge 0} \|U(t)\| \le m,$$

where m > 0 is a constant. Then such an unbounded operator A(t) can be used in Example 1.

Proposition 1. If condition (1.7) holds and $C := \int_0^\infty \|B(t)\| dt < \infty$, then the solution to problem (1.6) exists on \mathbb{R}_+ , is unique, and satisfies the following inequality:

$$\sup_{t>0} \|u(t)\| \le e^C \|u_0\|. \tag{1.8}$$

Inequality (1.8) implies Lyapunov stability of the zero solution to equation (1.6). Recall that the zero solution to equation (1.6) is called Lyapunov stable if for any $\epsilon > 0$, however small, one can find a $\delta = \delta(\epsilon) > 0$, such that if $||u_0|| \le \delta$, then the solution to Cauchy problem (1.6) satisfies the estimate $\sup_{t \ge 0} ||u(t)|| \le \epsilon$. If, in addition, $\lim_{t \to \infty} ||u(t)|| = 0$, then the zero solution to equation (1.6) is called asymptotically stable in the Lyapunov sense.

Example 2. Consider an abstract nonlinear evolution problem

$$\dot{u} = A(t)u + F(t, u) + b(t), \quad u(0) = u_0,$$
 (1.9)

where u(t) is a function with values in a Hilbert space H, A(t) is a linear bounded operator in H which satisfies inequality

$$Re(Au, u) \le -\gamma(t) ||u||^2, \quad t \ge 0; \qquad \gamma = \frac{r}{1+t},$$
 (1.10)

r>0 is a constant, F(t,u) is a nonlinear map in H, and the following estimates hold:

$$||F(t,u)|| \le \alpha(t,g), \quad g := g(t) := ||u(t)||; \quad ||b(t)|| \le \beta(t),$$
 (1.11)

where $\beta(t) \geq 0$ and $\alpha(t,g) \geq 0$ satisfy the conditions in Assumption A).

Let us assume that

$$\alpha(t,g) \le c_0 g^p, \quad p > 1; \quad \beta(t) \le \frac{c_1}{(1+t)^{\omega}},$$
 (1.12)

where c_0 , p, ω and c_1 are positive constants.

Proposition 2. If conditions (1.9)-(1.12) hold, and inequalities (2.7),(2.8) and (2.10) are satisfied (see these inequalities in the proof of Proposition 2), then the solution to the evolution problem (1.9) exists on all of \mathbb{R}_+ and satisfies the following estimate:

$$0 \le ||u(t)|| \le \frac{1}{\lambda(1+t)^q}, \quad \forall t \ge 0,$$
 (1.13)

where λ and q are some positive constants the choice of which is specified by inequalities (2.7),(2.8) and (2.10).

The choice of λ and q is motivated and explained in the proof of *Proposition 2* (see inequalities (2.7), (2.8) and (2.10) in Section 2).

4

Inequality (1.13) implies asymptotic stability of the solution to problem (1.9) in the sense of Lyapunov and, additionally, gives a rate of convergence of ||u(t)|| to zero as $t \to \infty$.

The results in $Examples\ 1,2$ can be obtained in Banach space, but we do not go into detail.

Proofs of Theorem 1 and *Propositions 1,2* are given in Section 2. Theorem 2, which is a discrete analog of Theorem 1, is formulated and proved in Section 3.

2. Proofs

Proof of Proposition 1. Local existence of the solution u(t) to problem (1.6) is known (see, e.g., [1]). Uniqueness of this solution follows from the linearity of the problem and from estimate (1.8). Let us prove this estimate.

Multiply (1.6) by u(t), let g(t) := ||u(t)||, take real part, use (1.7), and get

$$\frac{1}{2} \frac{dg^2(t)}{dt} \le \text{Re}(B(t)u(t), u(t)) \le ||B(t)||g^2(t).$$

This implies $g^2(t) \leq g^2(0)e^{2C}$, so (1.8) follows. Proposition 1 is proved. \square Proof of Proposition 2. The local existence and uniqueness of the solution u(t) to problem (1.9) follow from Assumption A (see, e.g., [1]). The existence of u(t) for all $t \geq 0$, that is, the global existence of u(t), follows from estimate (1.13) (see, e.g., [5], pp.167-168).

Let us derive estimate (1.13). Multiply (1.9) by u(t), let g(t) := ||u(t)||, take real part, use (1.10)-(1.12) and get

$$g\dot{g} \le -\gamma(t)g^2(t) + \alpha(t, g(t))g(t) + \beta(t)g(t), \ t \ge 0.$$
 (2.1)

Since $g \ge 0$, one obtains from this inequality inequality (1.1). However, first we would like to explain in detail the meaning of the derivative \dot{g} in our proof.

By \dot{q} the right derivatives is understood:

$$\dot{g}(t) := \lim_{s \to +0} \frac{g(t+s) - g(t)}{s}.$$

If g(t) = ||u(t)|| and u(t) is continuously differentiable, then $(t) := g^2(t) = (u(t), u(t))$ is continuously differentiable, and its derivative at the point t at which g(t) > 0 can be computed by the formula:

$$\dot{g} = Re(\dot{u}(t), u^0(t)),$$

where $u^0(t) := \frac{u(t)}{\|u(t)\|}$. Thus, the function $g(t) = \sqrt{-(t)}$ is continuously differentiable at any point at which $g(t) \neq 0$. At a point t at which g(t) = 0, the vector $u^0(t)$ is not defined, the derivative of g(t) does not exist in the usual sense, but the right derivative of g(t) still exists and can be calculated explicitly:

$$\dot{g}(t) = \lim_{s \to +0} \frac{\|u(t+s)\| - \|u(t)\|}{s} = \lim_{s \to +0} \frac{\|u(t) + s\dot{u}(t) + o(s)\|}{s}$$
$$= \lim_{s \to 0} \|\dot{u}(t) + o(1)\| = \|\dot{u}(t)\|.$$

If u(t) is continuously differentiable at some point t, and $u(t) \neq 0$, then

$$\dot{g} = ||u(t)|| \le ||\dot{u}(t)||.$$

Indeed.

$$2q(t)\dot{q}(t) = (\dot{u}(t), u(t)) + (u(t), \dot{u}(t)) < 2\|\dot{u}\|\|u\| = 2\|\dot{u}(t)\|q(t).$$

If $g(t) \neq 0$, then the above inequality implies $\dot{g}(t) \leq ||\dot{u}(t)||$, as claimed. One can also derive this inequality from the formula $\dot{g} = Re(\dot{u}(t), u^0(t))$, since $|Re(\dot{u}(t), u^0(t))| \leq ||\dot{u}(t)||$.

If g(t) > 0, then from (2.1) one obtains

$$\dot{g}(t) \le -\gamma(t)g(t) + \alpha(t, g(t)) + \beta(t), \quad t \ge 0. \tag{2.2}$$

If g(t) = 0 on an open set, then inequality (2.2) holds on this set also, because $\dot{g} = 0$ on this set while the right-hand side of (2.2) is non-negative at g = 0. If g(t) = 0 at some point $t = t_0$, then (2.2) holds at $t = t_0$ because, as we have proved above, $\dot{g}(t_0) = 0$, while the right-hand side of (2.2) is equal to $\beta(t) \geq 0$ if $g(t_0) = 0$, and is, therefore, non-negative if $g(t_0) = 0$.

If assumptions (1.12) hold, then inequality (2.2) can be rewritten as

$$\dot{g} \le -\frac{1}{(1+t)^{\nu}}g + c_0g^p + \frac{c_1}{(1+t)^{\omega}}, \quad p > 1.$$
 (2.3)

Let us look for $\mu(t)$ of the form

$$\mu(t) = \lambda(1+t)^q, \quad q = const > 0, \quad \lambda = const > 0.$$
 (2.4)

Inequality (1.3) takes the form

$$\frac{c_0}{[\lambda(1+t)^q]^p} + \frac{c_1}{(1+t)^\omega} \leq \frac{1}{\lambda(1+t)^q} \left(\frac{r}{(1+t)^\nu} - \frac{q}{1+t} \right), \quad t > 0, \tag{2.5}$$

or

$$\frac{c_0}{\lambda^{p-1}(1+t)^{q(p-1)}} + \frac{c_1\lambda}{(1+t)^{\omega-q}} + \frac{q}{1+t} \le \frac{r}{(1+t)^{\nu}}, \quad t > 0$$
 (2.6)

Assume that the following inequalities (2.7)-(2.8) hold:

$$q(p-1) \ge \nu, \quad \omega - q \ge \nu, \quad 1 \ge \nu,$$
 (2.7)

and

$$\frac{c_0}{\lambda^{p-1}} + c_1 \lambda + q \le r. \tag{2.8}$$

Then inequality (2.6) holds, and Theorem 1 yields

$$g(t) = ||u(t)|| < \frac{1}{\lambda(1+t)^q}, \quad \forall t \ge 0,$$
 (2.9)

provided that

$$||u_0|| < \frac{1}{\lambda}.$$
 (2.10)

Note that for any $||u_0||$ inequality (2.10) holds if λ is sufficiently large. For a fixed λ , however large, inequality (2.8) holds if r is sufficiently large.

Proposition 2 is proved. \Box

The proof of *Proposition 2* provides a flexible general scheme for obtaining estimates of the behavior of the solution to evolution problem (1.9) for $t \to \infty$.

Proof of Theorem 1. Let

$$g(t) = \frac{v(t)}{a(t)}, \quad a(t) := e^{\int_0^t \gamma(s)ds},$$
 (2.11)

$$\eta(t) := \frac{a(t)}{\mu(t)}, \quad \eta(0) = \frac{1}{\mu(0)} > g(0).$$
(2.12)

Then inequality (1.1) reduces to

$$\dot{v}(t) \le a(t)\alpha \left(t, \frac{v(t)}{a(t)}\right) + a(t)\beta(t), \quad t \ge 0; \quad v(0) = g(0). \tag{2.13}$$

One has

$$\dot{\eta}(t) = \frac{\gamma(t)a(t)}{\mu(t)} - \frac{\dot{\mu}(t)a(t)}{\mu^2(t)} = \frac{a(t)}{\mu(t)} \left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}\right). \tag{2.14}$$

From (1.3), (2.11)-(2.14), one gets

$$v(0) < \eta(0), \quad \dot{v}(0) \le \dot{\eta}(0).$$
 (2.15)

Therefore there exists a T > 0 such that

$$0 \le v(t) < \eta(t), \quad \forall t \in [0, T). \tag{2.16}$$

Let us prove that $T = \infty$.

First, note that if inequality (2.16) holds for $t \in [0, T)$, or, equivalently, if

$$0 \le g(t) < \frac{1}{\mu(t)}, \quad \forall t \in [0, T),$$
 (2.17)

then

$$\dot{v}(t) \le \dot{\eta}(t), \qquad \forall t \in [0, T). \tag{2.18}$$

One can pass to the limit $t \to T - 0$ in this inequality and get

$$\dot{v}(T) \le \dot{\eta}(T). \tag{2.19}$$

Indeed, from inequality (2.17) it follows that

$$\alpha\left(t, \frac{v}{a}\right) + \beta = \alpha(t, g) + \beta \le \alpha(t, \frac{1}{\mu}) + \beta,$$

because $\alpha(t,g) \leq \alpha(t,\frac{1}{\mu})$.

Furthermore, from inequality (1.3) one derives:

$$\alpha\left(t, \frac{1}{\mu}\right) + \beta \le \frac{1}{\mu(t)} \left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}\right).$$

Consequently, from inequalities (2.13)-(2.14) one obtains

$$\dot{v}(t) \leq \frac{a(t)}{\mu(t)} \left(\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)} \right) = \dot{\eta}(t), \qquad t \in [0, T),$$

and inequality (2.18) is proved.

Let $t \to T - 0$ in (2.18). The function $\eta(t)$ is defined for all $t \in \mathbb{R}_+$ and $\dot{\eta}(t)$ is continuous on \mathbb{R}_+ . Thus, there exists the limit

$$\lim_{t \to T-0} \dot{\eta}(t) = \dot{\eta}(T).$$

By $\dot{v}(T)$ in inequality (2.19) one may understand $\limsup_{t \to T-0} \dot{v}(t)$, which does exist because $\dot{v}(t)$ is bounded for all t < T by a constant independent of $t \in [0, T]$, due to the estimate (2.18).

To prove that $T = \infty$ we prove that the "upper" solution w(t) to the inequality (2.13) exists for all $t \in \mathbb{R}_+$.

Define w(t) as the solution to the problem

$$\dot{w}(t) = a(t)\alpha \left(t, \frac{w(t)}{a(t)}\right) + a(t)\beta(t), \quad w(0) = v_0.$$
 (2.20)

The unique solution to problem (2.20) exists locally, on [0,T), because $\alpha(t,g)$ is assumed locally Lipschitz. On the interval [0,T) one obtains inequality

$$0 \le v(t) \le w(t), \qquad t \in [0, T),$$

by the standard comparison lemma (see, e.g., [5], p.99, or [2]). Thus, inequality

$$0 \le v(t) \le w(t) \le \eta(t), \qquad t \in [0, T),$$
 (2.21)

holds.

The desired conclusion $T = \infty$ one derives from the following result.

Proposition 3. The solution w(t) to problem (2.20) exists on every interval [0,T] on which it is a priori bounded by a constant depending only on T.

We prove this result later. Assuming that Proposition 3. is established, one concludes that $T=\infty$.

Let us finish the proof of Theorem 1 using *Proposition 3*. Since $\eta(t)$ is bounded on any interval [0,T] (by a constant depending only on T) one concludes from *Proposition 3* that w(t) (and, therefore, v(t)) exists on all of \mathbb{R}_+ . If $v(t) \leq \eta(t)$ $\forall t \in \mathbb{R}_+$, then inequality (1.5) holds (see (2.11) and (2.12)), and Theorem 1 is proved.

Let us prove *Proposition 3*.

Proof of Proposition 3. We prove a more general statement, namely, *Proposition 4*, from which *Proposition 3* follows.

Proposition 4. Assume that

$$\dot{u} = f(t, u), \quad u(0) = u_0,$$
 (2.22)

where f(t,u) is an operator in a Banach space X, locally Lipschitz with respect to u for every t, i.e., $||f(t,u) - f(t,v)|| \le L(t,M)||u-v||$, $\forall v,v \in \{u: ||u|| \le M\}$. The unique solution to problem (2.22) exists for all $t \ge 0$ if and only if

$$||u(t)|| \le c(t), \quad t \ge 0,$$
 (2.23)

where c(t) is a continuous function defined for all $t \ge 0$, and inequality (2.23) holds for all t for which u(t) exists.

Proof of Proposition 4. The necessity of condition (2.23) is obvious: one may take c(t) = ||u(t)||.

To prove its sufficiency, recall a known local existence theorem, see, e.g., [1].

Proposition 5. If $||f(t,u)|| \le M_1$ and $||f(t,u)-f(t,v)|| \le L||u-v||$, $\forall t \in [t_0, t_0+T_1]$, $||u-u_0|| \le R$, $u_0 = u(t_0)$, then there exists a $\delta > 0$, $\delta = \min(\frac{R}{M_1}, \frac{1}{L}, T_1 - T)$, such that for every $\tau_0 \in [t_0, T]$, $T < T_1$, there exists a unique solution to equation (2.22) in the interval $(\tau_0 - \delta, \tau + \delta)$ and $||u(t) - u(t_0)|| \le R$.

Using Proposition 5, let us prove the sufficiency of the assumption (2.23) for the global existence of u(t), i.e., for the existence of u(t) for all $t \ge t_0$.

Assume that condition (2.23) holds and the solution to problem (2.22) exists on $[t_0, T)$ but does not exist on $[t_0, T_1)$ for any $T_1 > T$. Let us derive a contradiction from this assumption.

Proposition 5 guarantees the existence and uniqueness of the solution to problem (2.22) with $t_0 = T$ and the initial value $u_0 = u(T - 0)$. The value u(T - 0) exists if inequality (2.23) holds, as we prove below. The solution u(t) exists on the interval $[T - \delta, T + \delta]$ and, by the uniqueness theorem, coincides with the solution u(t) of the problem (2.22) on the interval $(T - \delta, T)$. Therefore, the solution to (2.22) can

be uniquely extended to the interval $[0, T + \delta)$, contrary to the assumption that it does not exist on the interval $[0, T_1)$ with any $T_1 > T$. This contradiction proves that $T = \infty$, i.e., the solution to problem (2.22) exists for all $t \geq t_0$ if estimate (2.23) holds and c(t) is defined and continuous $\forall t \geq t_0$.

Let us now prove the existence of the limit

$$\lim_{t \to T - 0} u(t) := u(T - 0).$$

Let $t_n \to T$, $t_n < T$. Then

8

$$||u(t_n) - u(t_{n+m})|| \le \int_{t_n}^{t_{n+m}} ||f(t, u(s))|| ds \le (t_{n+m} - t_n)M_1 \to 0 \text{ as } n \to \infty.$$

Therefore, by the Cauchy criterion, there exists the limit

$$\lim_{t_n \to T - 0} u(t) = u(T - 0).$$

Estimate (2.23) guarantees the existence of the constant M_1 .

Proposition 4 is proved

Therefore *Proposition 3* is also proved and, consequently, the statement of Theorem 1, corresponding to the assumption (1.5), is proved. In our case $t_0 = 0$, but one may replace the initial moment $t_0 = 0$ in (1.1) by an arbitrary $t_0 \in \mathbb{R}_+$.

Finally, if $g(0) \leq \frac{1}{\mu(0)}$, then one proves the inequality

$$0 \le g(t) \le \frac{1}{\mu(t)}, \quad \forall t \in \mathbb{R}_+$$

using the argument similar to the above. This argument is left to the reader.

Theorem 1 is proved.

3. Discrete version of Theorem 1

Theorem 2. Assume that $g_n \geq 0$, $\alpha(n, g_n) \geq 0$,

$$g_{n+1} \le (1 - h_n \gamma_n) g_n + h_n \alpha(n, g_n) + h_n \beta_n, \quad h_n > 0, \ 0 < h_n \gamma_n < 1,$$
 (3.1)

and $\alpha(n, g_n) \ge \alpha(n, q_n)$ if $g_n \ge q_n$. If there exists a sequence $\mu_n > 0$ such that

$$\alpha(n, \frac{1}{\mu_n}) + \beta_n \le \frac{1}{\mu_n} (\gamma_n - \frac{\mu_{n+1} - \mu_n}{h_n \mu_n}),$$
 (3.2)

and

$$g_0 \le \frac{1}{\mu_0},\tag{3.3}$$

then

$$0 \le g_n \le \frac{1}{\mu_n} \qquad \forall n \ge 0. \tag{3.4}$$

Proof. For n=0 inequality (3.4) holds because of (3.3). Assume that it holds for all $n \leq m$ and let us check that then it holds for n=m+1. If this is done, Theorem 2 is proved. Using the inductive assumption, one gets:

$$g_{m+1} \le (1 - h_m \gamma_m) \frac{1}{\mu_m} + h_m \alpha(m, \frac{1}{\mu_m}) + h_m \beta_m.$$

This and inequality (3.2) imply:

$$\begin{split} g_{m+1} & \leq (1-h_m\gamma_m)\frac{1}{\mu_m} + h_m\frac{1}{\mu_m}(\gamma_m - \frac{\mu_{m+1} - \mu_m}{h_m\mu_m}) \\ & = \frac{\mu_m h_m - \mu_m h_m^2\gamma_m + h_m^2\gamma_m \mu_m - h_m\mu_{m+1} + h_m\mu_m}{\mu_m^2 h_m} \\ & = \frac{2\mu_m h_m - h_m\mu_{m+1}}{\mu_m^2 h_m} = \frac{2\mu_m - \mu_{m+1}}{\mu_m^2} = \frac{1}{\mu_{m+1}} + \frac{2\mu_m - \mu_{m+1}}{\mu_m^2} - \frac{1}{\mu_{m+1}}. \end{split}$$

The proof is completed if one checks that

$$\frac{2\mu_m - \mu_{m+1}}{\mu_m^2} \le \frac{1}{\mu_{m+1}},$$

or, equivalently, that

$$2\mu_m \mu_{m+1} - \mu_{m+1}^2 - \mu_m^2 \le 0.$$

The last inequality is obvious since it can be written as

$$-(\mu_m - \mu_{m+1})^2 \le 0.$$

Theorem 2 is proved.

Theorem 2 was formulated in [3] and proved in [4]. We included for completeness a proof, which is different from the one in [4] only slightly.

References

- [1] Yu. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, RI, (1974).
- [2] P. Hartman, Ordinary differential equations, J. Wiley, New York, (1964).
- [3] N.S. Hoang and A. G. Ramm, DSM of Newton-type for solving operator equations F(u) = f with minimal smoothness assumptions on F, International Journ. Comp.Sci. and Math. (IJCSM), 3 N1/2 (2010), 3-55.
- [4] N. S. Hoang and A. G. Ramm, A nonlinear inequality and applications, Nonlinear Analysis: Theory, Methods and Appl., 71 (2009) 2744-2752.
- [5] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, (2007).
- [6] A. G. Ramm, Stationary regimes in passive nonlinear networks, in the book Nonlinear Electromagnetics, Editor P. Uslenghi, Acad. Press, New York, (1980) 263–302.
- [7] A. G. Ramm, Theory and applications of some new classes of integral equations, Springer-Verlag, New York, (1980).

A.G. RAMM

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KS 66506-2602, USA $E\text{-}mail\ address:\ ramm@math.ksu.edu$