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Basic Concepts

What are Optimization Problems?
Finding the value of     such that the functional value at  
is either minimum or maximum.
Minimization problem

Maximization problem

x

dℜ∈x
min ( )xf

x

dℜ∈x
max ( )xf
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Basic Concepts

Relationship Between Maximization Problems and 
Minimization Problems
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Basic Concepts

Constrained and Unconstrained Optimization 
Problems

Unconstrained optimization problem

Constrained optimization problem

subject to                for                    (inequality constraints)
for (equality constraints)
for and 

(functional inequality
constraints)

( )xf

( ) 0≤xig

dℜ∈x
min

( )xfdℜ∈x
min

( ) 0=xih
Mi ,,2,1 L=
Ni ,,2,1 L=

( ) 0, ≤ωxip Ki ,,2,1 L= Ω∈∀ω
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Basic Concepts

Convex and Nonconvex Optimization Problems
Convex sets

and ,S∈∀ 21,xx [ ]1,0∈∀λ ( ) S∈−+ 21 1 xx λλ

x1

x2
x1

x2

(a) Convex set (b) Nonconvex set
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Basic Concepts

Convex and Nonconvex Optimization Problems
Convex functions

Let , where is a nonempty convex set. The 
function is said to be convex on   if

and            ,

ℜ→Sf : S
f S

( )( ) ( ) ( ) ( )2121 11 xxxx fff λλλλ −+≤−+S∈∀ 21,xx [ ]1,0∈∀λ

x1   λ x1+(1- λ)x2 x2

convex function

ƒ

x1 λ x1+(1- λ)x2 x2

concave function

ƒ

x1 x2

neither convex nor 
concave

ƒ
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Basic Concepts

Convex and Nonconvex Optimization Problems
Feasible set

Convex optimization problem
Feasible set is convex and      is convex.

Nonconvex optimization problem
Feasible set is not convex, or    is not convex, or neither.
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Basic Concepts

Convex and Nonconvex Optimization Problems
If the optimization problem is convex, then any local 
minimum is a global minimum.

ƒ

Local minimum = Global minimum
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Basic Concepts

Smooth and Nonsmooth Optimization Problems
Smooth optimization problems

is differentiable.

Nonsmooth optimization problems
is not differentiable.

f

f
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Basic Concepts

Smooth and Nonsmooth Optimization Problems
For smooth optimization problems, if    is a local minimum 
of    and          , then     is a stationary point. If     is a
stationary point,           and the Hessian matrix evaluated 
at     is positive definite, then     is a local minimum.

∗x
f Ψ∈∗x ∗x ∗x

∗x∗x
Ψ∈∗x
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Basic Concepts
Smooth and Nonsmooth Optimization Problems

ƒPoint of reflection ⇒ stationary point
A stationary point with twice differentiable, but 

neither convex nor concave ⇒ point of reflection x*
Ψ

ƒ
Local minimum ⇒ stationary point

x*
Ψ

A stationary point and convex ⇒ local minimum

ƒ

x*
Ψ

Local maximum ⇒ stationary point
A stationary point and concave ⇒ local maximum
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Basic Concepts

Smooth and Nonsmooth Optimization Problems
Local optimal solution of smooth problems could be found 
by Newton’s method, steepest decent method, etc.
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Examples of Smooth Functional Inequality 
Constrained Optimization Problems

FIR Linear Phase Anti-symmetric Filter Design 
Problems

For N is odd,

For N is even,                              for
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Examples of Smooth Functional Inequality 
Constrained Optimization Problems

FIR Linear Phase Anti-symmetric Filter Design 
Problems
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FIR Linear Phase Anti-symmetric Filter Design 
Problems

Denote

Then
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FIR Linear Phase Anti-symmetric Filter Design 
Problems

Objective: Minimize the weighted total ripple energy 
subject to the weighted peak constraint.

Examples of Smooth Functional Inequality 
Constrained Optimization Problems

passband stopband

|H(ej ω)|

1 + δp

1 - δp

δs

0 ωp ωs π
ω

transition 
band

|Hd(ej ω)|
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FIR Linear Phase Anti-symmetric Filter Design 
Problems

where

( ) 0>ωW

( ) pdDHWJ TT

Bd

++=−≡ ∫ xbxQxx
2
1)()()( 2

0 ωωωω

( ) ( ) ωωωω dW
dB

T∫= )()(2 ηηQ

( ) ωωωω dDW
dB
∫−= )()(2 ηb

( )( )∫=
dB

dDWp ωωω 2)(

dB∈∀ω

Examples of Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Anti-symmetric Filter Design 
Problems

where

Problem (P)
Subject to

dB∈∀ωδωωω ≤− )()()( 0 DHW
dB∈∀ω)()( ωω cxA ≤

( ) ( )[ ]TW ωωωω ηηA −= ,)()( dB∈∀ω
( ) ( ) ( )[ ]TWDWD )(,)( ωωδδωωω −+=c dB∈∀ω

x
min ( ) pJ TT ++= xbxQxx

2
1

0cxAxg ≤−= )()(),( ωωω dB∈∀ω

Examples of Smooth Functional Inequality 
Constrained Optimization Problems
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Examples of Smooth Functional Inequality 
Constrained Optimization Problems

PAM Signal Design Problems
Suppose there are  transmitters and the transmitted signals 
are denoted as         for                     . Suppose that there are

receivers and the received signals are denoted as        for  
.

Denote                                              and
.

Assume that the fading characteristics of the channel is 
governed by         . Denote        as an AWGN noise. Then

( )ωiX
M

N

( )ωiY
1,,1,0 −= Ni L

( )ωH

( ) ( ) ( )[ ]TNXX ωωω 10 −≡ LX
( ) ( ) ( )[ ]TMYY ωωω 10 −≡ LY

1,,1,0 −= Mi L

( )ωη
( ) ( ) ( ) ( )ωωωω ηXHY +=
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Examples of Smooth Functional Inequality 
Constrained Optimization Problems

PAM Signal Design Problems
Suppose these transmitted signals are generated by a set of 
symbols    for                     via a kernel function       . That is

where . Then

By using ML detection, the objective is to minimize

subject to

1,,1,0 −= Li Lis ( )ωξ
( ) ( )sξX ωω = [ ]TLss 10 −= Ls
( ) ( ) ( ) ( )ωωωω ηsξHY +=

( ) ( ) ( )∫− −
π

π
ωωωω d2sξHY

( ) ( ) ( )ωωω δXsξ ≤− d
~

sp BB U∈∀ω



23

Examples of Smooth Functional Inequality 
Constrained Optimization Problems

PAM Signal Design Problems
This is equivalent to

subject to sp BB U∈∀ω
s

min ( ) pJ TT ++= sbsQss
2
1

0cxAsg ≤−= )()(),( ωωω
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Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems

Challenges of Functional Inequality Constrained 
Optimization Problems

The domain of functional inequalities is           .
⇒infinite number of constraints.
How to guarantee that these infinite number of constraints 
are satisfied?
How to solve these problems efficiently?
For the FIR linear phase anti-symmetric filter design 
problem, the specifications contain the maximum 
passband ripple magnitude and the maximum stopband 
ripple magnitude. How to determine these specifications?

Ω×ℜd
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Some Solutions for Solving Functional Inequality 
Constrained Optimization Problems

Dual parameterization approach
For smooth and convex optimization problems, by discretizing the 
index set     with finite number of elements, denoted as     for

, and introducing parameters   for                    , then the 
following two optimization problems are equivalent:

subject to subject to for
for

Ω
ki ,,2,1 L=

iω

( ) kkd ××ℜ∈λωx ,,
max

Ω∈iω ki ,,2,1 L=

( ) ( )∑
=

+
k

i
ii gf

1
,ωλ xx

0≥iλ ki ,,2,1 L=

( ) ( ) 0xx xx =∇+∇ ∑
=

k

i
ii gf

1
,ωλ

iλ ki ,,2,1 L=

( )xfdℜ∈x
min

( ) 0, ≤ωxp Ω∈∀ω

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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Some Solutions for Solving Functional Inequality 
Constrained Optimization Problems

Dual parameterization approach
guarantees that the obtained global minimum solution satisfies the 
required functional inequality constraint if the feasible set is non-
empty.
The maximum number of discretization points is less than or equal 
to         . Hence, this optimization problem can be solved efficiently.2+d

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems



27

Some Solutions for Solving Functional Inequality 
Constrained Optimization Problems

Conventional discretization approach
The discretization points are uniformly disturbed in the index set.
It is not guaranteed that the original functional inequality constraint 
is satisfied.
The number of discretization points are usually more than         . 
Hence, it is not efficient.

2+d

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Anti-symmetric Fifth Order 
Differentiator Design Problem
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Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
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FIR Linear Phase Near Allpass Complementary 
Nonuniform Filter Bank Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Allpass Complementary 
Nonuniform Filter Bank Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Perfect Reconstruction 
Nonuniform Filter Bank Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Perfect Reconstruction 
Nonuniform Filter Bank Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Perfect Reconstruction 
Nonuniform Transmultiplexer Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Perfect Reconstruction 
Nonuniform Transmultiplexer Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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FIR Linear Phase Near Perfect Reconstruction 
Nonuniform Transmultiplexer Design Problem

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Specifications for designing FIR linear phase anti-
symmetric filters include:

Filter length
Transition band bandwidth
Centre frequency
Maximum passband ripple magnitude
Maximum stopband ripple magnitude

The performance of FIR linear phase anti-symmetric filters 
is measured by the total ripple energy.

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of filter length on total ripple energy
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Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of transition band bandwidth on total ripple energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of maximum passband ripple magnitude on total ripple 
energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of maximum passband ripple magnitude on total 
ripple energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of maximum stopband ripple magnitude on total ripple 
energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of maximum stopband ripple magnitude on total ripple 
energy

2

4

6

8

10

12

-50 -48 -46 -44 -42 -40 -38 -36 -34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Order of approximation

Stopband ripple (dB)

Sq
ua

re
 e

rr
or

 o
f a

pp
ro

xi
m

at
io

n

( ) ( ) ( ) ( )
2

1010
0

,4 ,,,,log10log20,,,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−Δ≡ ∑

=

NBfJNBfaME csp
k

s

M

k
pcksss

s

δδδδδ

Challenges and Some Solutions for 
Solving Smooth Functional Inequality 
Constrained Optimization Problems



43

Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of centre frequency on total ripple energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Effect of centre frequency on total ripple energy
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Empirical formulae for designing FIR linear phase anti-
symmetric filters
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Estimation of minimum filter length with              ,         ,
, and

⇒
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Specification Design for Functional Inequality 
Constrained Optimization Problems

Estimation of minimum transition band bandwidth with
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations

Objective: Find a motion vector such that the mean 
absolute difference between a block of an image in the 
current shifted frame and that in the next frame is 
minimized.

Examples of Nonsmooth Optimization 
Problems
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations

Examples of Nonsmooth Optimization 
Problems
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations
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Examples of Nonsmooth Optimization 
Problems
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations
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Examples of Nonsmooth Optimization 
Problems
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations
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Examples of Nonsmooth Optimization 
Problems
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations ( )
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Integer-pixel, Half-pixel, Quarter-pixel, Fractional 
Pixel and Irrational Pixel Search in Motion 
Estimations
Problem (R)

subject to              for
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Examples of Nonsmooth Optimization 
Problems
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Challenge of Nonsmooth Optimization Problems
How to solve nonsmooth optimization problems?

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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Some Solution for Solving Nonsmooth Optimization 
Problems
Denote

where

Denote

( ) xαT
qNpkqNp qpBz +++ −≡ ,1

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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then
Denote

then                  and
Denote                    such that           for

such that           for
and such that           for

[ ]0IB ≡

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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for                     implies                for
for                     implies                for
for                       implies
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Motion Vector of “Foreman”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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PSNR of “Foreman”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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Motion Vector of “Football”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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PSNR of “Football”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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Motion Vector of “Container”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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PSNR of “Container”

Challenges and Some Solutions for Solving 
Nonsmooth Optimization Problems
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IIR Filter Design Problems
Objective: Minimize the weighted total ripple energy 
subject to the weighted peak constraint.
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Constrained Optimization Problems
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IIR Filter Design Problems

where
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Constrained Optimization Problems
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IIR Filter Design Problems

where
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Challenge of Nonsmooth Functional Inequality 
Constrained Optimization Problems

How to solve nonsmooth functional inequality constrained 
optimization problems?

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Some Solution for Solving Nonsmooth Optimization 
Problems

Consider the following IIR filter design problem with the error 
function

where

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Some Solution for Solving Nonsmooth Optimization 
Problems

Since
By defining

We have

⇔

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Some Solution for Solving Nonsmooth Optimization 
Problems

As when                       .
is continuous at                        .

As when
and
when
We have,

Challenges and Some Solutions for Solving 
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Optimization Problems
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Some Solution for Solving Nonsmooth Optimization 
Problems

Consequently, we have

Similarly, define

We have
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Some Solution for Solving Nonsmooth Optimization 
Problems

Now the problem become the following equality constrained 
optimization problem.

subject to

and , define

and
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Some Solution for Solving Nonsmooth Optimization 
Problems

Now we approximate the problem as the following smooth 
optimization problem:

subject to

Challenges and Some Solutions for Solving 
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IIR Filter Design Problem
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Strictly Stable Minimal Phase Near Allpass IIR Filter 
Design Problem

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Strictly Stable Minimal Phase Near Allpass IIR Filter 
Design Problem

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

(a)

Real part

Im
ag

in
ar

y 
pa

rt

Zeros
Poles

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Real part

Im
ag

in
ar

y 
pa

rt   0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

(c)

Real part

Im
ag

in
ar

y 
pa

rt



78

Pulse Design Problem for Ultra-wideband Systems

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Pulse Design Problem for Ultra-wideband Systems

Challenges and Some Solutions for Solving 
Nonsmooth Functional Inequality Constrained 

Optimization Problems
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Many practical problems in signal processing and 
communications systems can be formulated as optimization 
problems.
A solution has been proposed to guarantee the obtained 
solution satisfying the functional inequality constraint.
Efficient approach has been proposed to solve a functional 
inequality constrained optimization problem.
Empirical formulae has been proposed for specification design 
of FIR linear phase anti-symmetric peak constrained least 
squares filter.
A nonsmooth optimization problem is transformed to a smooth 
optimization problem.
A nonsmooth functional inequality constrained  optimization 
problem is approximated by a smooth equality constrained 
optimization problem.

Conclusions
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Questions and Answers

Thank you!

Let me think…

Bingo
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