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Abstract 

Purpose:  To determine if a single test is accurate in determining the parameters of the 

velocity: time-to-fatigue relationship, i.e., critical velocity (CV) and a finite distance that can be 

covered above CV (D`).  Methods:  Ten healthy subjects completed an incremental test to 

volitional exhaustion followed by four constant-velocity runs on a treadmill for the determination 

of CV and D`, as well as an all-out 3-minute test on a track for the determination of end-test 

velocity (EV) and the distance above end-test velocity (DEV).  Eight of the eleven subjects 

completed a second 3-minute test and one run each at (+) and (-) 95% confidence interval 

velocities of CV determined from the 1/time model.  Results:  The group mean 1/time model CV 

(12.8 ± 2.5 km·h
-1

) was significantly greater than the velocity-time model CV (12.3 ± 2.4 km·h
-1

; 

P < 0.05), while the velocity-time model W` (285 ± 106 m) was greater than the 1/time model 

W` (220 ± 112 m; P < 0.05).  EV (13.0 ± 2.7 km·h
-1

) and DEV (151 ± 45 m) were not 

significantly different than the 1/time model CV and W`, respectively.  EV was greater than the 

velocity-time model CV (P < 0.05), while the DEV was significantly less than the velocity-time 

model W` (P = 0.002).  No difference was found for group mean EV or DEV between the two 3-

minute tests (P > 0.05), which demonstrated a reliability coefficient of 0.85 for EV and 0.32 for 

DEV.  For the CV   (-) 95% run, all subjects reached a steady-state in VO2
·

, and completed 900 s 

of exercise.  However, for the CV (+) 95% run, VO2
·

 never reached a steady-state, but increased 

until termination of exercise at 643 ± 213 s with a VO2
·

peak close to but significantly lower than 

VO2max
·

 (P < 0.05).  Conclusion:  CV can be accurately determined using a single 3-minute test, 

while W` is underestimated with this protocol. 
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Chapter 1 - Introduction 

A.V. Hill in 1925 originally introduced the notion that an inverse relationship exists 

between power output and the time that a given power output can be sustained (time-to-

exhaustion) (18, 19).  This relationship was later examined in isolated muscle groups where the 

authors observed a power output that could be maintained “for a very long time without fatigue” 

(termed critical power; CP) as well as a finite amount of work that could be performed above CP 

(later termed W`) (42). Since being measured in isolated muscles, the power: time-to-exhaustion 

relationship has been observed in cycling (2, 17, 23, 25, 39-41, 45, 47, 48, 50, 53), swimming 

(60), rowing (21), knee extension exercise (35, 56), and running (7, 28, 52). 

The power: time-to-exhaustion relationship is well defined with a two-parameter 

hyperbolic function as both a linear and non-linear model.  In the non-linear model (power-time), 

CP is defined as the power asymptote and W` is the curvature constant: 

t = W` / (P - CP) (Equation 1)  

while the linear (1/time) model defines CP as the y-intercept and W` as the slope: 

P = (W`/ t) + CP (Equation 2)  

where P represents power output, and t represents time-to-exhaustion (61).  CP is associated with 

the muscle’s aerobic capacity and is altered with hypoxia (43), hyperoxia (56), endurance 

training (17, 30, 48), is correlated with indices of aerobic performance (16, 37, 43), and is 

unaffected by creatine supplementation (39) or glycogen depletion (40).   W` is determined, in 

part, by intramuscular energy stores of phosphate, glycogen, and oxygen (39, 40, 42) as well as 

by accumulation of fatigue-inducing metabolites (12, 35).  This parameter is altered with creatine 

supplementation (39), glycogen depletion (40), high intensity exercise training (29), and prior 

severe exercise (11, 12, 57), while it is unaffected by decreased inspired oxygen availability (43) 

and endurance training (17, 30, 48), supporting the conclusion that it is predominantly 

“anaerobic” in nature.  Together CP and W` define the power: time-to-exhaustion relationship 

and theoretically determine the highest sustainable exercise intensity, and demarcate the heavy-

severe exercise intensity domain boundary.  Above CP, continuous alterations in 

phosphocreatine [PCr], hydrogen ion [H
+
], and inorganic phosphate [Pi] occur, while oxygen 

uptake (VO2
·

) continually rises towards  VO2max
·

.  Below CP a general steady-state is achieved 
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(35, 47).  As a result, any exercise above CP will lead to exhaustion or a reduction in power to an 

intensity ≤ CP once W` has been utilized, according to the two-parameter hyperbolic model.   

Traditionally the determination of CP required a subject to visit the laboratory on 

multiple occasions with adequate recovery time between sessions (typically 24 hours).  In this 

protocol VO2peak
·

 is determined from an initial max test, which is then used to determine the 

intensities of the constant-load tests.  Each subject then completes multiple constant-load tests 

(typically 3-5) until exhaustion at peri-maximal power outputs.  This protocol is time consuming 

and troublesome for certain study designs (20).  For example, intervention studies where the 

subject’s CP is measured before and after an intervening factor requires a minimum of nine 

testing sessions per subject (2, 17, 23, 29, 38-41, 48).  The time consuming nature of this 

protocol limits the ability to test the effect of a variety of interventions on the power: time-to-

exhaustion relationship. 

Recently, Vanhatalo et al. (55) developed a single 3-minute all-out cycle ergometer test 

designed to utilize W`, so that the end-exercise power output would correspond to CP.  The 

author’s defined end-test power as the average power output over the final 30 seconds of the 3-

minute test, and the work performed above end-test power as the area under the power curve 

above end-test power.  Comparisons between end-test power and CP, as well as work above end-

test power and W` revealed no significant differences.  These results demonstrate that the 3-

minute cycling test can be used to determine both parameters of the power: time-to-exhaustion 

relationship. 

A similar paradigm to that of cycling has been developed for running (the velocity: time-

to-exhaustion relationship) where velocity and distance replace power and work, respectively 

(22, 28).  The two-parameter hyperbolic function with equations 1 and 2 can be adapted to 

running yielding a non-linear model (velocity-time): 

t = D` / (V – CV) (Equation 3)  

and linear model (1/time): 

V = (D`/ t) + CV (Equation 4)  

where V represents velocity, t represents time-to-exhaustion, CV represents critical velocity, and 

D` represents a finite distance that can be covered above CV.  As with CP and W` the 

determination of the velocity: time-to-fatigue parameters currently requires multiple visits from 

each subject to the laboratory to complete several constant-velocity runs to exhaustion on a 
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treadmill.  Thus, determining CV poses the same difficulties as does the traditional determination 

of CP.  The difficulties in determining CV could also be one reason why it is not widely used in 

the athletic arena.  A more applicable test may resolve these issues as has done for the 

determination of CP. 

Therefore, the purpose of the present study was to determine if a single all-out running 

test could be used to accurately determine CV and D`.  Specifically we tested the hypotheses that 

for a single 3-minute all-out running test: (1) the end-test velocity (EV) over the final 30 seconds 

would not differ significantly from CV determined with the traditional protocol; and (2) the 

distance above end-test velocity (DEV) would not differ significantly from D` determined with 

the traditional protocol. 
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Chapter 2 - Literature Review 

 Theory of the Power: Time-to-Exhaustion Relationship 

A.V. Hill first described a hyperbolic appearance between power output and the time-to-

exhaustion at that power output in the early 1900s (18, 19). The relationship witnessed by A.V. 

Hill was later quantified and measured in isolated muscle groups during static and dynamic 

contractions by Monod and Scherrer (42).  This landmark study was the first to quantify the 

relationship witnessed 40 years earlier and to reinforce the existence of a hyperbolic relationship 

between the power requirement and the time-to-exhaustion.  In this study, the authors were able 

to define two parameters determining muscle performance.  One parameter which they termed 

critical power was defined as a power output that could be maintained for long periods of time 

without fatigue.  The second parameter, Wlim (now referred to as W`), was defined as a finite 

amount of work that can be performed above critical power.  In this study it was suggested that 

critical power represented a “fatigueless” power output that could be maintained indefinitely, 

while duration was limited above critical power.  Moritani (43) expanded this idea to whole body 

exercise by demonstrating the power: time-to-exhaustion relationship holds true for cycling, in 

which exercise performance is defined by critical power and W`.  After the characterization of 

the power: time-to-exhaustion relationship for cycling, other modes of exercise were inventively 

studied with running (28), swimming (60), rowing (21), and knee extension exercise (35, 58) all 

demonstrating a hyperbolic relationship between their respective units (velocity or power)  and 

the time-to-exhaustion.   

Stemming from the asymptotic nature of these relationships as well as the suggestion of 

Monod & Scherrer (42), critical power theoretically is a power output that can be maintained 

indefinitely.  However, research has demonstrated that time-to-exhaustion while exercising at 

critical power is limited within a range of 20 – 60 minutes (3, 6, 25, 27, 32), speculatively due to 

substrate depletion, thermoregulation, and electrolyte imbalance (47).  Nevertheless, the 

importance of these parameters is demonstrated by their defining of the body’s physiological 

responses to exercise.  Critical power demarcates the boundary between the heavy and severe 

domains of exercise (47), in which exercise above critical power is limited by the magnitude of 

W`.    For this reason the power: time-to-exhaustion relationship is important within the research 

setting as well as the athletic arena. 
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 Determining the Power: Time-to-Exhaustion Relationship 

The power: time-to-exhaustion relationship is simple to determine in that physiological 

parameters are defined using a cycle ergometer and a stop watch.  Typical determination of the 

power: time-to-exhaustion relationship requires several constant power tests with the subject 

cycling until exhaustion each time.  A minimum of two of these tests may be used in conjunction 

with the linear 1/time model, however it is generally recommended that four to five tests are used 

to decrease the chance of error within the modeling (20). These constant power tests are designed 

to induce exhaustion between 2 – 15 minutes, with at least one test closer to two minutes and one 

closer to fifteen (47).  During these tests the power requirement is fixed and the time-to-

exhaustion is recorded from the initiation of the test until the subject can no longer maintain the 

power output.  The data from the rides are then fit with 1/time and power-time equations to 

determine critical power and W`.    

 Recently, Vanhatalo et al. (55) demonstrated that critical power and W` can be 

determined using a 3-minute all-out test on a cycle ergometer.  After the initial ramp protocol for 

the determination of peak oxygen uptake (VO2
·

peak), a single ride on the ergometer replaces the 

constant power rides.  Using a cycle ergometer in linear mode (where power is dependent upon 

pedal rate) the work rate is set to achieve 50% ∆ (halfway between gas exchange threshold and 

VO2
·

peak) at the subject’s preferred pedal cadence, and the subject maintains the fastest cadence 

possible throughout the 3 minutes.  Therefore, as high pedal rates are initially achieved the 

power output is also high (above critical power) and W` is utilized.  As W` is completely utilized 

energy can no longer be provided by these stores, and critical power becomes the highest power 

output that can subsequently be maintained.  In this study the average power output over the final 

30 seconds (287 W) was equivalent to critical power (287 W) and the work completed above this 

power output (15.0 kJ) was equivalent to W` (16.0 kJ; Figure 2 in (55).  With this protocol the 

parameters of the power: time-to-exhaustion relationship can be determined with two tests (ramp 

test and 3-minute test) instead of the four to five more conventionally used tests. 

 

 Modeling the Power: Time-to-Exhaustion Relationship 

Several mathematical models have been utilized to describe the data acquired from the 

constant power rides in order to define the parameters of the power: time-to-exhaustion 
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relationship.  These mathematical models include a two-parameter hyperbolic model with a 

linear (61) and non-linear function (42), a three-parameter hyperbolic function (44), and an 

exponential model (24).  The most abundantly used model in the literature is the two-parameter 

hyperbolic function.  This can be expressed as a non-linear power-time function: 

 t = W` / (P - CP) (Equation 5)  

where t is time-to-exhaustion, W` is the finite work capacity, P is power, and CP is critical 

power.  In this model the power asymptote represents critical power while the curvature constant 

represents W`.  This function can be also linearized into the 1/time function: 

P = (W`/ t) + CP (Equation 6)  

where W` is now represented by the slope of the line and critical power as the y-intercept.   

Although the power-time and 1/time models both are derived from the two-parameter 

hyperbolic model, differences between the parameter estimates have been reported in the 

literature (7, 16, 26).  These differences occur despite both models being fit to the same data.  

One reason for the discrepancy is thought to lie in incorrectly assigning the independent and 

dependent variables within the 1/time model (16).  In this model, power is assigned as the 

dependent variable and 1/time as the independent variable; thus the least squares analysis adjusts 

the error in power during linear regression.  However, for the constant power tests power is held 

constant and the error lies within the measurement of time.  In the power-time model, power is 

correctly assigned as the independent variable and time as the dependent, so that the least squares 

analysis correctly accounts for the error in time.  It has also been demonstrated that when the 

correlation coefficient is above 0.94, switching the variables for the 1/time model has no 

significant difference in the parameter outcomes (48). 

 

 Mechanisms Determining the Power: Time-to-Exhaustion Relationship 

In 1988 Poole et al. (47) studied the physiological responses to exercise spanning critical 

power.  In this study the authors used five constant power rides to determine critical power and 

W` with the power-time (Equation 1) and 1/time (Equation 2) models.  In addition, the subjects 

performed two additional exercise tests, cycling at critical power and 5% above critical power.  

While cycling at critical power, blood lactate concentration, bicarbonate concentration, and VO2
·

 

achieved steady-state values after their initial deviation from resting values, and all of the 
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subjects completed the allotted 24 minutes.  However, cycling at 5% above critical power 

yielded substantially different results with blood lactate concentration, bicarbonate 

concentration, and VO2
·

 continually changing throughout the test and exhaustion ensuing at 17.7 

minutes on average.  The concentration of blood lactate at the end of this test was twofold higher 

than that of the ride at critical power and the peak VO2
·

 achieved was not different from the 

VO2peak
·

 determined from the ramp test.   

The use of 
31

P-MRS technology has allowed researchers to non-invasively examine the 

physiological changes that take place within the muscle during exercise.  Jones et al. (35) used 

this technique to examine the muscle’s metabolic response during knee extension exercise ~10% 

above and below critical power.  Consistent with previous work, all subjects in this experiment 

were able to maintain the exercise for the allotted 20 minutes while exercising below critical 

power, with all of the subjects exhausting prior to the 20 minutes (mean 14.7 ± 7.1 minutes) 

above critical power.  Importantly, the 
31

P-MRS technique allowed the researchers to measure 

intramuscular metabolites such as inorganic phosphate (Pi), creatine phosphate (PCr), and pH 

before, during, and after exercise.  With exercise below critical power, Pi rose to a steady-state 

level after one minute with no further increase for the rest of the 20 minutes.  Initially PCr fell at 

the onset of exercise, to stabilize at 75% of the baseline value within approximately three 

minutes with no further change for the duration of the test.  Intramuscular pH fell at the 

beginning, but recovered during the exercise with no difference between the final pH and the 

beginning pH.  At just 10% above critical power the intramuscular responses were significantly 

different.  Pi achieved a maximal concentration after three minutes, with the end concentration 

significantly higher than that seen for the below critical power exercise.  PCr never stabilized 

during the test with a continued fall until exhaustion ensued reaching 26% of baseline values and 

muscle pH fell precipitously to an average of 6.9 compared to 7.1 below critical power.   

The results from these two studies demonstrate that critical power represents the 

boundary between the heavy and severe intensity domains of exercise. This boundary presents 

the highest intensity in which steady-state levels can be achieved and exercise can be maintained.  

Above this threshold VO2
·

 will continually increase until the attainment of VO2max
·

 after which 

exhaustion will soon follow.  In addition, PCr and pH will fall while Pi accumulates until 

exhaustion ensues.  Vanhatalo et al. (56)  demonstrated that Pi, PCr, and pH achieve similar 
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concentrations when exhaustion occurs over a range of work rates, pointing to the accumulation 

of fatigue inducing metabolites as determining the magnitude of W`. 

Creatine monohydrate supplementation has been shown to increase intramuscular PCr 

stores and enhance high-intensity exercise, allowing Miura et al. (39) to use this intervention to 

examine the physiological basis of W`.  The power: time-to-exhaustion relationship was 

characterized in each subject before and after supplementation with either 20g of creatine 

monohydrate or placebo for five days.  Critical power was found to be unaltered following 

creatine supplementation (214 W vs. 207 W) while W` was significantly increased (10.9 kJ vs. 

13.7 kJ).  In another study by Smith et al. (53) similar results were found with creatine 

supplementation as W` was increased and critical power was unaffected. 

In further examining the physiological basis of the power: time-to-exhaustion 

relationship, Miura et al. (40) used glycogen depletion to manipulate intramuscular glycogen 

stores.  Glycogen depletion was achieved by cycling for 75 minutes at 60% VO2max
·

 followed by 

~eight one minute bouts of cycling at 115% VO2max
·

 the night prior to the constant power rides. 

No significant difference was found between critical power for the two glycogen states (197 W 

vs. 190 W), but W` was significantly lower following glycogen depletion (12.83 kJ vs. 10.33 kJ).  

These studies suggest that W` is determined in part by anaerobic energy stores within the 

muscle.  Above critical power, energy stores within the muscle must be utilized to provide the 

necessary energy for the power output.  Therefore, increasing intramuscular PCr concentration 

allows for more energy to be utilized from these stores and thus a larger amount of work can be 

performed prior to exhaustion.  Decreasing glycogen stores has the opposite effect, as less energy 

is available for use and W` is lowered. 

Altering the inspired oxygen content provides a way for researchers to examine how 

oxygen availability affects the two parameters of the power: time-to-exhaustion relationship.  

Originally, Moritani (43) found that critical power decreased in the presence of a lower oxygen 

concentration while leaving W` unaltered.  Recently, Vanhatalo et al. (56) found that critical 

power increased (16.1 W vs. 18.0 W) and W` decreased (1.92 kJ vs. 1.48 kJ) during hyperoxia 

for knee extension exercise.  In this study PCr and pH values at fatigue under normoxic and 

hyperoxic conditions were not significantly different.   
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Several key findings emerged from these two studies.  First, hypoxia only has a 

deleterious effect on critical power, while hyperoxia has a beneficial effect on critical power and 

a deleterious effect on W`.  These two studies together demonstrate the aerobic nature of critical 

power as this parameter is sensitive to the inspired oxygen.  The finding that PCr and pH 

achieved the same levels at exhaustion under both conditions supports the notion that W` 

represents a critical level for these metabolites, and that fatigue occurs with the attainment of 

these levels. 

Accumulating levels of hydrogen ions have been demonstrated to induce fatigue within 

the muscle (13).  To study the effects of acidosis on critical power and W`, scientists have 

attempted to alter pH within the muscle using sodium bicarbonate (NaHCO3).  It was 

hypothesized that ingestion of NaHCO3 would allow for more work to be completed during the 

3-minute all-out test due to an increase in W`.  Following ingestion of 0.3 g·kg
-1

 NaHCO3 critical 

power and W` were both unaffected. 

The finding that both parameters of the power: time-to-exhaustion relationship were 

unaltered by NaHCO3 ingestion suggests pH does not play a major role in determining either 

parameter.  This finding suggests the factors inducing fatigue as W` is utilized might be PCr 

and/or Pi, as Pi has been shown to induce fatigue within the muscle by competitively inhibiting 

calcium at its binding site on troponin (1, 13).  However, it was noted by the authors that the 

decrease in pH could have been isolated to the blood and might not have made it into the muscle 

as it this was not directly assessed.  If no alkalosis occurred within the muscle this could explain 

why no alterations in critical power and W` occurred (58).  Therefore hydrogen ions cannot be 

ruled out as a determinant of W`. 

Exercise training permits specific energy systems to be isolated in order to examine how 

they contribute to the power: time-to-exhaustion relationship.  Jenkins and Quigley (29) used 

prior sprint exercise training (exhaustion induced ~ 60 seconds) and found that critical power 

was unaffected (234 W vs. 242 W) while W` was significantly increased (13.4 kJ vs. 20.0 kJ) 

which supported previous findings from the same authors (31).  In another study by Jenkins and 

Quigley (30), aerobic training at critical power increased critical power (196 W vs. 255 W) 

without changing W` (19.9 kJ vs. 14.7 kJ) (N.B. authors had poor statistical power with which to 

assess this difference).  Gaesser et al. (17) utilized two separate training protocols, with one 

group performing interval training at 100% VO2max
·

 and another group exercising at 50% VO2max
·

.  
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Both groups increased critical power with no difference between the groups, while W` was 

unaffected by both types of training.  Recently, the effects of respiratory muscle training have 

been examined to see if respiratory muscle fatigue contributes to the power: time-to-exhaustion 

relationship (33).  It was found that inspiratory muscle training had no effect on critical power 

(264 W vs. 263 W) but significantly increased W` (24.8 kJ vs. 29.0 kJ).   

Prior exercise provides another method of manipulating physiological responses to 

determine how the parameters are affected.  Miura et al. (41) used prior heavy (below critical 

power) exercise to alter the power: time-to-exhaustion relationship.  Six minutes of prior exercise 

at 50% ∆ (halfway between gas exchange threshold and critical power) increased critical power 

(169 W vs. 177 W) while W` was unaltered (11.0 kJ vs. 11.0 kJ).  Ferguson et al. (12) examined 

prior severe (above critical power) exercise and found a decrease in W` (16.1 kJ vs. 10.6 kJ) 

while critical power was unaltered (241 W vs. 242 W).  Vanhatalo et al. (57) used prior sprint 

exercise and found that critical power was unaffected, but W` was significantly lower.  The 

increase in critical power following prior heavy exercise was attributed to an increased aerobic 

component speculated to occur as a result of increased blood flow to the exercising muscles (41).  

The lowering of W` with prior sprint exercise was attributed to a reduction in the intramuscular 

PCr concentration available for energy production.  Thus, severe intensity exercise alters W` 

while leaving the critical power unaltered, while heavy exercise enhances critical power with no 

effect on W`. 

Pedal frequency has been demonstrated to alter the power: time-to-exhaustion 

relationship, with critical power at 100 rpm significantly lower than critical power at 60 rpm (8, 

23). Using this, Barker et al. (2) determined critical power and W` at 100 rpm and 60 rpm.  In 

addition an eight minute ride at each pedal-rate-specific critical power was utilized to determine 

the oxygen cost for both.  Critical power was lower for 100 rpm than 60 rpm as a work rate while 

W` was unaffected by pedal rate.  However, the VO2
·

  at critical power was not different between 

the pedal frequencies.  This study suggests that critical power is a metabolic rate as it occurred at 

the same VO2
·

 despite different work rates. 
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 The Velocity: Time-to-Exhaustion Relationship 

The majority of the research in the literature and therefore presented in this study was 

collected using the power: time-to-exhaustion relationship.  However, the findings regarding the 

power: time-to-exhaustion relationship translates well to the velocity: time-to-exhaustion 

relationship (22).  Hughson et al. (28) first demonstrated that the hyperbolic relationship applies 

to running, with velocity replacing power and distance replacing work.  This relationship is 

determined in much the same manner as the power: time-to-exhaustion relationship (27, 28, 46).  

Typically, an initial protocol is completed to determine VO2
·

peak as well as the velocity at VO2
·

peak 

(Vpeak).  Vpeak is then used to calculate velocities spanning ~90 – 120% Vpeak at which the 

constant velocity runs take place.  The subject completes four to six of these constant velocity 

runs and the data is then fit with the 1/time and velocity-time models for the determination of 

critical velocity and D`.   

The velocity: time-to-exhaustion relationship is modeled in the same manner as the 

power: time-to-exhaustion relationship.  The hyperbolic function between velocity and time-to-

exhaustion yields the non-linear model: 

t = D` / (V – CV) (Equation 7)  

and linear model: 

V = (D`/ t) + CV (Equation 8)  

where V is velocity, t is time-to-exhaustion, CV is critical velocity, and D` represents a finite 

distance that can be covered above CV.  In this relationship critical velocity represents a velocity 

that can be maintained for long periods of time and D` represents the distance that can be 

covered above critical velocity.  Distance is used in place of work due to the difficult nature of 

determining the work of running. 

 

 Significance of the Power/Velocity: Time-to-Exhaustion Relationship 

The power/velocity: time-to-exhaustion relationship can be used to determine the fastest 

time within which a person can run a given distance.  In theory, at this determined speed the D` 

would be fully exhausted upon crossing the finish line allowing for the maximum contribution of 

energy stores determining D` and critical velocity.  Mathematical modeling has suggested that 

running at this predetermined velocity would produce the fastest possible time for that subject 



12 

 

and deviating from this speed at any point will produce slower times (15).  In this regard, critical 

velocity and D` have significant implications on how a person will fare in a race. 

Critical power and velocity have also been compared with other measures of sustainable 

performance such as the maximal lactate steady-state (MLSS).  MLSS is the highest intensity for 

which blood lactate concentration is able to achieve a steady-state (4, 5).  The definitions of 

critical power and MLSS would imply that both measurements represent the same intensity, 

however critical power has been demonstrated to occur at slightly but significantly higher power 

outputs than MLSS (10, 50).  With critical velocity the results differ in that no difference 

between critical velocity and the velocity at MLSS has been found (52).  Therefore it is 

inconclusive as to whether MLSS and critical power/velocity represent the same intensity of 

exercise which determine the maximal rate of sustainable performance. 

 

 Limitations of the Power/Velocity: Time-to-Exhaustion Relationship 

The power: time-to-exhaustion relationship has some limitations and assumptions.  

Several assumptions are made when describing the relationship with a two-parameter hyperbolic 

model.  Specifically, the relationship suggests that there is an infinite amount of power that can 

be produced as time approaches zero.  This is not possible as eventually the muscles will not be 

able to generate enough force to move the pedals.  At the other end of the relationship, the 

hyperbolic model suggests that time-to-exhaustion is unlimited at power outputs equivalent to 

critical power.  These assumptions are also present in the velocity: time-to-exhaustion 

relationship.  The model suggests that there is a velocity that can be maintained indefinitely as 

well as an infinite velocity that can be achieved momentarily.  However, as previously 

mentioned this is not the case as time-to-exhaustion is limited to within an approximate range of 

16 – 60 minutes at critical power/velocity.  In addition to the modeling assumptions, the 

determination of critical power/velocity is dependent upon the effort put forth by the subject.  All 

of the tests are performed to exhaustion and thus are dependent upon the subject putting out 

maximal effort each time.  Therefore, if a subject retires from a test prior to reaching true 

exhaustion it will alter the resulting values of critical power/velocity and W/D`.  If these 

limitations are taken into account, accuracy can be increased in the parameter estimates. 
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Another limitation with determining these relationships is the number of tests they 

require.  Requiring multiple testing sessions to determine the power/velocity: time-to-exhaustion 

relationship is time consuming for intervention studies in which the relationship must be 

determined under separate conditions, requiring a minimum of nine testing sessions per subject 

(2, 17, 23, 29, 38-41, 48).  In addition, the need for multiple visits to the lab makes the test 

unpractical for use either in the athletic or clinical setting.  This issue has been resolved for the 

power: time-to-exhaustion relationship as the single 3-minute all-out cycle test can be used to 

determine critical power and W`.  A similar time-saving approach to determine critical velocity 

has not been explored.  As a result, the practical use of the velocity: time-to-exhaustion 

relationship in a variety of settings is limited.  Therefore, we were interested in determining if a 

single test can be utilized to determine the parameters of the velocity: time-to-exhaustion 

relationship. 



14 

 

Chapter 3 - Methods 

Subjects 

Eleven healthy subjects (6 men & 5 women, mean ± SD; age 24.9 ± 3.1 years, body mass 

68.4 ± 11.9 kg, height 173.3 ± 9.8 cm) volunteered to participate in this study and provided 

written informed consent.  The study was approved by the Institutional Review Board of Kansas 

State University, Manhattan, KS.  Prior to testing, subjects were informed of the overall protocol, 

along with the potential risks and benefits involved.  Subjects were instructed to abstain from 

vigorous activity for 24 hours prior to testing and not to consume caffeine three hours prior to 

testing. Each subject reported to the Human Exercise Physiology Laboratory a minimum of six 

times with at least 24 hours between testing sessions.  The data for one subject was unusable due 

to missing data during the 3-minute field test.  As a result a final number of ten subjects were 

used for data analysis. Within these ten subjects eight completed an additional three tests to 

establish the reproducibility of the 3-minute running protocol and define a 95% confidence 

interval around the 1/time model CV.      

Calibration 

Prior to testing, the treadmill (Quinton Brute Q55XT Sport, Bothell, WA, USA) was 

calibrated across the expected velocities for the running sessions.  Pulmonary gas exchange  

(VO2
·

, expired carbon dioxide (VCO2
·

), and ventilation (VE
·

)) were measured breath-by-breath 

during the incremental test, VO2max
·

 validation test, and the runs at +/- 95% confidence interval 

CV using a metabolic measurement system (Cardio2, Medical Graphics Corp., St. Paul, 

MN,USA).  Prior to each testing session, the system was calibrated using gases of known 

concentration spanning the expected range of expired gases.  The volume signal was calibrated 

with a syringe of known volume (3.0 l). 

Incremental Test to Volitional Exhaustion 

The incremental protocol used for the determination of maximal oxygen consumption 

(VO2max
·

) and the velocity at VO2max
·

 (Vpeak) was adapted from Smith & Jones (52).  The protocol 

began with an initial velocity of 8 – 10 km·h
-1

 (depending upon the reported level of fitness from 

the subject) at a fixed incline of 1%.  The velocity was increased by 0.5 km·h
-1

 every three 
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minutes until the subject achieved 95% estimated maximal heart rate (220 – age).  At this point, 

the velocity was reduced by 1 km·h
-1

 and the treadmill grade was increased 1% every 60 seconds 

until volitional exhaustion.  Oxygen consumption (VO2
·

) and velocity were averaged over the 

final minute of each three minute stage leading up to 95% maximal heart rate.  Velocity was 

plotted against VO2
·

 and linearly extrapolated to Vpeak at the subject’s VO2max
·

.  Validation of 

VO2max
·

 was accomplished during a subsequent 110% Vpeak critical velocity run.  VO2max
·

 was 

considered valid if the highest VO2
·

 obtained on the secondary test was less than 0.2 L greater 

than that on the incremental max test (49, 51).  If a difference was observed (occurred 3 times 

within this study), a second validation test was completed at ~ 120% and Vpeak was adjusted 

accordingly.  

Traditional Determination of the Velocity: Time-to-Exhaustion Relationship 

For the determination of CV, each subject completed at least four randomly ordered 

constant velocity runs to exhaustion typically spanning 80 – 120% Vpeak designed to induce 

exhaustion within 2 – 15 minutes   These runs took place on a treadmill set at a grade of 1%, 

previously demonstrated to most accurately reflect outdoor running (34).  Subjects initiated each 

testing session with a warm-up at a velocity of 5 km·h
-1

 for 5 minutes.  After this warm-up, the 

subject straddled the treadmill belt as it was brought up to the correct velocity.  At that time, the 

subjects used a handrail to lower themselves onto the moving belt.  The elapsed time of each test 

was recorded to the nearest second from when the subject stepped onto the treadmill belt until 

the time when the subject grasped the handrail, signaling exhaustion.  Throughout these tests, 

investigators provided strong verbal encouragement to minimize exercise termination prior to 

exhaustion.  The resulting time-to-exhaustion data was then fit to the two-parameter hyperbolic 

model using both the velocity-time and 1/time functions (Equation 3 & 4) to determine CV & 

D`. 

Validation of Critical Velocity Measurement 

Using the 1/time model, a 95% confidence interval was constructed around each subject’s 

CV.  Subjects then completed one run each at the (+) and (-) 95% confidence interval velocity 

with the same protocol as for the previous constant velocity tests.  The subjects ran to exhaustion 

or 15 minutes (when the test was terminated).  Intensities just above and below CP have 
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previously been determined with the use of a 95% confidence interval in conjunction with the 

linear model (35).  If the elicited VO2
·

 response achieves steady-state below CV, but continually 

rises above CV, these responses imply the boundary between the heavy and severe domains is 

within this interval, and that CV thus lies somewhere between these two intensities.  The 95% 

confidence interval provides a narrow range of velocities for these two runs, thus allowing for 

more confidence to be placed in the CV measurement. 

Single Test for the Determination of the Velocity: Time-to-Exhaustion Relationship 

For the 3-minute test, subjects began by warming-up on a track with light jogging and 

walking at velocities that would not begin to utilize D` (below CV).  The test was initiated from 

a stationary position and the subjects were instructed to maintain maximal effort throughout the 

entire test even though velocity would decline after achieving initial peak values.  Strong verbal 

encouragement was provided throughout the test to prevent pacing.  The end-test velocity (EV) 

was determined using the average velocity over the last 30 seconds of the 3-minute run, while 

the accumulative distance above end-test velocity (DEV) was determined from the area under the 

velocity curve above EV (see below).  Eight subjects completed a second 3-minute test to 

determine the reproducibility of the protocol.  Inherent within the velocity-time relationship, the 

utilization or accumulation of too much D` is not possible (i.e. a subject cannot cover too much 

distance), however the utilization of less than maximal D` is possible as a result of pacing; 

therefore, the test with the largest DEV was used for data analysis. The subject’s velocity during 

all tests was recorded second-by-second using an accelerometer positioned on the right foot 

(RS800CX, Polar Electro Inc., NY, USA).  The accelerometer was calibrated for each subject to 

the manufacturer’s specifications using the data from the constant-velocity runs on the treadmill. 

Data Analysis 

The breath-by-breath data collected during the incremental VO2max
·

 test was first 

converted into 15 second intervals and time-aligned to the start of incremental exercise for data 

analysis.  VO2max
·

 was defined as the highest 15 second value from the incremental test and was 

validated as previously mentioned. The breath-by-breath data were then converted into 30 

second averages and used in the plot of velocity vs. VO2
·

 for determination of Vpeak.  The data 

from the constant velocity runs was analyzed using the velocity-time model (Equation 3) and the 
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1/time model (Equation 4) for the determination of CV and D`.  Heart rate was monitored beat-

by-beat during all tests with a heart rate monitor (RS800CX, Polar Electro Inc., NY, USA).   

Statistical Analyses 

Comparisons of parameters among the velocity-time model, 1/time model, and 3-minute 

test were made using a one-way ANOVA with repeated measures with Tukey’s post-hoc 

analysis.  Parameter comparisons between the first and second 3-minute test, as well as the 

comparison of the above and below CV runs, were made using paired t-tests.  Pearson product 

moment correlations were used to examine test-retest reliability for the two 3-minute tests, as 

well as the relationships among the three models (velocity-time, 1/time, and 3-minute).  

Statistical significance was accepted at a level of P < 0.05 and the results are presented as mean 

± SD.  
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Chapter 4 - Results 

Incremental Ramp Test 

Individual data for VO2max
·

 and Vpeak from the incremental ramp test are presented in 

Table 1, with group mean values of 3.30 ± 0.70 l·min
-1 

and 15.0 ± 2.2 km·h
-1

, respectively. 

Velocity: Time-to-Exhaustion Relationship 

The time-to-exhaustion during constant velocity runs typically ranged between 170 – 890 

seconds.  The parameters determined using the 1/time and velocity-time models from these four 

runs are presented in Table 2.  A good linear fit was displayed for all subjects, with an average r
2 

= 0.96 ± 0.02.  Statistical significances were detected between the velocity-time and 1/time 

models when comparing CV (P < 0.05) and D` (P < 0.05).  The 1/time and velocity-time models 

for the average CV represented 85.3 ± 8.1% and 81.7 ± 7.7% Vpeak, respectively.  Figure 1 

demonstrates the use of these two models for an individual subject in determining CV and D`. 

3-minute Test 

The individual and group mean data for the 3-minute tests are presented in Table 2, while 

Figure 2 depicts a representative 3-minute test.  In the eight of the ten subjects in whom two 3-

minute tests were conducted, no significant difference was observed between the two tests for a 

group mean for either EV (13.8 km·h
-1

 and 13.6 km·h
-1

; P = 0.634) or DEV (126 m and 126 m), 

while the reliability coefficient was 0.85 for EV and 0.32 for DEV (Figure 3).  Thus EV 

demonstrated high reproducibility for the 3-minute test.  With no significant difference detected 

between the two 3-minute tests, the data from the two subjects who only completed one 3-mintue 

test were included for subsequent analysis.  The average 3-minute EV was not significantly 

different from the 1/time model CV, but was significantly higher than the velocity-time model 

CV (P = 0.002).  The EV was on average 87.4 ± 10.2% Vpeak.  There was no significant 

difference between the DEV and the 1/time model D`; however, DEV was significantly smaller 

than the velocity-time model D` (P = 0.002).  Relationships among the parameters of the three 

models are presented in Figure 4 and Figure 5.  There was a significant inverse relationship (r
2
 = 

-0.30; P = 0.002) between CV and D` as well as EV and DEV for all three methods of parameter 

estimation (Figure 6). 
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Run Above and Run Below CV 

Figure 7 and Figure 8 depict a representative subject’s VO2
·

 data and the group mean VO2
·

 

data for the runs above and below CV, respectively.  All runs took place at intensities, on 

average, 8.8 ± 3.1% above and below CV (i.e. mean velocities of 13.9 and 11.7 km∙h
-1

, 

respectively).  Subjects achieved a significantly higher VO2
·

 for the run above CV (3.3 ± 0.6 

l·min
-1

) compared to the run below CV (2.8 ± 0.6 l·min
-1

; P < 0.05).  The run above CV resulted 

in a significantly higher percentage of VO2max
·

 being attained (95.2% ± 4.0) than the run below 

CV (84.5% ± 3.5; P < 0.05), however the VO2
·

 obtained in the run above CV was significantly 

lower than VO2max
·

 (P = 0.017).  During the run above CV, no subject was able to complete 15 

minutes of running, with an average time to exhaustion of 643 ± 213 s.  However, during the run 

below CV every subject was able to complete 15 minutes of running, leading to a significantly 

longer duration for this test (P = 0.011).  Throughout the run below CV, VO2
·

 was not different 

from 180 s to 900 s, indicating thatVO2
·

 was able to attain steady-state while VO2
·

 did not achieve 

steady-state for the run above CV as seen by the significant difference in VO2
·

 between 180 s to 

the termination of exercise (P = 0.01) (Figure 8). 
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Chapter 5 - Discussion 

To our knowledge this is the first study to utilize a single exercise test for the 

determination of the velocity: time-to-exhaustion relationship parameters.  The major finding of 

the present study, consistent with our first hypothesis is that the 3-minute all-out running test is 

accurate in determining CV.  However, inconsistent with our second hypothesis, the 3-minute 

all-out running test DEV underestimated D`.   

CV is the running equivalent to CP, therefore physiological information regarding CP 

may be applied to the CV relationship as well.  CP and CV both occur around 80 – 89% VO2peak
·

 

in the general population (3, 10, 47, 52) and the time to exhaustion at CP/CV ranges between 16 

– 60 minutes depending upon the mathematical model used (3, 6, 7, 9, 25, 32, 37). This duration 

is in disagreement with the implication of the hyperbolic asymptote of the velocity: time-to-

exhaustion theory, which states that CV can be maintained for an indefinite period of time 

without fatigue.  Nevertheless, the velocity: time-to-exhaustion relationship is a major 

determinant and predictor of endurance performance (14, 15, 25), as it defines the body’s 

maximum ability to achieve steady-state for VO2
·

, pH, Pi, and PCr.  In support of this, CV has 

been shown to occur in proximity to maximal lactate steady-state (MLSS) (52).  Thus, CV and 

MLSS represent a threshold above which exercise duration is severely limited and can be 

predicted based upon the CV and D` parameters.  The 3-minute running test, in theory, should 

allow for easier determination of CV.  In the present study the 3-minute all-out running test EV 

was equivalent to the 1/time model CV, but it overestimated the velocity-time model CV (Table 

2; Figure 4).  Importantly, each subject completed runs at +/- the 95% confidence interval around 

CV.  The fact that steady-state VO2
·

 was achieved and every subject completed 15 minutes of 

exercise below CV, while steady-state was not achieved and exercise duration was markedly 

limited above CV (Figure 8) validates that  CV lay within this confidence interval, as it 

represents the threshold above which steady-state for VO2
·

 is no longer attainable (47).  

Importantly, the 3-minute all-out running test EV as well as the velocity-time CV both fell within 

this 95% confidence interval, suggesting any physiologically relevant difference among the 

estimates may be minimal despite the statistical difference (Figure 9). 
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Consistent with previous reports (30, 54, 56), in the present study CV and D` 

demonstrated an inverse relationship (Figure 6), i.e., subjects with a high CV had, on average, a 

low D` and subjects with a low CV on average had a high D`.  This relationship held true 

irrespective of the model or mode used to determine the parameters (1/time model, velocity-time 

model, and 3-minute test).  The mechanistic underpinning of the inverse relationship remains to 

be identified. 

The use of 
31

P-MRS technology has allowed researchers to examine the intramuscular 

physiological changes that occur with knee-extension exercise above and below CP.  Below CP 

steady-state levels of PCr, Pi, pH can be achieved in the muscle, while continuous changes occur 

above CP until exhaustion (35).   Building upon this, Vanhatalo et al. (56) demonstrated that for 

exercise at different work rates in the severe domain, at exhaustion PCr, pH, and Pi achieved 

similar concentrations despite occurring at different work rates.  These findings suggest that a 

critical concentration might exist for these compounds which reflect the utilization of W` (and 

presumably D`).  In contrast, Ferguson et al. (11) have recently shown that following exhaustive 

exercise, VO2
·

  recovered prior to W` restoration, while arterial lactate was still elevated after W` 

restoration.  The authors interpreted this finding as suggesting that W` is not solely determined 

by PCr stores, arterial lactate, or a depletable finite energy store in isolation.   

Previous investigations examining the 3-minute all-out critical power test found a 

progressive decrease in muscle activation throughout the test (59).  Specifically, at the initial 

high power outputs, presumably all available motor units would be recruited, but as type II fibers 

fatigued, muscle activation declined throughout as measured by electromyogram.  However, VO2
·

 

remained elevated providing a “slow-component like” response (59).  A similar response would 

be expected to occur in the present study with the 3-minute sprint on the track, i.e., the initial 

velocity would recruit all available motor units, but as type II fibers fatigued, muscle activation 

would be predicted to decrease in parallel with the decline in velocity. 

According to the velocity: time-to-exhaustion model, D` is utilized at intensities greater 

than CV until that velocity is no longer sustainable.  The duration that this exercise can be 

maintained is dependent upon the magnitude of D`, which is determined by available energy 

stores and their depletion (35, 42, 43), as well as the accumulation of fatigue-inducing 

metabolites (11, 35).  In accordance with this, the 3-minute test should deplete these stores and 
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accumulate the metabolites, and the distance required to do so should be equivalent to D`.  

However, in the present study DEV underestimated D` from both models by 31.4 and 47.0%, 

despite only being significantly different from the velocity-time model (Table 2; Figure 5).  DEV 

also exhibited higher intrasubject variability than EV when the test was repeated a second time, 

despite no difference in the group mean value.  A possible explanation for this discrepancy 

between DEV and D` may lie in the difference between the treadmill and the track.  With 

propulsion forward on the track, air resistance is present, producing a higher metabolic demand 

as opposed to running on a treadmill.  However, a 1% grade on the treadmill was utilized to 

address this issue (34).  Running on the track, the subject will also encounter turns which may 

have altered the subject’s velocity.  However, close analysis of the accelerometer data does not 

support this, as velocity was well maintained through the turns.  Motivation may have altered the 

DEV measure as the 3-minute running test is dependent upon the maximal sustained effort put 

forth by the subject.  If the subject does not maintain maximal effort throughout the test this 

would result in an underestimation of DEV compared to D`, as was seen in the current study.  

Irrespective of the cause, it appears that the subjects did not utilize D` in its entirety which led to 

a lower DEV than predicted.  A similar finding has been observed for cycle ergometry, where 

W` during the 3-minute all-out test underestimates W` from the traditional approach (55).  

Further research is needed to investigate this discrepancy between DEV and D`. 

The velocity-time and 1/time models used to calculate CV and D` in the present study 

differed significantly in the resulting parameter estimates by 3.9 and 22.8%, respectively, as 

previously reported in the literature (7, 16, 26).  The cause of this discrepancy between models is 

found in the effect on the variance of defining the independent and dependent variables.  For the 

velocity-time model the dependent and independent variables are correctly assigned as time and 

velocity, respectively (i.e., velocity was held constant).  In reversing this assignment for the 

1/time model, the least squares analysis adjusts the error in velocity instead of time.  The 

difference in defining the variables can result in different parameter values despite utilizing the 

same data.  However, it has also been demonstrated that if the correlation coefficient for the 

1/time model is greater than 0.94 (0.98 in present study) reversing the independent and 

dependent variables has no significant effect on the parameter estimates for that data set (48).  

Nonetheless differences between the models can still occur (16).  Even though differences have 

been reported, high between-model correlations suggest that the models are indeed measuring 
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the same parameters (16).  In the literature some studies have reported parameters for both 

models (2, 23, 35, 39-41, 45, 47, 48) while others report only the parameters determined using 

the 1/time model (6, 11, 12, 14, 50, 54, 55).  Using the 95% confidence interval in the current 

study allows for increased confidence that the “true” CV is within this range.  In fact, CV from 

both the velocity-time and 1/time models, as well as EV, fell within the 95% confidence interval. 

The availability of a single test for the determination of CV allows for a more practical 

use of CV.  Specifically, this methodology for intervention studies will reduce the number of 

testing sessions utilized, thus decreasing the time requirement for both subject and investigator.  

In addition to facilitating the use of CV in research settings, a single test presents a more 

practical test for the athletic arena.  Considering that all Olympic endurance events are won at 

intensities around CV (~ 85% VO2peak
·

) (36), a simple test for determining CV could be 

advantageous for an athlete or coach.  In theory, the exercise duration that can be maintained at a 

specific velocity can be determined using the equation [t=D`/ (V-CV)] or [t = DEV/ (V-EV)], 

however the underestimation of D` by DEV would lead to inaccurate prediction times.  For 

example using the group mean values, a subject would be predicted to run for 360 s with the 

1/time model, 380 s with the velocity-time model, and 272 s from the 3-minute test.  If this 

problem is resolved, in theory a runner’s best time can be determined for any given distance.   

This has been demonstrated with the use of modeling procedures to show that if any part of a 

race is run below the predicted velocity from the velocity: time-to-exhaustion relationship the 

time can never be recovered compared to running the entire race at that velocity (15). 

 Based on the findings of the current study, several compelling future research ideas have 

risen.  One such idea is to determine the cause for the underestimation of D` with the 3-minute 

test.  As mentioned previously, this would enhance the usefulness of the 3-minute running test.  

Another research avenue is to utilize the 3-minute running test in collegiate middle distance 

runners in order to determine if these parameters can, in practice, predict an athlete’s fastest time 

for a given distance.  Future studies might also examine the effect a specific intervention has on 

the parameters of the 3-minute running test. 

In summary, the EV determined from the 3-minute all-out running test was not 

significantly different from the 1/time model CV.  Despite the accurate determination of CV, D` 

was underestimated by DEV from this test.  The exact cause for this underestimation currently is 

not known and further research is needed to address this issue.  Use of the all-out exercise test on 
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the cycle ergometer developed by Vanhatalo et al. (55) thus can be extended to running for the 

determination of CV using a 3-minute all-out test.
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Table 1. Individual incremental ramp test data. 

Subject VO2peak
·

 VO2
·

 validation VO2max
·

 VO2max
·

 Vpeak 

 

(l·min
-1

) (l·min
-1

) (l·min
-1

) (ml·kg
-1

·min
-1

) (km·h
-1

) 

1 2.56 2.60 2.60 44.4 13.7 

2 2.71 2.90 2.90 51.2 16.3 

3 3.60 3.38 3.60 46.0 12.6 

4 3.71 3.64 3.71 48.6 15.9 

5 4.10 3.92 4.10 45.1 13.3 

6 4.39 4.49 4.49 61.0 20.3 

7 2.71 2.74 2.74 50.8 13.5 

8 3.57 3.41 3.57 48.5 15.4 

9 2.97 2.95 2.97 48.8 14.4 

10 2.30 2.35 2.35 38.2 14.3 

Mean 3.26 3.24 3.30 48.3 15.0 

SD 0.71 0.67 0.70 5.9 2.2 
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CV D` CV D` EV DEV 

Subject 1/time 1/time velocity-time velocity-time 3-min 3-min 

  (km·h
-1

) (meters) (km·h
-1

) (meters) (km·h
-1

) (meters) 

1 11.9 146 11.3 223 11.9 169 

2 13.1 221 12.7 282 13.1 142 

3 9.8 467 9.9 538 10.3 144 

4 12.9 183 12.6 237 12.7 138 

5 11.8 353 11.7 373 12.4 197 

6 18.6 84 17.8 183 19.2 80 

7 11.2 214 11.1 228 12.3 124 

8 12.9 200 12.5 256 13.6 127 

9 14.9 128 13.8 199 15.2 143 

10 10.8 205 9.7 329 9.5 248 

Mean 12.8* 220
+
 12.3 285 13.0

#
 151

# 

SD 2.5 112 2.4 106 2.7 45 

Table 2. Velocity-time parameters determined using the 1/time, velocity-time, and 3-minute 

models.  CV = critical velocity, D` = finite distance, EV = end-test velocity, DEV = distance 

above end-test velocity.  Significantly different from the velocity-time model at * P<0.05,              
#
 P=0.002, 

+
 P<0.001. 
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Figure 1. Critical velocity and D` estimation for a representative subject.   
A. Linear 1/time model.  CV determined from y-intercept and D` determined 

from slope. B.  Non-linear velocity-time model.  CV determined from vertical 

asymptote and D` determined from curvature constant.   
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Figure 2. A representative 3-minute test.  Second-by-second velocity data with 

the last 30 seconds being averaged as end-test velocity (EV) and the area under 

the curve representing the work (as distance) done above end-test velocity (DEV). 
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Figure 3.  Graphical comparison between the first and second 3-minute tests.  
A.  Individual and mean response for EV with a reliability coefficient = 0.85.  B.  

Individual and mean results for DEV with a reliability coefficient = 0.32.  No 

difference was found between the group mean EV or DEV between the two tests. 
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Figure 4. Correlations between CV and EV.  A. Velocity-time model CV vs. 

1/time model CV B. 3-minute end-test velocity (EV) vs. 1/time model CV.  C. 3-

minute EV vs. velocity-time model CV.  Line of identity shown as dashed line. 
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Figure 5. Correlations between W` and DEV.  A. Velocity-time D` vs. 1/time 

D`.  B. 3-min distance above end-test velocity (DEV) vs. 1/time D`.  C. 3-min 

DEV vs. velocity-time D`.  Line of identity shown as dashed line. 
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Figure 6. Inverse relationship between D` and CV or DEV and EV.  An 

inverse relationship exists independent of the model used to determine the 

parameters. (●) = 1/time model, (○) = velocity-time model, (▼) = 3-minute test 
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Figure 7.  Representative data for the +/- 95% confidence interval CV runs.  Subject ran 

for the entire 15 minutes during the run below critical velocity (CV) at16.9 km∙h
-1

, but could 

not complete 15 minutes for the run above CV at 20.4 km∙h
-1

.  Results were characteristic of 

the group. 
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Figure 8.  Group mean oxygen uptake response for +/- 95% confidence interval runs.  

* significantly greater than the corresponding VO2
·

 value at 180 seconds (P = 0.010). 

 
+
 significantly greater than end-exercise value for below CV run VO2

·
 (P < 0.001). 
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Figure 9. Group mean velocity during 3-minute test compared to traditional 

determinants of critical velocity (1/time & velocity-time) with the mean 95% confidence 

interval determined from the 1/time model.  Critical velocity (CV) for velocity-time model 

was significantly lower than 1/time model CV and 3-min end-test velocity (EV), P < 0.05.  

For standard deviation values refer to Table 2. 
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