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Introduction
Definition of discrete-time filters

Complex exponent signals are eigenfunctions of 
discrete-time linear time invariant systems, that 
is y(n)=H(ω)ejωn if x(n)=ejωn for n∈Z, H(ω) is 
called the frequency response.
A discrete-time filter is a discrete-time linear 
time invariant system characterized by its 
frequency response.
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Introduction
Types of discrete-time filters

Lowpass filters
Allow a low frequency band of a signal to pass 
through and attenuate a high frequency band
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Introduction
Types of discrete-time filters

Bandpass filters
Allow intermediate frequency bands of a signal to 
pass through and attenuate both low and high 
frequency bands
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Introduction
Types of discrete-time filters

Highpass filters
Allow a high frequency band of a signal to pass 
through and attenuate a low frequency band
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Introduction
Types of discrete-time filters

Band reject filters
Allow both low and high frequency bands of a signal 
to pass through and attenuate intermediate 
frequency bands
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Introduction
Types of discrete-time filters

Notch filters
Allow almost all frequency components to pass 
through but attenuate particular frequencies
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Introduction
Types of discrete-time filters

Oscillators
Allow particular frequency components to pass 
through and attenuate almost all frequency 
components
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Introduction
Types of discrete-time filters

Allpass filters
Allow all frequency components to pass through
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Introduction
Types of discrete-time filters

Finite impulse response (FIR) filters
The impulse response of the filters has finite time support.
Note that FIR filters are strictly bounded input bounded 
output stable.

Infinite impulse response (IIR) filters
The impulse response of the filters has infinite time 
support.
Note that rational IIR filters are particular types of IIR 
filters, but many IIR filters are irrational. For example, sinc
filter is irrational IIR filter. However, rational IIR filters are 
easy to implement.
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Introduction
Types of discrete-time filters

Linear phase filters
The phase response is linear.
Note that not all FIR filters are linear phase, but FIR 
filters can achieve linear phase easily.

Nonlinear phase filters
The phase response is nonlinear.
Note that not all IIR filters are nonlinear phase, but it 
is not easy to achieve good linear phase IIR filters.
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Introduction
Common discrete-time filters

Differentiators
H(ω)=jω for ω∈(-π,π) and 2π periodic.
Note that H(ω) is discontinuous at odd multiples of π.

Hilbert transformers
H(ω)=sign(ω) for ω∈(-π,π) and 2π periodic.
Note that H(ω) is discontinuous at integer multiples of 
π.
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Introduction
Applications of discrete-time filters

Lowpass and notch filters are widely used in 
noise reduction applications.
Hilbert transformers are widely used in single 
sideband modulation systems.
Differentiators are widely used in measurement 
systems.
Oscillators are widely used as sinusoidal signal 
generators.
etc…
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Introduction

passband stopband

|H(ej ω)|

1 + δp

1 - δp

δs

0 ωp ωs π
ω

transition 
band

|Hd(ej ω)|

Common filter design techniques
Notations:

|H(ejω)|:
magnitude response of a lowpass
discrete-time FIR filter

δp and δs:
maximum passband and stopband
ripple magnitudes

ωp and ωs:
passband and stopband frequencies

N: filter length
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Introduction
Common filter design techniques

Antisymmetric impulse response
For N is odd, h(k)=−h(N-1-k)

for k = 0,1,…,(N−3)/2 and h((N-1)/2)=0.

The frequency response is

H(ejω)=je-j(N-1)ω/2H0(ω)

For N is even, h(k)=−h(N-1-k)

for k = 0,1,…,N/2-1.

The frequency response is H(ejω)=je-j(N-1)ω/2H0(ω)
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Introduction
Common filter design techniques

Antisymmetric impulse response

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎟
⎠
⎞

⎜
⎝
⎛ −−

=

∑

∑
−

=

−

=

even is 
2

21sin][2

odd is 
2

21sin][2
)(

1
2

0

2
3

0

NkNkh

NkNkh
H N

k

N

k
o

ω

ω
ω

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≡

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

even is 

odd is 

)(

2
sin

2
1sin2

sin
2

1sin2

N

N

N

N

T

T

ωω

ωω
ω

LL

LL

η

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−

−

≡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

even is 
1

2
10

odd is 

2
310

NN

NN

hhh

hhh
T

T

L

L

x

( ) xη T
oH )()( ωω ≡⇒



21

Introduction
Common filter design techniques

Symmetric impulse response
For N is odd, h(k)=h(N-1-k)

for k = 0,1,…,(N−3)/2.

The frequency response is

H(ejω)=e-j(N-1)ω/2H0(ω)

For N is even, h(k)=h(N-1-k)

for k = 0,1,…,N/2-1.

The frequency response is H(ejω)=e-j(N-1)ω/2H0(ω)
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Introduction
Common filter design techniques

Symmetric impulse response
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Introduction
Common filter design techniques

Total Weighted Ripple Energy

J(x) :  total weighted ripple energy
Bp : {ω: |ω| ≤ ωp}, passband
Bs : {ω: ωs ≤ |ω| ≤ π}, stopband
W(ω) : weighted function, W(ω)>0
D(ω)  : desired magnitude response
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Introduction
Common filter design techniques

Maximum Ripple Magnitude

δ: the acceptable bound of the maximum ripple 
magnitude of filters
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Introduction
Common filter design techniques

Problem (P2) :

x*2 : optimal solution of problem (P2)
δ2 :   minimum value that
Fδ2:

min
x

pJ TT ++= xbQxxx
2
1)(

( ) 2
*
2 )()( δωω ≤− DT xη sp BB U∈∀ω

( ){ }sp
T BBD U∈∀≤− ωδωω ,)()(: 2xηx
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Introduction
Common filter design techniques

Problem (P∞) :

Subject to:
x*∞ : optimal solution of problem (P∞)
δ∞ :   minimum value that
Fδ∞ :

sp BB U∈∀≤+≡ ωωωω δδ 0cxAxg )()(),(

δ≡∞ )(xJmin
x

( ) sp
T BBD U∈∀≤− ∞∞ ωδωω )()( *xη

( ){ }sp
T BBD U∈∀≤− ∞ ωδωω ,)()(: xηx
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Introduction
Challenges in filter design

Although H2 approach minimizes the total ripple 
energy, maximum ripple magnitude may be very 
large.
Although H∞ approach minimizes the maximum 
ripple magnitude, total ripple energy may be very 
large.
How to tradeoff between the H2 approach and H∞
approach?
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Definition of peak constrained least square filter 
design
Computer numerical simulation results of peak 
constrained least square filter design
Open problems in peak constrained least 
square filter design
Properties of peak constrained least square 
filter design
Dual parameterization approach for solving  
peak constrained least square filter design 
problem

Filter Design via Semi-infinite 
Programming
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Filter Design via Semi-infinite 
Programming

Problem (P) :
min

x
pJ TT ++= xbQxxx

2
1)(

subject to sp BB U∈∀≤ ωωδ 0xg ),(

Definition of peak constrained least square 
filter design

x*δ: optimal solution of problem (P)

δ : the acceptable bound of the maximum ripple 
magnitude of filters

Fδ : ( ){ }sp
T BBD U∈∀≤− ωδωω ,)()(: xηx
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Computer numerical simulation results of 
peak constrained least square filter design

Filter Design via Semi-infinite 
Programming
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Open problems in peak constrained least 
square filter design

How to determine the specification for peak 
constrained least square filter design? In 
particular, how to determine the value of the 
acceptable maximum ripple magnitude?

Filter Design via Semi-infinite 
Programming
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Open problems in peak constrained least 
square filter design

ω is a continuous function, so for each frequency, 
say ω0, it corresponds to a single constraint. In 
fact, a continuous function consists of infinite 
number of discrete frequencies, so the problem is 
actually an infinite constrained optimization 
problem.
How to guarantee that these infinite number of 
constraints are satisfied?

Filter Design via Semi-infinite 
Programming
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Filter Design via Semi-infinite 
Programming

Properties of peak constrained least square 
filter design

Definition of convex set
If x1 and x2 are in S, then λx1+(1−λ)x2 also belongs to 

S ∀λ∈[0,1].

x1

x2
x1

x2

(a) convex (b) not convex
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Filter Design via Semi-infinite 
Programming

x1   λ x1+(1- λ)x2 x2

convex function

ƒ

x1 λ x1+(1- λ)x2 x2

concave function

ƒ

x1 x2

neither convex nor 
concave

ƒ

Properties of Peak constrained least square 
filter design

Definition of convex function:
Let ƒ: S → Ε1, where S is a nonempty convex set in Εn. 

The function ƒ is said to be convex on S if 
ƒ(λx1+(1−λ)x2)≤λƒ(x1)+(1−λ)ƒ(x2) for ∀x1,x2∈S and 
∀λ∈[0,1].
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Filter Design via Semi-infinite 
Programming

Properties of peak constrained least 
square filter design

Property 1
The feasible set Fδ is convex.
Let x1 and x2 be two distinct elements of Fδ, which 
means that Α(ω)x1+cδ(ω)≤ 0 and Α(ω)x2+cδ(ω)≤ 0. 
∀λ∈[0,1], since Α(ω)(λx1+(1-λ)x2)+cδ(ω)≤ 0, this 
implies that λx1+(1-λ)x2∈Fδ.
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Filter Design via Semi-infinite 
Programming

Properties of peak constrained least square 
filter design

Property 2
The matrix Q is positive definite.

is nonnegative. Suppose that 
xTQx=0, which implies that               .
In particular, we have                                        such that

. This implies that x=0.
Since xTQx>0 for x≠0, the result follows directly.

( )∫=
sp BB

TT dW
U

ωωω
2

)()(2 xηQxx

( ) 0)( =xη Tω

[ ] 0xηηη =′
T

N )()()( 21 ωωω L

[ ]( ) Nrank N ′=′ )()()( 21 ωωω ηηη L

sp BB U∈∀ω
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Properties of peak constrained least square 
filter design

Property 3
The cost function J(x) is strictly convex.

is twice differentiable with respect to 
x, and its Hessian matrix is equal to Q which is 
positive definite. This implies that J(x) is strictly 
convex.

( ) pJ TT ++= xbQxxx
2
1

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 4
x*δ is uniquely defined.
Let x*a and x*b be optimal solutions of the SIP problem, 
that is J(x*a)=J(x*b).
Suppose that x*a≠x*b, since the feasible set Fδ is convex 
and J(x) is strictly convex, this implies that
∃λx*a+(1−λ)x*b∈Fδ such that 
J(λx*a+(1−λ)x*b)<λJ(x*a)+(1−λ)J(x*b)=J(x*a)=J(x*b). This 
contradicts to the hypothesis that x*a and x*b are the 
optimal solutions of the SIP problem because 
λx*a+(1−λ)x*b is the optimal solution. Hence, x*a=x*b.

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 5
x*2 is uniquely defined.
Since Q is positive definite, all eigenvalues of Q are 
positive and Q-1exists. Consequently, x*2=-Q-1b.

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 6
x*∞ is uniquely defined.
By alternation theorem, x*∞ is uniquely defined.

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 7
Suppose that x*2≠x*δ, then such that

.
Since x*2≠x*δ, x*2∉Fδ and Fδ⊂Fδ2. Otherwise x*2∈Fδ
implies that J(x*2)=J(x*δ), which contradicts the 
uniqueness property of the solution. For Fδ⊂Fδ2, 
J(x*2)≠J(x*δ). Otherwise ∃λ∈(0,1) such that J(λx*2+(1-
λ)x*δ)<J(x*δ) and J(λx*2+(1-λ)x*δ)<J(x*2), which 
contradicts the fact that x*2 and x*δ are the optimal 
solutions. Hence, J(x*2)<J(x*δ).

( ) δωω δ =− )()( 0
*

0 DT xη
sp BB U∈∃ 0ω

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 7
Suppose that |(η(ω0))Tx*δ-D(ω0)|<δ, then ∃λ∈(0,1) and 
∃Δx=(1-λ)(x*2-x*δ) such that |(η(ω0))T(x*δ+Δx)-D(ω0)|=δ.
Since J(x*δ+Δx)=J(λx*δ+(1−λ)x*2) and J(x) is strictly 
convex, we have J(x*δ+Δx)<λJ(x*δ)+(1−λ)J(x*2). As 
J(x*2)<J(x*δ), we have J(x*δ+Δx)<J(x*δ). However, this 
contradicts to the assumption that x*δ is the optimal 
solution of the SIP problem. Hence the result follows 
directly.

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 8
Denote x*a and x*b as the solutions of the SIP problems 
for δ=δa and δ=δb, respectively. Denote Fδb and Fδa as the 
corresponding feasible sets, respectively. If δ∞<δb<δa<δ2, 
then J(x*2)<J(x*a)<J(x*b)<J(x*δ∞) and Fδ∞⊂Fδb⊂Fδa⊂Fδ2.
x∈Fδ∞ implies .
This implies that Fδ∞⊆Fδb⊆Fδa⊆Fδ2 and 
J(x*2)≤J(x*a)≤J(x*b)≤J(x*δ∞).
Suppose that Fδ∞=Fδb, then x*b∈Fδb=Fδ∞.

such that                               .
But this contradicts to the fact that x*b∈Fδ∞ . Hence, 
x*b∉Fδ∞ and Fδ∞⊂Fδb. Since the solution is uniquely 
defined and J(x) is strictly convex, J(x*b )<J(x*∞). Similarly, 
the result follows directly.
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Properties of peak constrained least square 
filter design

Property 9
Denote F as a map from the set of the maximum ripple 
magnitudes to the set of the total ripple energy of the 
filters. Then F(δ) is convex with respect to δ for δ∞<δ<δ2.
Let δ a and δ b be the maximum ripple magnitude such 
that δ∞<δa<δb<δ2. Let x*a and x*b be the solutions of the 
SIP problems corresponding to δa and δb, respectively. 
Also, let Fδa and Fδb be the corresponding feasible sets, 
respectively. Since, x*a∈Fδa and x*b ∈ Fδb, we have

and               .
Hence                                                and

( ) aa
T Dx δωωη ≤− )()( * ( ) bb

T D δωω ≤− )()( *xηsp BB U∈∀ω

⎥
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Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Property 9

It follows that
Denote Fλδa+(1−λ)δb as the feasible set corresponding to 
the maximum ripple magnitude equal to λδa+(1−λ)δb. 
Then λx*a+(1−λ)x*b∈Fλδa+(1−λ)δb. Denote x*λδa+(1−λ)δb as 
the solution of the SIP problem corresponding to the 
maximum ripple magnitude equal to λδa+(1−λ)δb. Then 
J(x*λδa+(1−λ)δb)≤J(λx*a+(1−λ)x*b). Since J(x) is strictly 
convex, we have J(x*λδa+(1−λ)δb)<λJ(x*a)+(1−λ)J(x*b). 
Hence, F(δ) is convex with respect to δ.

Filter Design via Semi-infinite 
Programming
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Properties of peak constrained least square 
filter design

Filter Design via Semi-infinite 
Programming
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• monotonic decreasing 

• convex

Filter Design via Semi-infinite 
Programming
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HSIP1
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δ2δmin

Properties of peak constrained least square 
filter design



48

Dual parameterization approach for solving  
peak constrained least square filter design 
problem

The magnitude response contains finite number of 
maxima and minima.
If the constraints are satisfied in these extrema, 
then all constraints are satisfied.

Filter Design via Semi-infinite 
Programming
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Dual parameterization approach for solving  
peak constrained least square filter design 
problem

However, the locations of these extrema are 
unknown. Hence, we optimize both the filter 
coefficients and finite number of frequencies so that 
the cost function is minimized and the constraints 
are satisfied.

Filter Design via Semi-infinite 
Programming
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Filters are designed via peak constrained least 
square approach and the problem can be 
solved via a dual parameterization approach.
The plot of the total ripple energy against the 
maximum ripple magnitude is monotonic 
decreasing and convex, this information helps 
to determine the specifications for filter design.

Conclusions
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Q&A Session

Thank you!

Let me think…

Bingo
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