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Nested separatrices in simple shear flows: the effect
of localized disturbances on stagnation lines

M. C. T. Wilson and P. H. Gaskell
School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

M. D. Savage
Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Abstract: The effects of localized two-dimensional disturbances on the structure of
shear flows featuring a stagnation line are investigated. A simple superposition of a
planar Couette flow and Moffatt’s [J. Fluid Mech. 18, 1–18 (1964)] streamfunction
for the decay of a disturbance between infinite stationary parallel plates shows that in
general the stagnation line is replaced by a chain of alternating elliptic and hyperbolic
stagnation points with a separation equal to 2.78 times the half-gap between the
plates. The flow structure associated with each saddle point consists of a homoclinic
separatrix and two other separatrices which locally diverge but become parallel far
from the disturbance. This basic structure repeats to give a sequence of nested
separatrices permitting the streamfunction to approach that of simple shear flow
far from the disturbance. Using the finite element method, the specific disturbance
caused by a stationary cylinder placed on the stagnation line is considered, and results
confirm the existence of the stagnation point chain, with computed separations and
velocity damping ratios in very good agreement with those obtained from the Couette-
Moffatt superposition. Numerical solutions also illustrate that while Reynolds number
greatly affects the stagnation point separation and velocity damping ratio, these two
quantities are the same for any pair of adjacent stagnation points in a given chain.
Insight gained from the analysis of planar shear flows is applied to the flow in a half-
filled horizontal annulus between rotating coaxial cylinders, and is used to explain
why only certain flow patterns from the range of mathematically possible structures
arise in previous numerical solutions. By way of contrast, the concentric annulus
solution is then perturbed to allow for a small eccentricity. The non-uniformity of
the inter-cylinder gap is shown to destroy the chain of stagnation points, but also to
unfold additional flow structures not realizable when the gap is uniform.
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I Introduction

Stagnation points (or ‘critical points’) are essential features of many non-trivial flows
across a broad Reynolds number spectrum. In addition to appearances in jets and
wakes1, for example, they often arise in laminar flows such as mixing, stirring and
coating flows2−4, and of course in cavity flows5,6. In such cases, global streamline pat-
terns can often be deduced from an analysis of the flow behaviour local to stagnation
points without having to find a complete solution to the problem. This approach
has long been familiar in dynamical systems theory, the techniques and vocabulary
of which have consequently been brought to bear upon the general study of flow
structures7−10.

On the other hand, stagnation lines — streamlines upon which fluid velocity vanishes
— arise only in idealised flows such as shear flow between infinite parallel plates, or
Couette flow in an infinitely long concentric circular annulus. However, there are
certain flows in geometries similar to those just mentioned where one would expect
to see a feature similar to a stagnation line. The archetypal example is shear flow
past a stationary or rotating cylinder, which has received much attention in the
literature11−17 due to its relevance to the study of particles in suspension — the case
of a freely rotating cylinder naturally being of particular interest. So the question is
‘what happens to the stagnation line when a cylinder is placed upon it?’

Early work on shear flow past a cylinder11−15 considered only the case of unbounded
shear flow, in which the streamfunction approaches that of simple shear as the distance
from the cylinder increases. Jeffrey and Sherwood15 summarized the resulting flow
structures, which differ according to the rotational speed of the cylinder. Some of the
structures are reproduced in Fig. 1. In the stationary cylinder case, both the Stokes
solution and matched asymptotic solutions for small Reynolds number (Re) feature
a region of ‘blocked’ flow where fluid approaching the obstacle is turned around and
sent in the opposite direction. Though the vertical velocity component in this region
diminishes very rapidly with distance from the cylinder, the width of the region
increases logarithmically13. Thus the stagnation line disappears completely.

The blocked flow regions particularly interested Jeffrey and Sherwood15, and they
included in their paper some possible flow structures for the turn-around flow. They
are reproduced in Fig. 2. Structure (a) was ruled out by showing that the velocity and
pressure fields are inconsistent, and a similar argument18 also allowed structure (b) to
be dismissed. Jeffrey and Sherwood therefore concluded that the regions of blocked
flow must have structure (c) or (d). An examination of the Stokes solution11,15 sup-
ports this assertion: along the erstwhile stagnation line the horizontal velocity com-
ponent vanishes, but the vertical component is everywhere of the same sign (except
possibly in a small region adjacent to the cylinder). Comparing Fig. 1 with Fig. 2
shows that Fig. 1(b) corresponds to the structure in Fig. 2(c) and Fig. 1(c) to that
in Fig. 2(d).
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The present work focuses on the fate of the stagnation line in the case when the flow
is confined by the presence of parallel plates. Though confinement effects in the shear
flow past a cylinder have been considered before16,17, attention has been concentrated
on the resulting rotation rates of freely-suspended cylinders. The structure of the
flow along the stagnation line has not been considered.

In addition to the above motivation, interest in this problem has also been aroused
from another source, namely a discussion at the end of a paper by Brøns and Hartnack10

who presented a thorough theoretical analysis of two-dimensional streamline topolo-
gies close to critical points arising away from boundaries. Their approach involved
the expansion of the velocity field about degenerate critical points and the subsequent
manipulation of the expansions into canonical form so that bifurcations in the flow
structure could be described in detail. As an example of how their theory can be
applied, Brøns and Hartnack cited a study of Stokes flow in a (horizontal) half-filled
annular cavity by Gaskell et al.19, who had observed from numerical calculations that
as the gap between their cylinders decreased, a growing chain of stagnation points
was generated. The structure of the flow is shown in Fig. 3(a–e). It was recognized
by Gaskell et al. that the same stagnation points could in general form other struc-
tures, e.g. Fig. 3(f–h), and this was confirmed by the theoretical analysis of Brøns
and Hartnack, which predicted that since the problem had two bifurcation parameters
(the cylinder radius and speed ratios), structures (f), (g) and (h) should generally be
realizable. It was suggested10 that the absence of the alternative structures in the
annulus is perhaps due to the assumption that the free surfaces are radial lines, giv-
ing an exactly half-filled annulus, and that changing the fill fraction as an additional
parameter might produce the missing patterns.

Here it is argued from a more general perspective that the position and shape of the
free surfaces (which are effectively the ‘end’ boundaries of the long, thin domain)
are not important in determining which of the alternative bifurcation sequences is
observed. Rather, it is the uniformity of the narrow gap between the coaxial cylinder
surfaces which dictates that only the sequence of structures seen by Gaskell et al.19

is possible.

In Sec. II the flow between infinite parallel plates is considered, beginning with the
solution found by Moffatt21 for flow driven by an arbitrary disturbance between the
stationary plates. This is subsequently superposed on a shear flow featuring a stag-
nation line to observe how a disturbance would influence such a flow; Sec. III then
considers the specific disturbance created by a stationary circular cylinder placed in
the flow. In general it is found that the stagnation line is replaced by a chain of alter-
nating hyperbolic and elliptic stagnation points, with streamlines forming a ‘nested
separatrix’ structure by which the streamfunction approaches that of simple shear as
distance from the disturbance increases. The observations of these sections are then
applied to the above annulus problem in Sec. IV. The latter also explores the effect
of a non-uniform gap to demonstrate that the flow structures predicted by Brøns and
Hartnack10 do indeed appear when a suitable second bifurcation parameter is found.
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II Flow between infinite parallel plates

A Stationary plates

As part of his paper on eddies near a sharp corner, Moffatt21 examined the flow
between infinite stationary parallel plates due to an arbitrary disturbance, for example
a rotating cylinder — see Fig. 4(a). That a sequence of eddies should exist in this
geometry was indicated by considering it as a limiting case of the flow in a corner
between two plates, where the angle between the plates vanishes while keeping fixed
a point on each plate. Rather than take this limit formally, however, Moffatt solved
the biharmonic equation more easily by postulating a streamfunction of the form
ψ ∼ f(y)e−k|x|. The even function f(y) was found to be f(y) = A cos ky +By sin ky,
and imposition of the no-slip boundary conditions on y = ±a produced an equation
for k,

2ka+ sin 2ka = 0, (1)

and the streamfunction

ψ = A(a sin ka cos ky − y sin ky cos ka)e−kx (x > 0), (2)

where the parameter A is dictated by the strength of the disturbance, and is taken
to be positive. Equation (1) has no real solution, and the complex solution with
smallest positive real part is21 k = p + qi ≈ (4.21 + 2.26i)/2a. The flow described
by (2) consists of a sequence of equal-size eddies rotating alternately in the clockwise
and anticlockwise senses, as sketched in Fig. 4(a). Following Moffatt, local extrema
in the vertical velocity component, v, can be used as a measure of the ‘strength’ of
each eddy in order to define a damping factor in terms of the relative strengths of
adjacent eddies. To this end, the vertical velocity along the line y = 0 is given by

v(x, 0) = Aaγe−px sin(qx+ δ), (3)

where γ and δ are functions of pa and qa and are approximately 3.898 and 1.525
respectively. The local extrema obviously occur when qxn + δ = (n + 1

2
)π, giving a

damping factor of

ω̄ =

∣

∣

∣

∣

vn

vn+1

∣

∣

∣

∣

=
e−pxn

e−pxn+1
= epπ/q ≈ 353. (4)

The wavelength of the eddy pattern, i.e. the distance between the centres of consec-
utive co-rotating eddies, is given by 2π/q ≈ 5.56a. A quantity of interest later is the
separation between the centres of adjacent eddies, which is simply half the above,
namely

λ ≈ 2.78a. (5)

Since Moffatt’s contribution, this flow has been very clearly visualized experimentally22,23

and has been explored further theoretically22−24.
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B Translating plates

In order to observe the effects of a distant arbitrary disturbance on a stagnation-
line flow, one can simply superpose Moffatt’s streamfunction and that corresponding
to the flow of interest. Consider first an antisymmetric Couette flow between plates
located at y = ±a translating in-plane with speeds ±U . For simplicity, the problem is
non-dimensionalized by scaling all lengths by a and all velocities by U . The Couette
flow velocity components are then uc = y and vc ≡ 0. Let um and vm be the
dimensionless velocity components corresponding to (2); the combined flow is then
given by (u, v) = (um + uc, vm + vc). The superposition is sketched in Fig. 4(b). It
is clear that in this case the stagnation points at the centres of the eddies are also
present in the combined flow, but the points are no longer all elliptic: the stagnation
points corresponding to the anticlockwise eddies (i.e. those opposing the sense of the
plate motion) become hyperbolic (saddle points).

This is easily confirmed by examining the usual linear expansion of the velocity field
about each stagnation point10:

(

u
v

)

=

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

) (

x− xs

y − ys

)

, (6)

where (xs, ys) are the coordinates of a stagnation point. If the determinant

|J | =
∂u

∂x

∂v

∂y
−
∂u

∂y

∂v

∂x
(7)

is positive, the stagnation point is a centre, while |J | < 0 implies a saddle point10.
Now, the expression (7) can be simplified somewhat since u = 0 everywhere along
y = 0, and so the first term vanishes. In addition, ∂v/∂x = ∂vm/∂x and ∂u/∂y ≈ 1
since ∂um/∂y ≪ ∂uc/∂y = 1. Hence only ∂vm/∂x is needed to determine the type
of each stagnation point (with a positive value of ∂vm/∂x indicating a saddle). From
(3), stagnation points exist where qxn + δ = nπ, so at stagnation point n,

∂vm

∂x

∣

∣

∣

∣

n

= Aγqe(δ−nπ)p/q cosnπ = (−1)nAγqe(δ−nπ)p/q. (8)

Hence for even n (anticlockwise Moffatt eddies) the stagnation point is a saddle, while
for odd n a centre remains.

Fig. 4(c) shows a sketch of the decay of the combined streamfunction along the line
y = 0, assuming that the streamfunction value corresponding to the stagnation line
in the Couette flow is zero. This damped form of ψ, combined with the alternating
nature of the stagnation points, implies the ‘nested separatrix’ flow structure given
in Fig. 4(d), which is consistent with the numerical observations of Gaskell et al.19.

When the stagnation line of the moving-plate flow does not lie along the centreline
y = 0 (due either to unequal plate speeds or the presence of a pressure gradient), the
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flow is topologically the same: the anticlockwise eddies still produce saddle points
and the decay of the streamfunction gives the same nested flow structure. However,
since the eddy centres no longer lie along the stagnation line, the resulting stagnation
points are shifted vertically — see Fig. 4(e). The degree and direction of the shift
are determined by the strength and sense of rotation of each eddy. A closer look at
Fig. 4(e), to find where uc = −um, reveals that the elliptic points (•) lie between the
stagnation line and the corresponding eddy centre (+), while the hyperbolic points
(×) appear on the opposite side of the stagnation line from the eddy centre. Since
um decays exponentially with x, the displacement of the stagnation points from the
stagnation line likewise decreases with x. The final schematic in Fig. 4 shows the
resulting distorted flow pattern.

III Shear flow past a cylinder

One can perhaps envisage a number of scenarios in which a shear flow featuring a
stagnation line could be perturbed by two-dimensional effects. In addition to ‘active’
mechanisms such as the rotating cylinder mentioned above or moving sleeves25, a
flow could of course be disturbed in a variety of ‘passive’ ways such as the mere
presence of a stationary obstacle, or, in the case of a Couette-Poiseuille flow with
adverse pressure gradient, by a cavity, protrusion or other local non-uniformity in the
stationary boundary surface. Here, attention is focused on the effect of a cylindrical
obstacle in a simple shear flow between infinite parallel plates separated by a gap of
2a and moving in opposite directions with velocities Ut > 0 and Ub < 0. As explained
in the introduction, this problem has received much attention in the literature, but
as yet the structure of the flow near the stagnation line has not been explored.

A Numerical method

The fluid is assumed to be Newtonian, with constant density, ρ, and viscosity µ, and
the problem is non-dimensionalised by scaling all lengths by a, all velocities by the
speed of the lower plate, |Ub|, and pressures by µ|Ub|/a. The dimensionless speed of
the upper plate is denoted by S = Ut/|Ub| and the dimensionless shear rate produced
by the motion of the plates is then γ̇c = 1

2
(S + 1). The corresponding dimensionless

governing equations are

Reu .∇u = −∇p+ ∇2
u , (9)

∇.u = 0, (10)

where u = (u, v) is the fluid velocity, p is pressure, and Re = ρa|Ub|/µ is the Reynolds
number.

The geometry of the flow domain is sketched in Fig. 5. The origin of the Cartesian
coordinate system is at the centre of the rectangular domain, and the cylinder, radius
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r, is located at (0, yc). Equations (9) and (10) are solved in this domain using a
Galerkin finite element method which has been applied successfully to many laminar
flow problems26. The domain is tessellated by six-node triangular elements upon
which velocity and pressure are represented by biquadratic (Qj) and bilinear (Lk)
interpolation functions:

u =
6

∑

j=1

ujQj, p =
3

∑

k=1

pkLk, (11)

where uj and pk are the nodal values. Substituting (11) into (9) and (10), weight-
ing the latter equations by Qj and Lk respectively, and integrating the resulting
expressions over the whole domain generates a non-linear system of algebraic residual
equations which is solved via Newton iteration. The boundary conditions imposed
are no slip on the plates and the cylinder surface, and a ‘free boundary condition’27

on the left- and right-hand boundaries.

In addition to modelling flows in fixed domains, the finite element approach is also
well-suited to free-surface problems28, and advantage is taken of this flexibility here.
Since the primary goal of the numerical analysis is the exploration of the flow near the
stagnation line, the computational mesh is made to deform such that key nodes and
element edges lie along two curves where the horizontal velocity component vanishes,
i.e. where u = 0 — see Fig. 5. This is achieved by allowing the y-coordinates of these
nodes, yi, to be unknowns which are determined as part of the Newton iteration
procedure by weighting the equation u = 0 by Qi and integrating along the curve to
form another residual equation. One can then easily investigate the behaviour of the
vertical velocity component, and locate any stagnation points. Note that, as shown in
Fig. 5, the u = 0 curves on each side of the cylinder terminate a small distance away
from the cylinder on the vertical dashed lines. This is to prevent excessive element
distortion near the cylinder, where the u = 0 curve deviates substantially from y = 0
when yc 6= 0. In the region between the vertical dashed lines, the mesh is constructed
with respect to a polar origin at the centre of the cylinder.

The numerical calculations were performed using double-precision arithmetic, with a
machine epsilon of 2.22× 10−16, and the finite element equations were solved subject
to the convergence criterion that the L2 norm of the residuals be less than 10−12. The
accuracy of the results presented below was confirmed by repeating the calculations
using a higher resolution mesh (the meshes having 21 476 and 65 218 elements respec-
tively); in all cases the differences between values calculated on the two meshes were
negligible.

B Results

Though examples of streamline plots in the region close to the cylinder are given by
Ding and Aidun16, their plots did not extend far enough from the cylinder to show any
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sign of the chain of stagnation points expected from the superposition of Sec. II.B.
Fig. 6 shows extended streamline plots for two different cylinder radii (r = 0.5 and
0.9) with yc = 0, Re = 0 and γ̇c = 1. Though it is not possible to resolve any
of the saddle points at this scale, it is possible to see a closed eddy surrounding
the first elliptic stagnation point in the chain — particularly for the larger cylinder,
which obviously creates a more severe disturbance to the shear flow. Note that the
streamlines separating from the cylinder form the same structure as in Fig. 1.

If the vertical scale is expanded twentyfold, as in Fig. 7(a), it is possible to resolve the
first saddle point (labelled A), and the basic separatrix structure identified earlier.
Given the predicted velocity damping ratio, however, it is hardly surprising that the
next separatrix structure appears only as a horizontal line lying between the stream-
lines forming the larger separatrix. Fig. 7(b) is a plot with a further exaggeration
in the vertical direction, which reveals that the horizontal line of Fig. 7(a) is indeed
another separatrix structure nested withing the first.

As an alternative means of demonstrating the existence of the stagnation-point chain,
Fig. 8 shows plots of the vertical velocity component along the curve u = 0 for the
same flow conditions as in Fig. 7 (and the lower plot in Fig. 6). The upper graph in
Fig. 8 shows that the velocity decays very rapidly, but the inset plot reveals that this
decay is not monotonic: the velocity vanishes (at x ≈ 3.7, corresponding to the first
centre), then becomes negative, and decreases to a minimum before again approaching
zero. The lower plot in Fig. 8, focusing on the range −3 × 10−11 6 v 6 3 × 10−11,
confirms that the velocity switches sign several times as it decays. An advantage of
plotting the velocity component along u = 0 is that it is easy to compare the values
obtained using the finer mesh mentioned above: the fine-mesh data are included in
Fig. 8 as the small black circles, and show that even on the expanded scale there is
no discernible difference in the calculated velocity.

The other feature of note in Fig. 8 is that the separation between consecutive stag-
nation points appears to be constant. Tables 1–4 explore this further, and present
the x-coordinates of stagnation points together with calculations of the separation
of consecutive points and the corresponding damping ratio for various values of the
four key parameters in the problem: r, yc, γ̇c, and Re. As stated above, these results
have been confirmed to be mesh-independent by repeating the calculations using a
mesh more than twice as dense as the original. The results show quite clearly that
when Re = 0 the separation and damping ratio away from the cylinder are both
independent of the size and position of the cylinder, and also the shear rate. Further-
more, the values obtained are very close to those in (4) and (5) predicted from the
superposition above. The lack of influence of the cylinder size and position supports
the above conclusion that the nested separatrix structure of Fig. 4(d) is a general
response of the shear flow to a two-dimensional disturbance. A suggested alternative
to the structures of Fig. 2 for blocked flow — when the domain is confined by parallel
plates — is therefore that in Fig. 9, which ‘from a distance’ would look rather like
Fig. 2(b) or indeed (a) if the eddies could be shown in true proportion (cf Fig. 7(a)
where the separatrix appears as a streamline which terminates in the middle of the
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domain).

As is to be expected, the presence of fluid inertia has a marked effect on the damping
ratio, as shown in table 4. Increasing Re also has the effect of increasing the separation
of the stagnation points. However, both λn and ω̄ remain constant for a given chain
of stagnation points. Fig. 10 shows a plot of the variation of λn and ω̄ with Re. After
a very slight decrease at small Re, λn increases with Re, however ω̄ exhibits a much
more pronounced decrease to a minimum at Re ≈ 38, before increasing monotonically
with Re. The decrease in velocity ratio with small Re seems intuitive if one associates
an increase in Re with a reduction in viscous damping. On the other hand, one would
expect that greater fluid inertia would cause the influence of the cylinder to become
more localized; hence ω̄ ultimately increases with Re.

IV The half-filled annulus revisited

Consider an annulus between coaxial cylinders which is completely filled with fluid.
If the cylinders are slowly rotated in opposite directions, the resulting streamlines
would be circular, and somewhere between the cylinder surfaces would be a streamline
along which the fluid velocity vanishes. Though circular, this will be referred to as a
‘stagnation line’, as it corresponds to those seen in the planar flows considered earlier.

Now, if the annulus were filled to a level between the topmost and lowest points on the
inner cylinder, a free surface would be present on either side of the inner cylinder19.
When the cylinders are again rotated in opposite directions, the free surfaces become
obstacles to the flow, causing some (or all29) of the fluid to turn around. In the
light of Sec. II, the expected flow structure in each half of the domain is a chain of
stagnation points with separatrices nested as in Fig. 4(d) or (f), which allow the effect
of the two-dimensional disturbance to diminish with distance from each free surface.
Since the (Stokes) flow is symmetric, the i’th saddle point in the left-hand half of the
domain (counting from the free surface) must be connected to the i’th saddle in the
right-hand half. This results in the nested sequence of treble-eddy structures shown
in Fig. 3(e).

A The effect of eccentricity

Given the conclusions above, it is recognized that variations in either the speed ratio
of the cylinders or the position of the free surfaces cannot be expected to produce the
flow bifurcations necessary to generate the alternative structures in Fig. 3. Changing
the speed ratio would merely shift the radial position of the chain of stagnation points,
while the position of the free surfaces would just increase or decrease the number of
stagnation points in the chain.
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However, the flow will be fundamentally changed if the gap between the cylinders is
made non-uniform. This can easily be achieved by displacing the cylinders relative to
each other, so that the annulus becomes eccentric. For convenience this displacement
is taken to be along the centreline of the half-annulus, so that the geometry is still
symmetrical, see Fig. 11. This allows the effects of eccentricity to be explored by
perturbing the concentric-cylinder solution of Gaskell et al.19. The eccentric model is
based on the same assumptions19: the liquid is Newtonian, with constant density and
viscosity; the cylinders are assumed to dewet as they rotate, so no liquid films are
withdrawn from the bulk; the flow is sufficiently slow for inertia effects to be negligible;
and the free surfaces are modelled as radial (with respect to the inner cylinder)
stress-free planes inclined at an angle determined by a balance of hydrodynamic and
hydrostatic pressures19.

If the centre of the inner cylinder is taken as the origin of the polar coordinate system
(R, θ), and the axis of the outer cylinder is displaced upwards a distance E along
the centreline θ = 0, it can be shown that the equation for the surface of the outer
cylinder is

r̄0(θ) = −E cos θ +
√

E2(cos2 θ − 1) +R2
0, (12)

where E is the displacement of the centres of the cylinders and R0 is the radius of
the outer cylinder. Scaling lengths by the radius of the inner cylinder, Ri, (12) can
be written as

r0 ≡
r̄0
Ri

= −ε cos θ + R̄
√

ε2/R̄2(cos2 θ − 1) + 1 = R̄− ε cos θ +O(ε2), (13)

where R̄ = Ro/Ri is the radius ratio. A solution to the biharmonic equation is sought
by expanding the (dimensionless) streamfunction, ψ, in powers of ε:

ψ = ψ0 + εψ1 +O(ε2), (14)

and so the boundary conditions must also be expanded to give

ψ =
∂2ψ

∂θ2
= 0 on θ = ±π/2, (15)

ψ =
∂ψ

∂θ
= 0;

∂ψ

∂r
= 1 on r = 1, (16)

ψ = 0;
1

r

∂ψ

∂θ
= −

S

R̄
ε sin θ;

∂ψ

∂r
= S(1 +O(ε2)) on r = r0(θ), (17)

where S = Uo/Ui is the outer to inner peripheral speed ratio of the cylinders (Ui being
the velocity scale for the problem), and r is the dimensionless radial coordinate. The
boundary conditions on r = r0(θ) are imposed with reference to r = R̄ by means of
Taylor series, for example

ψ|r=r0
= ψ|r=R̄ − ε cos θ

∂ψ

∂r

∣

∣

∣

∣

r=R̄

+O(ε2). (18)
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Substituting (14) into (18) and using the first condition in (17) then gives

0 = ψ0 + εψ1 − ε cos θ
∂ψ0

∂r
on r = R̄. (19)

The other conditions in (17) are similarly treated, and comparing the coefficients of
ε then gives a sequence of boundary value problems. The O(1) problem for ψ0 is of
course identical to the concentric case19, while the O(ε) problem has conditions

ψ1 =
∂2ψ1

∂θ2
= 0 on θ = ±π/2, (20)

ψ1 =
∂ψ1

∂r
=

1

r

∂ψ1

∂θ
= 0 on θ = ±π/2, (21)

and, on r = R̄,

ψ1 = cos θ
∂ψ0

∂r
, (22)

∂ψ1

∂r
= cos θ

∂2ψ0

∂θ2
, (23)

1

r

∂ψ1

∂θ
= −

S

R̄
sin θ +

cos θ

r

∂2ψ0

∂r∂θ
. (24)

The nature of the O(ε) boundary conditions indicate that ψ1 should have the form
ψ1 ∼ f(r, θ) cos θ, but a solution of the biharmonic equation satisfying the boundary
conditions can only be found if f is independent of θ. This is, in fact, not an un-
reasonable assumption since, close to the cylinder surfaces, variations of ψ0 and its
derivatives are negligible except very near the interfaces. As the region of interest
is the core of the domain, advantage can be taken of this fact to simplify the O(ε)
boundary conditions. Assuming purely azimuthal flow, then, the velocity profile is

v(r) = ar ln r + br + c/r, (25)

where

a =
2(1 − R̄S − R̄2 + SR̄3 − 2SR̄ ln R̄ + 2R̄2 ln R̄)

(R̄2 + 2R̄ ln R̄− 1)(R̄2 − 2R̄ ln R̄− 1)
,

b =
SR̄− 1 − aR̄2 ln R̄

R̄2 − 1
,

c =
aR̄2 ln R̄ + R̄2 − SR̄

R̄2 − 1
.

Using (25), conditions (22)–(24) simplify to

ψ1 = S cos θ,
∂ψ1

∂r
= a(1 + ln r + b− c/r2) cos θ,

∂ψ1

∂θ
= −S sin θ (26)

on r = R̄. The resulting O(ǫ) correction to the concentric streamfunction is then

ψ1 = (Ar +B/r + Cr3 +Dr ln r) cos θ,
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where

A =
R̄4 + 2SR̄3 ln R̄− 2SR̄3 − 4R̄2 ln R̄ + 2R̄S − 1 + 2SR̄ ln R̄

(R̄2 + 2R̄ ln R̄− 1)(R̄2 − 2R̄ ln R̄− 1)(R̄2 − 1)
,

B =
−R̄(R̄3 + 2SR̄2 ln R̄− SR̄2 − R̄− 2R̄ ln R̄ + S)

(R̄2 + 2R̄ ln R̄− 1)(R̄2 − 2R̄ ln R̄− 1)(R̄2 − 1)
,

C =
1 − R̄S − R̄2 + SR̄3 − 2SR̄ ln R̄ + 2R̄2 ln R̄

(R̄2 + 2R̄ ln R̄− 1)(R̄2 − 2R̄ ln R̄− 1)(R̄2 − 1)
,

D =
−2(R̄2 + 2SR̄ ln R̄− 1)

(R̄2 + 2R̄ ln R̄− 1)(R̄2 − 2R̄ ln R̄− 1)
.

When R̄ = 1.5 and S = 0, the flow in the concentric annulus features the treble-eddy
structure sketched in Fig. 3(b), and Fig. 12 shows how the position of each stagnation
point changes as the eccentricity of the cylinders increases. At ε ≈ 9.02 × 10−7 a
pitchfork-type bifurcation transforms the centre on θ = 0 into a saddle and produces
two new centres, which move apart as ε increases. Meanwhile the two original saddle
points move inwards, and at ε ≈ 2.385× 10−5 two saddle-node bifurcations occur, in
which each new centre coalesces with one of the saddle points, to leave a double-eddy
structure.

A check of the streamfunction values at each stagnation point confirms that the
sequence of structural changes is as indicated by the schematics in Fig. 12. At
ε ≈ 1.91 × 10−5, the three saddle points link in a parametrically unstable four-
eddy structure, after which the flow structure becomes as in Fig. 3(f). These flow
structures are all consistent with the general analysis of Brøns and Hartnack10, and
appear in their Fig. 7(a) (if one connects up the ‘unfinished’ separatrices). Evidently
when the annulus is eccentric, the ‘pinching’ effect of the cylinder surfaces favours the
structures having a double-eddy outer separatrix, as seen in Fig. 11, and the values
of ε cited above indicate that only a very small eccentricity is required to destroy the
structure seen in the uniform-gap flow.

V Conclusion

It has been shown that when a bounded shear flow featuring a stagnation line is
disturbed, for example by the presence of an obstacle in the flow, the stagnation line
is replaced by a chain of stagnation points and a nested separatrix structure.

A simple superposition of Couette flow on Moffatt’s21 streamfunction describing eddy
motion between stationary parallel plates reveals that in the combined flow the stag-
nation points are uniformly spaced, with a separation of 2.78 times the half-gap
between the plates, and the ratio of consecutive local extrema in the vertical velocity
component is constant.
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Each saddle point has associated with it a homoclinic streamline enclosing an eddy
around the centre immediately before it (i.e. nearer to the disturbance), and two
streamlines which extend to infinity and eventually become parallel. The decaying
form of the streamfunction dictates that the closed eddy attached to each saddle point
lies between the ‘open’ streamlines of the saddle immediately before, thus forming
a ‘nested’ structure. When the Couette flow is anti-symmetric, i.e. when the plate
velocities are equal but opposite, the stagnation points appear along the original
stagnation line. However, when the stagnation line does not lie exactly halfway
between the plates, the resulting stagnation points are displaced such that the elliptic
and hyperbolic points appear on opposite sides of the stagnation line. The resulting
flow structure is topologically the same, however.

Finite element calculations of shear flow past a stationary circle confirm the predic-
tions of the superposition, and for Stokes flow produce stagnation point separations
and velocity damping ratios very close to those predicted analytically. The results
show that these values are independent of the size and position of the cylinder, sup-
porting the conclusion that the flow structure described above is a general response
of a parallel shear flow to a two-dimensional disturbance. The sequence of stagnation
points forms an ‘approximation’ of the stagnation line, while the nested separatrix
structure allows the two-dimensional flow caused by the disturbance to diminish with
distance so that the flow approaches parallel shear flow far from the disturbance.

Variation of the Reynolds number showed that the separation between stagnation
points increases with Re (after a very slight decrease at small Re), while the velocity
damping ratio shows a pronounced decrease to a minimum at Re ≈ 38 before increas-
ing monotonically. However, for each value of Re, these quantities remain constant
along the whole stagnation point chain.

The effect of a non-uniformity in the gap between the plates driving the shear flow
was explored by perturbing the concentric half-filled annulus problem of Gaskell et

al.19 to allow for a symmetrical eccentricity in the cylinder positions. It was shown
that only a small eccentricity is required to destroy then chain of stagnation points
present when the gap is uniform. However, for very small eccentricities, additional
flow structures can be seen, which were predicted by the bifurcation theory of Brøns
and Hartnack10 but were absent in the concentric annulus19 due to the uniformity of
the gap between the cylinders.

Thus, while general theories describing all mathematically possible flow patterns are
without doubt extremely valuable, one should not ignore physical influences such
as the shapes of the boundaries when predicting which flow patterns will arise in
practice.

13



References

1A. E. Perry and D. K. M. Tan, “Simple three-dimensional motions in coflowing jets
and wakes,” J. Fluid Mech. 141, 197–231 (1984)

2S. C. Jana, G. Metcalfe and J. M. Ottino, “Experimental and computational studies
of mixing in complex Stokes flows: the vortex mixing flow and multicellular cavity
flows,” J. Fluid Mech. 269, 199–246 (1994)

3M. C. T. Wilson, P. H. Gaskell and M. D. Savage, “Flow in a double-film-fed fluid
bead between contra-rotating rolls. Part 1: Equilibrium flow structure,” Euro.
J. Appl. Math. 12, 395–411 (2001)

4J. L. Summers, H. M. Thompson and P. H. Gaskell, “Flow structure and transfer
jets in a contra-rotating rigid-roll coating system,” Theor. Comput. Fluid Dyn.
17(3), 189–212 (2004)

5P. N. Shankar and M. D. Deshpande, “Fluid mechanics in the driven cavity,” Ann.
Rev. Fluid Mech. 32, 93–136 (2000)
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r = 0.2 r = 0.5 r = 0.9
xn λn ω̄ xn λn ω̄ xn λn ω̄

3.217 − − 3.353 − − 3.650 − −
6.008 2.792 357.8 6.144 2.791 357.8 6.442 2.792 357.8
8.800 2.792 357.8 8.936 2.792 357.7 9.233 2.792 357.8

11.591 2.792 357.8 11.728 2.792 357.7 12.025 2.792 357.8
14.383 2.792 357.8 14.519 2.791 357.7 14.817 2.792 357.8

Table 1: Positions of stagnation points along with separations and damping ratios for
three different cylinder radii. Other parameters are: Re = 0, γ̇c = 1, and yc = 0.
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yc = 0.1 yc = 0.2 yc = 0.3
xn λn ω̄ xn λn ω̄ xn λn ω̄

3.330 − − 3.288 − − 3.249 − −
6.122 2.792 357.8 6.080 2.792 357.7 6.040 2.792 357.7
8.913 2.792 357.8 8.872 2.792 357.7 8.832 2.792 357.7

11.705 2.792 357.8 11.663 2.792 357.7 11.624 2.792 357.7
14.497 2.792 357.8 14.455 2.792 357.7 14.415 2.792 357.7

Table 2: Positions of stagnation points along with separations and damping ratios for
three different cylinder offsets. Other parameters are: Re = 0, γ̇c = 1, and r = 0.5.
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γ̇c = 1.5 γ̇c = 2.0 γ̇c = 2.5
xn λn ω̄ xn λn ω̄ xn λn ω̄

3.314 − − 3.265 − − 3.225 − −
6.113 2.799 361.8 6.074 2.809 367.1 6.042 2.817 371.5
8.905 2.792 357.7 8.866 2.792 357.7 8.834 2.792 357.7

11.697 2.792 357.7 11.658 2.792 357.7 11.626 2.792 357.7
14.488 2.791 357.7 14.448 2.791 357.7 14.418 2.792 357.7

Table 3: Positions of stagnation points along with separations and damping ratios for
three different shear rates. Other parameters are: Re = 0, yc = 0, and r = 0.5.
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Re = 10 Re = 20 Re = 30
xn λn ω̄ xn λn ω̄ xn λn ω̄

3.352 − − 3.508 − − 3.766 − −
6.171 2.819 172.7 6.675 3.166 100.6 7.457 3.690 84.6
8.989 2.818 172.7 9.841 3.166 100.8 11.148 3.692 85.1

11.806 2.818 172.7 13.010 3.166 100.8 14.840 3.692 85.1
14.624 2.818 172.7 16.172 3.166 100.8 18.532 3.692 85.1

Table 4: Positions of stagnation points along with separations and damping ratios for
three different Reynolds numbers. Other parameters are: γ̇c = 1, yc = 0, and r = 0.5.
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Figure captions

Fig. 1. Three of the five flow structures presented by Jeffrey and Sherwood15 in an
unbounded shear flow past a cylinder: (a) stationary cylinder, (b) cylinder rotating
more slowly than a freely rotating one, (c) cylinder freely rotating.

Fig. 2. The four possibilities for blocked flow identified by Jeffrey and Sherwood15.

Fig. 3. A selection of flow structures illustrating different ways in which a chain of
a given number of stagnation points can be connected together. Patterns (a)–(e)
were observed by Gaskell et al.19 in their annular geometry; (f)–(h) are theoretically
possible in viscous flow according to the analysis of Brøns and Hartnack10. Similar —
and indeed more complex streamline patterns — also arise in inviscid vortex flows20.

Fig. 4. Response of flow between infinite parallel plates to an arbitrary distant dis-
turbance: (a) the sequence of eddies identified by Moffatt20, including as an example
of a disturbance a rotating cylinder; (b) the superposition of Moffatt’s solution with
a symmetric Couette flow; (c) a sketch (not to scale) of the decay of the stream-
function along the line y = 0; (d) the deduced flow structure; (e) superposition of
Moffatt’s solution with an asymmetric Couette flow; (f) the deduced asymmetric flow.
Throughout the diagrams elliptic (centre) stagnation points are shown as •, hyper-
bolic (saddle) points as ×, and eddy centres as +. The horizontal dashed line in the
flow schematics indicates the position of the stagnation line in the Couette flow.

Fig. 5. Illustration of the computational mesh construction.

Fig. 6. Streamline plots showing a closed eddy surrounding the first elliptic stagnation
point in the chain predicted by the Couette-Moffatt superposition. In the top plot
r = 0.5, while in the bottom r = 0.9; in both γ̇ = 1.0, yc = 0, and Re = 0.

Fig. 7. Streamline plots showing the nested separatrix structure. The vertical scale
has been exaggerated in both plots. Plot (a) shows the first centre and saddle point,
which form the basic nested structure; (b) is a further expanded view showing the
second centre-saddle pair and how it lies nested within the first structure. Parameter
values: r = 0.9, γ̇ = 1.0, yc = 0, and Re = 0.

Fig. 8. Variation of the vertical velocity component, v, versus horizontal distance
along the curve u = 0 on the right-hand side of the cylinder. Parameter values:
r = 0.9, γ̇ = 1.0, yc = 0, and Re = 0.

Fig. 9. Expected structure of blocked flow when confining plates are present.

Fig. 10. Effect of Re on the separation, λn, and the velocity damping ratio, ω̄, of
adjacent stagnation points. In this case r = 0.5, γ̇ = 1.0, and yc = 0.

Fig. 11. Definition of the partially-filled eccentric annulus geometry together with a
typical streamline plot.
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Fig. 12. Bifurcation diagram showing the variation of stagnation point positions with
eccentricity, ε, for R̄ = 1.5 and S = 0: —– centre; - - - saddle. At ε ≈ 9.02 × 10−7 a
pitchfork-type bifurcation gives rise to two new stagnation points which move apart
and annihilate with the two original saddle points.
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