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Introduction
Definition

Symbolic dynamics is a kind of system 
dynamics which involves multi-level signals.

Motivations
Many practical signal processing systems, such 
as digital filters with two’s complement 
arithmetic, sigma delta modulators and 
perceptron training algorithms, are symbolic 
dynamical systems. They are found in almost 
everywhere.
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Introduction
Challenges

Symbolic dynamical systems could lead to 
chaotic, fractals and divergent behaviors.
Stability conditions are generally unknown.
Admissibility conditions are generally unknown.
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Digital filters with two’s 
complement arithmetic

What are digital filters?
Digital filters are systems that are characterized in 
the frequency domain.
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Types of digital filters
Lowpass filters

Allow a low frequency band of a signal to pass 
through and attenuate a high frequency band.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Bandpass filters

Allow intermediate frequency bands of a signal to 
pass through and attenuate both low and high 
frequency bands.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Highpass filters

Allow a high frequency band of a signal to pass 
through and attenuate a low frequency band.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Band reject filters

Allow both low and high frequency bands of a signal 
to pass through and attenuate intermediate 
frequency bands.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Notch filters

Allow almost all frequency components to pass 
through but attenuate particular frequencies.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Oscillators

Allow particular frequency components to pass 
through and attenuate almost all frequency 
components.

Digital filters with two’s 
complement arithmetic
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Types of digital filters
Allpass filters

Allow all frequency components to pass through.
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Digital filters with two’s 
complement arithmetic

Hardware schematic
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When no input is present, the filter can be 
described by the following nonlinear state 
space difference equation:
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where f(•) is the nonlinear function 
associated with the two’s complement 
arithmetic
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where

and m is the minimum integer satisfying
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is called symbolic sequences.( )ks
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For example: ( ) [ ] 5.0 and 1,6135.06135.00 =−=−= abTx
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Stability analysis of the corresponding linear 
system

Eigenvalues of A
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R5 :Magnitudes of both eigenvalues <1.
⇒The corresponding linear system is stable.

R1 and R3 : Either one of the magnitudes of the 
eigenvalues < 1.
⇒The corresponding linear system is unstable.
R2 and R4 :Magnitudes of both eigenvalues are 
greater than 1.
⇒The corresponding linear system is unstable.

Digital filters with two’s 
complement arithmetic
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Effects of different initial conditions 
when the eigenvalues of system matrix 
are on the unit circle

Type I trajectory
There is a single rotated and translated ellipse 
in the phase portrait.
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Type II trajectory
There are some rotated and translated 
ellipses in the phase portrait.
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Type III trajectory
There is a fractal pattern on the phase portrait.
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Conclusion: Very sensitive to initial conditions

Digital filters with two’s 
complement arithmetic



30

Step response of second order digital filters 
with two’s complement arithmetic

The system can be represented as:

where and
⇒DC offset on symbolic sequences.
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For 1 and 1,5.1 =−=−= cba

s(k)=0

s(k)=1

s(k)=-1

s(k)=-2

Digital filters with two’s 
complement arithmetic
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For 1 and 1,5.1 =−=−= cba

Digital filters with two’s 
complement arithmetic
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For 1 and 1,5.1 =−=−= cba

Digital filters with two’s 
complement arithmetic
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Sinusoidal response of second order digital 
filters with two’s complement arithmetic

Digital filters with two’s 
complement arithmetic
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Digital filters with two’s 
complement arithmetic



39

Digital filters with two’s 
complement arithmetic

Autonomous case when the eigenvalues of 
A are inside the unit circle
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Autonomous case for third order digital filters 
with two’s complement arithmetic realized in 
cascade form

System block diagram:
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Digital filters with two’s 
complement arithmetic



44

Digital filters with two’s 
complement arithmetic



45

Autonomous case for third-order digital filters 
with two’s complement arithmetic realized in 
parallel form

System block diagram:
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Digital filters with two’s 
complement arithmetic
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Admissibility of second order digital filters 
with two’s complement arithmetic

Admissible set of periodic symbolic sequences 
is defined as a set of periodic symbolic 
sequences such that there exists an initial 
condition that produces the symbolic sequences.

sx(0)

Admissible set of periodic 
symbolic sequences

Set of initial conditions

Digital filters with two’s 
complement arithmetic
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For example, when
s Admissible
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A periodic sequence   with period    is admissible 
if and only if for

s M
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What is sigma delta modulators?
Sigma delta modulators are devices 
implementing sigma delta modulations and are 
widely used in analogue-to-digital conversions.
The input signals are first oversampled to 
obtain the inputs of the sigma delta modulators. 
The loop filters are to separate the quantization 
noises and the input signals so that very high 
signal-to-noise ratios could be achieved at very 
coarse quantization schemes.

Sigma delta modulators
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Sigma delta modulators
Block diagram
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There are only finite numbers of 
possibilities of s(k). Hence, s(k) can be 
viewed as symbol and s(k) is called a 
symbolic sequence.
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Sigma delta modulators
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Second order strictly stable bandpass sigma 
delta modulators
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Sigma delta modulators
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Sigma delta modulators
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Sigma delta modulators
General second order bandpass sigma delta 
modulators
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Admissibility of periodic sequence
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Σ be the admissible set of periodic output 
sequences with period M
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What is a perceptron training algorithm?
A perceptron is a single neuron that employs a 
single bit quantization function as its activation 
function.

where

Perceptron training algorithms
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What is a perceptron training algorithm?
The weights of a perceptron is usually found by 
the perceptron training algorithm.

where t(k) is the desired output corresponding to 
x(k).
If w(k) converges, then the steady state value of 
w(k) could be employed as the weights of the 
perceptron.
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Perceptron training algorithms
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Example 1
Iteration index k wold(k) x(k) t(k) y(k) wnew(k)

0 [0 0 0]T [1 5 1]T -1 1 [-1 -5 -1]T

1 [-1 -5 -1]T [1 2 1]T -1 -1 [-1 -5 -1]T

2 [-1 -5 -1]T [1 1 1]T 1 -1 [0 -4 0]T

3 [0 -4 0]T [1 3 3]T 1 -1 [1 -1 3]T

4 [1 -1 3]T [1 4 2]T -1 1 [0 -5 1]T

5 [0 -5 1]T [1 2 3]T 1 -1 [1 -3 4]T

6 [1 -3 4]T [1 5 1]T -1 -1 [1 -3 4]T

7 [1 -3 4]T [1 2 1]T -1 -1 [1 -3 4]T

8 [1 -3 4]T [1 1 1]T 1 1 [1 -3 4]T

9 [1 -3 4]T [1 3 3]T 1 1 [1 -3 4]T

10 [1 -3 4]T [1 4 2]T -1 -1 [1 -3 4]T

11 [1 -3 4]T [1 2 3]T 1 1 [1 -3 4]T

Converge

( ) ( ) ( ) ( ) ( )kkyktkk xww
2

1 −
+=+

Perceptron training algorithms
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Example 1
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Example 2
Iteration index k wold(k) x(k) t(k) y(k) wnew(k)

0 [0 0 0]T [1 0 0]T -1 1 [-1 0 0]T

1 [-1 0 0]T [1 0 1]T 1 -1 [0 0 1]T

2 [0 0 1]T [1 1 0]T 1 1 [0 0 1]T

3 [0 0 1]T [1 1 1]T -1 1 [-1 -1 0]T

4 [-1 -1 0]T [1 0 0]T -1 -1 [-1 -1 0]T

5 [-1 -1 0]T [1 0 1]T 1 -1 [0 -1 1]T

6 [0 -1 1]T [1 1 0]T 1 -1 [1 0 1]T

7 [1 0 1]T [1 1 1]T -1 1 [0 -1 0]T

8 [0 -1 0]T [1 0 0]T -1 1 [-1 -1 0]T

9 [-1 -1 0]T [1 0 1]T 1 -1 [0 -1 1]T

10 [0 -1 1]T [1 1 0]T 1 -1 [1 0 1]T

11 [1 0 1]T [1 1 1]T -1 1 [0 -1 0]T

Limit Cycle

( ) ( ) ( ) ( ) ( )kkyktkk xww
2

1 −
+=+

Perceptron training algorithms
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Example 2
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Perceptron training algorithms
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Perceptron training algorithms
Example 4

The set of training feature vectors
Desirable output
Initial weight
Result:
Set of weights of the perceptron:

Invariant set of weights of the perceptron:
Invariant map:
Note:                     is not bijective because
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Example 5

The set of training feature vectors
Desirable output
Initial weight
Invariant set of the weights of the perceptron consists of 
three hyperplanes.
Note:                     is not bijective because
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Many digital signal processing systems are 
symbolic dynamical systems.
These symbolic dynamical systems could 
exhibit fractal, chaotic and divergent 
behaviors.
By investigating the properties of these 
symbolic dynamical systems, unwanted 
behaviors could be avoided.

Conclusions
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Q&A Session

Thank you!

Let me think…

Bingo
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