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Introduction
Developments and applications of digital 
filters

Developments of digital filters
Wagner and Campbell design electric wave filters in 
1915.
Nyquist and Gabor in 1928 and 1946 point out that a 
continuous-time signal can be represented by a finite 
number of discrete points.
⇒Continuous-time filters can be approximated via 
digital filters.
⇒Digital filters are studied extensively and found 
many applications in industry.
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Introduction
Applications of digital filters

Filtering in digital telephone networks, denoising 
systems, detection systems, compression standards, 
etc.
Data processing, such as time series analysis, 
numerical analysis, etc.
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Introduction
Motivation of the research

Due to the two’s complement arithmetic, the digital 
filters are nonlinear systems. Parker and Hess 
reported in 1971 that limit cycle behaviors would be 
exhibited in the digital filters. Chua reported in 1988 
that a fractal geometry may occur on the phase 
portrait.
Since the second-order digital filters are widely 
applied in industry, we have to know the conditions 
for the occurrence of those nonlinear behaviors so 
that we can avoid the occurrence of those 
behaviors or make some useful applications using 
these nonlinear behaviors.
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Introduction
Model of second-order digital filters with two’s 
complement arithmetic

Second-order digital filters
Fundamental building block of cascade and parallel 
realizations of arbitrary digital filters.

Two’s complement arithmetic
Common in most of digital devices because subtraction 
of two numbers is equivalent to the addition of these two 
numbers in their two’s complement forms.

Direct form
One of the simplest configuration for realizing the 
second-order digital filter which uses the least number of 
multipliers and adders.
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Introduction
Hardware schematic
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Introduction
When no input is present, the filter can be 
described by the following nonlinear state-space 
difference equation:

( ) ( )
( ) ( )( )

( )
( ) ( )( ) ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⋅+⋅

=

=⎥
⎦

⎤
⎢
⎣

⎡
+
+

≡+

kxakxbf
kx

k
kx
kx

k

21

2

2

1 F
1
1

1 xx
formDirect 



11

Introduction
where f(•) is the nonlinear function associated 
with the two’s complement arithmetic
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Introduction

where

and m is the minimum integer satisfying
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Introduction
is called symbolic sequences.( )ks
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Introduction
For example: ( ) [ ] 5.0 and 1,6135.06135.00 =−=−= abTx
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Introduction

Stability analysis of the corresponding linear 
system

Eigenvalues of A
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Introduction
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Introduction
R5 :Magnitudes of eigenvalues <1.

⇒The corresponding linear system is stable.
R1 and R3 : One  eigenvalue’s magnitude < 1, 
while the other’s magnitude > 1.
⇒The corresponding linear system is unstable.
R2 and R4 :Magnitudes of eigenvalues are 
greater than 1.
⇒The corresponding linear system is unstable.
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Introduction

Effects of different initial conditions 
when the eigenvalues of system matrix 
are on the unit circle

Type I trajectory
There is a single rotated and translated ellipse 
in the phase portrait.
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Introduction



20

Introduction

Type II trajectory
There are some rotated and translated 
ellipses in the phase portrait.
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Introduction

This corresponds to the limit cycle behavior.
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Introduction

Type III trajectory
There is a fractal pattern on the phase portrait.
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Introduction

Conclusion: Very sensitive to initial conditions
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Step response of second-order digital 
filters with two’s complement arithmetic

What are the behaviors of the digital filters
with two’s complement arithmetic when 
some step input is applied?
What are the properties of the 
corresponding symbolic sequences?
What are the corresponding sets of initial 
conditions?



25

The system can be represented as:

where and
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Let for
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where
then                  and
If           for
then
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Hence, we have ( ) ( )kk xAx ˆˆ1ˆ ⋅=+
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Similarly, if
then
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Hence, we have           for

if and only if           for( ) ( )kk xAx ˆˆ1ˆ ⋅=+ ( ) 0sks = 0≥k

( ) 0sks = 0≥k

Step response of second-order digital 
filters with two’s complement arithmetic

sequences symbolicConstant 

If                , overflow does occur. But there is 
still an ellipse exhibited on the phase portrait. 
Hence, we cannot conclude whether overflow 
occurs or not just by looking an ellipse on the 
phase portrait.

( ) 00 ≠= sks
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if            for       , we have                       for
Since the phase portrait of                       is a circle
with radius

We have
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we have
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Since           , we have                  and
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If

then
Since          , we have           and
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Assume
then

and           for
Hence

if and only if           for
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Hence, for the type I trajectory, the following three 
statements are equivalent each others:
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For 1 and 1,5.1 =−=−= cba
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Step response of second-order digital 
filters with two’s complement arithmetic
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For the type II trajectory, the following three 
statements are equivalent each others:
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For 1 and 1,5.1 =−=−= cba

Step response of second-order digital 
filters with two’s complement arithmetic
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Admissible set of periodic symbolic sequences 
is defined as a set of periodic symbolic 
sequences such that there exists an initial 
condition that produces the symbolic sequences.

sx(0)

Admissible set of periodic 
symbolic sequences

Set of initial conditions

Step response of second-order digital 
filters with two’s complement arithmetic
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For example, when
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A periodic sequence   with period    is admissible 
if and only if for

s

Step response of second-order digital 
filters with two’s complement arithmetic
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For the type III trajectory, the following three 
statements are equivalent each others:

There is an elliptical fractal pattern 
exhibited on the phase plane.
The symbolic sequences are aperiodic.
The set of initial conditions is
where

which is also an elliptical fractal set.
( ) ( )( ) ( ) ( ){ }kMisisiD iiM ⋅+=−≤−⋅=

∞

∗∗−  and 1:0 1 xxxTx

I
M

MDI
∀

\2

Step response of second-order digital 
filters with two’s complement arithmetic
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For ( ) ⎥
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Step response of second-order digital 
filters with two’s complement arithmetic
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For 1 and 1,5.1 =−=−= cba

Step response of second-order digital 
filters with two’s complement arithmetic
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Sinusoidal case for second-order digital filters with 
two’s complement arithmetic

Other simulation results
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Other simulation results
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Autonomous case when the eigenvalues of A are 
inside the unit circle

Other simulation results
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Other simulation results
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Autonomous case for third-order digital filters with 
two’s complement arithmetic realized in cascade 
form

Other simulation results
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Other simulation results



58

Autonomous case for third-order digital filters with 
two’s complement arithmetic realized in parallel 
form

Other simulation results
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Other simulation results
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The trajectory equations and the sets of initial 
conditions for various types of trajectory are 
derived.
The admissible set of periodic symbolic 
sequences are discussed.
Simulation results for other systems are shown.

Conclusions
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Q&A Session

Thank you!

Let me think…

Bingo
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