Nonlinear Behaviors of Digital Fi ers

Acknowledgements

* Center for Chaos Control and Synchronization csProf. Guanrong Chen (CityU) ${ }_{c}$ Prof. Chi-Kong Tse (PolyU)
* My Ph.D. supervisor
c. Dr. Peter Kwong-Shun Tam (PolyU)
- Project initiator
caProf. Xinghuo Yu (RMIT)

Outline

* Introduction
* Step response of second-order digital filters with two's complement arithmetic
* Other simulation results
* Conclusions
* References
* Q\&A Session

Introduction

* Developments and applications of digital filters
: Motivation of the research
* Model of second-order digital filters with two's complement arithmetic
* Stability analysis of the corresponding linear systems
: Effects of different initial conditions when the eigenvalues of system matrix are on the unit circle

Introduction

* Developments and applications of digital filters
caDevelopments of digital filters
Wagner and Campbell design electric wave filters in 1915.
* Nyquist and Gabor in 1928 and 1946 point out that a continuous-time signal can be represented by a finite number of discrete points.
\Rightarrow Continuous-time filters can be approximated via digital filters.
\Rightarrow Digital filters are studied extensively and found many applications in industry.

Introduction

c_{2} Applications of digital filters
\%Filtering in digital telephone networks, denoising systems, detection systems, compression standards, etc.
*Data processing, such as time series analysis, numerical analysis, etc.

Introduction

: Motivation of the research
œDue to the two's complement arithmetic, the digital filters are nonlinear systems. Parker and Hess reported in 1971 that limit cycle behaviors would be exhibited in the digital filters. Chua reported in 1988 that a fractal geometry may occur on the phase portrait.
asince the second-order digital filters are widely applied in industry, we have to know the conditions for the occurrence of those nonlinear behaviors so that we can avoid the occurrence of those behaviors or make some useful applications using these nonlinear behaviors.

Introduction

: Model of second-order digital filters with two's complement arithmetic
${ }_{\infty}$ asecond-order digital filters
*Fundamental building block of cascade and parallel realizations of arbitrary digital filters.
∞ arwo's complement arithmetic
*Common in most of digital devices because subtraction of two numbers is equivalent to the addition of these two numbers in their two's complement forms.
∞ Direct form
$\%$ One of the simplest configuration for realizing the second-order digital filter which uses the least number of multipliers and adders.

Introduction

${ }_{c}$ Hardware schematic

Introduction

aWhen no input is present, the filter can be described by the following nonlinear state-space difference equation:

$$
\begin{aligned}
& \mathbf{x}(k+1) \equiv\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\mathrm{F}(\mathbf{x}(k)) \\
& =\left(\left[\begin{array}{c}
x_{2}(k) \\
f\left(b \cdot x_{1}(k)+a \cdot x_{2}(k)\right)
\end{array}\right]\right)
\end{aligned}
$$

Direct form

Introduction

where $f(\bullet)$ is the nonlinear function associated with the two's complement arithmetic

Introduction

$\mathbf{x}(k+1)=\mathbf{A} \cdot\left[\begin{array}{l}x_{1}(k) \\ x_{2}(k)\end{array}\right]+\left[\begin{array}{l}0 \\ 2\end{array}\right] \cdot s(k)$
where $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ b & a\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right] \in I^{2} \equiv\left\{\left(x_{1}, x_{2}\right):-1 \leq x_{1}<1,-1 \leq x_{2}<1\right\}} \\
& s(k) \in\{-m, \cdots,-1,0,1, \cdots, m\}
\end{aligned}
$$

and m is the minimum integer satisfying

$$
-2 \cdot m-1 \leq b \cdot x_{1}+a \cdot x_{2} \leq 2 \cdot m+1
$$

Introduction

$s(k)$ is called symbolic sequences.

$$
\begin{aligned}
& s(k)=1 \Rightarrow-3 \leq b \cdot x_{1}(k)+a \cdot x_{2}(k)<-1 \\
& s(k)=0 \Rightarrow-1 \leq b \cdot x_{1}(k)+a \cdot x_{2}(k)<1 \\
& s(k)=-1 \Rightarrow 1 \leq b \cdot x_{1}(k)+a \cdot x_{2}(k)<3
\end{aligned}
$$

Introduction

For example: $\mathbf{x}(0)=\left[\begin{array}{ll}-0.6135 & 0.6135\end{array}\right]^{T}, b=-1$ and $a=0.5$ $b \cdot x_{1}(0)+a \cdot x_{2}(0)=0.9203 \Rightarrow s(0)=0$ $b \cdot x_{1}(1)+a \cdot x_{2}(1)=-0.1534 \Rightarrow s(1)=0$

Two's complement value

$$
b \cdot x_{1}(14)+a \cdot x_{2}(14)=1.0018 \Rightarrow s(14)=-1 \text { and } x_{2}(15)=-0.9982
$$

$$
b \cdot x_{1}(15)+a \cdot x_{2}(15)=-0.7597 \Rightarrow s(15)=0
$$

$$
b \cdot x_{1}(16)+a \cdot x_{2}(16)=0.6184 \Rightarrow s(16)=0
$$

$$
b \cdot x_{1}(17)+a \cdot x_{2}(17)=1.0689 \Rightarrow s(17)=-1 \text { and } x_{2}(18)=-0.9311
$$

$$
b \cdot x_{1}(18)+a \cdot x_{2}(18)=-1.0839 \Rightarrow s(18)=1 \text { and } x_{2}(19)=0.9161
$$

$$
s=\left(\begin{array}{llllllllll}
0 & 0 & \cdots & 0 & -1 & 0 & 0 & -1 & 1 & \cdots
\end{array}\right)
$$

Introduction

* Stability analysis of the corresponding linear system cEigenvalues of A

$$
\lambda=\frac{a \pm \sqrt{a^{2}+4 \cdot b}}{2}
$$

Introduction

Introduction

$\omega_{5} \mathbf{R}_{5}$: Magnitudes of eigenvalues <1.
\Rightarrow The corresponding linear system is stable.
${ }_{c} \mathbf{R}_{\mathbf{1}}$ and \mathbf{R}_{3} : One eigenvalue's magnitude <1, while the other's magnitude > 1 .
\Rightarrow The corresponding linear system is unstable.
${ }_{c} \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{4}}$: Magnitudes of eigenvalues are greater than 1.
\Rightarrow The corresponding linear system is unstable.

Introduction

* Effects of different initial conditions when the eigenvalues of system matrix are on the unit circle cosType I trajectory
:There is a single rotated and translated ellipse in the phase portrait.

$$
a=0.5, b=-1, x(0)=\left[\begin{array}{c}
0.612 \\
-0.612
\end{array}\right]
$$

Introduction

Introduction

cosType II trajectory
\because There are some rotated and translated ellipses in the phase portrait.

$$
a=0.5, b=-1, x(0)=\left[\begin{array}{c}
0.616 \\
-0.616
\end{array}\right]
$$

Introduction

This corresponds to the limit cycle behavior.

Introduction

caType III trajectory
*There is a fractal pattern on the phase portrait.

$$
a=0.5, b=-1, x(0)=\left[\begin{array}{c}
0.6135 \\
-0.6135
\end{array}\right]
$$

Introduction

Step response of second-order digital filters with two's complement arithmetic
*What are the behaviors of the digital filters with two's complement arithmetic when some step input is applied?
*What are the properties of the corresponding symbolic sequences?
*What are the corresponding sets of initial conditions?

Step response of second-order digital

 filters with two's complement arithmetic The system can be represented as:$\mathbf{x}(k+1)=\left(\left[\begin{array}{c}x_{2}(k) \\ f\left(b \cdot x_{1}(k)+a \cdot x_{2}(k)+u(k)\right)\end{array}\right]\right)$
$=\mathbf{A} \cdot\left[\begin{array}{l}x_{1}(k) \\ x_{2}(k)\end{array}\right]+\mathbf{B} \cdot u(k)+\left[\begin{array}{l}0 \\ 2\end{array}\right] \cdot s(k)$
where $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ b & a\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Step response of second-order digital

 filters with two's complement arithmetic$\begin{aligned} \text { Let } u(k) & =c \text { for } k \geq 0 \\ \cos \theta & =\frac{a}{2}\end{aligned}$

$$
\begin{aligned}
& \mathbf{T} \equiv\left[\begin{array}{cc}
1 & 0 \\
\cos \theta & \sin \theta
\end{array}\right] \\
& \hat{\mathbf{A}} \equiv\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{x}^{*}=\frac{c}{2-a} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \hat{\mathbf{x}}(k)=\left[\begin{array}{l}
\hat{x}_{1}(k) \\
\hat{x}_{2}(k)
\end{array}\right]=\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{c+2 \cdot s_{0}}{c} \cdot \mathbf{x}^{*}\right)
\end{aligned}
$$

Step response of second-order digital filters with two's complement arithmetic

where $s_{0} \equiv s(0)$
then $\mathbf{A}=\mathbf{T} \cdot \hat{\mathbf{A}} \cdot \mathbf{T}^{-1}$ and $\mathbf{B}=\frac{(\mathbf{I}-\mathbf{A}) \cdot \mathbf{x}^{*}}{c}$
Ifs $(k)=s_{0}$ for $k \geq 0$
then $\mathbf{x}(k+1)=\mathbf{A} \cdot \mathbf{x}(k)+\left(c+2 \cdot s_{0}\right) \cdot \mathbf{B}$
Since $\hat{\mathbf{x}}(k+1)=\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k+1)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)$

$$
\begin{aligned}
& \Rightarrow \hat{\mathbf{x}}(k+1)=\mathbf{T}^{-1} \cdot\left(\mathbf{A} \cdot \mathbf{x}(k)+\left(c+2 \cdot s_{0}\right) \cdot \mathbf{B}-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right) \\
& \hat{\mathbf{x}}(k+1)=\mathbf{T}^{-1} \cdot \mathbf{A} \cdot \mathbf{x}(k)+\mathbf{T}^{-1} \cdot\left(c+2 \cdot s_{0}\right) \cdot \mathbf{B}-\mathbf{T}^{-1} \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}
\end{aligned}
$$

Step response of second-order digital filters with two's complement arithmetic

$$
\begin{aligned}
& \hat{\mathbf{x}}(k+1)=\mathbf{T}^{-1} \cdot \mathbf{T} \cdot \hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot \mathbf{x}(k)+\mathbf{T}^{-1} \cdot\left(c+2 \cdot s_{0}\right) \cdot \frac{(\mathbf{I}-\mathbf{A}) \cdot \mathbf{x}^{*}}{c}-\mathbf{T}^{-1} \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*} \\
& \hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot \mathbf{x}(k)-\mathbf{T}^{-1} \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{A} \cdot \mathbf{x}^{*} \\
& \hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot\left(\mathbf{T} \cdot \hat{\mathbf{x}}(k)+\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)-\mathbf{T}^{-1} \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{T} \cdot \hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot \mathbf{x}^{*}
\end{aligned}
$$

$$
\text { Hence, we have } \hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)
$$

Circle

Step response of second-order digital

 filters with two's complement arithmetic Similarly, if $\hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)$then $\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k+1)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)=\hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)$

$$
\begin{aligned}
& \mathbf{x}(k+1)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}=\mathbf{T} \cdot \hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right) \\
& \mathbf{x}(k+1)=\mathbf{A} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)+\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*} \\
& \mathbf{x}(k+1)=\mathbf{A} \cdot \mathbf{x}(k)+\left(c+2 \cdot s_{0}\right) \cdot \frac{(\mathbf{I}-\mathbf{A}) \cdot \mathbf{x}^{*}}{c}
\end{aligned}
$$

$$
\Rightarrow \mathbf{x}(k+1)=\mathbf{A} \cdot \mathbf{x}(k)+\mathbf{B} \cdot c+\left[\begin{array}{l}
0 \\
2
\end{array}\right] \cdot s_{0}
$$

Step response of second-order digital filters with two's complement arithmetic

Hence, we have $s(k)=s_{0}$ for $k \geq 0$

Constant symbolic sequences
$\hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)$ if and only if $s(k)=s_{0}$ for $k \geq 0$

If $s(k)=s_{0} \neq 0$, overflow does occur. But there is still an ellipse exhibited on the phase portrait. Hence, we cannot conclude whether overflow occurs or not just by looking an ellipse on the phase portrait.

Step response of second-order digital filters with two's complement arithmetic

if $s(k)=s_{0}$ for $k \geq 0$, we have $\hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)$ for $k \geq 0$ Since the phase portrait of $\hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)$ is a circle with radius $\|\hat{\mathbf{x}}(k)\|_{2}=\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2}$

$$
=\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2}
$$

We have $\hat{\mathbf{x}}(k)=\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \cdot\left[\begin{array}{l}\cos (\phi(k)) \\ \sin (\phi(k))\end{array}\right]$

Step response of second-order digital

 filters with two's complement arithmetic Since $\mathbf{x}(k)=\mathbf{T} \cdot \hat{\mathbf{x}}(k)+\frac{c+2 \cdot s_{0}}{c} \cdot \mathbf{x}^{*}$ we have$$
\begin{aligned}
\mathbf{x}(k) & =\left[\begin{array}{cc}
1 & 0 \\
\cos \theta & \sin \theta
\end{array}\right] \cdot\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \cdot\left[\begin{array}{l}
\cos (\phi(k)) \\
\sin (\phi(k))
\end{array}\right] \\
& +\frac{c+2 \cdot s_{0}}{c} \cdot \frac{c}{2-a} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{x}(k) & =\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \cdot\left[\begin{array}{c}
\cos (\phi(k)) \\
\cos (\theta-\phi(k))
\end{array}\right]+\frac{c+2 \cdot s_{0}}{2-a} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Step response of second-order digital filters with two's complement arithmetic

 Since $\mathbf{x}(k) \in I^{2}$, we have $-1 \leq x_{1}(k)<1$ and $-1 \leq x_{2}(k)<1$ Hence $\left._{-1 \leq} \leq\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \cdot \cos (\phi(k))+\frac{c+2 \cdot s_{0}}{2-a} \right\rvert\,<1$$$
\Rightarrow\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}
$$

$$
\mathbf{x}(0) \in\left\{\mathbf{x}(0):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}\right\}
$$

Sets of initial conditions

Step response of second-order digital

 filters with two's complement arithmetic$\hat{\mathbf{x}}(k)=\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{\mathbf{x}}\right)$
$\Rightarrow \hat{\mathbf{x}}(k+1)=\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k+1)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)$
$=\mathbf{T}^{-1} \cdot\left(\mathbf{A} \cdot \mathbf{x}(k)+\mathbf{B} \cdot c+s(k) \cdot\left[\begin{array}{l}0 \\ 2\end{array}\right]-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)$
$=\mathbf{T}^{-1} \cdot\left[\mathbf{A} \cdot\left(\mathbf{T} \cdot \hat{\mathbf{x}}(k)+\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)+\mathbf{B} \cdot c+s(k) \cdot\left[\begin{array}{l}0 \\ 2\end{array}\right]-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right]$
$=\mathbf{T}^{-1} \cdot \mathbf{A} \cdot \mathbf{T} \cdot \hat{\mathbf{x}}(k)+\mathbf{T}^{-1} \cdot\left[(\mathbf{A}-\mathbf{I}) \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}+\mathbf{B} \cdot c+s(k) \cdot\left[\begin{array}{l}0 \\ 2\end{array}\right]\right]$

Step response of second-order digital

 filters with two's complement arithmetic$$
=\mathbf{T}^{-1} \cdot \mathbf{T} \cdot \hat{\mathbf{A}} \cdot \mathbf{T}^{-1} \cdot \mathbf{T} \cdot \hat{\mathbf{x}}(k)+\mathbf{T}^{-1} \cdot\left[-\mathbf{B} \cdot c \cdot \frac{\left(c+2 \cdot s_{0}\right)}{c}+\mathbf{B} \cdot c+s(k) \cdot\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right]
$$

$$
=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)+\mathbf{T}^{-1} \cdot\left(s(k)-s_{0}\right) \cdot\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

$$
\text { If } \mathbf{x}(0) \in\left\{\mathbf{x}(0):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}\right\}
$$

then $\|\hat{\mathbf{x}}(0)\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}$
Since $\|\hat{\boldsymbol{A}}\|_{2}=1$, we have $s(0)=s_{0}$ and

$$
\|\hat{\mathbf{x}}(1)\|_{2}=\|\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(0)\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}
$$

Step response of second-order digital

 filters with two's complement arithmetic Assume $\mathbf{x}(k) \in\left\{\mathbf{x}(k):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(k)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}\right\}$ then$\|\hat{\mathbf{x}}(k+1)\|_{2}=\|\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k)\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}$
and $s(k)=s_{0}$ for $k \geq 0$
Hence

$$
\mathbf{x}(0) \in\left\{\mathbf{x}(0):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}\right\}
$$

if and only if $s(k)=s_{0}$ for $k \geq 0$

Step response of second-order digital

 filters with two's complement arithmetic Hence, for the type I trajectory, the following three statements are equivalent each others:$$
\begin{aligned}
& \hat{\mathbf{x}}(k+1)=\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(k) \\
& s(k)=s_{0} \text { for } k \geq 0 \\
& \mathbf{x}(0) \in\left\{\mathbf{x}(0):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(0)-\frac{\left(c+2 \cdot s_{0}\right)}{c} \cdot \mathbf{x}^{*}\right)\right\|_{2} \leq 1-\frac{\left|c+2 \cdot s_{0}\right|}{2-a}\right\}
\end{aligned}
$$

Step response of second-order digital

 filters with two's complement arithmetic$$
\text { For } a=-1.5, b=-1, c=1, \mathbf{x}(0)=\left[\begin{array}{l}
0.3 \\
0.3
\end{array}\right]
$$

Step response of second-order digital filters with two's complement arithmetic

For $a=-1.5, b=-1$ and $c=1$

Step response of second-order digital filters with two's complement arithmetic

$a=-1.5, b=-1, c=-1, x(1)=[-0.8-0.9]$

$a=-1.5, b=-1, c=-1, x(1)=[-0.3-0.3]$

$a=-1.5, b=-1, c=-1, x(1)=[0.80 .9]$

Step response of second-order digital filters with two's complement arithmetic

Define $\quad \mathbf{x}_{0}{ }^{*} \equiv\left(\mathbf{I}-\mathbf{A}^{M}\right)^{-1} \cdot\left(\sum_{j=0}^{M-1} \mathbf{A}^{j} \cdot \mathbf{B} \cdot c+\sum_{j=0}^{M-1} \mathbf{A}^{M-1-j} \cdot\left[\begin{array}{l}0 \\ 2\end{array}\right] \cdot s(j)\right)$

$$
\mathbf{x}_{i+1}{ }^{*} \equiv \mathbf{A} \cdot \mathbf{x}_{i}^{*}+\mathbf{B} \cdot c+\left[\begin{array}{l}
0 \\
2
\end{array}\right] \cdot s(i) \text { for } i=0,1, \cdots, M-2
$$

$$
\hat{\mathbf{x}}_{i}(k) \equiv \mathbf{T}^{-1} \cdot\left(\mathbf{x}(k \cdot M+i)-\mathbf{x}_{i}^{*}\right) \text { for } i=0,1, \cdots, M-1 \text { and } k \geq 0
$$

Step response of second-order digital filters with two's complement arithmetic

For the type II trajectory, the following three statements are equivalent each others:

$$
\widehat{\mathbf{x}}_{i}(k+1)=\widehat{\mathbf{A}}^{M} \cdot \widehat{\mathbf{x}}_{i}(k) \text { for } k \geq 0 \text { and } i=0,1, \cdots, M-1
$$

$\exists M$ such that $s(M \cdot k+i)=s(i)$ for $k \geq 0$ and $i=0,1, \cdots, M-1$ $\mathbf{x}(0) \in\left\{\mathbf{x}(0): \| \mathbf{T}^{-1} \cdot\left(\mathbf{x}(i)-\mathbf{x}_{i}^{*}\left\|_{\infty} \leq 1-\right\| \mathbf{x}_{i}^{*} \|_{\infty}\right\}\right.$ for $i=0,1, \cdots, M-1$

Step response of second-order digital filters with two's complement arithmetic

For $a=-1.5, b=-1, c=1, \mathbf{x}(0)=\left[\begin{array}{l}-0.7 \\ -0.7\end{array}\right], s=(0,-1,-1,0, \cdots)$
Step input: $x=[-0.7-0.7]$

Step response of second-order digital filters with two's complement arithmetic

For $a=-1.5, b=-1$ and $c=1$

Step response of second-order digital

 filters with two's complement arithmeticFor $a=-1.5, b=-1, c=1, \mathbf{x}(0)=\left[\begin{array}{c}0.2 \\ -0.2\end{array}\right], s=(-1,-1,-1,-1,-1,0,0,0,0,0, \cdots)$

Step response of second-order digital filters with two's complement arithmetic

Admissible set of periodic symbolic sequences is defined as a set of periodic symbolic sequences such that there exists an initial condition that produces the symbolic sequences.

Set of initial conditions

Admissible set of periodic

Step response of second-order digital filters with two's complement arithmetic

For example, when $a=0.5, b=-1, c=0$,

M	Admissible s	Not admissible s
1	$s=(0, \cdots)$	
2	$s=(-1,1, \cdots) s=(1,-1, \cdots)$	$s=(1, \cdots) s=(-1, \cdots)$
3	$s=(0,0,1, \cdots) s=(0,1,0, \cdots)$	$s=(1,0, \cdots) s=(0,1, \cdots)$
	$s=(0,1,1, \cdots) s=(0,1,-1, \cdots)$	
	$s=(1,0,0, \cdots) s=(-1,0,0, \cdots)$	$s=(0,-1,1, \cdots) s=(0,-1,-1, \cdots)$
	$s=(0,0,-1, \cdots) s=(0,-1,0, \cdots)$	$s=(1,0,1, \cdots) s=(1,0,-1, \cdots)$
		$s=(1,-1,0, \cdots) s=(1,-1,0, \cdots)$
15	Not found	\cdots

Step response of second-order digital

 filters with two's complement arithmeticA periodic sequence s with period M is admissible if and only if for $i=0,1, \cdots, M-1$

$$
-1 \leq \frac{\sum_{j=0}^{M-1} s(\bmod (i+j, M)) \cdot \cos \left(\left(\frac{M}{2}-j-1\right) \cdot \theta\right)}{\sin \left(\frac{M \cdot \theta}{2}\right) \cdot \sin \theta}<1
$$

Step response of second-order digital filters with two's complement arithmetic

For the type III trajectory, the following three statements are equivalent each others:

There is an elliptical fractal pattern exhibited on the phase plane.
The symbolic sequences are aperiodic.
The set of initial conditions is $I^{2} \backslash \bigcap_{\forall M} D_{M}$
where

$$
D_{M}=\left\{\mathbf{x}(0):\left\|\mathbf{T}^{-1} \cdot\left(\mathbf{x}(i)-\mathbf{x}_{i}^{*}\right)\right\| \leq 1-\left\|\mathbf{x}_{i}^{*}\right\|_{\infty} \text { and } s(i)=s(i+M \cdot k)\right\}
$$

which is also an elliptical fractal set.

Step response of second-order digital filters with two's complement arithmetic

$$
\text { For } a=-1.5, b=-1, c=1, \mathbf{x}(0)=\left[\begin{array}{l}
-0.99 \\
-0.99
\end{array}\right]
$$

Step response of second-order digital filters with two's complement arithmetic

For $a=-1.5, b=-1$ and $c=1$

Other simulation results

* Sinusoidal case for second-order digital filters with two's complement arithmetic

Other simulation results

Other simulation results

* Autonomous case when the eigenvalues of A are inside the unit circle

Other simulation results

Other simulation results

* Autonomous case for third-order digital filters with two's complement arithmetic realized in cascade form

Other simulation results

Other simulation results

* Autonomous case for third-order digital filters with two's complement arithmetic realized in parallel form

Other simulation results

Conclusions

* The trajectory equations and the sets of initial conditions for various types of trajectory are derived.
* The admissible set of periodic symbolic sequences are discussed.
* Simulation results for other systems are shown.

References

[1] L. O. Chua and T. Lin, "Chaos in digital filters," IEEE Transactions on Circuits and Systems, vol. 35, no. 6, pp. 648-658, June 1988.
[2] Z. Galias and M. J. Ogorzalek, "Bifurcation phenomena in second-order digital filter with saturation-type adder overflow characteristic," IEEE Transactions on Circuits and Systems, vol. 37, no. 8, pp. 1068-1070, August 1990.
[3] L. O. Chua and T. Lin, "Chaos and fractals from third-order digital filters," International Journal of Circuit Theory and Applications, vol. 18, pp. 241-255, 1990.
[4] L. O. Chua and T. Lin, "Fractal pattern of second-order non-linear digital filters: a new symbolic analysis," International Journal of Circuit Theory and Applications, vol. 18, pp. 541550, 1990.
[5] T. Lin and L. O. Chua, "On chaos of digital filters in the real world," IEEE Transactions on Circuits and Systems, vol. 38, no. 5, pp. 557-558, May 1991.
[6] Z. Galias and M. J. Ogorzalek, "On symbolic dynamics of a chaotic second-order digital filter," International Journal of Circuit Theory and Applications, vol. 20, pp. 401-409, 1992.
[7] C. W. Wu and L. O. Chua, "Properties of admissible symbolic sequences in a second-order digital filter with overflow non-linearity," International Journal of Circuit Theory and Applications, vol. 21, pp. 299-307, 1993.
[8] L. Kocarev and L. O. Chua, "On chaos in digital filters: case $b=-1$," IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 40, no. 6, pp. 404-407, June 1993.
[9] L. Kocarev, C. W. Wu and L. O. Chua, "Complex behavior in digital filters with overflow nonlinearity: analytical results," IEEE Transactions on Circuits and Systems-lI: Analog and Digital Signal Processing, vol. 43, no. 3, pp. 234-246, March 1996.
[10] X. Yu and Z. Galias, "Periodic behaviors in a digital filter with two's complement arithmetic," IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Applications, vol. 48, no. 10, pp. 1177-1190, October 2001.

