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Linear Time Invariant Systems

Definition of linear systems

Definition of time invariant systems

Definition of linear time invariant systems
A system is both linear and time invariant.
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Linear Time Invariant Systems

Definition of an impulse response

where

Definition of a frequency response
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Linear Time Invariant Systems

Properties of linear time invariant systems
A system is linear and time invariant if and only if

A system is linear and time invariant if and only if

where
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Linear Time Invariant Systems
Characterization of linear time invariant systems

Constant linear coefficients difference equations

Transfer function

State space representation
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Linear Time Invariant Systems

Responses

zero input response zero state response
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Linear Time Invariant Systems

Similarity transforms
Define

then
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Linear Time Invariant Systems

Only three types of behaviors for autonomous 
response

converge to zero (all system poles are strictly inside the 
unit circle.)
oscillates (Some system poles are on the unit circle, 
while all other system poles are strictly inside the unit 
circle.)
diverge to infinity (Some system poles are outside the 
unit circle.)
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Linear Time Invariant Systems

Autonomous responses
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Linear Time Invariant Systems
Effects on initial conditions

Behaviors only depend on the system poles, not on 
initial conditions.
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Linear Time Invariant Feedback 
Controls

Pole placement

Plant transfer function

Controller transfer function

is stable.
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Linear Time Invariant Feedback 
Controls

State feedback
Plant state space matrices
Controller state space matrices
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Linear Time Invariant Feedback 
Controls

State feedback

is stable.
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Linear Time Invariant Feedback 
Controls

Output feedback
Plant state space matrices
Controller state space matrices
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Linear Time Invariant Feedback 
Controls

Output feedback
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )kkk

kkkkk

DuDDIDxCDDDIDICxDDID

DuDDIxCDDDICxDDIDxCy
111

111

~~~~~~~~

~~~~~~~~~
−−−

−−−

+++−++=

+++−++=

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )kkk

kkkkkk

uDDDIDBBxCDDDIDIBxCDDIDBA

DuDDIDxCDDDIDICxDDIDuBAxx
111

111

~~~~~~~~

~~~~~~~~1
−−−

−−−

+−++−−+−=

+++−++−+=+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )kkk

kkkkk

DuDDIBxCDDDIBACxDDIB

DuDDIxCDDDICxDDIBxAx
111

111

~~~~~~~~~

~~~~~~~~1~
−−−

−−−

+++−++=

+++−++=+



18

Linear Time Invariant Feedback 
Controls

Output feedback

is stable.
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Linear Multirate Systems

Definition

where

Input shifts by n samples, output shifts by m samples.
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Linear Multirate Systems

Examples:
Rate changers/sampled data systems

Filter banks

f[n] ↓nu[n] ↑m y[n]

h0[n] ↓n

u[n]

↑m

h1[n] ↓n ↑m

hn-1[n] ↓n ↑m

z-1

z-(m-1)

y[n]
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Linear Multirate Systems
Realization

A linear multirate system can be realized by a filter bank 
system.
Define a blocked input signal as

Define a block output signal as

Input shifts by n samples, the blocked input signal shifts by 
1 sample. Output shifts by m samples, the blocked output 
signal shifts by 1 sample.
Hence, there exists an       transfer matrix         such thatnm×

( ) ( ) ( )[ ]Tmmkymkyk 1−+≡ Ly

( ) ( ) ( )[ ]Tnnkunkuk 1−+≡ Lu

( )zH
( ) ( ) ( )zzz XHY =
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Linear Multirate Systems
Realization

h0[n] ↓n

u[n]

↑m

h1[n] ↓n ↑m

hn-1[n] ↓n ↑m

z-1

z-(m-1)
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u[n]
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H(z)
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Linear Multirate Systems

Realization
Denote
Define the map such that

is bijective if and only if   and  is co-prime. Or in other 
words,  is bijective if and only if the highest common factor 
of     and    is 1.

I

][][ , lklmn gkf =− Ζ∈∀ lk ,
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Linear Multirate Systems
Realization
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Linear Multirate Systems
Realization
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Linear Multirate Systems
Realization
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Linear Multirate Systems

Realization
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Linear Multirate Systems

Realization
A linear multirate system is equivalent to a rate changer if 
and only if   and  is co-prime. That is:

is equivalent to

m n
f[n] ↓nx[n] ↑m y[n]

h0[n] ↓n

x[n]

↑m

h1[n] ↓n ↑m

hn-1[n] ↓n ↑m

z-1

z-(m-1)

y[n]
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Linear Multirate Systems
Properties

A linear multirate system is stable if and only if hi[n] for 
i=0,1,…,n-1 are all stable.
A linear multirate system is finite impulse response if and 
only if hi[n] for i=0,1,…,n-1 are all finite impulse response.
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Realization
Block decimators (decimation ratio M and block 
length L)

for j=0,1,…,L-1 and k∈Z.
↓(M,L) y[n]x[n]
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Linear Multirate Systems
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Realization
Block expanders (expansion ratio M and block 
length L)

↑(M,L) y[n]x[n]
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Realization
∀m,n∈Z+ (no matter m and n are co-prime or not), 
all linear multirate systems (shifting input by n 
samples resulting to shifting an output by m 
samples) can be represented via a series 
cascade of ↑m, followed by an LTI filter with an 
impulse response f[k], and then followed by 
↓(n,m).

Linear Multirate Systems
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Realization
The input output relationship of all linear multirate 
rate systems is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,m-1.
The input output relationship of the system with 
block sampler is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,m-1.
∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,m-1, the mapping 
from {0,1,…,m-1}xZ to Z, where [i,l-kn]∈{0,1,…,m-
1}xZ and kmn-ml+i∈Z is bijective.

∑
∞+
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−=+
-

][u],[g]y[
l

lknliikm

∑
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+−=+
l

limlkmnikm ][u][f]y[

Linear Multirate Systems
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Realization
Hence, ∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,m-1, there 
exists a unique time index kmn-ml+i
corresponding to the time index [i,l-kn].
As a result, there exists an LTI filter with an 
impulse response f[k] satisfying f[kmn-ml+i]=g[i,l-
kn], ∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,m-1, that the 
linear multirate rate systems and the system with 
block sampler are input output equivalent.

Linear Multirate Systems
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Realization
∀m,n∈Z+ (no matter m and n are co-prime or not), 
all linear multirate rate systems (with shifting input 
by n samples resulting to shifting an output by m 
samples) can be represented via a series 
cascade of ↑(m,n), followed by an LTI filter with 
an impulse response f[k], and then followed by ↓n.

Linear Multirate Systems
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Realization
The input output relationship of all linear multirate 
rate systems is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,n-1.
The input output relationship of the system with 
block sampler is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,n-1.
∀l∈Z, ∀m,n∈Z+, k∈{0,1,…,m-1} and i∈{0,1,…,n-1}, 
the mapping from {0,1,…,m-1}xZ to Z, where 
[k,nl+i]∈{0,1,…,m-1}xZ and kn-mnl-i∈Z is bijective.
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Realization
Hence, ∀l∈Z, ∀m,n∈Z+, k∈{0,1,…,m-1} and 
i∈{0,1,…,n-1}, there exists a unique time index 
kn-mnl-i corresponding to the time index [k,nl+i].
As a result, there exists an LTI filter with an 
impulse response f[k] satisfying f[kn-mnl-
i]=g[k,nl+i], ∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,n-1, 
that the linear multirate rate systems and the 
system with block sampler are input output 
equivalent.

Linear Multirate Systems
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Linear Multirate Systems
Properties

A linear multirate system is stable if and only if f[n] is 
stable.
A linear multirate system is finite impulse response if and 
only if f[n] is finite impulse response.
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Control of Linear Multirate 
Systems via Filter Banks 

Approach
↓n

u[n]-p[n]

↑m

H(z)
↓n ↑m

↓n ↑m

z

zn-1

y[n]z-1

z-(m-1)

Plant model

Controller model
↓m

y[n]

↑n

G(z)
↓m ↑n

↓m ↑n

z

zm-1

p[n]z-1

z-(n-1)
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Control of Linear Multirate 
Systems via Filter Banks 

Approach
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Control of Linear Multirate 
Systems via Filter Banks 

Approach
Closed loop system model
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Control of Linear Multirate 
Systems via Filter Banks 

Approach
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Only three types of behaviors for autonomous response of 
linear time invariant systems.
Behaviors of linear time invariant systems only depend on the 
system poles, not on initial conditions.
Stability conditions based on pole placement, state feedback 
and output feedback of linear time invariant systems are 
derived.
Linear multirate systems can be realized via a filter bank.
When the input rate and the output rate is co-prime, then linear 
multirate systems can be realized via linear rate changers. 
Otherwise, they can be realized via block samplers.
Stability conditions for linear multirate feedback systems are 
derived based on filter bank approach.

Conclusions
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Questions and Answers

Thank you!

Let me think…

Bingo
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