Introduction to Linear Dynamic Systems and Linear Control Strategies

Presenter: Dr. Bingo Wing-Kuen Ling Lecturer, Centre for Digital Signal Processing Department of Electronic Engineering, King College London.

Email address: wing-kuen.ling@kcl.ac.uk

R

Acknowledgements

- Prof. Li Qiu (HKUST)—Linear control theory, multivariable control theory, robust control theory, sampled-data systems and multirate control theory
- Dr. Li-Xin Wang (HKUST)—Fuzzy control theory, neural networks and genetic algorithms
- Prof. Xiren Cao (HKUST)—Stochastic control theory
- Prof. Zexiang Li (HKUST)—Robotics
- Dr. Bertram Shi (HKUST)—Nonlinear control theory and cellular neural networks
- Prof. Guanrong Chen (CityU)—Chaos control theory
- Prof. Xinghuo Yu (RMIT)—Sliding mode control theory
- Dr. Peter Kwong-Shun Tam (PolyU)—Adaptive control theory
- Prof. Kok-Lay Teo (CurtinU)—Optimal control theory and impulsive control theory

Outline

- Linear Time Invariant Systems
- Linear Time Invariant Feedback Controls
 Pole Placement Approach
 State Feedback
 Output Feedback
- Linear Multirate Systems
- Control of Linear Multirate Systems via Filter Banks Approach
- Conclusions
- Questions and Answers

✤ Definition of linear systems $\sum_{i=0}^{N} a_i y_i(k) = T\left(\sum_{i=0}^{N} a_i u_i(k)\right)$

- ✤ Definition of time invariant systems y(k-1) = T(u(k-1))
- Definition of linear time invariant systems
 A system is both linear and time invariant.

◆ Definition of an impulse response $h(k) \equiv T(\delta(k))$ where \delta(k) \equiv \lambda(k) \eq

◆ Definition of a frequency response $y(k) = T(e^{j\omega k})$

✤ Properties of linear time invariant systems
A system is linear and time invariant if and only if $y(n) = \sum_{\forall k \in Z} h(k)u(n-k)$

6

where $Y(z) = \sum_{\forall n \in \mathbb{Z}} y(n) z^{-n}$ $H(z) = \sum_{\forall n \in \mathbb{Z}} h(n) z^{-n}$ $U(z) = \sum_{\forall n \in \mathbb{Z}} u(n) z^{-n}$

♦ Characterization of linear time invariant systems
• Constant linear coefficients difference equations $\sum_{i=0}^{N} a_i y(k-i) = \sum_{j=0}^{M} b_j u(k-j)$

CR Transfer function

$$H(z) = \frac{\sum_{j=0}^{M} b_j z^{-j}}{\sum_{i=0}^{N} a_i z^{-i}}$$

Responses

$$\mathbf{x}(k) = \mathbf{A}^{k} \mathbf{x}(0) + \sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{Bu}(j) \quad \forall k \ge 1$$
$$\mathbf{y}(k) = \mathbf{C}\mathbf{A}^{k} \mathbf{x}(0) + \mathbf{C}\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{Bu}(j) + \mathbf{Du}(k) \quad \forall k \ge 1$$
$$\uparrow$$
zero input response zero state response

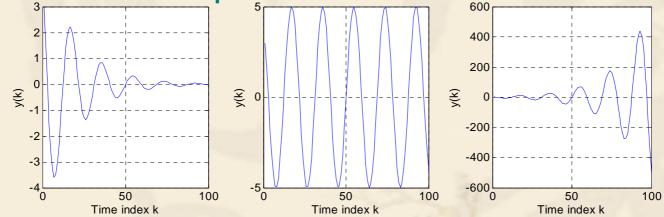
$$y(n) = \sum_{\forall k \in Z} h(k) u(n-k)$$

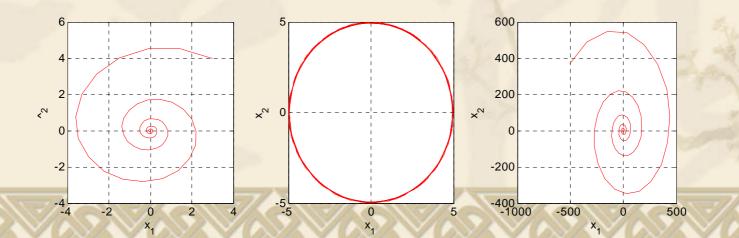
 Similarity transforms **OR** Define $\widetilde{\mathbf{x}}(k) \equiv \mathbf{T}^{-1}\mathbf{x}(k)$ $\widetilde{\mathbf{A}} \equiv \mathbf{T}^{-1} \mathbf{A} \mathbf{T}$ $\widetilde{\mathbf{B}} \equiv \mathbf{T}^{-1}\mathbf{B}$ $\tilde{\mathbf{C}} \equiv \mathbf{CT}$ **a** then $\widetilde{\mathbf{x}}(k+1) = \widetilde{\mathbf{A}}\widetilde{\mathbf{x}}(k) + \widetilde{\mathbf{B}}\mathbf{u}(k)$ $\mathbf{y}(k) = \widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \mathbf{D}\mathbf{u}(k)$

- Only three types of behaviors for autonomous response
 - ce converge to zero (all system poles are strictly inside the unit circle.)

 - cadiverge to infinity (Some system poles are outside the unit circle.)

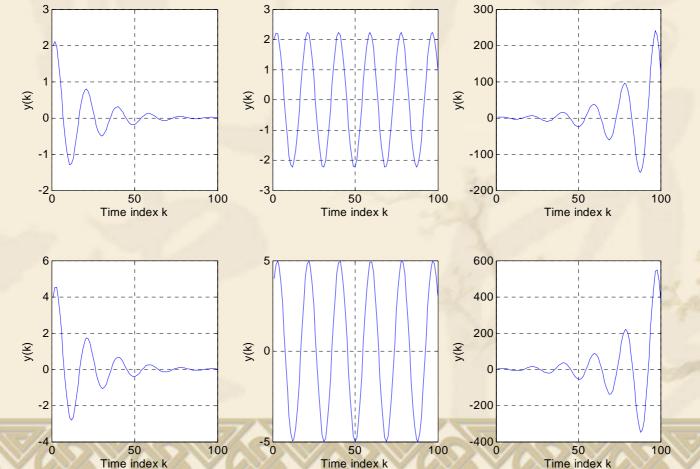
Autonomous responses



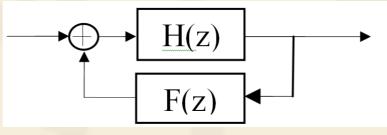


Effects on initial conditions

Rehaviors only depend on the system poles, not on initial conditions.



Pole placement



Plant transfer function $H(z) = \frac{N_{H}(z)}{D_{H}(z)}$ Controller transfer function $F(z) = \frac{N_{F}(z)}{D_{F}(z)}$ $T(z) = \frac{H(z)}{1+H(z)F(z)} = \frac{N_{H}(z)D_{F}(z)}{N_{H}(z)N_{F}(z)+D_{H}(z)D_{F}(z)}$ $N_{H}(z)N_{F}(z) + D_{H}(z)D_{F}(z) \text{ is stable.}$

State feedback

 \bigcirc Plant state space matrices (A, B, C, D) $\begin{array}{l} \mathbf{c} \mathbf{x} \text{ Controller state space matrices} \left(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}, \widetilde{\mathbf{C}}, \widetilde{\mathbf{D}} \right) \\ \mathbf{x}(k+1) = \mathbf{A} \mathbf{x}(k) + \mathbf{B}(\mathbf{u}(k) - \widetilde{\mathbf{y}}(k)) \end{array}$ $\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}(\mathbf{u}(k) - \widetilde{\mathbf{y}}(k))$ $\widetilde{\mathbf{x}}(k+1) = \widetilde{\mathbf{A}}\widetilde{\mathbf{x}}(k) + \widetilde{\mathbf{B}}\mathbf{x}(k)$ $\widetilde{\mathbf{y}}(k) = \widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \widetilde{\mathbf{D}}\mathbf{x}(k)$ $\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}(\mathbf{u}(k) - (\widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \widetilde{\mathbf{D}}\mathbf{x}(k)))$ $= (\mathbf{C} - \mathbf{D}\widetilde{\mathbf{D}})\mathbf{x}(k) - \mathbf{D}\widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \mathbf{D}\mathbf{u}(k)$ $\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}(\mathbf{u}(k) - (\widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \widetilde{\mathbf{D}}\mathbf{x}(k)))$ $= (\mathbf{A} - \mathbf{B}\widetilde{\mathbf{D}})\mathbf{x}(k) - \mathbf{B}\widetilde{\mathbf{C}}\widetilde{\mathbf{x}}(k) + \mathbf{B}\mathbf{u}(k)$

$$\begin{bmatrix} (\mathbf{A} - \mathbf{B}\widetilde{\mathbf{D}}) & -\mathbf{B}\widetilde{\mathbf{C}} \\ \widetilde{\mathbf{B}} & \widetilde{\mathbf{A}} \end{bmatrix}$$
 is stable.

Output feedback

Replant state space matrices $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ Replace controller state space matrices $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}, \widetilde{\mathbf{C}}, \widetilde{\mathbf{D}})$

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}(\mathbf{u}(k) - \tilde{\mathbf{y}}(k))$$

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}(\mathbf{u}(k) - \tilde{\mathbf{y}}(k))$$

$$\tilde{\mathbf{x}}(k+1) = \tilde{\mathbf{A}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{B}}\mathbf{y}(k)$$

$$\tilde{\mathbf{y}}(k) = \tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{D}}\mathbf{y}(k)$$

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}(\mathbf{u}(k) - (\tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + \tilde{\mathbf{D}}\mathbf{y}(k)))$$

$$= \mathbf{C}\mathbf{x}(k) - \mathbf{D}\tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + \mathbf{D}\mathbf{u}(k) - \mathbf{D}\tilde{\mathbf{D}}\mathbf{y}(k)$$

$$\mathbf{y}(k) = (\mathbf{I} + \mathbf{D}\tilde{\mathbf{D}})^{-1}(\mathbf{C}\mathbf{x}(k) - \mathbf{D}\tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + \mathbf{D}\mathbf{u}(k))$$

$$= (\mathbf{I} + \mathbf{D}\tilde{\mathbf{D}})^{-1}\mathbf{C}\mathbf{x}(k) - (\mathbf{I} + \mathbf{D}\tilde{\mathbf{D}})^{-1}\mathbf{D}\tilde{\mathbf{C}}\tilde{\mathbf{x}}(k) + (\mathbf{I} + \mathbf{D}\tilde{\mathbf{D}})^{-1}\mathbf{D}\mathbf{u}(k)$$

16

k

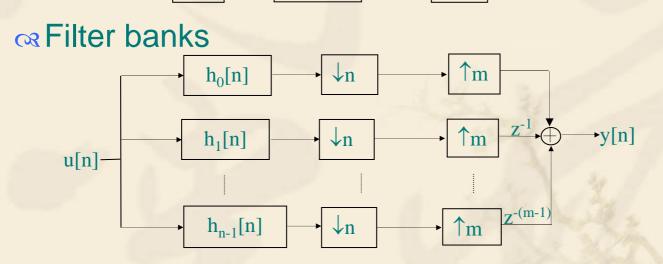
 $\stackrel{\diamond}{\mathbf{S}} \begin{array}{l} \mathbf{Output feedback} \\ \begin{bmatrix} \mathbf{x}(k+1) \\ \mathbf{\tilde{x}}(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\widetilde{\mathbf{D}}(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}})^{-1}\mathbf{C} & -\mathbf{B}\left(\mathbf{I} - \widetilde{\mathbf{D}}(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}})^{-1}\mathbf{D}\right)\widetilde{\mathbf{C}} \end{bmatrix} \begin{bmatrix} \mathbf{x}(k) \\ \mathbf{\tilde{x}}(k) \end{bmatrix} + \begin{bmatrix} \left(\mathbf{B} - \mathbf{B}\widetilde{\mathbf{D}}(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}})^{-1}\mathbf{D}\right) \\ \mathbf{B}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{D} \end{bmatrix} \mathbf{u}(k) \\ \mathbf{\tilde{y}}(k) = \begin{bmatrix} \widetilde{\mathbf{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{C} & \left(\mathbf{I} - \widetilde{\mathbf{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{D}\right)\widetilde{\mathbf{C}} \begin{bmatrix} \mathbf{x}(k) \\ \mathbf{\tilde{x}}(k) \end{bmatrix} + \mathbf{\tilde{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{D}\mathbf{u}(k) \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{A} - \mathbf{B}\widetilde{\mathbf{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{C} & -\mathbf{B}\left(\mathbf{I} - \widetilde{\mathbf{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{D}\right)\widetilde{\mathbf{C}} \\ \mathbf{\tilde{x}}(k) \end{bmatrix} + \mathbf{\tilde{D}}\left(\mathbf{I} + \mathbf{D}\widetilde{\mathbf{D}}\right)^{-1}\mathbf{D}\mathbf{u}(k) \end{bmatrix} \end{aligned}$

Definition

where
$$y(k) = \sum_{\forall l \in Z} g(k, l)u(l) \quad \forall k \in Z$$
$$g(k, l) = g(k + m, l + n) \quad \forall k, l \in Z$$

Real Report Shifts by n samples, output shifts by m samples.

Examples:



Realization

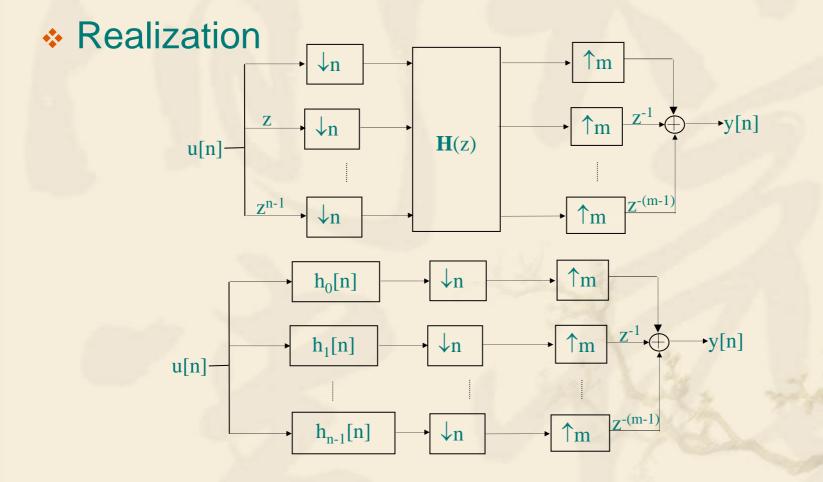
A linear multirate system can be realized by a filter bank system.

∞ Define a blocked input signal as $\mathbf{u}(k) \equiv \begin{bmatrix} u(nk) & \cdots & u(nk+n-1) \end{bmatrix}^T$

∞ Define a block output signal as $\mathbf{y}(k) \equiv \begin{bmatrix} y(mk) & \cdots & y(mk+m-1) \end{bmatrix}^T$

Input shifts by n samples, the blocked input signal shifts by 1 sample. Output shifts by m samples, the blocked output signal shifts by 1 sample.

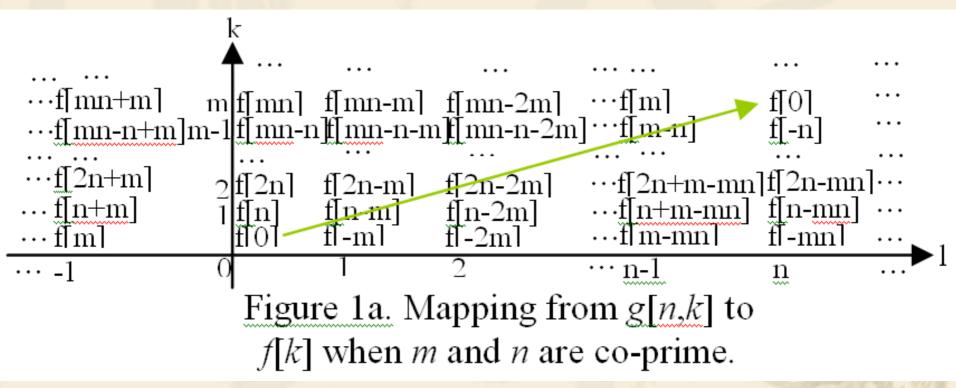
Reference, there exists $anm \times n$ transfer matrix $\mathbf{H}(z)$ such that $\mathbf{Y}(z) = \mathbf{H}(z)\mathbf{X}(z)$

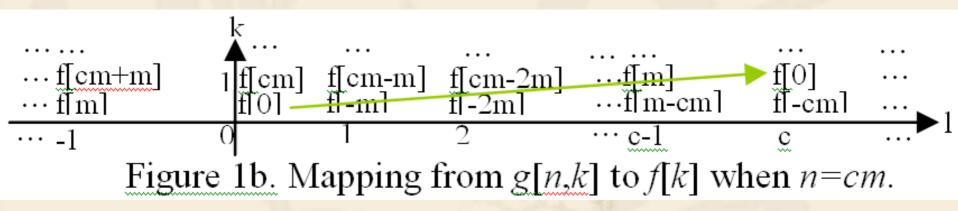


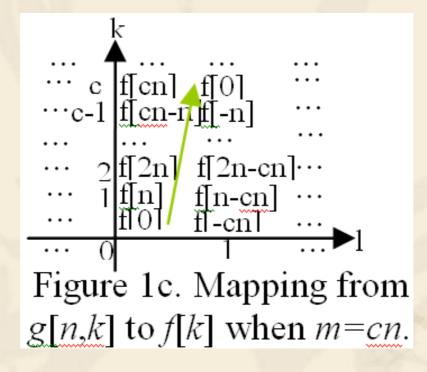
Realization

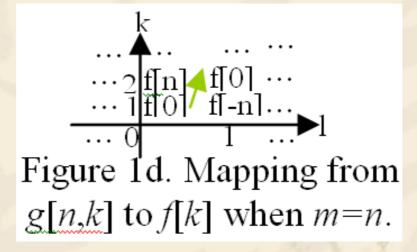
Comparison of the map I = g[k,l] ∀k, l ∈ Z
 Comparison of the map I : {0,1,...,m-1}×Z → Z such that
 I(k,l) = kn - lm

I is bijective if and only if m and n is co-prime. Or in other words, I is bijective if and only if the highest common factor of m and n is 1.



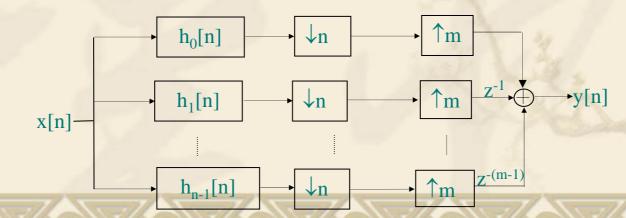






Realization

A linear multirate system is equivalent to a rate changer if and only if m and n is co-prime. That is:



Properties

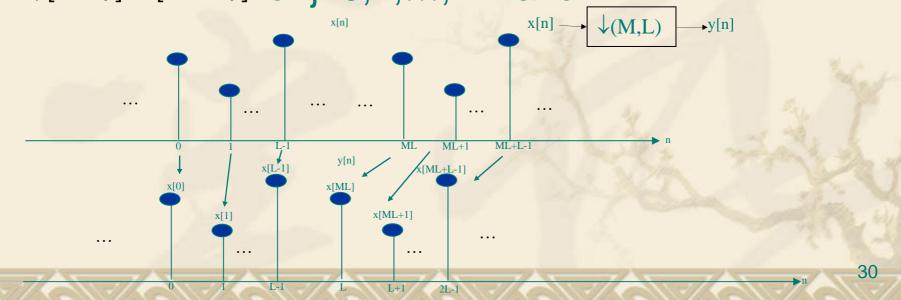
A linear multirate system is stable if and only if h_i[n] for i=0,1,...,n-1 are all stable.

A linear multirate system is finite impulse response if and only if $h_i[n]$ for i=0,1,...,n-1 are all finite impulse response.

Realization

Block decimators (decimation ratio M and block length L)

y[Lk + j] = x[kML + j] for j=0,1,...,L-1 and <u>k \in Z</u>.



Realization

2L-1

ML

ML+1

ML+L-1

31

v[n]

Realization

Realization

The input output relationship of all linear multirate rate systems is $y[km+i] = \sum_{k=0}^{+\infty} g[i, l-kn] u[l]$, $\forall k, l \in Z$, $\forall m, n \in Z^+$ and i=0,1,...,m-1.

The input output relationship of the system with block sampler is $y[km+i] = \sum_{\substack{i \in Mn - ml + i}} u[l]$, $\forall k, l \in Z$, $\forall m, n \in Z^+$ and i=0,1,...,m-1.

 $rightarrow k, l \in Z, \forall m, n \in Z^+ and i=0,1,...,m-1$, the mapping from $\{0,1,...,m-1\}xZ$ to Z, where $[i,l-kn] \in \{0,1,...,m-1\}xZ$ and kmn-ml+i $\in Z$ is bijective.

Realization

 \bigcirc Hence, $\forall k, l \in \mathbb{Z}$, $\forall m, n \in \mathbb{Z}^+$ and i=0,1,...,m-1, there exists a unique time index kmn-ml+i corresponding to the time index [i,l-kn]. As a result, there exists an LTI filter with an impulse response f[k] satisfying f[kmn-ml+i]=g[i,lkn], $\forall k, l \in \mathbb{Z}$, $\forall m, n \in \mathbb{Z}^+$ and i=0,1,...,m-1, that the linear multirate rate systems and the system with block sampler are input output equivalent.

Realization

Realization

The input output relationship of all linear multirate rate systems is $y[k] = \sum_{i=0}^{+\infty} \sum_{j=0}^{n-1} g[k,nl+i]u[nl+i] , \forall k,l \in \mathbb{Z}, \forall m,n \in \mathbb{Z}^+ \text{ and } i=0,1^{l \to -\infty i = 0} -1.$

The input output relationship of the system with block sampler is $y[k] = \sum_{i=1}^{+\infty} \sum_{j=1}^{n-1} f[kn - mnl - i]u[nl + i], \forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \text{ and } i=0, 1, ..., n-1.$

 $rightarrow \forall l \in Z, \forall m, n \in Z^{+}, k \in \{0, 1, ..., m-1\} \text{ and } i \in \{0, 1, ..., n-1\},$ the mapping from $\{0, 1, ..., m-1\}xZ$ to Z, where $[k, nl+i] \in \{0, 1, ..., m-1\}xZ$ and $kn-mnl-i \in Z$ is bijective.

Realization

Reference, $\forall I \in Z, \forall m, n \in Z^+, k \in \{0, 1, \dots, m-1\}$ and $i \in \{0, 1, \dots, n-1\}$, there exists a unique time index kn-mnl-i corresponding to the time index [k,nl+i]. As a result, there exists an LTI filter with an impulse response f[k] satisfying f[kn-mnli]=g[k,nl+i], $\forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+$ and i=0,1,...,n-1, that the linear multirate rate systems and the system with block sampler are input output equivalent.

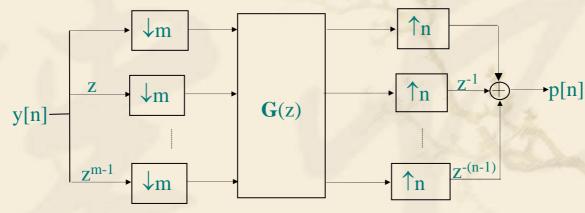
- Properties
 - A linear multirate system is stable if and only if f[n] is stable.
 - A linear multirate system is finite impulse response if and only if f[n] is finite impulse response.

Some of Linear Multirate Systems via Filter Banks Approach * Plant model Image: Approach Image: App

Controller model

u[n]-p[n]-

 z^{n-1}



H(z)

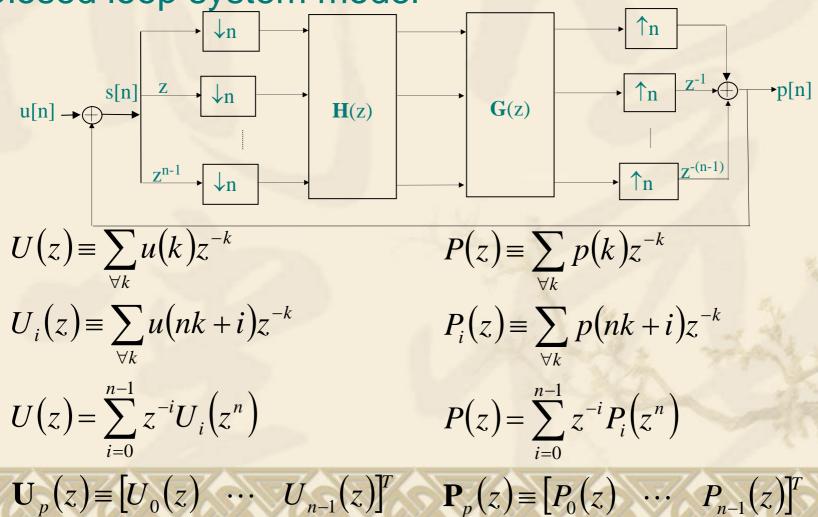
7-(m-1)

ſm

Systems via Filter Banks Approach

ontrol of Linear Multirate

Closed loop system model



Systems via Filter Banks Approach * Closed loop system model $Y(z) \equiv \sum y(k)z^{-k}$

Control of Linear Multirate

 $Y(z) \equiv \sum_{\forall k} y(k) z^{-k}$

$$Y_i(z) \equiv \sum_{\forall k} y(mk+i) z^{-k}$$

 $Y(z) = \sum_{i=0}^{m-1} z^{-i} Y_i(z^m)$

 $\mathbf{Y}_{p}(z) \equiv \begin{bmatrix} Y_{0}(z) & \cdots & Y_{m-1}(z) \end{bmatrix}^{T}$ $\mathbf{G}(z)\mathbf{H}(z)(\mathbf{U}_{p}(z) - \mathbf{P}_{p}(z)) = \mathbf{P}_{p}(z)$ $\mathbf{P}_{p}(z) = (\mathbf{I} + \mathbf{G}(z)\mathbf{H}(z))^{-1}\mathbf{G}(z)\mathbf{H}(z)\mathbf{U}_{p}(z)$

Systems via Filter Banks Approach

Control of Linear Multirate

Closed loop system model

 $\mathbf{Y}_{p}(z) = \mathbf{H}(z) (\mathbf{U}_{p}(z) - \mathbf{P}_{p}(z))$ = $\mathbf{H}(z) (\mathbf{I} - (\mathbf{I} + \mathbf{G}(z)\mathbf{H}(z))^{-1}\mathbf{G}(z)\mathbf{H}(z))\mathbf{U}_{p}(z)$ $\mathbf{H}(z) (\mathbf{I} - (\mathbf{I} + \mathbf{G}(z)\mathbf{H}(z))^{-1}\mathbf{G}(z)\mathbf{H}(z))$ is stable.

Conclusions

- Only three types of behaviors for autonomous response of linear time invariant systems.
- Behaviors of linear time invariant systems only depend on the system poles, not on initial conditions.
- Stability conditions based on pole placement, state feedback and output feedback of linear time invariant systems are derived.
- Linear multirate systems can be realized via a filter bank.
- When the input rate and the output rate is co-prime, then linear multirate systems can be realized via linear rate changers.
 Otherwise, they can be realized via block samplers.
- Stability conditions for linear multirate feedback systems are derived based on filter bank approach.

