
University of Huddersfield Repository

Klaib, Ahmad and Osborne, Hugh

OE Matching Algorithm for Searching Biological Sequences

Original Citation

Klaib, Ahmad and Osborne, Hugh (2009) OE Matching Algorithm for Searching Biological
Sequences. In: International Conference on Bioinformatics, Computational Biology, Genomics and
Chemoinformatics (BCBGC-09). ISRST, Orlando, Florida, pp. 36-42. ISBN 978-1-60651-009-4

This version is available at http://eprints.hud.ac.uk/9918/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/51711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OE Matching Algorithm for Searching Biological Sequences

Ahmad Fadel Klaib and Hugh Osborne

Informatics Department, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

E-mail: {a.klaib/ h.r.osborne} @hud.ac.uk

Abstract

String matching algorithms play a key role in many

computer science problems, and in the implementation of

computer software. This problem has received, and

continues to receive a great deal of attention due to

various applications in text manipulation, information

retrieval, speech recognition, image and signal

processing and computational biology. In this study, we

propose a new algorithm called the Odd and Even

algorithm (OE). OE combines an enhanced preprocessing

phase from the Berry Ravindran algorithm with our

proposed new searching phase procedure. This variety of

searching order allows our proposed algorithm to reduce

the number of comparison characters and enhances the

searching response time. Experimental results show that

OE algorithm offers a smaller number of comparisons

and offers improved elapsed searching time when

compared to other well-known algorithms for searching

any length of alphabets and patterns. The proposed

algorithm is applicable to searching protein sequence

databases as well as any other string searching

applications.

1. Introduction

Protein data can be found in many different forms such

as sequences data, structure data, microarray data, and

image data. Proteins are fundamental to the structure and

the function of all living cells and viruses. Protein

compounds are made of 20 different amino acids arranged

in a linear chain. They are “complex organic compounds

that consist of amino acids joined by peptide bonds" [1].

Computational biology and chemistry that use

computational methods handle large amount of data.

Protein sequence technologies have produced many

extremely large sets of biological data which need faster

techniques to process them.

The Swiss-Prot database is one of the main protein

sequence databases containing descriptions of protein

functions, domain structures, post-translational

modifications and variants with a low level of redundancy

and a high level of integration with other databases [2].

String-matching algorithms aim to find all occurrences

of a given pattern P= p1p2…pm in a text T=t1t2…tn. They

work as follows: they first align the left ends of the pattern

and the text, then compare text characters with pattern

characters and after a mismatch between the pattern and

the text or a whole match between them they shift the

pattern to the right. This procedure is repeated until the

right end of the pattern reaches the right end of the text.

Most string-matching algorithms consist of a

preprocessing phase and a searching phase to search for

the pattern in the given text. The preprocessing phase

analyses the characters in the pattern in order to use this

information to determine the pattern shift in case of a

mismatch or a whole match, with the aim of reducing the

total number of character comparisons, while the

searching phase defines the order of comparison of

characters in each attempt between the pattern and the

text. The main aim in algorithm development is to

decrease the searching phase during each attempt and to

increase the shifting value of the pattern.

String matching algorithms can be classified into seven

categories according to the preprocessing function in the

algorithm [3]. The first category, e.g. the Brute Force

algorithm (BF) [4], shifts the pattern only one position at

each attempt. The second category, which includes the

Boyer-Moore algorithm (BM) [5]-[7] and the Fast Search

algorithm (FS) [8], uses two preprocessing functions. The

third category, a good example of which is the Boyer

Moore Horspool algorithm (BMH) [9]-[11], uses one

preprocessing function based on the rightmost character in

the current window. The fourth category, e.g. the Quick

Search algorithm (QS) [12], uses one preprocessing

function based on the character next to the current

window. The fifth category, such as the Berry–Ravindran

algorithm (BR) [13], uses one preprocessing function

based on the next two characters to the current window.

The sixth category, e.g. the Karp-Rabin algorithm (KR)

[14] and the Zhu Takaoka algorithm (ZT) [15], uses a

preprocessing hashing function. The final category uses

hybrid algorithms and includes the SSABS [16], TVSBS

[17], ZTMBH [18], BRFS [19], BRBMH [20] and the

BRQS [3] algorithms.

The paper is organized as follows: section II includes a

survey of the main string-matching algorithms. Section III

describes the proposed algorithm and its two main phases.

Section IV provides a working example. Section V

includes the experimental results with an evaluation of our

new algorithm comparing it to other common string-

matching algorithms. Finally the conclusion is presented

in section VI.

2. Related works

This section includes a survey of the main string-

matching algorithms: the BR, KMP, BM, BMH, KP, ZT,

QS, BR, FS, SSABS, TVSBS, ZTMBH, BRFS, BRBMH

and the BRQS algorithms [21], [22]. Table 1 summarizes

and compares these algorithms:

Algorithm

Name

Year Comparison

Order

Preprocessing

Time

Searching Time Main

Characteristics

Brute

Force

Algorithm

Very Old
From left to

right
N/A O(mn)

Shifts the pattern only a position each

attempt. Not an optimal algorithm since

it does not use the information that could

be gained from the last comparison made

Knuth-

Morris-

Pratt

Algorithm

1974
From left to

right
O(m)

O(mn)

Uses the notion of the border of the

string. It increases performance,

decreases delay, and decreases searching

time compared to the Brute Force

algorithm. It is efficient for large

alphabets

Boyer-

Moore

Algorithm

1977
From right

to left
O(m+σ) O(mn)

Uses two preprocessing functions; the

good-suffix shift and the bad-character

shift. It is not very efficient for small

alphabets

Horspool

Algorithm

1980
From left to

right
O(m+σ) O(mn)

Uses the Horspool bad-character

preprocessing function based on the

rightmost character in the current

window. It is a simplification of the

Boyer-Moore algorithm. It is faster than,

and easier to implement than the Boyer-

Moore algorithm

Karp-

Rabin

Algorithm

1984
From left to

right
O(m) O(mn)

Uses the Karp-Rabin preprocessing

hashing function. It is very effective for

multiple pattern matching in one-

dimensional string matching

Zhu-

Takaoka

Algorithm

1989
From right

to left
O(m+σ

2
) O(mn)

Uses the Zhu-Takaoka preprocessing

hashing function. It is very effective for

multiple pattern matching in two-

dimensional string matching

Quick-

Search

Algorithm

1990
From right

to left
O(m+σ) O(mn)

Uses the Quick-Search bad-character

preprocessing function based on the next

character to the current window. It is

especially fast for short patterns

Berry–

Ravindran

Algorithm
1999

From left to

right
O(m+σ

2
) O(mn)

Uses the Berry-Ravindran preprocessing

function based on the next two characters

after the current window in order to

increase the shifting value of the pattern

Fast Search

Algorithm

2003
From right

to left
O(m+σ

2
) O(mn)

Uses the bad-character function only if

the mismatching character is the last

character of the pattern, otherwise the

good-suffix function is to be used. It is

efficient in very short patterns

SSABS

Algorithm 2004
From right

to left
O(m+σ) O(m(n-m+1))

Uses the Quick-Search bad-character

preprocessing function. It scans the

pattern with the text starting from the

right most then the left most then it scans

the next last character and goes backward

to the left.

TVSBS

Algorithm

2006
From right

to left
O(m+σ

2
)

O(m(n – m +

1))

A combination of the Berry-Ravindran

and the SSBAS algorithms. It scans the

pattern with the text using the searching

phase of the SSABS algorithm. Uses the

Berry-Ravindran preprocessing function

ZTMBH

Algorithm

2008
From left to

right
O(m+σ

2
) O(mn)

A combination of the Zhu Takaoka and

the Boyer-Moore Horspool algorithms. It

scans the pattern using the searching

phase of the BMH algorithm. Uses the

Zhu-Takaoka preprocessing hashing

function.

BRFS

Algorithm

2008
From right

to left
O(m+σ

2
) O(mn)

A combination of the Berry-Ravindran

and the Fast Search algorithms. It scans

the pattern using the searching phase of

the FS algorithm. Uses the Berry-

Ravindran Preprocessing Function.

BRBMH

Algorithm

2008

From left to

right
O(m+σ) O(mn)

Enhances the preprocessing Berry-

Ravindran algorithm and combines it

with the BMH algorithm. It scans the

pattern using the searching phase of the

BMH algorithm. Uses the enhanced

Berry-Ravindran Preprocessing Function.

BRQS

Algorithm

2008
From right

to left
O(m+σ) O(mn)

Uses the enhanced Berry-Ravindran

Preprocessing Function and combines it

with the QS algorithm. It scans the

pattern using the searching phase of the

QS algorithm.

Table 1: Summary of common string matching algorithms

3. Proposed algorithm

3.1. Preprocessing phase

In this phase, the proposed algorithm uses our

enhanced brBc preprocessing function by counting the

shifting values for each character in the pattern and

storing them in the one-dimensional brBc array [20].

Fig. 1 shows the pseudo code for the pre-processing

phase.

3.2. Searching phase

After implementing several algorithms, we found out

that the best order in the searching phase is to compare

the pattern and the text window characters from right to

left.

 Our proposed algorithm searches the pattern from

right to left with new order. It starts with the last

character of the text window and the pattern, and after a

match, it moves backward to compare the odd index

positions of pattern and text window characters. If all

these characters match, it will return and compare whole

even index pattern and text window characters. In case

of a mismatch or whole match during the comparison in

odd or even positions it uses our enhanced brBc pre-

processing function to shift the pattern. Fig. 2 shows the

pseudo code for the searching process phase.

/*Pre-Processing Phase*/

FOR i=0 TO m-2

SET brBcShiftArray[i] TO m-i

END FOR

IF t[end]+1 = p[end] THEN

SET shiftvalue to 1

ELSE IF t[end]+2 = p[start] THEN

COMPUTE shiftvalue AS m+1

ELSE

COMPUTE shiftValue AS m+2

END IF

Fig. 1 OE Pre-processing Phase

4. Working example
A sample file has been taken from the Swiss-Prot

database which consists of 8740 proteins [23]. The

following example illustrates our proposed algorithm:

Given:

Pattern(p)=“LAVKLATAIVLA”, length (m) =12

Text(n)=“KRFDSLYKQILAMGIFSIANQHIVLAV

KLATAIVLATHTSPVVPVTTPGTKPDLNASFVSAN

AE”, length(n)=64

4.1. Preprocessing phase

The shift values for the pattern characters are

calculated according to Fig. 1. Table 2 shows the brBc

one-dimensional array for the pattern characters.

4.2. Searching phase

The searching phase in this example is implemented

according to Fig. 2. The following tables illustrate the

searching phase for the given pattern (p) in the sample

text (t).

4.2.1. Attempt 1: in this attempt, Table 3 shows that t0 –

t11 is the current text that is compared with the pattern p0

– p11. The t11 comparison with p11 has matched, so the

algorithm will move backward to the next odd index

which compares t9 to p9 which causes a mismatch. The

pattern will be shifted to the right according to the pre-

counted shifting value for the next two characters of the

current window which are t12 and t13 (MG) and in this

attempt will shift by 14 positions.

4.2.2. Attempt 2: in this attempt, Table 4 shows that t14

– t25 is the current text which is compared with the p0 –

p11. The t25 comparison with p11 has matched, so the

algorithm will move backward to the next odd indices

which are t23 and p9 which match. The next comparison

is between t21 and p7 which causes a mismatch. The

pattern will be shifted to the right according to the pre-

counted shifting value for the next two characters of the

current window which are t26 and t27 (VK) giving a shift

of 10 positions.

4.2.3. Attempt 3: in this attempt, Table 5 shows that t14

– t25 is the current text that is compared with the p0 – p11.

The first comparison between t35 and p11 produces a

match, so the algorithm will move backward to the next

odd indexes which are t33 and p9 which produces a match

again. The next comparison is between t31 and p7 which

also produces a match. Then the same procedure is

repeated until the all the odd indices match. It will then

go back to the first even indexes (from the right) which

they are t34 and p8. This produces a match also and it will

proceed to move back to compare further even indices.

After a whole match between pattern and text it shifts

the pattern to the right according to the pre-counted

shifting value for the next two characters to the current

window which are t36 and t37 (TH). In this attempt it will

be 14 positions.

4.2.4. Attempt 4: in this attempt, Table 6 shows that t38

– t49 is the current text that is compared with the p0 – p11.

The comparison of t49 with p11 causes a mismatch. The

pattern will be shifted to the right according to the pre-

counted shifting value for the two characters next to the

current window which are t50 and t51 (KP) and in this

attempt it will be 14 positions. But in this case the

algorithm will cancel the pattern shifting since the length

of the remaining text is 13 which is less than the pattern

length.

/*Searching Phase*/

WHILE odd>=t[start] AND p[odd]=t[odd]

DECREMENT odd - 2

ENDWHILE

IF odd > t[start] THEN

WHILE even>=t[start] AND p[even]=t[even]

DECREMENT even – 2

ENDWHILE

ELSE

SET notMatch TO true

SET textPortion TO(t[end] +1) + (t[end] +2)

CALL brBcShiftArray WITH textPortion

END IF

IF wholeMatch = true THEN

CALL brBcShiftArray WITH textPortion

END IF

END WHILE

/*Searching in the brBcShiftArray*/

FOR i=0 TO m

IF p[i] = textPortion THEN

SET shiftValue TO brBcShiftValue

END IF

END FOR

Fig. 2 OE Searching Phase

LA AV VK KL LA AT TA AI IV VL LA

12 11 10 9 8 7 6 5 4 3 2

Table 2: Preprocessing phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

K R F D S L Y K Q I L A M G I F … …

 2 1

L A V K L A T A I V L A

Table 3: Attempt 1 in searching phase

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I F S I A N Q H I V F A V K L A … …

 3 2 1

L A V K L A T A I V L A

Table 4: Attempt 2 in searching phase

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

L A V K L A T A I V L A T H T S … …

12 6 11 5 10 4 9 3 8 2 7 1

L A V K L A T A I V L A

Table 5: Attempt 3 in searching phase

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

T S P V V P V T T P G T K P D L … …

 1

L A V K L A T A I V L A

Table 6: Attempt 4 in searching phase

5. Implementation

In this research, local machine (Dell Intel(R) Core™

2 Duo Processors, CPU (1.80 GHz), 2 GB RAM and

Windows Vista 32-bit Operating System) were used with

Java SE 6 (JDK) software with update 10 including the

Java Runtime Environment (JRE) and command-line

development tools for producing applets and

applications software.

6. Experimental results

To evaluate our new algorithm, we implemented it

based on the code in Fig.1 and Fig.2. Additionally, we

implemented six other algorithms; two of them are our

previous algorithms using the enhanced brBc

preprocessing phase; two developed in 2008 using the

original BR as the fastest algorithms to search the

proteins; one of them using the rightmost character in

the current window and the last one using only one

character next to the current text window.

The performance of the algorithm proposed in this

research is evaluated using the number of comparison

between the pattern and the text and the elapsed time of

searching.

A sample file has been taken from the Swiss-Prot

database which consists of 8740 proteins to test the

efficiency of our algorithm compared to other

algorithms. Table 7 below shows the number of

comparison and Fig. 3 below shows the average elapsed

time (s.) for searching different length of patterns in the

protein sample file.

Table I and Fig. I show that the number of

comparisons and the elapsed searching time between the

pattern and the text using our proposed algorithm is

better in all cases than other algorithms.

6. Conclusion

In this paper, we have presented a new algorithm.

The OE algorithm is a fast string matching algorithm. It

combines our enhanced preprocessing phase from the

Berry Ravindran algorithm with our new searching

phase procedure. Experimental results show that our

algorithm uses fewer comparisons to perform searches

and has a shorter elapsed searching time. Our proposed

algorithm is therefore suitable for searching the protein

sequences in the Swiss-Prot database as well as in any

other string searching applications.

References

[1] V. Kurt, “Protein Structure Prediction using Decision

Lists,” M.S thesis, Sch. Sci. Eng., Koç Univ., Istanbul,

Turkey, 2005.

[2] A. Bairoch and R. Apweiler, “The SWISS-PROT protein

sequence database and its supplement TrEMBL in 2000,“

Nucl. Acids Res, vol. 28, no. 1, pp. 45-48, Jan. 2000.

[3] J. Mettetal. (2004, September 16). Brute Force

Algorithms: Motif Finding [Online]. Available:

http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-

417Fall-2004/8BA 92AB3-A9CD-4719-A4AC-

1AAFDB8AE5A0/0/lecture_03.pdf

Pattern

Length
OE BRQS BRMH BRFS TVSBS QS BMH

32 95384 95498 95595 96356 95682 172936 161089

64 50973 51171 51202 52101 51258 133723 113597

128 26985 27099 27180 27388 27214 87426 59229

256 10012 10040 10058 11925 10075 45394 38005

512 2950 2978 2987 3186 2997 16120 8502

1024 1233 1235 1239 1282 1243 2647 2186

Table 7: Number of comparison

OE

0

50

100

150

200

250

300

350

32 64 128 256 512 1024

Pattern Length

E
la

p
s

e
d

 T
im

e
 (

s
e
c

o
n

d
s
) BMH

QS

BRFS

TVSBS

BRBMH

BRQS

OE

Fig. 3 average elapsed time (s.) for searching different length of patterns

[4] A. F. Klaib and H. Osborne, “BRQS Matching Algorithm

for searching Protein Sequence Databases,” unpublished.

[5] G. Plaxton, (Fall 2005). String Matching: Boyer-Moore

Algorithm. [Online]. Available:

http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/S

tringMatching-4.pdf

[6] O. Danvy and H. K. Rohde, “Obtaining the Boyer-Moore

String-Matching Algorithm by Partial Evaluation,”

Information Processing Letters, vol. 99, pp. 158–162,

2006.

[7] R. S. Boyer, J. S. Moore, “A fast string searching

algorithm,” Communications of ACM, vol. 20, no. 10,

1977, pp.762–772.

[8] D. Cantone, S. Faro, “Fast-search: A new efficient variant

of the Boyer–Moore string matching algorithm”, Lecture

Notes in Computer Science, vol. 2647, pp. 47–58, 2003.

[9] M. Régnier and W. Szpankowski, “Complexity of

Sequential Pattern Matching Algorithms” Lecture Notes

in Computer Science, vol. 1518, pp. 187-199, 2004.

[10] T. RAITA, “Tuning the Boyer–Moore–Horspool String

Searching Algorithm,” Software-Practice and Experience,

vol. 22, pp. 879-884, 1992.

[11] R. N. Horspool, “Practical fast searching in strings,”

Software-Practice and Experience, vol. 10, no. 6, pp.

501-506, 1980.

[12] Sunday, "A very fast substring search algorithm,"

CommonACM, no. 33, pp. 132–142, 1990.

[13] Berry and Ravindran, "Fast string matching algorithm and

experimental results,", Proceedings of the Prague

Stringology Club, pp. 16–26, 2001.

[14] C. Charras, T. Lecroq, Handbook of exact string

matching Algorithms. [Online]. Available: http://www-

igm.univ-lv.fr/~lecroq/string/.

[15] R.F. Zhu, T. Takaoka, “On improving the average case of

the Boyer-Moore string matching algorithm,” Journal of

Information Processing, vol. 10, no. 3, pp. 173–177,

1987.

[16] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan

and K. Sekar, “A fast pattern matching algorithm,”

Journal of Chemical Information and Computer Sciences,

no. 44, pp. 1251–1256, 2004.

[17] R. Thathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan

and K. Sekar, “TVSBS: A fast exact pattern matching

algorithm for biological sequences,” Current Science, vol.

91, no. 1, pp. 47–53, 2006.

[18] Y. Huang, X. Pan, Y. Gao, and G. Cai, "A Fast Pattern

Matching Algorithm for Biological Sequences," IEEE,

pp. 608 – 611, 2008.

[19] Y. Huang, L. Ping, X. Pan, and G. Cai, "A Fast Exact

Pattern Matching Algorithm for Biological

Sequences,"International Conference on BioMedical

Engineering and Informatics, pp.8-12, 2008.

[20] A. F. Klaib and H. Osborne. “Searching Protein Sequence

Database Using BRBMH Matching Algorithm,”

International Journal of Computer Science and Network

Security (IJCSNS), vol. 8, no. 12, pp. 410-414, 2008.

[21] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad, and W.

Husain, “Application of Exact String Matching

Algorithms towards SMILES Representation of Chemical

Structures,” International Journal of Computer and

Information Science and Engineering, vol. 1, pp.235-239,

2007.

[22] A. F. Klaib, W. Husain and Z. Zainol, “Searching Similar

Antimicrobial Structures Using Quick Search and

Horspool Algorithms” International Journal: System and

Information Sciences Notes, vol. 3, pp. 95-101, 2008.

[23] Swiss Institute for Bioinformatics (SIB) and the European

Bioinformatics Institute (EBI). (2008, November 25).

UniProtKB/Swiss-Prot [Online]. Available:

http://www.ebi.ac.uk/swissprot/

