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ABSTRACT  

In this study an orthotropic slab finite element is developed to model orthotropic slabs in fire, 

using a layered 9-noded iso-parametric slab element and a 3-noded beam element.  The 

element is assembled from a solid slab element which represents the continuous upper portion 

of the profile, and a special beam element which represents the ribbed lower portion.  An 

equivalent width for the cross-section of this beam element is determined according to the 

dimensions of the solid slab element and the cross-section of the ribbed profile, and the beam 

shares the nodes of the solid slab element.  The temperature within each layer of the slab 

element can vary between adjacent Gauss integration points so as to reflect temperature 

variations in the horizontal plane.  Several fire tests on composite slabs have been modelled 

to validate the approach.  Cases of orthotropic slabs with wide range of parameters defining 

the ribbed profile have been studied, which show that the orthotropic slab model is robust and 

effective in reflecting the influence of the shape of ribs on the thermal and structural 

performance of the slabs in fire.  The study shows the influence of decking shape on the 

thermal and structural behaviours of orthotropic slabs.  A simple evaluation method for 

profile selection is proposed.   

 

Keywords: Orthotropic slabs; Composite structures; Fire resistance; Decking shapes, 

Numerical modelling  

 

 

 

 



 

NOTATION 

The geometric parameters defining the decking may be referred to Fig. 1: 

h Slab depth 

Heff Effective depth of an orthotropic slab (defined in EN 1994-1-2:2005(E), Annex D) 

Hs Depth of concrete slab (continuous upper portion) 

Hr Depth of rib (height of steel decking) 

L Wave-length of the decking profile 

L0 Average of L1 and L2 

L1 Distance between two upper flanges 

L2 Width of the lower flange 

L3 Width of the upper flange 

RWR Rib width ratio = L0/(L1+L3) 

RDF Rib depth factor = Depth of rib (mm) / 100 (mm) 

α Angle between lower flange and web of decking 

A45 α=45º; similarly for A90, A120, etc. 

EC4eff A slab in its effective depth , Heff 

Ph Reinforcement position in the symmetry axis across the thinner part of the slab 

Pc Reinforcement position in the symmetry axis across the thicker part of the slab 

Th Temperature at Ph 

Tc Temperature at Pc  

Tec4 Reinforcement temperature of an orthotropic slab at its effective depth 

φtf View factor at top flange of the decking 

φweb View factor at web of the decking 

NWC Normal-weight concrete 

LWC Light-weight concrete
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Non-linear Analysis of Orthotropic Composite Slabs in Fire 

Xinmeng Yu, Zhaohui Huang, Ian Burgess, Roger Plank 

1. INTRODUCTION 

Orthotropic metal-decked composite slabs have been widely used in recent decades.  These 

composite slabs consist of a cold-formed profiled thin-walled (typically, 0.6-1.2mm) steel 

decking, and concrete which is cast on top of this.  Normally, the concrete is reinforced with 

a light anti-crack mesh, and may also contain individual bars, usually placed within the ribs.  

The profiles can be classified into trapezoidal and re-entrant types.  Trapezoidal decking 

may occasionally be used over long spans using extra-deep ribs which contain individual bars.  

However, the decking acts as reinforcement, being bonded to the slab surface through 

indentations in the profile, and the composite slab itself has a very low centre of 

reinforcement compared to a conventionally reinforced slab.  Due to the intrinsic efficiency 

of composite construction and the displacement of concrete by the profile shape, considerably 

less concrete is used than in conventional reinforced concrete slab construction [1].  Another 

advantage of an orthotropic slab over a flat one is that it saves construction time since the 

decking is a permanent formwork which does not require propping.  Trapezoidal decking 

slabs are more popular than re-entrant ones because of the relative ease of casting of concrete. 

When the concrete is subjected to heating, there are distinct temperatures at which: (a) the 

free water is vaporised as steam, (b) the chemically bound water in the cement gel is released 

by dehydration into the liquid phase as free water, which subsequently vaporises.  The water 

phase (bound, liquid or gaseous), the dimensions of the structure, the mixture type, concrete 

porosity and the heating history all affect the temperatures in the slab [2, 3].  An added 

complexity comes from the coupled thermo-hydral-mechanical processes in the heated 

concrete.  It is obvious that modelling of heat and mass transfer within concrete in fire is 

very complicated.  In fact, in Eurocode 4, the thermal properties are treated in a very simple 

way. In this study, for simplicity, Huang’s model [4] is adopted to predict temperature 

distribution within the cross section of the composite slab.  In this model, the moisture 

evaporation in the concrete and the specific heat and thermal conductivity properties of 

concrete and steel are considered as temperature-dependent.  This is good enough for civil 

and structural engineering analyses.  

Thermal analyses show that, when an orthotropic slab is subjected to fire attack, the 

temperature within its continuous upper portion varies in the horizontal plane due to the 
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presence of the ribs.  The thinner part is subject to higher temperatures than the thicker part.  

The Cardington fire tests [5] showed that reinforcement temperatures in the thinner portions 

were much higher than in the thicker portions.  This issue should be taken into account in the 

development of orthotropic slab model to analyse ribbed slabs in fire. 

In Eurocode 4 [6] (EC4), orthotropic slabs may be treated as equivalent solid slabs with an 

effective depth (Heff), and the steel decking is ignored in fire conditions.  This method is not 

applicable to deep-deck slabs with rebar in the ribs.  For these slabs, the fire resistance is 

usually expressed in standard classes, ranging from 30 to 120 minutes (and beyond) in 

30-minute intervals.  Only exposure from below is considered, which in practical cases will 

always be decisive.  These rules are “highly empirical in nature, and lack a fundamental 

scientific basis” [7].  As stated above, the presence of the ribs makes orthotropic slabs 

different from flat ones in both their thermal and structural behaviour.   

A number of models have been developed for modelling of orthotropic composite slabs in fire.  

In the first phase of an ECSC research project [7], a special-purpose model was developed for 

simulation of the mechanical behaviour of fire-exposed composite slabs.  In order to obtain 

reasonable agreement between numerical and experimental results for the continuous decking 

slab, a full continuous horizontal crack separating the ribs from the concrete plane was 

assumed and explicitly taken into account.  This was done simply by ignoring the 

contribution of the ribs and the steel decking to the stiffness.   

Elghazouli and Izzuddin [8] developed a model in which the composite slab was treated as an 

orthogonal elasto-plastic grillage of beam-column elements, and temperature variations were 

introduced across the two orthogonal cross-section directions as well as along the element 

length.  The deflections were obtained from the integration of the orthogonal beam-column 

elements.  The shortcoming of this type of grillage model is that the realistic slab behaviour 

cannot be modelled properly in this way, since the effects of in-plane shear and Poisson’s 

Ratio are ignored.  This implies that tensile membrane action, which may cause a 

considerable reduction of displacements [9] of slabs deforming in double-curvature due to 

two-way support conditions, cannot be modelled. 

Gillie et al. [10] described a method of modelling composite floor slabs using a 

stress-resultant approach.  This approach combined the material behaviour and geometry of a 

plate into one set of equations.  The internal membrane forces and moments per unit width of 

plate were calculated based on the strain, curvature and temperature of the plate reference 

surface.  The set of stress resultants are two normal membrane forces, an in-plane shear force, 
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two bending moments and a twisting moment.  In this model an unrealistic concrete material 

model was employed in which concrete was treated as elastic-perfectly plastic material.  

Another drawback of this method is that the model does not allow stresses within the slabs to 

be output from the analysis.   

In the University of Sheffield’s software, Vulcan, an effective-stiffness model [11] was 

developed in which the orthotropic slab was treated as a solid slab with different orthogonal 

stiffnesses and layered temperatures which are uniformly distributed horizontally.  In this 

method the nominal thickness of the slab is from the top surface to the bottom level of the ribs.  

The effective-stiffness factors obtained from cross-sectional bending stiffnesses at ambient 

temperature are applied as constants to modify the material stiffness of the layered concrete 

slab throughout the fire duration.  In reality, the effective-stiffness factors will change at 

elevated temperatures, due to the degradation of the material properties as temperature 

distributions change.   

In Lim et al.’s model [12, 13], the solid part of the ribbed slab was modelled as an assembly 

of brick-like shell elements (Fig. 2a), and each individual rib was modelled using beam 

elements.  The beam element was modelled in two parts, with concrete and steel properties 

in the lower part and non-load-bearing properties in the upper part.  It is obvious that a large 

number of elements are needed for modelling composite slabs of practical dimensions in this 

way, and computation is extremely expensive.  It is difficult for this approach to model 

certain types of decking slab which have very shallow indents, as shown in Fig. 2b.   

The main objectives of this study are:  

(1) To develop a more robust and flexible procedure for modelling of orthotropic composite 

decking slabs subject to fire conditions.  One of the most important developments is to 

apply realistic temperature distributions within the decking slabs, especially the 

different representation of temperatures of the steel mesh within the thick and thin 

cross-sections of the slabs.   

(2) To perform a series of numerical studies to investigate the thermal and structural 

behaviour of the most commonly-used composite decking slabs currently in use in the 

construction industry.   
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2. NON-LINEAR PROCEDURE FOR MODELLING OF ORTHOTROPIC 
COMPOSITE SLABS 

2.1 The Orthotropic slab element  

The software Vulcan has been developed at the University of Sheffield for three-dimensional 

analysis of composite and steel-framed buildings in fire.  The program is based on a 3D 

non-linear finite element procedure in which a composite building is modelled as an assembly 

of beam-column, spring, shear connector and slab elements.  The beam-column line element 

is three-noded, and its cross-section is divided into a matrix of segments, or fibres, to allow 

for variation of temperature, stress and strain through the cross-section [14].  Slabs are 

modelled using nine-noded layered plate elements based on Mindlin-Reissner theory, in 

which each layer can have different temperature and material properties [9]. Both material 

and geometric non-linearities are considered in beam-column and slab elements. 

As shown in Fig. 3, the current orthotropic slab element is based on the pre-existing beam and 

solid slab elements in Vulcan.  The element is assembled from a solid slab element, which 

represents the continuous upper portion of the profile, and an equivalent special beam element 

which represents the ribbed lower portion.  It is assumed that the reference axis of the beam 

element coincides with the mid-plane of the slab element.  An equivalent width for the 

cross-section of this beam element is determined according to the cross-sectional dimensions 

of the ribbed slab, and it shares the 3 middle nodes of the solid slab element on the reference 

plane.  The previous non-linear formulations of both the solid slab and beam elements are 

employed.  For slab elements, degraded stiffness is assembled at nine Gauss integration 

points according to the degradation status.  Membrane locking is not an issue for thick 

composite slab elements.  To mitigate shear locking, a reduced integration rule is used for 

the quadratic beam element.  One important development in the current model, which differs 

from the previous model [9], is that the temperature of each layer of a slab element is not 

necessarily uniform in the horizontal plane, and it is assumed that the temperature can be 

varied between adjacent Gauss integration points. Therefore, realistic temperature 

distributions within the slabs can be represented by the current model.  The cross-section of 

the beam element uses its segmented nature to represent different temperatures and materials 

within the ribs.  In this model the beam element is normally used to represent a group of ribs 

of the composite slab, rather than just a single rib, and hence the width of the beam element is 

an equivalent width calculated from the Rib Width Ratio (RWR), a proportion of the width of 
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the solid slab element.  It is therefore reasonable to assume that the beam element has only 

uniaxial properties, without significant torsional resistance.   

The stiffness matrix of an orthotropic slab element orthK  is assembled from the stiffness 

matrices of a nine-noded solid slab element slabK  and a three-noded beam element beamK : 

beamslaborth KKK +=  (1) 

The slab element tangent stiffness matrix, slabK , is composed of the usual 

small-displacement stiffness matrix, the large-displacement stiffness matrix, and the stress 

level dependent geometric matrix.  The detailed formulations can be found in Reference [9]. 

The beam elements, which represent the ribs below the continuous, thinner portion of the slab, 

share the three middle nodes of the upper slab elements, and it is assumed that they are fully 

attached (see Fig. 3).  For the beam element the tangent stiffness matrix is composed of 

linear and non-linear stiffness matrices specified in Reference [14]. In this study the beam 

element represents a group of ribs of the composite slab, and hence the width of the beam 

element is an equivalent width calculated from the rib width as a proportion of the width of 

the solid slab element (see Fig. 3).  As stated above, it is assumed that the beam element has 

only uniaxial properties, without torsional resistance.  Hence the material constitutive matrix 

for the beam element can be represented as  

⎥
⎥
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⎦

⎤

⎢
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⎢

⎣

⎡
=

000
000
00t

'

E
D  (2) 

where tE  is the tangent modulus of the material.   

The internal forces of the orthotropic slab element is obtained from the total of the solid slab 

element and the equivalent beam element. The detailed formulations can be found in 

References [9] and [14], respectively.   

2.2 The simplified temperature distribution within each layer of the solid slab element  

Due to the presence of the ribs, the temperature distribution within any layer of the solid slab 

element is non-uniform.  In order to take this factor into account within the model a 

simplifying assumption has been made; the temperatures within a layer are divided into two 

zones, (hotter and cooler zones) at the Gauss integration points (see Fig. 4).  The higher 
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temperatures at the thin parts of the slab (see Line 2 of Fig. 1) are defined at six Gauss 

integration points (1, 2, 3, 7, 8, 9), and the cooler temperatures at the thick part (see Line 1 of 

Fig. 1) are assigned to three Gauss integration points (4, 5, 6).  The temperature distribution 

within the rib part is used to represent the temperature distribution of the cross-section of the 

beam element.  This is a reasonable representation of the real temperature distribution within 

a ribbed slab (see Fig. 5).  Hence, at each Gauss Integration Point, the material stiffness, 

strength, and thermal expansion are calculated according to the corresponding temperature.   

3.  MODEL VALIDATION 

3.1 TNO fire test on a one-way simply supported slab 

A major fire test was carried out at TNO in the Netherlands in September 1996 as part of an 

ECSC research project [1].  The test specimen consisted of a single span of slab with two 

Rectangular Hollow Section edge beams.  The test specimen was 5.6m long x 4.6m wide, 

the beams spanning in the shorter distance.  The test load was typical of normal office 

loading (imposed test load 23.55 /kN m , self weight 23.10 /kN m ).  The depth of the 

normal-weight concrete slab was 290mm, with A192 mesh (Ф6) positioned in such a way that 

the distance from the centre of the longitudinal bars to the unexposed face was 20mm.  A 

25mm diameter rebar was placed in each of the ribs.  The constructional details are shown in 

Fig. 6.  The compressive strength of the concrete was 249.5 /N mm .  The structural steel 

strengths were 2409 /N mm  for the hollow section and 
2349 /N mm  for the plate, 

respectively, in the edge beams.  The slab was unrestrained against thermal expansion, and 

the 200mm x 100mm RHS edge beams were restrained against rotation at both ends.  The 

edge beams were designed to achieve at least 60 minutes’ fire resistance, and the composite 

slab was reinforced to achieve 120 minutes’ fire resistance.  In order to gain information on 

the fire resistance of the slab, the beam was prevented from collapsing completely by 

blockwork pillars within the furnace, the tops of which were positioned 200mm below the 

beams.  In this numerical study, the test load and the tested material properties of structural 

steel, concrete and reinforcement were used.  Further details are available from Reference 

[1].  Before modelling the test, a thermal analysis was conducted to predict the temperature 

distributions within the cross-sections of the beams and ribbed slabs using Vulcan.  Fig. 7 

shows the comparison between predicted and tested temperatures at some key positions 

within the cross-sections of the beams and ribbed slabs.  It is evident that very good 

agreement was achieved.  These temperature predictions were used in the structural analysis.  
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Fig. 8 compares the predicted deflections using the current model and the previous 

effective-stiffness model at two key positions P1 and P2 (see Fig. 6), together with the test 

results.  It can be seen that the curves predicted by the current model agree well with test 

results up to 70 minutes into the test.  It is evident that the structural behaviour predicted by 

the two models differs beyond this point.   

3.2 BRANZ fire test on a two-way simply supported slab  

A series of full-scale fire tests conducted at the Cardington in the UK have shown that the fire 

resistance of unprotected composite floor structures is much better than standard furnace fire 

testing suggests.  The composite concrete slabs may play an important role in increasing the 

fire resistance of the structure due to tensile membrane action, and so it is important to model 

the composite slabs correctly.  Recently, six two-way simply supported concrete slabs 

subjected to the ISO834 fire curve were tested at the BRANZ fire test furnace in New Zealand.  

One of the tests, carried out on the 1st July 2002 [15], was on a Hibond orthotropic ribbed slab.  

The tested slab had the dimensions 4300x3300x130mm, measuring 4150mm by 3150mm 

between supports, and was made of normal-weight concrete with 30MPa compressive 

strength.  The D147 reinforcement mesh ( 2198 /mm m , Ф8.7) was cold-worked with a yield 

strength of 565MPa placed at 20mm above the decking.  The slab was subject to a uniformly 

distributed live load of 23.0 /kN m  during the fire test.  The self weight was 22.47 /kN m . 

A thermal analysis was performed using Vulcan to predict the temperature distributions 

within the cross-section of the slabs.  Fig. 9 shows the comparisons of some predicted and 

tested key temperatures from bottom to top of the cross-section of the tested slabs.  It is clear 

that a reasonable agreement was obtained, and the predicted temperatures were used in the 

structural modelling.   

Fig. 10 shows a comparison of the central deflections predicted by the current orthotropic 

model and two other models with test results. The result predict by current model is closer to 

the test data than that predicted by Lim’s model [13] before 120 minutes of fire, but the latter 

is closer to the test data beyond this fire stage. In the effective stiffness model the average 

temperatures layer-by-layer between the thinner and thicker parts were applied because this 

model assumes uniform temperatures for each layer.  Reasonable agreement was achieved 

by the current and effective stiffness models with the test results up to 130 minutes in the test.  

Beyond this point the test deflections accelerated, while the predictions by both models were 

more stable.  The reason for this difference between test and prediction may be due to the 
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large cracks which formed in the middle of the test slab.  Certain observations made during 

the test [15] support this.  Flames were seen to penetrate through the discrete crack in the 

middle of the slab at a late stage of the test, and significant corner cracking was observed.   

3.3 Modelling full-scale fire test - Cardington Test 7 

To study global structural and thermal behaviour, a full-scale fire test was conducted on the 

4th floor of the eight-storey steel framed building at the Building Research Establishment’s 

Cardington laboratory in January 2003 [16, 17].  The fire compartment was 11m long by 7m 

wide (Fig. 11).  The building had been designed for a dead load of 3.65kN/m2 and an 

imposed load of 3.5kN/m2.  Sandbags each of 1.1 tonne were applied over an area of 18m by 

10.5m, spaced so that a uniform live loading of 3.05kN/m2 was simulated for the fire test [16].  

The exposed structure consisted of two secondary beams (305x165x40UB) of nominally S275 

steel (of measured fy=303MPa), an edge beam (356x171x51UB), two primary beams 

(356x171x51UB), nominally S350 (measured fy=396MPa), and four columns (internal 

column sections were 305x305x198UC and external column sections were 305x305x137UC, 

of S350 steel).  The overall depth of the slab was 130mm with rib depth 60mm, with A142 

mesh 15mm above the decking.  The profile of the decking can be obtained from Reference 

[8].  The compressive strength of the concrete was 37.01MPa.  The yield strength of the 

reinforcement was 460MPa.   

It was observed [18] that, after the fire test had finished and the structure had cooled, the 

composite slab had extensive cracking in both the longitudinal and transverse directions, 

though it cannot be stated definitively that this happened entirely during the heating phase.  

The main longitudinal crack was off-centre of the bay of the column grid.  The main 

longitudinal and transverse cracks penetrated the full depth of the slab, and the longitudinal 

crack was 90mm wide near to their intersection.  This extent of rupture seems unusual 

without a complete failure of the slab, but it can be seen that the ends of the reinforcing bars 

in two sheets of mesh had slipped relative to one another across the crack.  This was clearly 

due to inadequate overlap of the adjacent sheets of mesh during construction of the building, 

so that only “fingers” of undeformed bars were overlapping, and that the anchorage which 

might have been achieved by overlapping the welds to the orthogonal reinforcement was not 

achieved.  This situation would also have dictated the location of the longitudinal crack.   

In order to model this inadequate overlapping of the mesh, three cases (Cases I, II, III) were 

modelled by reducing the strength of the reinforcement in this area by ¾, ½, and ¼ 
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respectively.  Thermal analysis was also conducted to obtain the temperature distribution 

within the cross section of the slabs.  Fig. 12 shows both tested and predicted temperature 

distributions at some key positions within the cross-section of the slabs.  The predicted 

temperature distribution in the slab, and the tested temperatures of the beams (in which the 

maximum temperature was 1000°C at 60 min test time), together with the material properties 

and loads detailed above, were applied to model the structural behaviour in the test.  The 

predicted deflections at key position P1 (see Fig. 11) are shown in Fig. 13 for three different 

cases, together with the test results.  It is evident that Case I had the most effective prediction 

up to 60 minutes of the test.  In the cooling phase, the current model predicted less deflection 

than the test result.  This is almost certainly due to the localised failure (the large ruptures) of 

the concrete slabs which happened during cooling stage.  The current model cannot handle 

localisation of failure of concrete slabs.  However, the accuracy of the current model’s 

predictions is reasonably good considering the complexity of such a large-scale fire test.   

4.  THE INFLUENCE OF RIB SHAPES OF DECKING SLABS IN FIRE: A 
PARAMETRIC STUDY 

4.1 Decking shape parameters 

Reference [7] lists a number of decking types with trapezoidal and re-entrant profiles.  These 

different decking types have been re-sorted and grouped according to the depths (Hr) and 

average widths (L0) of their ribs.  Considering the popularity and the rib width ratio (RWR) 

of existing profiles, in this study the 7 groups shown in Fig. 14 have been used to carry out 

the parametric study.  The parameters of these groups are listed in Table 1.   

When an orthotropic slab is subjected to fire, the heat flux due to radiation which acts on the 

bottom surface of the decking differs with profile shape and distance.  The View Factor is 

used to quantify this relationship.  In this study, a simplified model has been adopted to 

address this factor as follows: 

(1) Unit view factor is assumed at bottom of the rib, as the reference level. 

(2) The view factors at the top flange (φtf) and web (φweb) of the indented surfaces of the 

slab were assumed to be uniform and determined according to Fig. 15.  This 

approximation was developed by Wickström et al. [19] in 1990 and subsequently 

accepted by EC4. 

(3) The view factors stay constant throughout the fire stage.   
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4.2 Thermal and structural behaviour of profiled slabs 

A two-way simply supported 9m x 6m composite floor with a secondary beam placed in the 

middle of the shorter span (see Fig. 16) subject to ISO834 fire was selected for this study. 

This dimension is similar to those used in Cardington fire tests. The secondary beam was 

assumed to be protected so that the bottom flange and web temperatures linearly increased to 

620°C at 180 minutes.  This secondary beam is protected for the purpose of 

large-displacement comparison because slabs of some groups can not last long in fire without 

the secondary beam being protected.  The thickness of the continuous thinner portion was 

70mm, with A142 mesh located 20mm above the top flange of the decking.  The uniformly 

distributed load was assumed as 5kN/mm2.  The compressive strengths of both 

normal-weight concrete (NWC) and light-weight concrete (LWC) at ambient temperature 

were 30N/mm2.  Only a quarter of the structure was analysed due to the inherent symmetry 

of the slab.  The study focused on the influence of the decking shape on the thermal and 

structural behaviours of the composite floor in fire.   

The thermal analyses were conducted using Vulcan, again based on Huang’s model [4], and 

the structural behaviour was predicted by the model developed in this paper.  In this study 80 

cases (see Table 1) were modelled for both NWC and LWC, including slabs (EC4eff) treated 

as solid with nominal effective thicknesses (Heff) obtained according to Eurocode 4.  In order 

to present the results more effectively all notations used in the following figures are defined in 

the Notation section.   

Figs. 17 and 18 show the temperatures of reinforcing steel at the thicker and thinner sections 

(Tc and Th) of NWC and LWC slabs, respectively, for various groups with α=90º (A90).  In 

order to save space here, only the influence of decking shapes on the reinforcement 

temperatures of LWC slabs of various groups are shown in Fig. 19.  After analysing the 

results, some general conclusions about the temperatures of reinforcement within the 

cross-sections of different decking slabs can be drawn as follows:  

• The influence of rib shape on the reinforcement temperature is not very significant.  

However, the effects on the LWC slabs are more significant than on NWC slabs.   

• Generally speaking, Tc decreases with increase of RWR, but the depth of the rib also 

influences the temperature; this makes the Tc values in Group 7 higher than those in 

Group 6 (see Figs. 17a and 18a).  The difference of Th between different groups is not 

very great. 
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• The influence of the angle α on Tc decreases with RWR, from more than 15% (based on 

A90) for Groups 1 and 2 to less than 5% for Group 7.  The effect on Th is the reverse.   

• For the slabs with RWR ≤ 0.32 (Groups 1-3), the shape of the rib has little influence on 

Th, but considerably influences Tc.  The greater the angle α, the lower Tc becomes.  

Deeper ribs (with greater Hr) also affect the influence of the angle α on Tc.  For those 

with RWR over 0.6 (Groups 4-7) the shape of rib does not influence Tc very much, 

especially when α is between 60º and 105º.   

• After 180min of the ISO834 fire, for NWC slabs with 90º rib angle, Th is in the range 

650ºC-750ºC and Tc in the range 450ºC-700ºC.  For LWC slabs with 90º rib angle, Th 

is in the range 650ºC-700ºC and Tc in the range 350ºC-650ºC.   

• If a profiled slab is treated as solid, with an effective thickness obtained according to 

EC4, the reinforcing mesh temperature obtained from thermal analysis is close to Tc.  

This gives the slab a better fire resistance than the real ribbed slab, especially in the later 

stages of the fire.   

Figs. 20 and 21 show comparisons of the deflections at Position A (see Fig. 16) among the 

seven groups of profiled NWC and LWC slabs, respectively.  Detailed comparisons of 

deflection with the rib angle within each group are shown in Figs. 22. Again, to save space, 

only the results for LWC are shown. From results obtained, some general conclusions 

concerning the structural behaviour of composite slabs in fire can be drawn.  

Deflections using the EC4 assumption, which defines an effective flat slab and a tabulated 

temperature distribution at standard fire resistance ratings, are always on the unsafe (low) side 

compared with those modelled by the current process, except for Group 1.  If the likelihood 

of localised failure is taken into consideration, EC4eff is even less conservative. 

Given the Eurocode definitions of the thermal properties of concrete, LWC slabs give better 

thermal performance than NWC slabs with the same compressive strength.  The rib angle α 

has less influence on LWC slabs than on NWC slabs, and the influence of α decreases with 

increasing RWR.  The influence of the rib angle on LWC slab deflections is within 20% 

(based on A90).  Comparing the predicted deflections using EC4eff and the current model, 

closer results were obtained for NWC slabs than for LWC ones.  The influence of 

α decreases with increasing RWR, but increases with the rib depth.   
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• In common with its influence on temperatures, the influence of the rib shape on the 

structural performance is not very significant.  In each group, the slab with α = 90º has 

higher deflection than those with other angles.  This means that it is reasonable to 

assume α = 90º as a conservative assumption when evaluating the fire resistance of an 

orthotropic slab.   

• Considering Figs. 20 and 21 in detail, it is evident that the Groups 5 and 6 have better 

fire resistance than Groups 3, 4 and 7, which in turn have better fire resistance than 

Groups 1 and 2.  It is interesting that the relative fire resistance level of slabs can be 

evaluated roughly by the summation of the RWR and the Rib Depth Factor (RDF, the 

depth of rib divided by 100).  The fire resistance level of the slab increases with (RWR 

+ RDF), as shown in Table 2, in which Classes A, B and C correspond to fire resistance 

levels (A>B>C).  These dimensionless values can be interpreted in general terms; 

given the same slab thickness (in the continuous portion) and material properties, the 

greater the value the better the fire resistance.  However the fire resistance of a slab 

also depends on the thickness, the load, the boundary conditions, material properties, 

etc., so we can not relate these values to hours of fire resistance directly.  

5.  CONCLUSIONS 

In this paper the development of orthotropic slab model to model ribbed slabs in fire has been 

described.  The model has been developed from the slab and beam element formulations 

contained within the software Vulcan developed at the University of Sheffield.  The two 

main new features of the model are:  

(1) The continuous top part of the ribbed slab is represented by solid slab elements, and the 

lower (rib) part is modelled as an equivalent beam element with uniaxial properties.  

Both the orthotropic character and membrane actions of ribbed slabs are taken into 

account in a logical manner.  This approach also allows the modelling of deep-deck 

slabs.   

(2) The model allows non-uniform temperature distribution within each layer of the solid 

slab element.  Hence, the temperature distributions across the cross-section of the 

profiled slabs can be represented more accurately than in uniform-thickness layered 

shell elements.  This overcomes the drawbacks of the previous effective-stiffness 

model, in which uniform average layer temperatures are used.  In particular, a better 
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representation of reinforcement temperatures across the thin and thick sections of the 

ribbed slab is achieved by the current model.   

A series of parametric studies using various decking shapes have been carried out.  By 

representing the hotter and cooler temperatures in the thinner and thicker portions of the slab, 

it can be seen that the current model can sensitively reflect the influence of shape on the 

thermal and structural behaviours.  It also shows that the Simplified Method in EC4, which 

treats the orthotropic slab as an equivalent solid slab with an effective thickness, is not 

sufficiently conservative, especially in the later stages of a fire.  LWC slabs have better fire 

performance than NWC ones.  When considering the choice of suitable decking profiles for 

orthotropic slabs in construction, a simple calculation (Table 2) can be used as an alternative 

method for approximate evaluation of the fire resistance level.   
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TABLES 

Table 1:  Orthotropic slab deckings used in the parametric study (cases studied marked ).  

α(º) 
Group 

Decking 
wavelength 

L (mm) 
L0 (mm) Hs 

(mm) 

Rib 
Width 
Ratio 

(RWR) 45 60 75 90 105 120

1 200 40 60 0.2    

2 200 60 40 0.3     

3 250 80 80 0.32     

 

4 200 120 40 0.6       

5 200 120 60 0.6       

6 250 175 60 0.7       

7 300 210 40 0.7       

 

 

Table 2: A simple method to evaluate the structural performance of orthotropic slabs (fire 
resistance level increases with the summation of RWR and RDF). 

Group (1) Rib Width 
Ratio (RWR) 

(2) Rib Depth Factor (RDF) = 
Depth of rib (mm) ÷ 100(mm) (1) + (2) Fire resistance 

level 

1 0.20 0.60 0.80 C 

2 0.30 0.40 0.70 C 

3 0.32 0.80 1.12 B 

4 0.60 0.40 1.00 B 

5 0.60 0.60 1.20 A 

6 0.70 0.60 1.30 A 

7 0.70 0.40 1.10 B 
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FIGURE CAPTIONS  
Fig. 1 Geometric parameters defining decking. 

Fig. 2 A description of the Lim et al. [13] model and its limitations. 

Fig. 3 An orthotropic slab element model. 

Fig. 4 Temperature distribution at Gauss integration points within a layer of the orthotropic 
slab element. 

Fig. 5 Contour lines of temperature distribution in an orthotropic slab at 120min of ISO834 
fire. 

Fig. 6 Details of the TNO Fire Test. 

Fig. 7 Predicted temperatures at some key positions compared with test results for the TNO 
Fire Test. 

Fig. 8 Comparison of predicted deflections with test results for the TNO Fire Test. 

Fig. 9 Comparison of predicted temperature with test results at some key positions for the 
BRANZ Fire Test.   

Fig. 10 Comparison of predicted central deflections using the current and the previous 
effective stiffness models, also including test results for the BRANZ Fire Test.   

Fig. 11 Location of the fire compartment of Cardington Fire Test 7. 

Fig. 12 Comparison of predicted temperatures with test results for the cross section of the 
slab in Cardington Fire Test 7. 

Fig. 13 Comparison of predicted deflections for three cases with test results at the key 
position P1 in Cardington Fire Test 7. 

Fig. 14 Distribution of Decking Groups (1-7) for parametric study.   

Fig. 15 Determination of view factor φ in 2-dimensional cases (radiation from |CD| to |AB|). 

Fig. 16 Parametric study: A two-way simply supported composite floor in an ISO834 fire.   

Fig. 17 Parametric study: Reinforcement temperatures at thin and thick positions of NWC 
slabs in ISO834 fire.   

Fig. 18 Parametric study: Reinforcement temperatures at thin and thick positions of LWC 
slabs in ISO834 fire.   

Fig. 19 Parametric study: The influence of rib angle α on Tc and Th for different groups of 
LWC ribbed slabs. 

Fig. 20 Parametric study: Deflections at Position A (see Fig. 16) of NWC ribbed slabs of 
Groups 1 to 7 in the ISO834 fire.   

Fig. 21 Parametric study: Deflections at Position A (see Fig. 16) of LWC ribbed slabs of 
Groups 1 to 7 in the ISO834 fire.   

Fig. 22 Parametric study: The influence of rib angle α on the deflections at position A (see 
Fig. 16) for LWC ribbed slabs of Groups 1 to 7, including EC4eff, in the ISO834 fire. 
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Fig. 7 
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Fig. 8 
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Fig.  10 
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Fig.  11 
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Fig.  15 
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Fig.  17 (a)  
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Fig.  17 (b)  
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Fig.  18 (a)  
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Fig.  18 (b)  
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Fig.  19 (a) 
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Fig.  19 (b) 
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Fig.  19 (c) 
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Fig.  19 (d) 
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Fig.  19 (e) 
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Fig.  19 (f) 
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Fig.  19 (g) 

Time (min) 

0 30 60 90 120 180 150 
0 

200 

300 

400 

500 

700 

Temperature (ºC) 

Group 7 - LWC 

600 

100 

A45 Tc 
A45 Th 
A90 Tc 
A90 Th 

TEC4 

A120 Tc 
A120 Th 



 

42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.  20 
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Fig.  21 
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Fig.  22 (a) 
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Fig.  22 (b) 
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Fig.  22 (c) 
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Fig.  22 (d) 
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Fig.  22 (e) 
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Fig.  22 (f) 
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Fig.  22 (g) 
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