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Abstract: Southern European countries, particularly Spain, are greatly affected by forest fires each
year. Quantification of burned area is essential to assess wildfire consequences (both ecological
and socioeconomic) and to support decision making in land management. Our study proposed a
new synergetic approach based on hotspots and reflectance data to map burned areas from remote
sensing data in Mediterranean countries. It was based on a widely used species distribution modeling
algorithm, in particular the Maximum Entropy (MaxEnt) one-class classifier. Additionally, MaxEnt
identifies variables with the highest contribution to the final model. MaxEnt was trained with
hyperspectral indexes (from Earth-Observing One (EO-1) Hyperion data) and hotspot information
(from Visible Infrared Imaging Radiometer Suite Near Real-Time 375 m active fire product). Official
fire perimeter measurements by Global Positioning System acted as a ground reference. A highly
accurate burned area estimation (overall accuracy = 0.99%) was obtained, and the indexes which
most contributed to identifying burned areas included Simple Ratio (SR), Red Edge Normalized
Difference Vegetation Index (NDVI750), Normalized Difference Water Index (NDWI), Plant Senescence
Reflectance Index (PSRI), and Normalized Burn Ratio (NBR). We concluded that the presented
methodology enables accurate burned area mapping in Mediterranean ecosystems and may easily be
automated and generalized to other ecosystems and satellite sensors.

Keywords: EO-1 Hyperion; burned area; spectral indexes; Mediterranean ecosystems; MaxEnt;
VIIRS hotspots

1. Introduction

Wildfires are natural disturbances in many ecosystems [1], particularly Mediterranean ones. At
the regional / local scale they can cause serious socio-economic problems affecting property and lives [2].
In that case, post-fire damage maps may provide crucial information for legal purposes (land use
change, illegal burning, and insurance costs) [3]. In addition, an adequate post-fire management
policy that prevents soil losses and promotes vegetation regeneration can only be based on accurate
fire damage maps (burned area / burn severity) [4]. Nowadays, reliable burned area estimates at all
scales are obtained using remote sensing data and techniques [5]. In particular, hyperspectral remote
sensing of fire damage enables the accurate discrimination and quantification of burned areas, burn
severity, and vegetation recovery [5]. Hyperspectral imagery has been successfully used in different
fire studies [6,7]; the Hyperion sensor onboard the Earth-Observing One (EO-1) platform provided
data that have been successfully utilized for fire detection [8,9] and burn severity mapping [10–12].
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Red, near infrared (NIR), and short-wave infrared (SWIR) spectral bands have proved their
usefulness in fire damage studies, providing an accurate discrimination of burned areas [13]. Two
spectral indices based on these wavelengths, the Normalized Difference Vegetation Index (NDVI)
and, more recently, the Normalized Burn Ratio (NBR) are considered standard references for burned
area mapping at the local scale [13]. However, Red Edge wavelength-based indices (as Chlorophyll
Index Red Edge (CIre) [14], Modified Simple Ratio Red Edge narrow (MSRren) [15], or Red Edge
Normalized Difference Vegetation Index (NDVI750) [16]) are also revealing their suitability for fire
damage mapping [15,17–19].

Synergetic approaches integrating data from different sensors and wavelengths are proving their
strengths in mapping burned areas [2]. Among the most synergetic approaches, the combination
of hotspots (from thermal bands) and the changes (due to fires) reflected from visible, NIR, and
SWIR spectral regions are outstanding [20,21]. Changes in thermal bands due to fire enable a correct
identification of active fires, which complements the discrimination of burned area based on changes in
visible, NIR, and SWIR bands [2]. In this context, we present a new synergetic approach for mapping
burned areas based on a combination of Hyperion EO-1 hyperspectral indexes and hotspots from the
Near Real-Time (NRT) Suomi National Polar-orbiting Partnership (S-NPP) / Visible Infrared Imaging
Radiometer Suite (VIIRS) 375 m active fire product (VNP14IMGTDL_NRT) [22].

The present study uses a Maximum Entropy one-class classifier (MaxEnt) [23] to model and map
burned area. MaxEnt estimates the probability of the target area presence based on the combination
of presence-only samples of this class and different variables (called covariates) [24]. MaxEnt has
been commonly used as a model for species distributions [25–27], but it is being progressively used in
remote sensing based applications as well [12,28,29]. Additionally, it has been successfully used to
model fire occurrence [30,31] and burn severity [12,32]. Quintano et al. (2019) [30] used MaxEnt to
estimate both burn severity and burned area from Sentinel-2 Multispectral Instrument (MSI) Multiple
Endmember Spectral Mixture Analysis (MESMA) fraction images and post-fire Landsat 8 OLI LST
images. The burned area estimate achieved an overall accuracy equal to 93%. To our knowledge, this
is the only MaxEnt-based burned area study, despite MaxEnt’s advantages over other classifiers: 1)
MaxEnt is a non-parametric model; 2) MaxEnt is an attractive substitute for machine learning based
classifiers, as only presence-only samples are needed to train it; and 3) its probabilistic output has
physical meaning, making it easy to interpret [33].

In this context, our hypothesis is that burned areas can be considered the target distribution
of MaxEnt and modeled with presence-only data, as we only have past fire occurrences available.
Our work aims to validate a new and semi-automatic synergetic methodology to estimate accurately
burned areas at the local scale based on the one-class classifier MaxEnt trained with hyperspectral
EO-1 Hyperion indexes as covariates and VNP14IMGTDL_NRT hotspots as presence-only data. The
study was tested in a Mediterranean ecosystem.

2. Materials and Methods

2.1. Materials

The Carcaixent wildfire happened in central-eastern Spain (a Mediterranean climate) from 16
to 19 June 2016 (Figure 1). It burned an area of 2291 ha, which was covered primarily by shrubland
dominated by sprouting species and forest dominated by Aleppo pine (Pinus halepensis L.) [34].

The burned area was estimated using a post-fire hyperspectral EO-1 Hyperion scene acquired on
July 21, 2016. The solar zenith angle was 8 degrees, and cloud coverage was 10%–19%. VIIRS NRT
375 m active fire product (VNP14IMGTDL_NRT) provided the presence-only data to train MaxEnt (in
“.csv” format). The official fire perimeter was used as a ground reference to validate the model.
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Figure 1. Study area. Earth-Observing One (EO-1) Hyperion color composition (RGB: 115:48:191) and
fire hotspots from Visible Infrared Imaging Radiometer Suite Near Real-Time (VIIRS NRT) 375 m active
fire product.

2.2. Methods

The EO-1 Hyperion data were delivered as a radiometric-, geometric-, and terrain-corrected image
(L1T level). Bands that showed bad lines, striping, or very high noise were discarded. Thus, we kept
106 bands, covering the entire spectrum from 426 to 2395 nm. The Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) algorithm allowed us to correct the data atmospherically and
transform them to surface reflectance. Next, fourteen spectral indexes covering all wavelength ranges,
and similar to those used in different burned area studies, were computed and grouped into five
categories: 1) related to broadband greenness (NDVI [35], Simple Ratio (SR) [36], and Sum Green
Index (SGI) [37]); 2) related to narrowband greenness (Red Edge Normalized Difference Vegetation
Index (NDVI750) [16], Vogelmann Red Edge Index 1 (VOG1) [38], Red Edge Position Index (REPI) [39]);
3) related to canopy water content (Normalized Difference Water Index (NDWI) [40], Normalized
Difference Infrared Index (NDII) [41], and Moisture Stress Index (MSI) [42]); 4) related to dry or
senescent carbon (Normalized Difference Lignin Index (NDLI) [43] and Plant Senescence Reflectance
Index (PSRI) [44]); and 5) related to light use efficiency (Photochemical Reflectance Index (PRI) [45]
and Red Green Ratio Index (RGRI) [46]). In addition, NBR [47] was included as a reference (see
Supplementary Material, Table S1).

MaxEnt software (version 3.4.1) [23,24] needs two types of input data: covariates (EO-1 Hyperion
spectral indexes in our case) and georeferenced locations of presence-only training samples (94 hotspots
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from VNP14IMGTDL_NRT). As in previous studies [48,49], we used 75% of the samples to train
MaxEnt, 25% for testing purposes, and 10 replicates with a repeated subsampling scheme. The rest of
user-specified parameters were set to their default values. The MaxEnt output provided an estimate
of the probability of burned area (target-class) presence. In addition, MaxEnt produced a percentage
contribution table reflecting the model’s gain with each feature included during the training process,
which allowed us to rank the covariates’ importance in the modeling process. Moreover, a receiver
operating characteristic (ROC) analysis where area under the curve (AUC) [50] represents the model’s
capability to adequately predict presence (sensitivity) and absence (specificity) was provided by
MaxEnt to evaluate the model. Finally, the continuous MaxEnt output was converted into a binary
burned area map. Kappa statistics [51] were used to find the optimal threshold defined by MaxEnt. To
compute the κ statistic, approximately 10% of the pixels of each class of interest (burned, unburned)
were selected by stratified random sampling from the rasterized official fire perimeter to calculate an
error matrix. User accuracy (UA), producer accuracy (PA), and overall accuracy (OA) were computed
as well.

3. Results

From the MaxEnt percentage contribution table we could identify five hyperspectral indexes as
the highest contributors to model the burned area: SR from the broadband greenness group, NDVI750

from the narrowband greenness group, NDWI from the canopy water content group, PSRI from the
dry or senescent carbon group, and NBR. Thus, the definitive model was implemented exclusively
using these five indexes.

Table 1 summarizes the performance parameters of the modeling process. AUC values were
always higher than 0.9, which indicated excellent model performance [52]. NBR, NDWI, and NDVI750

contributed 80%, and the contributions of SR and particularly of PSRI were lower. Regarding the
training gain, we noticed very small differences among the indexes, which indicated that all covariates
contributed in a similar way to reaching a good fit to the training data. Regarding the test gain, which
measures the contribution of the covariates to fit the model to the training data, and showing whether
the predictive performance improves when the corresponding covariate is used alone or excluded,
we found the same pattern. No important differences among the indexes were found, which denotes
that all indexes may generalize comparably. Similarly, no greatly significant differences were found
regarding AUC values when each covariate was used alone or excluded. Taking into account the test
gain values is important if the goal is to transfer the model, for example by applying the defined model
to indexes from a future remotely sensed image in order to estimate a future burned area. In our study,
no one index would make the model much less transferable than another index.

Figure 2 displays the ROC curves for the best model and the average model, suggesting in both
cases an excellent performance. Finally, Figure 3 (left) shows the MaxEnt output that represents the
suitability surface for burned-class occurrence. We classified it using the different thresholds suggested
by MaxEnt and applied a post-classification 4x4 majority filter. The threshold that maximized training
sensitivity plus specificity was the threshold that maximized the κ statistic, which was κ = 0.96,
UA = 98%, PA = 97%, and OA = 99% (see Supplementary Material, Tables S2 and S3). Figure 3 (right)
displays the definitive burned area map. The high value of the κ statistic is remarkable. From the error
matrix (Tables S2 and S3) we observed that UAs from both classes were quite similar (98%), suggesting
very small commission errors. In fact, in Figure 3 (right) we noticed there were almost no burned area
estimates outside the fire perimeter. Regarding PA, the unburned class reached PA = 99%. However,
the PA of the burned area was 95%, indicating a small omission error in this class.
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Table 1. Summary of parameters of modeling process.

Summary of Parameters of Modeling Process (Average Model)

#Samples Gain AUC AUC Standard Deviation

Training 70 2.1936 0.9555

Test 24 2.177 0.9547 0.0061

Percentage of Contribution of Selected Covariates (%) (Average Model)

NBR NDWI NDVI750 SR PSRI

32.4314 20.4293 19.3503 16.5978 11.1911

Training Gain (Average Model)

NBR NDWI NDVI750 SR PSRI

Without the covariate 2.0773 2.1036 2.1069 1.9733 2.1099

With only the covariate 1.2142 1.3437 1.4624 1.1222 1.4170

Test Gain (Average Model)

NBR NDWI NDVI750 SR PSRI

Without the covariate 2.1460 2.1395 2.1657 2.0627 2.1528

With only the covariate 1.2093 1.5127 1.4618 1.1529 1.4525

AUC (Average Model)

NBR NDWI NDVI750 SR PSRI

Without the covariate 0.9540 0.9537 0.9540 0.9519 0.9527

With only the covariate 0.8881 0.9191 0.9155 0.8816 0.9113

Average model: model whose parameters were obtained by averaging the parameters in each of the 10 replicates.

Figure 2. ROC curves. Upper: averaged model over 10 replicate runs; lower: best model.
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Figure 3. Left: Maximum Entropy (MaxEnt) probability output (0: 0% probability; 1: 100% probability);
right: burned area map.

4. Discussion

NBR, the reference index based on NIR and SWIR, had the highest contribution to the model,
followed by NDWI, a canopy water content index based on NIR and SWIR1, and NDVI750, a narrowband
greenness index that included Red Edge wavelengths. SR, a broadband greenness index based on
NIR and red had a lower contribution. Finally, PSRI, a dry or senescent carbon index including red,
green, and Red Edge wavelengths, had the lowest contribution. Previous studies based on remote
sensing sensors without Red Edge wavelengths (e.g., [4]) have already shown that red, NIR, and SWIR
bands are the most adequate to identify burned areas. Fernández-Manso et al. [15], working with
Sentinel-2 MSI data showed that Red Edge based indexes are appropriate to identify burned areas and
discriminate burn severity levels. Red Edge Sentinel-2 MSI bands were also confirmed as the most
suitable to detect burned areas, together with NIR and SWIR, by following research works [19,53].
Moreover, Red Edge bands have also been identified as appropriate to discriminate burned from
unburned areas using UAV multispectral data [18]. Thus, our study agrees with previous studies
and confirms that NIR, SWIR, Red Edge, and red are the wavelength ranges most useful to map
burned areas.

Table 1 also showed that the burned area model was highly transferable (high and similar test
gain and AUC values for the five input spectral indexes). In this way, NBR, NDWI, NDVI750, and SR
(contributing more than 94%) could be computed with Sentinel-2 MSI data, which are more easily
available than EO-1 Hyperion data. Though the spectral and spatial resolution are different, Sentinel-2
MSI spectral indices have already shown their suitability for discriminating burned areas [19,54,55].
Thus, we believe that the proposed methodology may be generalized using Sentinel-2 MSI data;
however, we leave this test for futures studies. Moreover, we are convinced that it may also be
generalized using data from the upcoming space-borne hyperspectral missions as the recently launched
Hyperspectral Precursor and Application Mission (PRecursore IperSpettrale della Missione Applicativa,
PRISMA) hyperspectral sensor. In this study, we validated the methodology of a wildfire that happened
in a Mediterranean ecosystem, but it may equally be extrapolated to other ecosystems, as it is not
based on any ecosystem-dependent characteristic. Furthermore, it can be easily quasi-automated as
there could be no human-dependent processes in the proposed method: 1) presence-only data are
imported directly from VIIRS NRT hotspots using a “.csv” file; and 2) the conversion of the probability
output into a binary burned area map could be done using the threshold suggested by MaxEnt that
maximizes training sensitivity plus specificity, and that additionally maximized the κ statistic in our
study. These generalizations will be evaluated in future research works.
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Our research is an example of a more synergetic combination of hotspots from thermal bands
and reflectance data covering red, Red Edge, NIR, and SWIR wavelengths. Since those synergetic
approaches were first proposed [56,57], they have been employed to estimate burned area both at
the regional and global scales. Among others, Tansey et al. [58] successfully mapped burned areas,
combining hotspots and Landsat TM 7 data, and Rotteta et al. [59] combined hotspots and Sentinel 2
data. Moreover, the MCD64A1 product from NASA [21], and FireCCI50 from ESA [60] are based on
that synergetic procedure.

MaxEnt only built a probability image of burned area, but depending on the specific needs,
different burned area maps may be produced. That continuous suitability surface (or probability
of occurrence map) is the most valuable information for forest managers, as they might select an
appropriate threshold according to the project priorities [61,62]. Thus, the availability of continuous
suitability surfaces as MaxEnt output constitutes one advantage over well-established classifiers [32,62].

5. Conclusions

Our study evaluated the use of a synergetic approach based on a distribution-modeling algorithm
trained by hyperspectral indexes and hotspots to model and map burned areas. Thus, the presence-only
samples to train MaxEnt were obtained from the hotspots identified in the Visible Infrared Imaging
Radiometer Suite Near Real-Time 375 m active fire product. We examined the relative contribution
on burned area modeling of different spectral indices that acted as covariates. In particular, NBR
contributed 33%, NDVI 24%, NDVI750 23%, SR 14%, and PSRI only 6%. The three first covariates (NBR,
NDWI, and NDVI750) added a percentage of contribution of 80%. Using the official fire perimeter
measured by Global Positioning System as a ground reference, the burned area map reached a κ

statistic value equal to 0.96, which indicates a high accuracy. Our results verified that a distribution
model trained with hyperspectral indices covering red, Red Edge, NIR, and SWIR wavelengths
provided an accurate burned area map in Mediterranean ecosystems. Moreover, MaxEnt provided a
continuous suitability surface that was easy to interpret and had valuable information that enhanced
the burned area map. Thus, the new proposed methodology may help forest managers to plan
appropriate post-fire management strategies to reduce fire damage repercussions. Future research
should evaluate this method at a larger scale, in different fire events, and compare it with other learning
machine-based methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/5/858/s1,
Table S1: Spectral indexes, Table S2: Error matrix, Table S3: Accuracy parameters.
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