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Abstract: Unmanned Aerial Vehicles (UAVs) offer excellent survey capabilities at low cost to provide
farmers with information about the type and distribution of weeds in their fields. In this study, the
problem of detecting the infestation of a typical weed (charlock mustard) in an alfalfa crop has been
addressed using conventional digital cameras installed on a lightweight UAV to compare RGB-based
indices with the widely used Normalized Difference Vegetation Index (NDVI) index. The simple
(R-B)/(R+B) and (R-B)/(R+B+G) vegetation indices allowed one to easily discern the yellow weed
from the green crop. Moreover, they avoided the potential confusion of weeds with soil observed
for the NDVI index. The small overestimation detected in the weed identification when the RGB
indices were used could be easily reduced by using them in conjunction with NDVI. The proposed
methodology may be used in the generation of weed cover maps for alfalfa, which may then be
translated into site-specific herbicide treatment maps.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are being increasingly used for farming applications as a
remote sensing platform. These aerial platforms allow one to raise different data gathering sensors or
devices [1], including commercial digital cameras [2], and even to view these data in real time [3,4].
UAVs, in a similar fashion to other low-altitude remote-sensing platforms, can be used to obtain
high-resolution images of continuous areas below cloud cover and near the field [5], allowing one to
collect data when it is required and at a relatively low cost.

Traditionally, remote sensors used in canopy detection may be classified into active and passive
types [6]. Most systems based on passive remote sensing, as the ones discussed herein, depend
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on the variability of spectral responses of vegetation in the visible and near infrared (NIR) regions.
These responses can be used to calculate indices related to vegetation cover and chlorophyll content,
which have found applications in the detection of nitrogen deficiencies [7], in the continuous monitoring
of crop status [8], in disease detection [9], as vegetation phenology and ecosystem indicators [10], and
in weed detection [11,12], among other areas.

With regard to this latter application, it should be taken into consideration that weeds are
responsible for approximately 35% reduction in global crop yields [13,14]. To avoid the over-application
of herbicides, the use of patch spraying makes it possible to conduct site-specific weed management
based on weed coverage. Precise and timely weed maps, taking advantage of the high spatial resolution
provided by UAVs, are thus essential. Successful application of UAVs has been demonstrated for weed
mapping in sunflower [15-18], wheat [19,20], cotton and soybean [21], maize [22], rice [23,24], or sugar
beet [25], but not in alfalfa, as in the present study.

The methods proposed for the discrimination of weeds with RGB or multispectral images are
based on spectral information (color differences, vegetation indices), geometric information (shape,
texture, plant arrangement), or combinations of both spectral and spatial data. Firstly, vegetation is
usually separated from the soil by means of vegetation indices, after which shape or texture-based
methods are generally applied to discriminate between crop and weeds. Weed detection between crop
rows frequently involves their identification by analysis techniques and/or image segmentation, such
as Hough Transform or Object-Based Image Analysis (OBIA). Supervised classifiers (e.g., Decision
Tree, Support Vector Machine, or Random Forest) are the most popular image-processing techniques,
although unsupervised classification algorithms [26] and new classifiers based on a Bag of Visual
Words (BoVW) model [27] have also been recently tested.

In relation to the vegetation indices, the calculation of the indices used in most of aforementioned
studies (e.g., the normalized difference vegetation index, NDVI; the perpendicular vegetation index,
PVI; the ratio vegetation index, RVI; and the soil-adjusted vegetation index, SAVI) involves multispectral
sensors. Nonetheless, other indices (e.g., the excess green index, ExG; the normalized green-red
difference index, NGRDI; the color index of vegetation extraction, CIVE; the excess green minus
excess red index, ExGR; and the normalized difference photosynthetic vigor ratio index, NDPVR) can
also be calculated from images captured with conventional digital cameras, which are cheaper than
multispectral cameras and may also feature a good performance [28]. For instance, Kawashima et
al. [29] successfully demonstrated the calculation of chlorophyll content in rice leaves using a video
camera and indices based only on the visible spectrum.

In the study presented herein, two of these simple visible spectrum indices ((R-B)/(R+B) and
(R-B)/(R+G+B)), calculated from photographs taken with a conventional digital camera, have been
tested for the detection of charlock mustard (Sinapis arvensis L.) weed infestation in alfalfa (Medicago
sativa L.) plots and their performance has been compared with that of the well-established NDVI index.

2. Materials and Methods

The alfalfa plot (2.8 ha) under study (Figure 1a) was located in Soto de Cerrato, Palencia, Spain
(41°56'53” N, 4°25'29” W, 725 m.a.s.L.).

Images were captured on a single date (13 May, when S. arvensis was in the flowering stage) with
two conventional digital cameras set on a Mikrokopter UfocamXXL8 V3 octocopter (Figure 1b): an
Olympus (Shinjuku, Tokyo, Japan) Pen E-PM1 semireflex digital camera for the RGB pictures and a
customized Olympus Pen E-P1 camera for the NIR band. In this latter camera, the IR low pass filter
was removed and a 720 nm high pass IR filter was installed to block the visible part of the spectrum.



AgriEngineering 2020, 2 208
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Figure 1. (a) Alfalfa plot and subplot study areas (delimited with red lines); (b) the two Olympus
cameras mounted on the octocopter.

Before the flights, 10 control points of known coordinates were marked on the ground for
geometrical corrections and for georeferencing of the mosaics. The path trajectory was defined using
Mikrokopter Tool software. Flight height was set at 60 m, and the minimum longitudinal and transverse
overlap for imagery acquisition were 70% and 40%, respectively, in order to guarantee the correct
generation of the mosaics. The flight took 8 min.

Pictures were processed with Agisoft PhotoScan (PS) (Agisoft LLC, Saint Petersburg, Russia).
From each images set, i.e., visible and NIR, a georeferenced image was produced in PhotoScan by
different routines in a semiautomatic process in which the camera positions were calculated and control
points were added. The pixel size of the images was 10 cm X 10 cm. The pixel values were generated
in a range from 0 to 255 (“digital number”, DN) for the Red (R), Green (G), Blue (B), and Near-Infrared
(NIR) channels. It should be taken into consideration that the relative contributions of red, green, and
blue were automatically modified depending on the lightning conditions and the color of the target,
given that the off-the-shelf camera’s automatic white balance was used [30]. The two georeferenced
images (visible and NIR) overlapped perfectly, sharing the same control points. Both images were then
imported to PCI-Geomatica 9.1 (PCI-Geomatics, Markham, Canada) and the four channels (NIR-R-G-B)
were combined.

Two vegetation indices based on the visible spectrum region were selected from the work by
Kawashima et al. [29]. Specifically, the two indices that showed the highest correlation with chlorophyll
content under different meteorological conditions were chosen. In addition, the most common
vegetation index, NDVI, was chosen for comparison purposes. The three indices (Table 1) were finally
calculated on the mosaic.

Table 1. Vegetation indices evaluated in this study.

Name Equation Reference
Normalized Pigment Chlorophyll Ratio (NPCI) (R-B)/(R+B) [31]
(R-B)/(R+G+B) [29]
Normalized Difference Vegetation Index (NDVI)  (NIR-R)/(NIR+R) [32]

R: red; G: green; B: blue; NIR: near-infrared.
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3. Results and Discussion

A comparison between the RGB captured image and the NDVI, (R-B)/(R+B), and (R-B)/(R+B+G)
images is shown in Figure 2. In the RGB image (Figure 2d), Sinapsis arvensis could be distinguished in
yellow or yellow-green hues, while alfalfa was green and the soil showed grey shades.

L ————

(d) (e) ()
Figure 2. Comparison among (a) Normalized Difference Vegetation Index (NDVI); (b) (R-B)/(R+B)
and (c) (R-B)/(R+B+G) indices calculated on a weed-infested part (2000 m?) of the alfalfa plot; (d) RGB
image of the same area; (e,f) corresponding weed classification results (orange) from the models based
on NDVI and (R-B)/(R+B) indices, and on NDVI and (R-B)/(R+B+G) indices, respectively, shown on
top of the RGB image.

The use of the NDVI index (Figure 2a) differentiated soil from vegetation and allowed one to
discern yellow weeds, but these could easily be confused with soil, given that both were shown with
dark hues. On the other hand, (R-B)/(R+B) and (R—-B)/(R+B+G) indices (Figure 2b,c) were found to be
more sensitive to yellow spots, highlighting them with whitish hues. This avoided potential confusion
of the weeds with soil, solving the problem associated with the use of NDVIL. However, with these two
indices some confusion between weeds and alfalfa was detected, which could lead to an overestimation
of the infestation, discussed below. The marked difference observed for Sinapis arvensis between the
low NDVI values and the very high values of the other two chosen indices allowed one to improve its
identification when these indices were combined. A simple tree decision rule based on these differences
was used as a first approximation to obtain the weed infestation map. An example of the results of the
identification of the weed patterns with the indicated procedure is shown in Figure 2e,f. In both cases,
a filter was applied to reduce nonrepresentative isolated pixels and to improve the result.

The two best maps (based on a visual interpretation of the imagery, comparing the RGB image in
Figure 2d with the weed maps in Figure 2b,c and Figure 2e,f) resulted from the combination of NDVI
with each of the other indices and were similar both in the spatial distribution of the condition and in
its quantification. An estimation of the weed-infested surface in each subplot is presented in Table 2.
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It may be observed that the surfaces obtained from the two RGB-only indices were generally higher
than those obtained from their combinations with NDVI.

Table 2. Estimation of surface infected with Synapis arvensis in each of the alfalfa subplots for the two
RGB vegetation indices and for their combinations with the Normalized Difference Vegetation Index

(NDVI).
Subplot
Obtained from A B C D E
m2 O/o m2 O/o m2 O/o m2 O/o m2 O/o
(R-B)/(R+B+G) 29 1.1 54 1.6 60 1.6 158 4.3 68 1.9
NDVI and
(R-B)/(R+B+G) 29 1.1 42 1.2 27 0.8 158 4.3 46 1.3
(R-B)/(R+B) 28 1.1 55 1.6 77 2.1 131 3.5 54 1.5
NDVI and

(R-B)/(R+B) 25 1.0 38 1.1 21 0.6 142 3.8 40 1.1

These preliminary results should be expanded by analyzing in greater depth the separability of
the different classes (cultivation, weeds, and soil), by applying more complex classification methods,
and by validating the results with fieldwork, but the ability of the simple vegetation indices obtained
from conventional cameras to identify sectors with a proliferation of Synapis arvensis in alfalfa may be
deemed as promising.

Other studies, such as those conducted by Fuentes-Peailillo et al. [33] or by Lopez-Granados et
al. [22], have also demonstrated the possibility of obtaining spatial patterns with vegetation indexes
calculated from RGB images taken with conventional cameras. In these studies, the distribution of the
crop in rows facilitated weed discrimination, given that one could focus the identification only on the
soil surface between the rows of the crop. The uniqueness of the study presented herein resides in the
complete coverage of the land with alfalfa, which entailed particular difficulty for the location of the
area affected by weeds.

The use of RGB sensors suggested in this work, in line with the approach proposed by Hassanein
et al. [34], would provide an advantage to the system since such sensors are low-cost compared to
multispectral ones.

4. Conclusions

An off-the-shelf camera mounted on an UAYV, in combination with simple vegetation indices, can
be a cheap and effective solution for weed detection, avoiding expensive multispectral imagery sensors.
In this work, (R-B)/(R+B) and (R-B)/(R+B+G) indices were successfully applied to the detection of
Sinapis arvensis in an alfalfa crop. These two simple indices from RGB sensors were as sensitive as
NDVI for the detection of yellow weeds, with the additional advantage of avoiding potential confusion
of the weeds with soil. The small overestimation detected in the weed identification when these indices
were used could be easily reduced by using them in conjunction with NDVI. Since both RGB indices
had high sensitivity to slight variations of colors from green to yellow, they may find application in the
early detection of other yellow weeds as soon as they show up, and may be used as the first step to
generate a weed map, providing alfalfa farmers with the positions of the detected weed patches for
site-specific weed management.
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