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Abstract— In this paper, we study the performance of a
decentralized sensor network in the presence of correlated
additive Gaussian noise. We propose a Parallel Genetic Algorithm
approach to simultaneously optimize both the fusion rule and the
local decision rules in the sense of minimizing the probability
of error. Our results show that the algorithm converges to a
majority-like fusion rule irrespective of the degree of correlation
and that the local decision rules play a key role in determining
the performance of the overall system in the case of correlated
observations. We also show that the performance of the system
degrades with increase in the correlation between the observa-
tions.

I. INTRODUCTION

Decentralized processing, wherein the local sensors per-
form some preliminary processing of data and then send
the compressed information to a central processor (fusion
center), has the advantages of reduced communication band-
width requirement, reduced cost and increased reliability.
The fundamental problem in decentralized processing is to
optimize the performance of the system with respect to the
probability of detection at the fusion center by determining
the optimal local and global decision rules. This problem has
been studied extensively based on the assumption that the
observations of the local sensors are conditionally independent
when conditioned on the hypothesis [1], [2]. This assumption
simplifies the problem and makes it more tractable since, in
this case, the optimal local classifiers are likelihood ratio tests
characterized by a finite number of thresholds [4]. However,
this assumption of conditional independence is not always
valid in practice [7]. This is intuitively true in cases where the
physical proximities of the local sensors to each other results
in the noise on each sensor being dependent. Hence, there is
a need to investigate the problem of distributed detection with
correlated sensor observations.

The analysis of different detector structures in the presence
of dependent noise has been carried out for centralized de-
tection scenario [5], [6]. In [7], Lauer and Sandell studied
the problem of distributed detection in presence of correlated
Gaussian noise and derived suboptimum decision rules based
on likelihood ratio tests. Aalo and Vishwanathan considered
a similar problem in [8] assuming that the local sensors
make binary decisions with all of them operating at the
same threshold. Their study involved the evaluation of the

probability of detection in the Neyman-Pearson (N-P) sense
when the fusion rule was fixed to be one of the standard rules
such as AND, OR or Majority Voting rule. In [9], Drakopolous
and Lee derived the optimum decision rule in the N-P sense
when the local decision rules and the correlations between
the local observations are given. Aalo and Vishwanathan
also studied the asymptotic performances of distributed and
centralized detection systems in the presence of correlated
Gaussian noise in [10]. In [11], the optimal fusion rule is
developed for correlated local binary decisions by using the
Bahadur-Lazarsfeld expansion of probability density functions.
Thus, most of the literature has been devoted to deriving the
optimal fusion rule for a given set of local decision rules or
vice versa. The problem of simultaneously optimizing both
the fusion and local decision rules has not been tackled for
the dependent noise case.

In this paper, we provide a Parallel Genetic Algorithm
(PGA) approach for optimizing both the local and global
decision rules simultaneously. We analyze the performance
of distributed sensor networks in the presence of correlated
Gaussian noise for the case when the local classifiers are
assumed to be likelihood ratio tests characterized by a finite
number of thresholds. Unlike most of the prior work in
this field, we consider non-binary local decision rules. As
in [8], we consider both positively and negatively correlated
symmetric multidimensional noise distributions which can be
completely characterized by a single correlation coefficient
ρ. However, our approach can be extended for any arbitrary
positive definite noise covariance matrix structure. Further-
more, we present the results for the case when the sensor
thresholds are non-homogeneous (non-identical) as well as
for the homogeneous (identical) case. Our results show that
the performance of the decentralized network degrades as the
correlation between the sensors increases. This is intuitively
correct as we would expect the distributed system to become
equivalent to the single sensor system when the correlation
coefficient is equal to 1. In addition to presenting all these
results for the two sensor case, we also show the convergence
of our algorithm for the three sensor case. Our results show
that the algorithm converges to a majority-like fusion rule for
all the cases irrespective of the degree of correlation. The local
decision rules, on the other hand, are different for the different
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cases. Thus, it is the local decision rules that play a major role
in determining the performance of the decentralized sensor
network when the sensor observations are correlated. The PGA
approach proposed in this paper is effective in determining the
optimal local decision rules.

The rest of the paper is organized as follows. In section
II, we provide the system model and describe the problem at
hand. We present our Parallel Genetic Algorithm in section
III. In section IV, we present our results, and in section V we
give our conclusions.

II. SYSTEM MODEL

Consider the parallel decentralized detection system shown
in Fig.1, where the N local sensors gather observations yn,
make a local decision un per sensor, and transmit these
decisions to a single fusion rule γ0 through an error-free
multiple access channel.

Fig. 1. Parallel fusion network

We consider the binary detection problem in such a system,
(i.e.) we are testing the two hypotheses H1 (signal present) and
H0 (no signal). The two hypotheses have prior probabilities
π1 and π0, respectively. The observation at each sensor, yi, is
given by,

yi =
{

si + ni under H1

ni under H0
i = 1, 2, . . . , N (1)

The local detectors map these observations into one of L =
2b classes, where b is the number of bits transmitted to the
fusion center by each sensor. The fusion center then makes a
global decision H̃ about the true state H based on the set of
local decisions from all N sensors.

We assume that the noise on the sensors is additive Gaussian
dependent noise. As mentioned before, we consider only
symmetric noise densities which can be completely described

by a single correlation coefficient. Thus, for a three sensor
system, the covariance matrix for a zero mean Gaussian noise
with unit variance has the following form,

Λ =

⎛
⎝ 1 ρ ρ

ρ 1 ρ
ρ ρ 1

⎞
⎠ (2)

The optimum local classifiers are assumed to be likelihood
ratio tests. While likelihood ratio tests have been shown to be
optimal only for uncorrelated sensor observations ([3], [4]), it
is still widely used as the local decision rule for the correlated
observation case(see [7]-[11]). For the additive Gaussian noise
case, the local sensors are assumed to be quantizers with L
levels, i.e., L− 1 thresholds [2]. Thus, the local decision rule
corresponds to

un =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if yn ≤ λn,1

1 if λn,1 ≤ yn ≤ λn,2

...
...

L− 1 if yn > λn,L−1

(3)

where, yn is the local measurement at the nth sensor, un is
the corresponding local decision, and λn,1, λn,2, · · · , λn,L−1,
are the L− 1 quantization thresholds of that sensor.

We represent each possible combination of local decisions
by a vector of N integers as follows

u = ( u1 u2 · · · uN ), un ∈ {0, 1, · · · , L− 1}. (4)

Assuming L = 2b, where b is the number of bits transmitted
per sensor, u can be represented as a string of bN bits as
follows

u = ( u1
1u

2
1 · · ·ub

1 u1
2u

2
2 · · ·ub

2 · · · u1
Nu2

N · · ·ub
N ),

uj
n ∈ {0, 1} (5)

Thus, the space of all possible local decisions is spanned
by a single bN -bit integer q, whose value ranges from 0 to
2bN − 1. The individual values of the local decisions un, n =
1, 2, · · · , N for a particular combination of the local decisions
represented by q can be extracted by using the reverse mapping
function Ψn(q) defined as

Ψn(q) =
q

2b(N−n)
mod L, (6)

where mod is the modulo operation and all operations are
carried out in integer mode.

To represent the fusion rules, we adopt a binary represen-
tation similar to that described in [2], which accounts for the
output of the fusion rule under every possible combination
of the local decisions. Since there are N sensors and each
sensor classifies its measurement into L classes, each fusion
rule should account for LN local decision possibilities and, is
therefore represented as a string of LN bits as follows:

h = ( h0 h1 · · · hLN−2 hLN−1 ),

hq ∈ {0, 1}, q = 0, 1, · · · , LN − 1 (7)
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III. PROBLEM DEFINITION AND THE PGA APPROACH

Problem Definition: Determine the optimum local thresholds
and fusion rule, where optimality is defined as minimizing the
probability of error at the fusion center.

The optimization of the decentralized sensor network has
to be performed over all possible local thresholds and all
possible fusion rules. The resulting optimization problem
is NP-complete, i.e., the solution cannot be determined in
polynomial time. The complexity of the problem increases
exponentially with the number of sensors. Thus, an exhaustive
search becomes impractical. One approach commonly used
with this kind of a problem is the use of evolutionary al-
gorithms such as genetic algorithms (GAs). A GA mimics
the evolution process in biology and uses an evolution and
survival-of-the-fittest mechanism to guide the search toward
the fittest candidates [12].

The parallel GA that we are proposing in this paper is
essentially an algorithm which optimizes both the fusion rule
and the local thresholds in parallel. Each chromosome in the
GA consists of two parts:

• the fusion rule, and,
• a set of local thresholds.

A random initial population is generated which consists of
a fixed number of such chromosomes. The fitness of each
chromosome is evaluated as the average probability of error
at the fusion center for that particular combination of fusion
rule and local thresholds. The average probability of error at
the fusion center is given by the weighted sum of type-I and
type-II errors,

Pe(λ, h) =
1∑

k=0

πkP
0
k (k̄, λ, h) (8)

where πk is the prior probability of hypothesis Hk,
P 0

k (k̄, λ, h) = Pr(u0 = k̄|Hk) is the probability of false
alarm if k = 0 or the probability of miss if k = 1, and k̄ is
the binary NOT operation. Out of the LN mutually exclusive
possible local decisions, we sum over those that results in
u0 = k decision at the fusion center as follows

Pe(λ, h) =
1∑

k=0

πk

LN−1∑
q = 0
hq = k

Pr(u1 = Ψ1(q), · · · , uN = Ψn(q))

(9)
where Pr(u1 = Ψ1(q), · · · , uN = Ψn(q)) is the joint prob-
ability of sensor 1 deciding Ψ1(q), sensor 2 deciding Ψ2(q),
and so on. Since, the local sensors act as quantizers, this joint
probability can be evaluated as the following set of multiple
integrals

Pr(u1 = Ψ1(q), · · · , uN = Ψn(q)) =∫ λΨ1+1

λΨ1

· · ·
∫ λΨN +1

λΨN

fk(y1, · · · , yN )dy1 · · · dyN (10)

where fk(y1, · · · , yN ) is the joint probability density of the
observations y1, · · · , yN .

After evaluating the fitness, the chromosomes undergo se-
lection, cross-over and mutation. These processes are carried
out for both parts of the chromosome in parallel. Elitism is
also used to ensure that the best solutions from each generation
are carried over to the subsequent generation without any
mutation. Once, an offspring population is assembled with
the required number of candidate solutions, the fitness is
again evaluated and the whole process continues till a desired
termination criterion is reached.

The initialization of the local thresholds plays a crucial part
in the convergence of the algorithm. The local thresholds have
to be initialized close to the region of overlap between f0(y)
and f1(y) for proper convergence of the GA. This makes
intuitive sense since this is the region where it would be
hardest to discriminate between the two hypotheses.

IV. RESULTS

In this section, we present the simulation results obtained by
using our PGA approach. We consider a parallel decentralized
sensor network, where the global decision is made solely
by one fusion center to which all the local sensors transmit
their individual decisions through a error-free multiple access
channel. We consider both the homogenous and heteroge-
neous sensor cases, i.e., the cases where the sensors have
identical and non-identical thresholds, respectively. The local
observations are assumed to follow the additive noise model
y = mi + n, where mi is the signal mean under Hi, i = 0, 1
and n is the correlated Gaussian noise with zero-mean and
symmetric covariance matrix as given in eqn (2). The signal
means m0 and m1 are assumed to be 0 and 1 under H0 and
H1, respectively. We only consider sensor networks consisting
of 2 and 3 local sensors since, the order of integration increases
with the number of sensors and increases the computational
complexity. But, our approach is equally valid for larger
number of sensors as well. The number of bits per sensor is
assumed to be 2. Thus, each sensor classifies its observation
into one of 4 classes. The prior probability π0 is 0.5 for all the
cases. The simulations were run for different values of ρ in the
covariance matrix. The 3 local thresholds for each sensor are
initialized as Gaussian distributed random values with means
-0.5, 0.5 and 1.5, respectively. The variance of all the 3 local
thresholds is set to be 0.0025.

Fig.2 shows the convergence of the probability of error over
90 generations for different positive values of the correlation
coefficient ρ (ρ = 0, 0.2, 0.5, 0.9). The local sensors for this
case are heterogeneous. ρ = 0 represents the uncorrelated case,
where all the sensor observations are conditionally indepen-
dent when conditioned on the hypothesis Hi. For this case, the
minimum global probability of error goes down to 0.248 after
70 generations. For the case where ρ = 0.2, the minimum
probability of error is 0.263 after 60 generations. Similarly,
for ρ = 0.5 and ρ = 0.9, the minimum probability of error
converges to 0.284 and 0.305 after 30 and 15 generations,
respectively. From this, we can see that the probability of
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Fig. 2. Evolution of probability of error - Non-Homogenous sensors(N =
2, L = 4, π0 = 0.5)

error decreases with decrease in the correlation between the
local sensors. This is expected as increasing ρ increases the
correlation among the sensor observations, thereby eventually
reducing the distributed sensor network to a single sensor
system as the correlation coefficient becomes 1. Also, we note
that the cases with lower value of the correlation coefficient ρ
take longer to converge to the optimum solution as compared
to the cases with higher ρ values. This is once again because
the higher the correlation, the closer the network becomes
to a single sensor system. The optimal local thresholds for
heterogenous sensors scenario are listed in Table. I

Fig.3 shows a similar plot for different negative correlation
coefficient values over 100 generations. Once again, the sen-
sors are heterogeneous quantizers. Here again, we can see the
same trend with more negative values of ρ resulting in lower
probability of error. The minimum probability of error for the
3 correlated observation cases where ρ = −0.2,−0.5 and−0.9
goes down to 0.23, 0.19 and 0.075, respectively. Thus, we
find that there is a drastic improvement in the performance
of the sensor network as the negative correlation between the
observations increases. An increase in the negative correlation
essentially means that if the noise on one sensor is pushes the
observation towards the wrong hypothesis, then the noise on
the other sensor will push it toward the correct hypothesis.
Thus, if one sensor makes an erroneous decision, the chances
for the other sensor making the right decision are more. The
worst case would be when the magnitude of noise on both the
sensors is small. In this case, the performance would be equiv-
alent to the uncorrelated case. Thus, negative correlation on
the observations would cause the network to always perform
better than or at least equal to the uncorrelated case.

Fig.4 shows the convergence plot of the probability of
error for the case where the sensors are all homogeneous,
i.e., having the same thresholds. We find that the results are
similar to the heterogeneous case. But, the algorithm is found
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Fig. 3. Evolution of probability of error - Non-Homogenous sensors(N =
2, L = 4, π0 = 0.5)

to converge much faster in this case. This due to the low
complexity of problem since, for the homogeneous case, we
need to optimize only one set of common thresholds for the
whole network instead of a set of thresholds for each sensor.
The GA converges in 35 generations here as opposed to the
90 generations in the heterogeneous case. Table. II lists the
local thresholds for different cases of this scenario.

Fig.5 shows the evolution of the probability of error for
the 3 sensor heterogeneous case with ρ = 0.5. The GA for
this case converges after 150 generations and the minimum
global probability of error at the end of 150 generations is
0.273, which is less than the minimum probability of error
for the 2 sensor case with the same value of ρ. Due to the
computational complexity of the 3 sensor case which involves
a triple integral, we only provide the results for one value of
ρ.

The optimal fusion rule in all the above cases was found to
converge to a majority-like fusion rule, where the integer sum
of all the local decisions is compared to a threshold given by

λ0 � 1
2
N(L− 1) (11)

where N is the number of sensors and L is the number
of quantization levels per sensor. Although, all the cases
converge to the same fusion rule, there is a degradation in the
performance with increasing correlation. The only difference
between the cases with varying degrees of correlation is in the
local thresholds. Thus, we find that the local thresholds play a
major role in determining the performance of the decentralized
sensor network when the observations are correlated. We can
see from Tables I & II that as the correlation coefficient
increases, the 3 local thresholds of each sensor drift closer
to each other.
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V. CONCLUSION

In this paper, we analyze the performance of a decentralized
sensor network with parallel fusion architecture in the presence
of correlated noise. We propose a Parallel Genetic Algorithm
approach for this problem. Our results show that the optimal
fusion rule for both correlated and uncorrelated observations is
a majority-like fusion rule, irrespective of the degree of corre-
lation. We also illustrate that the local decision rule plays a key
role in optimizing the sensor network when the observations
are correlated. If the local decisions are assumed to be LRTs
and are defined completely by quantization thresholds, we
show that these thresholds drift closer together as the degree
of correlation increases. Finally, we demonstrate that both
homogeneous and non-homogeneous sensors provide similar
probability of error performance.

Sensor 1 Sensor 2

ρ λ1,1 λ1,2 λ1,3 λ2,1 λ2,2 λ2,3

0 -0.0329 0.2177 1.1636 -0.7661 0.4617 1.6683

0.2 -0.0942 0.7001 1.6162 -0.1284 0.6458 1.6397

0.5 -0.1513 0.6462 1.7067 -0.1436 0.7152 1.6469

0.9 0.1989 0.7523 1.6695 -0.6167 0.5248 1.6571

TABLE I

TABLE OF OPTIMUM LOCAL THRESHOLDS FOR DIFFERENT VALUES OF ρ

FOR NON-HOMOGENEOUS SENSORS CASE

ρ λ1 λ2 λ3

0 -0.5232 0.4906 1.3661

0.2 -0.3809 0.5445 1.3514

0.5 -0.0867 0.6615 1.2830

0.9 -0.8301 0.7861 1.2114

TABLE II

TABLE OF OPTIMUM LOCAL THRESHOLDS FOR DIFFERENT VALUES OF ρ

FOR HOMOGENEOUS SENSORS CASE
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